High‐throughput, microscope‐based sorting to dissect cellular heterogeneity

Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual ph...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 16; no. 6; pp. e9442 - n/a
Main Authors Hasle, Nicholas, Cooke, Anthony, Srivatsan, Sanjay, Huang, Heather, Stephany, Jason J, Krieger, Zachary, Jackson, Dana, Tang, Weiliang, Pendyala, Sriram, Monnat, Raymond J, Trapnell, Cole, Hatch, Emily M, Fowler, Douglas M
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2020
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text
ISSN1744-4292
1744-4292
DOI10.15252/msb.20209442

Cover

Loading…
Abstract Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. Synopsis This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Expression of the photoactivatable fluorescent protein Dendra2 permits selective, irreversible, and high‐throughput labeling of cells exhibiting different visual phenotypes. These labeled cell subpopulations can be sorted and thus subject to diverse downstream genomics assays. Photoactivation using a digital micromirror device affixed to a 405 nm laser is accurate, non‐toxic, and can be tuned to produce four discrete levels of fluorescence. Human cells expressing sequence variant libraries can be sorted according to a visual phenotype followed by sequencing, which provides sequence‐function maps for phenotypes such as protein subcellular localization. Cell populations that respond in a visually heterogeneous fashion to drug treatment can be sorted and subject to transcriptomic analyses, revealing the molecular states associated with complex drug responses. Graphical Abstract This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells.
AbstractList Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs.
Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells.
Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence-activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single-cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs.Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence-activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single-cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs.
Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. Synopsis This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Expression of the photoactivatable fluorescent protein Dendra2 permits selective, irreversible, and high‐throughput labeling of cells exhibiting different visual phenotypes. These labeled cell subpopulations can be sorted and thus subject to diverse downstream genomics assays. Photoactivation using a digital micromirror device affixed to a 405 nm laser is accurate, non‐toxic, and can be tuned to produce four discrete levels of fluorescence. Human cells expressing sequence variant libraries can be sorted according to a visual phenotype followed by sequencing, which provides sequence‐function maps for phenotypes such as protein subcellular localization. Cell populations that respond in a visually heterogeneous fashion to drug treatment can be sorted and subject to transcriptomic analyses, revealing the molecular states associated with complex drug responses. Graphical Abstract This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells.
Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. Synopsis This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Expression of the photoactivatable fluorescent protein Dendra2 permits selective, irreversible, and high‐throughput labeling of cells exhibiting different visual phenotypes. These labeled cell subpopulations can be sorted and thus subject to diverse downstream genomics assays. Photoactivation using a digital micromirror device affixed to a 405 nm laser is accurate, non‐toxic, and can be tuned to produce four discrete levels of fluorescence. Human cells expressing sequence variant libraries can be sorted according to a visual phenotype followed by sequencing, which provides sequence‐function maps for phenotypes such as protein subcellular localization. Cell populations that respond in a visually heterogeneous fashion to drug treatment can be sorted and subject to transcriptomic analyses, revealing the molecular states associated with complex drug responses. This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells.
Abstract Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs.
Author Tang, Weiliang
Hasle, Nicholas
Jackson, Dana
Stephany, Jason J
Pendyala, Sriram
Monnat, Raymond J
Cooke, Anthony
Krieger, Zachary
Srivatsan, Sanjay
Huang, Heather
Fowler, Douglas M
Hatch, Emily M
Trapnell, Cole
AuthorAffiliation 2 Leica Microsystems Buffalo Grove IL USA
5 Department of Bioengineering University of Washington Seattle WA USA
4 Department of Pathology University of Washington Seattle WA USA
1 Department of Genome Sciences University of Washington Seattle WA USA
3 Divisions of Basic Sciences and Human Biology Fred Hutchinson Cancer Research Center Seattle WA USA
AuthorAffiliation_xml – name: 2 Leica Microsystems Buffalo Grove IL USA
– name: 3 Divisions of Basic Sciences and Human Biology Fred Hutchinson Cancer Research Center Seattle WA USA
– name: 4 Department of Pathology University of Washington Seattle WA USA
– name: 5 Department of Bioengineering University of Washington Seattle WA USA
– name: 1 Department of Genome Sciences University of Washington Seattle WA USA
Author_xml – sequence: 1
