High‐throughput, microscope‐based sorting to dissect cellular heterogeneity
Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual ph...
Saved in:
Published in | Molecular systems biology Vol. 16; no. 6; pp. e9442 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2020
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1744-4292 1744-4292 |
DOI | 10.15252/msb.20209442 |
Cover
Loading…
Abstract | Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs.
Synopsis
This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells.
Expression of the photoactivatable fluorescent protein Dendra2 permits selective, irreversible, and high‐throughput labeling of cells exhibiting different visual phenotypes. These labeled cell subpopulations can be sorted and thus subject to diverse downstream genomics assays.
Photoactivation using a digital micromirror device affixed to a 405 nm laser is accurate, non‐toxic, and can be tuned to produce four discrete levels of fluorescence.
Human cells expressing sequence variant libraries can be sorted according to a visual phenotype followed by sequencing, which provides sequence‐function maps for phenotypes such as protein subcellular localization.
Cell populations that respond in a visually heterogeneous fashion to drug treatment can be sorted and subject to transcriptomic analyses, revealing the molecular states associated with complex drug responses.
Graphical Abstract
This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. |
---|---|
AbstractList | Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence-activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single-cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs.Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence-activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single-cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. Synopsis This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Expression of the photoactivatable fluorescent protein Dendra2 permits selective, irreversible, and high‐throughput labeling of cells exhibiting different visual phenotypes. These labeled cell subpopulations can be sorted and thus subject to diverse downstream genomics assays. Photoactivation using a digital micromirror device affixed to a 405 nm laser is accurate, non‐toxic, and can be tuned to produce four discrete levels of fluorescence. Human cells expressing sequence variant libraries can be sorted according to a visual phenotype followed by sequencing, which provides sequence‐function maps for phenotypes such as protein subcellular localization. Cell populations that respond in a visually heterogeneous fashion to drug treatment can be sorted and subject to transcriptomic analyses, revealing the molecular states associated with complex drug responses. Graphical Abstract This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. Synopsis This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Expression of the photoactivatable fluorescent protein Dendra2 permits selective, irreversible, and high‐throughput labeling of cells exhibiting different visual phenotypes. These labeled cell subpopulations can be sorted and thus subject to diverse downstream genomics assays. Photoactivation using a digital micromirror device affixed to a 405 nm laser is accurate, non‐toxic, and can be tuned to produce four discrete levels of fluorescence. Human cells expressing sequence variant libraries can be sorted according to a visual phenotype followed by sequencing, which provides sequence‐function maps for phenotypes such as protein subcellular localization. Cell populations that respond in a visually heterogeneous fashion to drug treatment can be sorted and subject to transcriptomic analyses, revealing the molecular states associated with complex drug responses. This study describes an imaging‐based approach for pooled genetic screening and morphology‐based transcriptomics that uses high‐throughput photoactivation followed by FACS to separate differentially labeled cells. Abstract Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence‐activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single‐cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs. |
Author | Tang, Weiliang Hasle, Nicholas Jackson, Dana Stephany, Jason J Pendyala, Sriram Monnat, Raymond J Cooke, Anthony Krieger, Zachary Srivatsan, Sanjay Huang, Heather Fowler, Douglas M Hatch, Emily M Trapnell, Cole |
AuthorAffiliation | 2 Leica Microsystems Buffalo Grove IL USA 5 Department of Bioengineering University of Washington Seattle WA USA 4 Department of Pathology University of Washington Seattle WA USA 1 Department of Genome Sciences University of Washington Seattle WA USA 3 Divisions of Basic Sciences and Human Biology Fred Hutchinson Cancer Research Center Seattle WA USA |
AuthorAffiliation_xml | – name: 2 Leica Microsystems Buffalo Grove IL USA – name: 3 Divisions of Basic Sciences and Human Biology Fred Hutchinson Cancer Research Center Seattle WA USA – name: 4 Department of Pathology University of Washington Seattle WA USA – name: 5 Department of Bioengineering University of Washington Seattle WA USA – name: 1 Department of Genome Sciences University of Washington Seattle WA USA |
Author_xml | – sequence: 1 givenname: Nicholas surname: Hasle fullname: Hasle, Nicholas organization: Department of Genome Sciences, University of Washington – sequence: 2 givenname: Anthony surname: Cooke fullname: Cooke, Anthony organization: Leica Microsystems – sequence: 3 givenname: Sanjay surname: Srivatsan fullname: Srivatsan, Sanjay organization: Department of Genome Sciences, University of Washington – sequence: 4 givenname: Heather orcidid: 0000-0002-3534-9814 surname: Huang fullname: Huang, Heather organization: Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center – sequence: 5 givenname: Jason J surname: Stephany fullname: Stephany, Jason J organization: Department of Genome Sciences, University of Washington – sequence: 6 givenname: Zachary surname: Krieger fullname: Krieger, Zachary organization: Department of Genome Sciences, University of Washington – sequence: 7 givenname: Dana surname: Jackson fullname: Jackson, Dana organization: Department of Genome Sciences, University of Washington – sequence: 8 givenname: Weiliang surname: Tang fullname: Tang, Weiliang organization: Department of Pathology, University of Washington – sequence: 9 givenname: Sriram surname: Pendyala fullname: Pendyala, Sriram organization: Department of Genome Sciences, University of Washington – sequence: 10 givenname: Raymond J surname: Monnat fullname: Monnat, Raymond J organization: Department of Genome Sciences, University of Washington, Department of Pathology, University of Washington – sequence: 11 givenname: Cole surname: Trapnell fullname: Trapnell, Cole organization: Department of Genome Sciences, University of Washington – sequence: 12 givenname: Emily M surname: Hatch fullname: Hatch, Emily M organization: Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center – sequence: 13 givenname: Douglas M orcidid: 0000-0001-7614-1713 surname: Fowler fullname: Fowler, Douglas M email: dfowler@uw.edu organization: Department of Genome Sciences, University of Washington, Department of Bioengineering, University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32500953$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNURC-wZIsisWFBBt8SxxukUgGtVNQFsLZ8TTzKxIPtgGbXR-gz8iR4mk5pK-jKls_3_-fic1jsjX40RfESggWsUY3eraJcIIAAIwQ9KQ4gJaQiiKG9O_f94jDGJQC4hS16VuxjVAPAanxQXJy6rv99eZX64KeuX0_pbblyKvio_NrkgBTR6DL6kNzYlcmX2sVoVCqVGYZpEKHsTTLBd2Y0Lm2eF0-tGKJ5cXMeFd8_ffx2clqdX3w-Ozk-r1RTM1QJhKVWUENCMFKG2QZb3ApFsRS0Va0lFGHdUC2tlRpKaLQykJFWClRbq_FRcTb7ai-WfB3cSoQN98Lx6wcfOi5yyWow3GJigcYE19IQRiGDrQZ5dJDWVBDSZq_3s9d6kqttojEFMdwzvR8ZXc87_5NTRDFFMBu8uTEI_sdkYuIrF7fzEaPxU-SIQIBJk3Nn9PUDdOmnMOZRZYrk4ijF7eMUpKxpWd1k6tXdum8L3v1uBvAMbP8zBmO5ckkk57dtuIFDwK93iOcd4rsdyqrqgWpn_D-ezPwvN5jN4zD_8vXDrWwxy2JWjJ0Jf3v8d54_Jtno3A |