  givenname: Nicholas
  surname: Hasle
  fullname: Hasle, Nicholas
  organization: Department of Genome Sciences, University of Washington
– sequence: 2
  givenname: Anthony
  surname: Cooke
  fullname: Cooke, Anthony
  organization: Leica Microsystems
– sequence: 3
  givenname: Sanjay
  surname: Srivatsan
  fullname: Srivatsan, Sanjay
  organization: Department of Genome Sciences, University of Washington
– sequence: 4
  givenname: Heather
  orcidid: 0000-0002-3534-9814
  surname: Huang
  fullname: Huang, Heather
  organization: Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center
– sequence: 5
  givenname: Jason J
  surname: Stephany
  fullname: Stephany, Jason J
  organization: Department of Genome Sciences, University of Washington
– sequence: 6
  givenname: Zachary
  surname: Krieger
  fullname: Krieger, Zachary
  organization: Department of Genome Sciences, University of Washington
– sequence: 7
  givenname: Dana
  surname: Jackson
  fullname: Jackson, Dana
  organization: Department of Genome Sciences, University of Washington
– sequence: 8
  givenname: Weiliang
  surname: Tang
  fullname: Tang, Weiliang
  organization: Department of Pathology, University of Washington
– sequence: 9
  givenname: Sriram
  surname: Pendyala
  fullname: Pendyala, Sriram
  organization: Department of Genome Sciences, University of Washington
– sequence: 10
  givenname: Raymond J
  surname: Monnat
  fullname: Monnat, Raymond J
  organization: Department of Genome Sciences, University of Washington, Department of Pathology, University of Washington
– sequence: 11
  givenname: Cole
  surname: Trapnell
  fullname: Trapnell, Cole
  organization: Department of Genome Sciences, University of Washington
– sequence: 12
  givenname: Emily M
  surname: Hatch
  fullname: Hatch, Emily M
  organization: Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center
– sequence: 13
  givenname: Douglas M
  orcidid: 0000-0001-7614-1713
  surname: Fowler
  fullname: Fowler, Douglas M
  email: dfowler@uw.edu
  organization: Department of Genome Sciences, University of Washington, Department of Bioengineering, University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32500953$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC-wZIsisWFBBt8SxxukUgGtVNQFsLZ8TTzKxIPtgGbXR-gz8iR4mk5pK-jKls_3_-fic1jsjX40RfESggWsUY3eraJcIIAAIwQ9KQ4gJaQiiKG9O_f94jDGJQC4hS16VuxjVAPAanxQXJy6rv99eZX64KeuX0_pbblyKvio_NrkgBTR6DL6kNzYlcmX2sVoVCqVGYZpEKHsTTLBd2Y0Lm2eF0-tGKJ5cXMeFd8_ffx2clqdX3w-Ozk-r1RTM1QJhKVWUENCMFKG2QZb3ApFsRS0Va0lFGHdUC2tlRpKaLQykJFWClRbq_FRcTb7ai-WfB3cSoQN98Lx6wcfOi5yyWow3GJigcYE19IQRiGDrQZ5dJDWVBDSZq_3s9d6kqttojEFMdwzvR8ZXc87_5NTRDFFMBu8uTEI_sdkYuIrF7fzEaPxU-SIQIBJk3Nn9PUDdOmnMOZRZYrk4ijF7eMUpKxpWd1k6tXdum8L3v1uBvAMbP8zBmO5ckkk57dtuIFDwK93iOcd4rsdyqrqgWpn_D-ezPwvN5jN4zD_8vXDrWwxy2JWjJ0Jf3v8d54_Jtno3A
CitedBy_id crossref_primary_10_1016_j_crmeth_2023_100641
crossref_primary_10_1002_mlf2_12096
crossref_primary_10_1186_s12974_021_02285_x
crossref_primary_10_1021_acschembio_4c00756
crossref_primary_10_1016_j_crmeth_2023_100544
crossref_primary_10_1038_s41592_022_01743_5
crossref_primary_10_1371_journal_pcbi_1009626
crossref_primary_10_1002_ijch_202200056
crossref_primary_10_1083_jcb_202006180
crossref_primary_10_1038_s41592_020_01053_8
crossref_primary_10_1016_j_bcp_2023_115770
crossref_primary_10_1038_s41592_024_02537_7
crossref_primary_10_1016_j_bbrc_2023_149174
crossref_primary_10_1016_j_sbi_2023_102602
crossref_primary_10_1111_imr_13236
crossref_primary_10_1038_s41583_023_00684_y
crossref_primary_10_1016_j_cell_2024_07_035
crossref_primary_10_15252_msb_202110768
crossref_primary_10_1016_j_cels_2021_05_010
crossref_primary_10_1016_j_molcel_2023_06_018
crossref_primary_10_1038_s41592_022_01604_1
crossref_primary_10_1063_5_0051354
crossref_primary_10_7554_eLife_88231
crossref_primary_10_1083_jcb_202008158
crossref_primary_10_1016_j_gde_2022_101941
crossref_primary_10_1146_annurev_genet_072920_013842
crossref_primary_10_1146_annurev_genet_072920_032107
crossref_primary_10_3390_ijms22168797
crossref_primary_10_1016_j_cell_2022_10_017
crossref_primary_10_1038_s42003_022_04089_y
crossref_primary_10_1098_rsif_2024_0497
crossref_primary_10_15252_msb_20209640
crossref_primary_10_1038_s41556_024_01407_w
crossref_primary_10_3389_fgene_2020_596150
crossref_primary_10_1016_j_csbj_2024_07_012
crossref_primary_10_1016_j_tcb_2024_04_007
crossref_primary_10_1038_s41587_024_02391_0
crossref_primary_10_1038_s41596_021_00653_8
crossref_primary_10_1126_sciadv_abb7438
crossref_primary_10_1038_s43586_021_00093_4
crossref_primary_10_1038_s42256_022_00547_8
Cites_doi 10.1016/j.cell.2018.03.040
10.1038/nmeth.1318
10.1038/nmeth.4495
10.1073/pnas.0506580102
10.1158/1541-7786.MCR-19-0191
10.1038/nmeth.2563
10.1038/ncomms12405
10.1038/nbt.4096
10.1039/C4SC03676J
10.1159/000076335
10.1016/0092-8674(84)90457-4
10.1126/science.aam8940
10.1016/j.cell.2015.11.007
10.1126/science.1250212
10.1126/science.aal3321
10.1093/bioinformatics/btt593
10.1016/j.molonc.2015.07.006
10.1002/ijc.24837
10.1093/molbev/msu173
10.32614/CRAN.package.uwot
10.1016/j.cell.2019.09.016
10.1073/pnas.1612826113
10.1126/science.aaa6090
10.1186/s13059-014-0550-8
10.1038/cdd.2011.168
10.1093/nar/gkt111
10.1038/s41586-019-1049-y
10.1126/science.aao4277
10.1124/mol.106.029702
10.1038/nprot.2014.191
10.1016/j.cels.2015.12.004
10.1038/nbt.4091
10.1038/nprot.2016.105
10.1074/jbc.M008522200
10.7554/eLife.45239
10.7554/eLife.24060