CitedBy_id | crossref_primary_10_1016_j_crmeth_2023_100641 crossref_primary_10_1002_mlf2_12096 crossref_primary_10_1186_s12974_021_02285_x crossref_primary_10_1021_acschembio_4c00756 crossref_primary_10_1016_j_crmeth_2023_100544 crossref_primary_10_1038_s41592_022_01743_5 crossref_primary_10_1371_journal_pcbi_1009626 crossref_primary_10_1002_ijch_202200056 crossref_primary_10_1083_jcb_202006180 crossref_primary_10_1038_s41592_020_01053_8 crossref_primary_10_1016_j_bcp_2023_115770 crossref_primary_10_1038_s41592_024_02537_7 crossref_primary_10_1016_j_bbrc_2023_149174 crossref_primary_10_1016_j_sbi_2023_102602 crossref_primary_10_1111_imr_13236 crossref_primary_10_1038_s41583_023_00684_y crossref_primary_10_1016_j_cell_2024_07_035 crossref_primary_10_15252_msb_202110768 crossref_primary_10_1016_j_cels_2021_05_010 crossref_primary_10_1016_j_molcel_2023_06_018 crossref_primary_10_1038_s41592_022_01604_1 crossref_primary_10_1063_5_0051354 crossref_primary_10_7554_eLife_88231 crossref_primary_10_1083_jcb_202008158 crossref_primary_10_1016_j_gde_2022_101941 crossref_primary_10_1146_annurev_genet_072920_013842 crossref_primary_10_1146_annurev_genet_072920_032107 crossref_primary_10_3390_ijms22168797 crossref_primary_10_1016_j_cell_2022_10_017 crossref_primary_10_1038_s42003_022_04089_y crossref_primary_10_1098_rsif_2024_0497 crossref_primary_10_15252_msb_20209640 crossref_primary_10_1038_s41556_024_01407_w crossref_primary_10_3389_fgene_2020_596150 crossref_primary_10_1016_j_csbj_2024_07_012 crossref_primary_10_1016_j_tcb_2024_04_007 crossref_primary_10_1038_s41587_024_02391_0 crossref_primary_10_1038_s41596_021_00653_8 crossref_primary_10_1126_sciadv_abb7438 crossref_primary_10_1038_s43586_021_00093_4 crossref_primary_10_1038_s42256_022_00547_8 |
Cites_doi | 10.1016/j.cell.2018.03.040 10.1038/nmeth.1318 10.1038/nmeth.4495 10.1073/pnas.0506580102 10.1158/1541-7786.MCR-19-0191 10.1038/nmeth.2563 10.1038/ncomms12405 10.1038/nbt.4096 10.1039/C4SC03676J 10.1159/000076335 10.1016/0092-8674(84)90457-4 10.1126/science.aam8940 10.1016/j.cell.2015.11.007 10.1126/science.1250212 10.1126/science.aal3321 10.1093/bioinformatics/btt593 10.1016/j.molonc.2015.07.006 10.1002/ijc.24837 10.1093/molbev/msu173 10.32614/CRAN.package.uwot 10.1016/j.cell.2019.09.016 10.1073/pnas.1612826113 10.1126/science.aaa6090 10.1186/s13059-014-0550-8 10.1038/cdd.2011.168 10.1093/nar/gkt111 10.1038/s41586-019-1049-y 10.1126/science.aao4277 10.1124/mol.106.029702 10.1038/nprot.2014.191 10.1016/j.cels.2015.12.004 10.1038/nbt.4091 10.1038/nprot.2016.105 10.1074/jbc.M008522200 10.7554/eLife.45239 10.7554/eLife.24060 10.1073/pnas.1903808116 10.1186/1476-4598-9-33 10.1371/journal.pbio.3000225 10.1038/onc.2012.212 10.1038/nature22794 10.1186/1471-2105-10-202 10.1101/gad.6.10.1899 10.1038/nbt.2859 10.1186/s13059-017-1272-5 10.1038/nmeth.4150 10.1002/cncr.24282 10.1083/jcb.135.3.689 10.1038/s41588-018-0122-z 10.1093/nar/gkx183 10.1007/s10549-006-9293-x 10.1038/nprot.2007.291 10.1038/s41592-018-0111-2 10.1038/ncomms11636 10.1016/j.bbapap.2008.09.017 10.1038/ncomms11468 10.1371/journal.pone.0221505 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 2020 The Authors. Published under the terms of the CC BY 4.0 license. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.15252/msb.20209442 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Nicholas Hasle et al |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_f34f0d3435be4971918d05251757a448 PMC7273721 32500953 10_15252_msb_20209442 MSB209442 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: The Paul G. Allen Frontiers Group – fundername: HHS|NIH|National Cancer Institute (NCI) grantid: F30CA236335‐01; P30CA015704 funderid: 10.13039/100000054 – fundername: HHS|NIH|National Heart, Lung, and Blood Institute (NHLBI) grantid: R01HL120948 funderid: 10.13039/100000050 – fundername: HHS|NIH|National Institute of General Medical Sciences (NIGMS) grantid: R01GM109110; R35GM124766 funderid: 10.13039/100000057 – fundername: W. M. Keck Foundation (W.M. Keck Foundation) funderid: 10.13039/100000888 – fundername: National Science Foundation (NSF) grantid: DGE‐1258485 funderid: 10.13039/100000001 – fundername: HHS|NIH|National Human Genome Research Institute (NHGRI) grantid: RM1HG010461 funderid: 10.13039/100000051 – fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) grantid: DP2HD088158 funderid: 10.13039/100009633 – fundername: HHS|NIH|National Heart, Lung, and Blood Institute (NHLBI) funderid: R01HL120948 – fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) funderid: DP2HD088158 – fundername: HHS|NIH|National Human Genome Research Institute (NHGRI) funderid: RM1HG010461 – fundername: W. M. Keck Foundation (W.M. Keck Foundation) – fundername: National Science Foundation (NSF) funderid: DGE‐1258485 – fundername: HHS|NIH|National Cancer Institute (NCI) funderid: F30CA236335‐01; P30CA015704 – fundername: HHS|NIH|National Institute of General Medical Sciences (NIGMS) funderid: R01GM109110; R35GM124766 – fundername: NIGMS NIH HHS grantid: R35 GM124766 – fundername: NCI NIH HHS grantid: P30 CA015704 – fundername: NIGMS NIH HHS grantid: R01 GM109110 – fundername: NCI NIH HHS grantid: P01 CA077852 – fundername: NICHD NIH HHS grantid: DP2 HD088158 – fundername: NHLBI NIH HHS grantid: R01 HL120948 – fundername: NHGRI NIH HHS grantid: RM1 HG010461 – fundername: NCI NIH HHS grantid: F30 CA236335 – fundername: ; – fundername: ; grantid: RM1HG010461 – fundername: ; grantid: DGE‐1258485 – fundername: ; grantid: R01GM109110; R35GM124766 – fundername: ; grantid: R01HL120948 – fundername: ; grantid: DP2HD088158 – fundername: ; grantid: F30CA236335‐01; P30CA015704 |
GroupedDBID | --- -Q- 0R~ 123 1OC 24P 29M 2WC 39C 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAJSJ AAMMB ABDBF ABUWG ACCMX ACGFO ACPRK ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AFRAH AGXDD AHMBA AIAGR AIDQK AIDYY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IHR INH ITC KQ8 LK8 M1P M2O M48 M7P ML0 M~E NAO O5R O5S O9- OK1 OVT P2P PADUT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M 3V. 4.4 88A AAHHS ACCFJ ADRAZ AEEZP AEQDE AIWBW AJBDE COF EBLON EJD GODZA H13 IGS M0L AASML AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c6592-a23bdc1d14432ce9f63f38ac73ba78c8f4723d67dbffbd1b1edce1948ba25ffd3 |
IEDL.DBID | 7X7 |
ISSN | 1744-4292 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 13:53:19 EDT 2025 Mon Jul 21 11:51:43 EDT 2025 Wed Aug 13 09:16:18 EDT 2025 Wed Aug 13 09:20:34 EDT 2025 Mon Jul 21 05:57:28 EDT 2025 Tue Jul 01 04:10:34 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Wed Jan 22 16:34:15 EST 2025 Tue Aug 12 01:10:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | transcriptomics genetic screening microscopy subcellular localization pharmacology |
Language | English |
License | Attribution 2020 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6592-a23bdc1d14432ce9f63f38ac73ba78c8f4723d67dbffbd1b1edce1948ba25ffd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7614-1713 0000-0002-3534-9814 |
OpenAccessLink | https://www.proquest.com/docview/2447197738?pq-origsite=%requestingapplication% |
PMID | 32500953 |
PQID | 2417968956 |
PQPubID | 29031 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f34f0d3435be4971918d05251757a448 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7273721 proquest_miscellaneous_2410346971 proquest_journals_2447197738 proquest_journals_2417968956 pubmed_primary_32500953 crossref_citationtrail_10_15252_msb_20209442 crossref_primary_10_15252_msb_20209442 wiley_primary_10_15252_msb_20209442_MSB209442 springer_journals_10_15252_msb_20209442 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | 2017; 6 2004; 66 2007; 101 2019; 14 2017; 45 2019; 17 1992; 19 2012; 19 2007; 71 2019; 568 2015; 348 2013; 8 2017; 356 2017; 357 2019; 166 2017; 358 2009; 115 1992; 6 2018; 173 2009; 10 2013; 10 2005; 102 1999; 59 2016; 113 2014; 15 2020; 48 2007; 2 1996; 135 2009; 1794 2018; 36 2010; 9 2019; 8 2015; 163 2015; 1 2015; 6 2011; 2 2010; 126 2015; 10 2013; 41 2016; 10 2016; 11 2001; 276 2016; 