10.1073/pnas.1903808116
10.1186/1476-4598-9-33
10.1371/journal.pbio.3000225
10.1038/onc.2012.212
10.1038/nature22794
10.1186/1471-2105-10-202
10.1101/gad.6.10.1899
10.1038/nbt.2859
10.1186/s13059-017-1272-5
10.1038/nmeth.4150
10.1002/cncr.24282
10.1083/jcb.135.3.689
10.1038/s41588-018-0122-z
10.1093/nar/gkx183
10.1007/s10549-006-9293-x
10.1038/nprot.2007.291
10.1038/s41592-018-0111-2
10.1038/ncomms11636
10.1016/j.bbapap.2008.09.017
10.1038/ncomms11468
10.1371/journal.pone.0221505
ContentType Journal Article
Copyright The Author(s) 2020
2020 The Authors. Published under the terms of the CC BY 4.0 license.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.15252/msb.20209442
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Nicholas Hasle et al
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f34f0d3435be4971918d05251757a448
PMC7273721
32500953
10_15252_msb_20209442
MSB209442
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: The Paul G. Allen Frontiers Group
– fundername: HHS|NIH|National Cancer Institute (NCI)
  grantid: F30CA236335‐01; P30CA015704
  funderid: 10.13039/100000054
– fundername: HHS|NIH|National Heart, Lung, and Blood Institute (NHLBI)
  grantid: R01HL120948
  funderid: 10.13039/100000050
– fundername: HHS|NIH|National Institute of General Medical Sciences (NIGMS)
  grantid: R01GM109110; R35GM124766
  funderid: 10.13039/100000057
– fundername: W. M. Keck Foundation (W.M. Keck Foundation)
  funderid: 10.13039/100000888
– fundername: National Science Foundation (NSF)
  grantid: DGE‐1258485
  funderid: 10.13039/100000001
– fundername: HHS|NIH|National Human Genome Research Institute (NHGRI)
  grantid: RM1HG010461
  funderid: 10.13039/100000051
– fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
  grantid: DP2HD088158
  funderid: 10.13039/100009633
– fundername: HHS|NIH|National Heart, Lung, and Blood Institute (NHLBI)
  funderid: R01HL120948
– fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
  funderid: DP2HD088158
– fundername: HHS|NIH|National Human Genome Research Institute (NHGRI)
  funderid: RM1HG010461
– fundername: W. M. Keck Foundation (W.M. Keck Foundation)
– fundername: National Science Foundation (NSF)
  funderid: DGE‐1258485
– fundername: HHS|NIH|National Cancer Institute (NCI)
  funderid: F30CA236335‐01; P30CA015704
– fundername: HHS|NIH|National Institute of General Medical Sciences (NIGMS)
  funderid: R01GM109110; R35GM124766
– fundername: NIGMS NIH HHS
  grantid: R35 GM124766
– fundername: NCI NIH HHS
  grantid: P30 CA015704
– fundername: NIGMS NIH HHS
  grantid: R01 GM109110
– fundername: NCI NIH HHS
  grantid: P01 CA077852
– fundername: NICHD NIH HHS
  grantid: DP2 HD088158
– fundername: NHLBI NIH HHS
  grantid: R01 HL120948
– fundername: NHGRI NIH HHS
  grantid: RM1 HG010461
– fundername: NCI NIH HHS
  grantid: F30 CA236335
– fundername: ;
– fundername: ;
  grantid: RM1HG010461
– fundername: ;
  grantid: DGE‐1258485
– fundername: ;
  grantid: R01GM109110; R35GM124766
– fundername: ;
  grantid: R01HL120948
– fundername: ;
  grantid: DP2HD088158
– fundername: ;
  grantid: F30CA236335‐01; P30CA015704
GroupedDBID ---
-Q-
0R~
123
1OC
24P
29M
2WC
39C
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAJSJ
AAMMB
ABDBF
ABUWG
ACCMX
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IHR
INH
ITC
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
NAO
O5R
O5S
O9-
OK1
OVT
P2P
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
3V.
4.4
88A
AAHHS
ACCFJ
ADRAZ
AEEZP
AEQDE
AIWBW
AJBDE
COF
EBLON
EJD
GODZA
H13
IGS
M0L
AASML
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6592-a23bdc1d14432ce9f63f38ac73ba78c8f4723d67dbffbd1b1edce1948ba25ffd3
IEDL.DBID 7X7
ISSN 1744-4292
IngestDate Wed Aug 27 01:31:50 EDT 2025
Thu Aug 21 13:53:19 EDT 2025
Mon Jul 21 11:51:43 EDT 2025
Wed Aug 13 09:16:18 EDT 2025
Wed Aug 13 09:20:34 EDT 2025
Mon Jul 21 05:57:28 EDT 2025
Tue Jul 01 04:10:34 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Wed Jan 22 16:34:15 EST 2025
Tue Aug 12 01:10:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords transcriptomics
genetic screening
microscopy
subcellular localization
pharmacology
Language English
License Attribution
2020 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6592-a23bdc1d14432ce9f63f38ac73ba78c8f4723d67dbffbd1b1edce1948ba25ffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7614-1713
0000-0002-3534-9814
OpenAccessLink https://www.proquest.com/docview/2447197738?pq-origsite=%requestingapplication%
PMID 32500953
PQID 2417968956
PQPubID 29031
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_f34f0d3435be4971918d05251757a448
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7273721
proquest_miscellaneous_2410346971
proquest_journals_2447197738
proquest_journals_2417968956
pubmed_primary_32500953
crossref_citationtrail_10_15252_msb_20209442
crossref_primary_10_15252_msb_20209442
wiley_primary_10_15252_msb_20209442_MSB209442
springer_journals_10_15252_msb_20209442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2020
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2017; 6
2004; 66
2007; 101
2019; 14
2017; 45
2019; 17
1992; 19
2012; 19
2007; 71
2019; 568
2015; 348
2013; 8
2017; 356
2017; 357
2019; 166
2017; 358
2009; 115
1992; 6
2018; 173
2009; 10
2013; 10
2005; 102
1999; 59
2016; 113
2014; 15
2020; 48
2007; 2
1996; 135
2009; 1794
2018; 36
2010; 9
2019; 8
2015; 163
2015; 1
2015; 6
2011; 2
2010; 126
2015; 10
2013; 41
2016; 10
2016; 11
2001; 276
2016; 7
2017; 14
2013; 32
1984; 39
2019; 179
2018
2009; 6
2017; 18
2018; 50
2014; 30
2018; 15
2014; 343
2017; 546
2014; 32
2014; 31
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Rowinsky EK (e_1_2_8_48_1) 1992; 19
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Georges E (e_1_2_8_23_1) 2011; 2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
Theodoropoulos PA (e_1_2_8_56_1) 1999; 59
e_1_2_8_30_1
Yang J (e_1_2_8_62_1) 2013; 8
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
Matreyek KA (e_1_2_8_39_1) 2020; 48
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Lin JR (e_1_2_8_34_1) 2013; 8
Young MD (e_1_2_8_63_1) 2018
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
32543109 - Mol Syst Biol. 2020 Jun;16(6):e9640. doi: 10.15252/msb.20209640
References_xml – volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat Biotechnol
– volume: 45
  start-page: e102
  year: 2017
  article-title: A platform for functional assessment of large variant libraries in mammalian cells
  publication-title: Nucleic Acids Res
– volume: 163
  start-page: 1314
  year: 2015
  end-page: 1325
  article-title: Microscopy‐based high‐content screening
  publication-title: Cell
– volume: 32
  start-page: 1933
  year: 2013
  end-page: 1942
  article-title: GRP78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer
  publication-title: Oncogene
– volume: 7
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Bright monomeric near‐infrared fluorescent proteins as tags and biosensors for multiscale imaging
  publication-title: Nat Commun
– volume: 348
  start-page: aaa6090
  year: 2015
  article-title: Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
– volume: 546
  start-page: 431
  year: 2017
  end-page: 435
  article-title: Rare cell variability and drug‐induced reprogramming as a mode of cancer drug resistance
  publication-title: Nature
– volume: 31
  start-page: 1956
  year: 2014
  end-page: 1978
  article-title: An experimentally determined evolutionary model dramatically improves phylogenetic fit
  publication-title: Mol Biol Evol
– volume: 14
  start-page: 309
  year: 2017
  end-page: 315
  article-title: Single‐cell mRNA quantification and differential analysis with Census
  publication-title: Nat Methods
– volume: 356
  start-page: eaal3321
  year: 2017
  article-title: A subcellular map of the human proteome
  publication-title: Science
– volume: 8
  year: 2013
  article-title: SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring
  publication-title: PLoS One
– volume: 18
  start-page: 1
  year: 2017
  end-page: 15
  article-title: A statistical framework for analyzing deep mutational scanning data
  publication-title: Genome Biol
– volume: 7
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots
  publication-title: Nat Commun
– volume: 15
  start-page: 1
  year: 2014
  end-page: 21
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biol
– volume: 357
  start-page: 661
  year: 2017
  end-page: 667
  article-title: Comprehensive single‐cell transcriptional profiling of a multicellular organism
  publication-title: Science
– volume: 2
  start-page: 303
  year: 2011
  end-page: 308
  article-title: RNAi‐mediated knockdown of α‐enolase increases the sensitivity of tumor cells to antitubulin chemotherapeutics
  publication-title: Int J Biochem Mol Biol
– year: 2018
– volume: 10
  start-page: 1
  year: 2009
  end-page: 11
  article-title: NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction
  publication-title: BMC Bioinformatics
– volume: 36
  start-page: 421
  year: 2018
  end-page: 427
  article-title: Batch effects in single‐cell RNA‐sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat Biotechnol
– volume: 343
  start-page: 1360
  year: 2014
  end-page: 1363
  article-title: Sequencing
  publication-title: Science
– volume: 50
  start-page: 874
  year: 2018
  end-page: 882
  article-title: Multiplex assessment of protein variant abundance by massively parallel sequencing
  publication-title: Nat Genet
– year: 2018
  article-title: SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data
  publication-title: bioRxiv
– volume: 115
  start-page: 2453
  year: 2009
  end-page: 2463
  article-title: Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel
  publication-title: Cancer
– volume: 8
  start-page: 6
  year: 2013
  end-page: 11
  article-title: mBeRFP, an Improved Large Stokes Shift Red Fluorescent Protein
  publication-title: PLoS One
– volume: 276
  start-page: 1317
  year: 2001
  end-page: 1325
  article-title: Dissection of a nuclear localization signal
  publication-title: J Biol Chem
– volume: 7
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Live single‐cell laser tag
  publication-title: Nat Commun
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles
  publication-title: Proc Natl Acad Sci
– volume: 30
  start-page: 614
  year: 2014
  end-page: 620
  article-title: PEAR: a fast and accurate Illumina Paired‐End reAd mergeR
  publication-title: Bioinformatics
– volume: 101
  start-page: 305
  year: 2007
  end-page: 315
  article-title: Possible involvement of CCT5, RGS3, and YKT6 genes up‐regulated in p53‐mutated tumors in resistance to docetaxel in human breast cancers
  publication-title: Breast Cancer Res Treat
– volume: 48
  start-page: e1
  year: 2020
  article-title: An improved platform for functional assessment of large protein libraries in mammalian cells