7 2017; 14 2013; 32 1984; 39 2019; 179 2018 2009; 6 2017; 18 2018; 50 2014; 30 2018; 15 2014; 343 2017; 546 2014; 32 2014; 31 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Rowinsky EK (e_1_2_8_48_1) 1992; 19 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Georges E (e_1_2_8_23_1) 2011; 2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 Theodoropoulos PA (e_1_2_8_56_1) 1999; 59 e_1_2_8_30_1 Yang J (e_1_2_8_62_1) 2013; 8 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 Matreyek KA (e_1_2_8_39_1) 2020; 48 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Lin JR (e_1_2_8_34_1) 2013; 8 Young MD (e_1_2_8_63_1) 2018 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 32543109 - Mol Syst Biol. 2020 Jun;16(6):e9640. doi: 10.15252/msb.20209640 |
References_xml | – volume: 32 start-page: 381 year: 2014 end-page: 386 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat Biotechnol – volume: 45 start-page: e102 year: 2017 article-title: A platform for functional assessment of large variant libraries in mammalian cells publication-title: Nucleic Acids Res – volume: 163 start-page: 1314 year: 2015 end-page: 1325 article-title: Microscopy‐based high‐content screening publication-title: Cell – volume: 32 start-page: 1933 year: 2013 end-page: 1942 article-title: GRP78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer publication-title: Oncogene – volume: 7 start-page: 1 year: 2016 end-page: 12 article-title: Bright monomeric near‐infrared fluorescent proteins as tags and biosensors for multiscale imaging publication-title: Nat Commun – volume: 348 start-page: aaa6090 year: 2015 article-title: Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science – volume: 546 start-page: 431 year: 2017 end-page: 435 article-title: Rare cell variability and drug‐induced reprogramming as a mode of cancer drug resistance publication-title: Nature – volume: 31 start-page: 1956 year: 2014 end-page: 1978 article-title: An experimentally determined evolutionary model dramatically improves phylogenetic fit publication-title: Mol Biol Evol – volume: 14 start-page: 309 year: 2017 end-page: 315 article-title: Single‐cell mRNA quantification and differential analysis with Census publication-title: Nat Methods – volume: 356 start-page: eaal3321 year: 2017 article-title: A subcellular map of the human proteome publication-title: Science – volume: 8 year: 2013 article-title: SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring publication-title: PLoS One – volume: 18 start-page: 1 year: 2017 end-page: 15 article-title: A statistical framework for analyzing deep mutational scanning data publication-title: Genome Biol – volume: 7 start-page: 1 year: 2016 end-page: 11 article-title: Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots publication-title: Nat Commun – volume: 15 start-page: 1 year: 2014 end-page: 21 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biol – volume: 357 start-page: 661 year: 2017 end-page: 667 article-title: Comprehensive single‐cell transcriptional profiling of a multicellular organism publication-title: Science – volume: 2 start-page: 303 year: 2011 end-page: 308 article-title: RNAi‐mediated knockdown of α‐enolase increases the sensitivity of tumor cells to antitubulin chemotherapeutics publication-title: Int J Biochem Mol Biol – year: 2018 – volume: 10 start-page: 1 year: 2009 end-page: 11 article-title: NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction publication-title: BMC Bioinformatics – volume: 36 start-page: 421 year: 2018 end-page: 427 article-title: Batch effects in single‐cell RNA‐sequencing data are corrected by matching mutual nearest neighbors publication-title: Nat Biotechnol – volume: 343 start-page: 1360 year: 2014 end-page: 1363 article-title: Sequencing publication-title: Science – volume: 50 start-page: 874 year: 2018 end-page: 882 article-title: Multiplex assessment of protein variant abundance by massively parallel sequencing publication-title: Nat Genet – year: 2018 article-title: SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data publication-title: bioRxiv – volume: 115 start-page: 2453 year: 2009 end-page: 2463 article-title: Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel publication-title: Cancer – volume: 8 start-page: 6 year: 2013 end-page: 11 article-title: mBeRFP, an Improved Large Stokes Shift Red Fluorescent Protein publication-title: PLoS One – volume: 276 start-page: 1317 year: 2001 end-page: 1325 article-title: Dissection of a nuclear localization signal publication-title: J Biol Chem – volume: 7 start-page: 1 year: 2016 end-page: 8 article-title: Live single‐cell laser tag publication-title: Nat Commun – volume: 36 start-page: 411 year: 2018 end-page: 420 article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol – volume: 102 start-page: 15545 year: 2005 end-page: 15550 article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles publication-title: Proc Natl Acad Sci – volume: 30 start-page: 614 year: 2014 end-page: 620 article-title: PEAR: a fast and accurate Illumina Paired‐End reAd mergeR publication-title: Bioinformatics – volume: 101 start-page: 305 year: 2007 end-page: 315 article-title: Possible involvement of CCT5, RGS3, and YKT6 genes up‐regulated in p53‐mutated tumors in resistance to docetaxel in human breast cancers publication-title: Breast Cancer Res Treat – volume: 48 start-page: e1 year: 2020 article-title: An improved platform for functional assessment of large protein libraries in mammalian cells publication-title: Nucleic Acids Res – volume: 358 start-page: 1622 year: 2017 end-page: 1626 article-title: Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA‐seq publication-title: Science – volume: 19 start-page: 859 year: 2012 end-page: 870 article-title: Arginine methylation‐dependent regulation of ASK1 signaling by PRMT1 publication-title: Cell Death Differ – volume: 135 start-page: 689 year: 1996 end-page: 700 article-title: Differential taxol‐dependent arrest of transformed and nontransformed cells in the G1 phase of the cell cycle, and specific‐related mortality of transformed cells publication-title: J Cell Biol – volume: 568 start-page: 235 year: 2019 end-page: 239 article-title: Transcriptome‐scale super‐resolved imaging in tissues by RNA seqFISH+ publication-title: Nature – volume: 6 start-page: 1701 year: 2015 end-page: 1705 article-title: Photostick: a method for selective isolation of target cells from culture publication-title: Chem Sci – volume: 10 start-page: 85 year: 2016 end-page: 100 article-title: Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning publication-title: Mol Oncol – volume: 1 start-page: 417 year: 2015 end-page: 425 article-title: The molecular signatures database hallmark gene set collection publication-title: Cell Syst – volume: 1794 start-page: 225 year: 2009 end-page: 236 article-title: A proteomic approach to paclitaxel chemoresistance in ovarian cancer cell lines publication-title: Biochim Biophys Acta – volume: 15 start-page: 917 year: 2018 end-page: 920 article-title: Label‐free prediction of three‐dimensional fluorescence images from transmitted light microscopy publication-title: Nat Methods – volume: 6 start-page: 343 year: 2009 end-page: 345 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat Methods – volume: 6 start-page: 1899 year: 1992 end-page: 1913 article-title: IκB interacts with the nuclear localization sequences of the subunits of NF‐κB: a mechanism for cytoplasmic retention publication-title: Genes Dev – volume: 10 start-page: 1 year: 2013 end-page: 6 article-title: sequencing for RNA analysis in preserved tissue and cells publication-title: Nat Methods – volume: 17 start-page: 1815 year: 2019 end-page: 1827 article-title: The sustained induction of c‐MYC drives nab‐paclitaxel resistance in primary pancreatic ductal carcinoma cells publication-title: Mol Cancer Res – volume: 113 start-page: 11046 year: 2016 end-page: 11051 article-title: High‐throughput single‐cell gene‐expression profiling