  publication-title: Nucleic Acids Res
– volume: 358
  start-page: 1622
  year: 2017
  end-page: 1626
  article-title: Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA‐seq
  publication-title: Science
– volume: 19
  start-page: 859
  year: 2012
  end-page: 870
  article-title: Arginine methylation‐dependent regulation of ASK1 signaling by PRMT1
  publication-title: Cell Death Differ
– volume: 135
  start-page: 689
  year: 1996
  end-page: 700
  article-title: Differential taxol‐dependent arrest of transformed and nontransformed cells in the G1 phase of the cell cycle, and specific‐related mortality of transformed cells
  publication-title: J Cell Biol
– volume: 568
  start-page: 235
  year: 2019
  end-page: 239
  article-title: Transcriptome‐scale super‐resolved imaging in tissues by RNA seqFISH+
  publication-title: Nature
– volume: 6
  start-page: 1701
  year: 2015
  end-page: 1705
  article-title: Photostick: a method for selective isolation of target cells from culture
  publication-title: Chem Sci
– volume: 10
  start-page: 85
  year: 2016
  end-page: 100
  article-title: Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning
  publication-title: Mol Oncol
– volume: 1
  start-page: 417
  year: 2015
  end-page: 425
  article-title: The molecular signatures database hallmark gene set collection
  publication-title: Cell Syst
– volume: 1794
  start-page: 225
  year: 2009
  end-page: 236
  article-title: A proteomic approach to paclitaxel chemoresistance in ovarian cancer cell lines
  publication-title: Biochim Biophys Acta
– volume: 15
  start-page: 917
  year: 2018
  end-page: 920
  article-title: Label‐free prediction of three‐dimensional fluorescence images from transmitted light microscopy
  publication-title: Nat Methods
– volume: 6
  start-page: 343
  year: 2009
  end-page: 345
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat Methods
– volume: 6
  start-page: 1899
  year: 1992
  end-page: 1913
  article-title: IκB interacts with the nuclear localization sequences of the subunits of NF‐κB: a mechanism for cytoplasmic retention
  publication-title: Genes Dev
– volume: 10
  start-page: 1
  year: 2013
  end-page: 6
  article-title: sequencing for RNA analysis in preserved tissue and cells
  publication-title: Nat Methods
– volume: 17
  start-page: 1815
  year: 2019
  end-page: 1827
  article-title: The sustained induction of c‐MYC drives nab‐paclitaxel resistance in primary pancreatic ductal carcinoma cells
  publication-title: Mol Cancer Res
– volume: 113
  start-page: 11046
  year: 2016
  end-page: 11051
  article-title: High‐throughput single‐cell gene‐expression profiling with multiplexed error‐robust fluorescence hybridization
  publication-title: Proc Natl Acad Sci
– volume: 6
  start-page: e24060
  year: 2017
  article-title: Systematic morphological profiling of human gene and allele function via Cell Painting
  publication-title: Elife
– volume: 11
  start-page: 1757
  year: 2016
  end-page: 1774
  article-title: Cell Painting, a high‐content image‐based assay for morphological profiling using multiplexed fluorescent dyes
  publication-title: Nat Protoc
– volume: 173
  start-page: 792
  year: 2018
  end-page: 803
  article-title: labeling: predicting fluorescent labels in unlabeled images
  publication-title: Cell
– volume: 9
  start-page: 1
  year: 2010
  end-page: 12
  article-title: Warburg effect in chemosensitivity: targeting lactate dehydrogenase‐A re‐sensitizes Taxol‐resistant cancer cells to Taxol
  publication-title: Mol Cancer
– volume: 14
  start-page: e0221505
  year: 2019
  article-title: The Jembrana disease virus Rev protein: Identification of nuclear and novel lentiviral nucleolar localization and nuclear export signals
  publication-title: PLoS One
– volume: 2
  start-page: 2024
  year: 2007
  end-page: 2032
  article-title: Tracking intracellular protein movements using photoswitchable fluorescent proteins PS‐CFP2 and Dendra2
  publication-title: Nat Protoc
– volume: 17
  start-page: e3000225
  year: 2019
  article-title: Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues
  publication-title: PLoS Biol
– volume: 66
  start-page: 53
  year: 2004
  end-page: 61
  article-title: Mechanisms of paclitaxel‐induced apoptosis in an ovarian cancer cell line and its paclitaxel‐resistant clone
  publication-title: Oncology
– volume: 126
  start-page: 1144
  year: 2010
  end-page: 1154
  article-title: Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis
  publication-title: Int J Cancer
– volume: 71
  start-page: 1233
  year: 2007
  end-page: 1240
  article-title: Reversal of stathmin‐mediated resistance to paclitaxel and vinblastine in human breast carcinoma cells
  publication-title: Mol Pharmacol
– volume: 179
  start-page: 787
  year: 2019
  end-page: 799
  article-title: Pooled optical screens in human cells
  publication-title: Cell
– volume: 10
  start-page: 442
  year: 2015
  end-page: 458
  article-title: Fluorescent sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues
  publication-title: Nat Protoc
– volume: 166
  start-page: 10842
  year: 2019
  end-page: 10851
  article-title: Imaging‐based pooled CRISPR screening reveals regulators of lncRNA localization
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 646
  year: 1992
  end-page: 662
  article-title: Taxol: the first of the taxanes, an important new class of antitumor agents
  publication-title: Semin Oncol
– volume: 14
  start-page: 1159
  year: 2017
  end-page: 1162
  article-title: High‐throughput, image‐based screening of pooled genetic‐variant libraries
  publication-title: Nat Methods
– volume: 59
  start-page: 4625
  year: 1999
  end-page: 4633
  article-title: Taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus
  publication-title: Cancer Res
– volume: 39
  start-page: 499
  year: 1984
  end-page: 509
  article-title: A short amino acid sequence able to specify nuclear location
  publication-title: Cell
– volume: 8
  start-page: 1
  year: 2019
  end-page: 21
  article-title: Opto‐magnetic capture of individual cells based on visual phenotypes
  publication-title: Elife
– volume: 41
  start-page: 4378
  year: 2013
  end-page: 4391
  article-title: Enriching the gene set analysis of genome‐wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
  publication-title: Nucleic Acids Res
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cell.2018.03.040
– ident: e_1_2_8_24_1
  doi: 10.1038/nmeth.1318
– ident: e_1_2_8_19_1
  doi: 10.1038/nmeth.4495
– ident: e_1_2_8_54_1
  doi: 10.1073/pnas.0506580102
– volume: 48
  start-page: e1
  year: 2020
  ident: e_1_2_8_39_1
  article-title: An improved platform for functional assessment of large protein libraries in mammalian cells
  publication-title: Nucleic Acids Res
– ident: e_1_2_8_45_1
  doi: 10.1158/1541-7786.MCR-19-0191
– ident: e_1_2_8_28_1
  doi: 10.1038/nmeth.2563
– ident: e_1_2_8_52_1
  doi: 10.1038/ncomms12405
– ident: e_1_2_8_9_1
  doi: 10.1038/nbt.4096
– volume: 2
  start-page: 303
  year: 2011
  ident: e_1_2_8_23_1
  article-title: RNAi‐mediated knockdown of α‐enolase increases the sensitivity of tumor cells to antitubulin chemotherapeutics
  publication-title: Int J Biochem Mol Biol
– ident: e_1_2_8_12_1
  doi: 10.1039/C4SC03676J
– volume: 8
  year: 2013
  ident: e_1_2_8_34_1
  article-title: SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring
  publication-title: PLoS One
– ident: e_1_2_8_55_1
  doi: 10.1159/000076335
– ident: e_1_2_8_27_1
  doi: 10.1016/0092-8674(84)90457-4
– ident: e_1_2_8_10_1
  doi: 10.1126/science.aam8940
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cell.2015.11.007
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1250212
– ident: e_1_2_8_57_1
  doi: 10.1126/science.aal3321
– ident: e_1_2_8_64_1
  doi: 10.1093/bioinformatics/btt593
– ident: e_1_2_8_18_1
  doi: 10.1016/j.molonc.2015.07.006
– ident: e_1_2_8_50_1
  doi: 10.1002/ijc.24837
– ident: e_1_2_8_6_1
  doi: 10.1093/molbev/msu173
– ident: e_1_2_8_40_1
  doi: 10.32614/CRAN.package.uwot
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2019.09.016
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.1612826113
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aaa6090
– volume: 19
  start-page: 646
  year: 1992
  ident: e_1_2_8_48_1
  article-title: Taxol: the first of the taxanes, an important new class of antitumor agents
  publication-title: Semin Oncol
– ident: e_1_2_8_35_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_8_13_1
  doi: 10.1038/cdd.2011.168
– ident: e_1_2_8_60_1
  doi: 10.1093/nar/gkt111
– ident: e_1_2_8_20_1
  doi: 10.1038/s41586-019-1049-y
– ident: e_1_2_8_16_1
  doi: 10.1126/science.aao4277
– ident: e_1_2_8_2_1
  doi: 10.1124/mol.106.029702
– volume: 59
  start-page: 4625
  year: 1999
  ident: e_1_2_8_56_1
  article-title: Taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus
  publication-title: Cancer Res
– ident: e_1_2_8_31_1
  doi: 10.1038/nprot.2014.191
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cels.2015.12.004
– ident: e_1_2_8_25_1
  doi: 10.1038/nbt.4091
– ident: e_1_2_8_8_1
  doi: 10.1038/nprot.2016.105
– ident: e_1_2_8_26_1
  doi: 10.1074/jbc.M008522200
– ident: e_1_2_8_5_1
  doi: 10.7554/eLife.45239
– ident: e_1_2_8_47_1
  doi: 10.7554/eLife.24060
– ident: e_1_2_8_61_1
  doi: 10.1073/pnas.1903808116
– volume: 8
  start-page: 6
  year: 2013
  ident: e_1_2_8_62_1
  article-title: mBeRFP, an Improved Large Stokes Shift Red Fluorescent Protein
  publication-title: PLoS One
– ident: e_1_2_8_65_1
  doi: 10.1186/1476-4598-9-33
– ident: e_1_2_8_22_1
  doi: 10.1371/journal.pbio.3000225
– ident: e_1_2_8_32_1
  doi: 10.1038/onc.2012.212
– ident: e_1_2_8_51_1
  doi: 10.1038/nature22794
– ident: e_1_2_8_42_1
  doi: 10.1186/1471-2105-10-202
– ident: e_1_2_8_3_1
  doi: 10.1101/gad.6.10.1899
– ident: e_1_2_8_58_1
  doi: 10.1038/nbt.2859
– ident: e_1_2_8_49_1
  doi: 10.1186/s13059-017-1272-5
– ident: e_1_2_8_46_1
  doi: 10.1038/nmeth.4150
– ident: e_1_2_8_53_1
  doi: 10.1002/cncr.24282
– ident: e_1_2_8_59_1
  doi: 10.1083/jcb.135.3.689
– ident: e_1_2_8_38_1
  doi: 10.1038/s41588-018-0122-z
– year: 2018
  ident: e_1_2_8_63_1
  article-title: SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data
  publication-title: bioRxiv
– ident: e_1_2_8_37_1
  doi: 10.1093/nar/gkx183
– ident: e_1_2_8_43_1
  doi: 10.1007/s10549-006-9293-x
– ident: e_1_2_8_15_1
  doi: 10.1038/nprot.2007.291
– ident: e_1_2_8_44_1
  doi: 10.1038/s41592-018-0111-2
– ident: e_1_2_8_4_1
  doi: 10.1038/ncomms11636
– ident: e_1_2_8_17_1
  doi: 10.1016/j.bbapap.2008.09.017
– ident: e_1_2_8_29_1
  doi: 10.1038/ncomms11468
– ident: e_1_2_8_36_1
  doi: 10.1371/journal.pone.0221505
– reference: 32543109 - Mol Syst Biol. 2020 Jun;16(6):e9640. doi: 10.15252/msb.20209640
SSID ssj0038182
Score 2.5016196
Snippet Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains...