with multiplexed error‐robust fluorescence hybridization publication-title: Proc Natl Acad Sci – volume: 6 start-page: e24060 year: 2017 article-title: Systematic morphological profiling of human gene and allele function via Cell Painting publication-title: Elife – volume: 11 start-page: 1757 year: 2016 end-page: 1774 article-title: Cell Painting, a high‐content image‐based assay for morphological profiling using multiplexed fluorescent dyes publication-title: Nat Protoc – volume: 173 start-page: 792 year: 2018 end-page: 803 article-title: labeling: predicting fluorescent labels in unlabeled images publication-title: Cell – volume: 9 start-page: 1 year: 2010 end-page: 12 article-title: Warburg effect in chemosensitivity: targeting lactate dehydrogenase‐A re‐sensitizes Taxol‐resistant cancer cells to Taxol publication-title: Mol Cancer – volume: 14 start-page: e0221505 year: 2019 article-title: The Jembrana disease virus Rev protein: Identification of nuclear and novel lentiviral nucleolar localization and nuclear export signals publication-title: PLoS One – volume: 2 start-page: 2024 year: 2007 end-page: 2032 article-title: Tracking intracellular protein movements using photoswitchable fluorescent proteins PS‐CFP2 and Dendra2 publication-title: Nat Protoc – volume: 17 start-page: e3000225 year: 2019 article-title: Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues publication-title: PLoS Biol – volume: 66 start-page: 53 year: 2004 end-page: 61 article-title: Mechanisms of paclitaxel‐induced apoptosis in an ovarian cancer cell line and its paclitaxel‐resistant clone publication-title: Oncology – volume: 126 start-page: 1144 year: 2010 end-page: 1154 article-title: Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis publication-title: Int J Cancer – volume: 71 start-page: 1233 year: 2007 end-page: 1240 article-title: Reversal of stathmin‐mediated resistance to paclitaxel and vinblastine in human breast carcinoma cells publication-title: Mol Pharmacol – volume: 179 start-page: 787 year: 2019 end-page: 799 article-title: Pooled optical screens in human cells publication-title: Cell – volume: 10 start-page: 442 year: 2015 end-page: 458 article-title: Fluorescent sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues publication-title: Nat Protoc – volume: 166 start-page: 10842 year: 2019 end-page: 10851 article-title: Imaging‐based pooled CRISPR screening reveals regulators of lncRNA localization publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 646 year: 1992 end-page: 662 article-title: Taxol: the first of the taxanes, an important new class of antitumor agents publication-title: Semin Oncol – volume: 14 start-page: 1159 year: 2017 end-page: 1162 article-title: High‐throughput, image‐based screening of pooled genetic‐variant libraries publication-title: Nat Methods – volume: 59 start-page: 4625 year: 1999 end-page: 4633 article-title: Taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus publication-title: Cancer Res – volume: 39 start-page: 499 year: 1984 end-page: 509 article-title: A short amino acid sequence able to specify nuclear location publication-title: Cell – volume: 8 start-page: 1 year: 2019 end-page: 21 article-title: Opto‐magnetic capture of individual cells based on visual phenotypes publication-title: Elife – volume: 41 start-page: 4378 year: 2013 end-page: 4391 article-title: Enriching the gene set analysis of genome‐wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods publication-title: Nucleic Acids Res – ident: e_1_2_8_14_1 doi: 10.1016/j.cell.2018.03.040 – ident: e_1_2_8_24_1 doi: 10.1038/nmeth.1318 – ident: e_1_2_8_19_1 doi: 10.1038/nmeth.4495 – ident: e_1_2_8_54_1 doi: 10.1073/pnas.0506580102 – volume: 48 start-page: e1 year: 2020 ident: e_1_2_8_39_1 article-title: An improved platform for functional assessment of large protein libraries in mammalian cells publication-title: Nucleic Acids Res – ident: e_1_2_8_45_1 doi: 10.1158/1541-7786.MCR-19-0191 – ident: e_1_2_8_28_1 doi: 10.1038