Abstract Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e9442
SubjectTerms Annotations
Apoptosis
Automation
Cell Line
Cell Nucleus Shape - drug effects
Cells - cytology
EMBO22
Experiments
Flow Cytometry
Fluorescence
Gene expression
Genetic engineering
genetic screening
Genetic Testing
Genotype & phenotype
Genotypes
Heterogeneity
Humans
Identification methods
Localization
Method
Methods
microscopy
Microscopy, Fluorescence - instrumentation
Morphology
Nuclear Localization Signals - metabolism
Paclitaxel
Paclitaxel - pharmacology
pharmacology
Phenotype
Phenotypes
Proteins
Reagents
Ribonucleic acid
RNA
subcellular localization
Transcriptome - drug effects
Transcriptome - genetics
transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSkhcEP8EShUkBJdG3dhO7D22qFWFVDhApd6s-I8i0aRis4fe-gg8I0_SGTsJRLBw4RbFk8QejzPfxJNvAF7ZwLzkZSiCKkUhfCgLo3woTClcYMIKEcl0Tt7Xx6fi3Vl19kupL8oJS_TASXF7gYuwcBy9uvFiKTG8UI5qr6Hbkw3GFvT2RZ83BlPpHUxuiA2MmijL9i5WBmNBFBSCzTxQJOr_E7r8PUly2imd49joiI7uwd0BQeb7qef34ZZvH8DtVFPy6iF8oMyNH9ffhwI8l-t-N7-grLv4_wk2kN9y-aoj-oDPed_lcUve9jl9w6ek1PycUmQ6tCyPEP0RnB4dfnp7XAxVEwpLW6RFw7hxtnQYKXFm_TLUPHDVWMlNI5VVQUjGXS2dCcG40pQ0xHIplGlYFYLjj2Gr7Vr_FHLuQ6WWvqKkTeEXlVnYyqnApEOYYSqZwe6oSW0HSnGqbPFVU2hBiteoeD0qPoPXk_hl4tLYJHhA0zIJEQV2PIGGoQfD0P8yjAy2x0nVw7pcaUYF12qFQeGGZvTViIg5Xv1yasYFRzPQtL5bx1ssuKjxiRk8SSYydZQjoCQCvwzkzHhmI5m3tF_OI6k34UiMxjN4M5rZz25tUFIRrfDvqtQnHw_S0bP_odTncIfunHLltmGr_7b2LxCV9WYnLsAbsQozpA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYQFVIvVR-0TYEqlVB7Ie3GdmLngKpSFSGkLYd2JW5W_IJKkNDdrAS3_oT-xv6SzjgPFMFyi2I7icczmW_iyTeE7BpPnWCpT7xMecKdTxMtnU90yq2n3HAeyHSm3_OjGT8-zU5vKYU6AS7uDe2wntRsfvHx-vfNZzD4_a56D_10udAQ6VGIVDi8jR-BUxJoo1M-bCigX6IdxeadISOXFJj774Obd7Mmh63TMbANnunwKXnSQcr4S6sDz8iaq56TjbbI5M0LcoKpHP_-_O0q8lwtm734EtPwwg8p0ICOzMaLGvkEzuKmjsMevWli_KiPWarxOebM1KBqDjD7Jpkdfvv59SjpyigkBvdMk5IybU1qIXRi1LjC58wzWRrBdCmkkZ4LymwurPZe21SnOMW04FKXNPPespdkvaor95rEzPlMFi7DLE7uJpmemMxKT4UF3KEzEZG9XpLKdBzjWOriQmGsgYJXIHjVCz4i74fuVy25xqqOB7gsQyfkxA4n6vmZ6kxMecb9xDLAf9rxQkAgKi1W6QOAJEqIQiOy3S-q6vVMoa4UuYQocUUzOG-AyAxGvxuawQJxBcrK1ctwiQnjOdwxIq9aFRkelAHCREa_iIiR8oxmMm6pfp0Hlm8ElhCeR-RDr2a3j7VCSEnQwodFqaY_DtqjNw9PeIs8xjFtWtw2WW_mS7cDAKzRb4Np_QdNti98
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQERIXBOUVWqogIbg0Yv2KvUe6alVVKhygUm9W_KJIbVKx2QO3_oT-xv4SZpwHRO1W3KLYzmM8znyTGX9DyHsXWVCcxiJqKgoRIi2sDrGwVPjIhBMikekcfykPT8TRqTztk2hwL8y_8XvJJPt0sbTgxTHwQgR8aR9KyktU3kW5GD64aHNYT595a8jE3CRW_rug5O2MyDEsOgWtyeocPCVPeriYf-7m9xl5EOpN8qgrIPn7OfmKaRo3V9d9tZ3LVbubX2CKXdpsAg1opHy-bJAr4EfeNnmKv7s2xx_2mIGan2E-TANqFACPvyAnB_vfF4dFXyKhcBgPLSrGrXfUg1vEmQvzWPLIdeUUt5XSTkehGPel8jZG66ml-Ip0LrStmIzR85dko27q8JrkPESp50FihqYIM2lnTnodmfKAKaxUGdkdJGlczx-OZSzODfoRKHgDgjeD4DPyYex-2RFnrOu4h9MydkK-63QC1MD0y8dELuLMc8B2Noi5AidTe6zAB-BHVeBhZmR7mFTTL8KlYVhdrdTgAa5pBsMM8JfD6HdjM6wunIGqDs0qXWLGRQl3zMirTkXGB-WAHpGtLyNqojyTN5m21D_PEoM3gkZwvTPycVCzv4-1RkhF0sL7RWmOv-11R2_--8pb5DEedtlv22Sj_bUKbwFntXYnrbI_cyskLA
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQERIXVMorpa1SCcGlERvbiZ1ji6iqSgUkqNSbFT-mRaJJ1c0euPET-I38EmacB0SwSNxWsZN1xjOeb-LxN4y9cMCDEjlkoHOZyQB5ZnWAzObSA5dOykimc_auPDmXpxfFxVDnlM7C9PwQ0wc3soy4XpOB13Y5Vuwh1tDrpcX4jmN8InENvkvHa4k8n8sP41JM3oj3JyJxHLziA8kmPeD177fPnFLk7v8b4Pwzb3LaPJ1D2-ibjjfZgwFUpoe9Fjxkd0Kzxe71ZSa_PmLvKZnjx7fvQ02em1V3kF5TIl48koIN5Mp8umyJUeAy7do07tK7LqXP-pSnml5R1kyLyhYQtT9m58dvP705yYZCCpmjXdOs5sJ6l3sMngR3oYJSgNC1U8LWSjsNUnHhS-UtgPW5zekV80pqW_MCwIsnbKNpm_CMpSJAoatQUB6nDIvCLlzhNXDlEXnYQiXsYJSkcQPLOBW7-GIo2iDBGxS8GQWfsJdT95ueXmNdxyOalqkTsWLHC-3tpRmMzICQsPACEaANslIYimpPdfoQIqka49CE7YyTagZTXRpONdhKjXHimmZ03wiSBd69PzWjDdIM1E1oV_ERCyFL_MeEPe1VZBqoQIxJnH4JUzPlmb3JvKX5fBV5vglaYoCesFejmv0a1hohZVEL_y1Kc_bxqP-1_Z_9n7P7dLHPlNthG93tKuwiJuvsXrS7n9NDMKw
  priority: 102
  providerName: Wiley-Blackwell
Title High‐throughput, microscope‐based sorting to dissect cellular heterogeneity
URI https://link.springer.com/article/10.15252/msb.20209442
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20209442
https://www.ncbi.nlm.nih.gov/pubmed/32500953
https://www.proquest.com/docview/2417968956
https://www.proquest.com/docview/2447197738
https://www.proquest.com/docview/2410346971
https://pubmed.ncbi.nlm.nih.gov/PMC7273721
https://doaj.org/article/f34f0d3435be4971918d05251757a448
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RVkhcEG8MJTISgkutxrtr7-aESNSqQkqpgEq5Wd5XW4naoXEO3PgJ_EZ-CTPrB4ogvURJdpN4Z2c93-x--QbgjfHMSZ76xKtUJML5NNHK-USnwnomjBBBTGd-mp-ci4-LbNFtuK06WmV_Tww3alsb2iM_xDAkUwQrXL1ffk-oahSdrnYlNHZgj6TLiNIlF0PCRcGIdbqaGcvY4fVKY0bIMKMRbCMOBbn-_2HMf6mSw3npJpoN4ej4AdzvcGT8oZ34h3DHVY_gbltZ8sdj-ET8jd8_f3VleJbr5iC-Ju5d-BcKNlD0svGqJhGBi7ip43Awb5qYdvKJmhpfElGmRv9yCNSfwPnx0dfZSdLVTkgMHZQmJePamtRivsSZcROfc89VaSTXpVRGeSEZt7m02nttU53SENOJULpkmfeWP4Xdqq7cc4i585mauIyom8KNMz02mVWeSYtgQ2cygoPekoXphMWpvsW3ghIMMnyBhi96w0fwdui-bBU1tnWc0rQMnUgIO7xR31wU3boqPBd-bDmCPu3EBD0kVZZK8yEqkiWmnhHs95NadKtzVTAqu5YrTA23NPeuFsHroRmXHc1AWbl6Hb5izEWOvxjBs9ZFhgvlCCtJxi8CueE8GyPZbKmuLoO0N6FJzMkjeNe72d_L2mKkJHjh7aYs5l-m7bMXtw_4Jdyjz7RcuH3YbW7W7hWirkaPYIeJs1FYYCPYmx6dnn3GV7N8Ngr7GPg4F-oPrikyEg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVAheEHcMBYzE5aVW4911dvOAEIFWKW0Cglbqm_He2kptHJpEqG98Al_CR_ElzPiGLEjf-hZlNxt7dnbnHO_xDMBz45mTPPaRV7GIhPNxpJXzkY6F9UwYIYpkOqNxb7gvPhwkByvwq34XhmSV9Z5YbNQ2N_SMfAPDkIwRrHD1ZvotoqpRdLpal9Ao3WLHnX9HyjZ7vf0e5_cFY1ube--GUVVVIDJ0hBhljGtrYotMgjPj-r7HPVeZkVxnUhnlhWTc9qTV3msb65h0kkj1lc5Y4r3lOO4VWBUcqUwHVgeb40-f672fwh-rMnkmLGEbpzONHJQhhxKsFfmKAgH_Q7X_ijObE9o2fi4C4NZNuFEh1_Bt6Wq3YMVNbsPVspbl-R34SIqR3z9-VoV_pov5enhKar_ivRdsoHhpw1lOaQsOw3keFlIAMw_p7IDEsOERSXNy9GiH1OAu7F-KXe9BZ5JP3AMIufOJ6ruExKLCdRPdNYlVnkmL8EYnMoD12pKpqVKZU0WNk5QoDRk-RcOnteEDeNl0n5Y5PJZ1HNC0NJ0o9XbxRX52mFYrOfVc-K7lCDO1E330yVhZKgaIOExmSHYDWKsnNa32g1nKqNBbTyEZXdJcO3cAz5pmXOg0A9nE5YtiiC4XPfzHAO6XLtJcKEcgS4kDA5At52ndSbtlcnxUJBMn_CoZjvmqdrO_l7XESFHhhRebMh19GZSfHl58w0_h2nBvtJvubo93HsF1-n2pxFuDzvxs4R4j5pvrJ9VCC-HrZa_tP052bYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqViAuiDdpCwQJwaVRE9uJveK0BVZloQWpVOrNil8tEk1W3eyBGz-B38gvYcZ5oKgs4raKnWwyHme-Lx5_Q8gL46kTLPOJlxlPuPNZoqXzic649ZQbzoOYztFxcXjK52f52QZ53e-FCdnu_ZJku6cBVZqqZn9hfV-vh-5fLjVwOwrchMP7d0sWqQTmtTWdzk_m_YsYYxHtZDWvnTQKQ0Gt_28Q83qm5LBcOgazIRrN7pDbHYyMp-243yUbrrpHbrSFJb_fJ58wfePXj59dFZ7FqtmLLzH1LmxCgQYMXjZe1qghcB43dRzW5U0T44d8zEyNLzBPpgb3coDTH5DT2bsvbw6TrnRCYnCdNCkp09ZkFugSo8ZNfME8k6URTJdCGum5oMwWwmrvtc10ho-YTbjUJc29t-wh2azqyj0mMXM-lxOXY-Ymd2muU5Nb6amwgDV0LiKy11tSmU5XHMtbfFPIL9DwCgyvesNH5OXQfdEKaqzreIDDMnRCHexwoL46V920Up5xn1oGmE87PhFAPqXFynwAikQJzDMiu_2gqm5yLhXFqmuFBGa4phkCNsBiBmc_H5ph1uEIlJWrV-ESKeMF_GNEHrUuMtwoA1SJKn4RESPnGT3JuKX6ehGUvRFMAiWPyKvezf7c1hojJcEL_21KdXRy0P7a_u8rPyM3P7-dqY_vjz_skFt4tE2Q2yWbzdXKPQEo1uin3ZT7DTbYMMc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90throughput%2C+microscope%E2%80%90based+sorting+to+dissect+cellular+heterogeneity&rft.jtitle=Molecular+systems+biology&rft.au=Hasle%2C+Nicholas&rft.au=Cooke%2C+Anthony&rft.au=Srivatsan%2C+Sanjay&rft.au=Huang%2C+Heather&rft.date=2020-06-01&rft.pub=EMBO+Press&rft.eissn=1744-4292&rft.volume=16&rft.issue=6&rft_id=info:doi/10.15252%2Fmsb.20209442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon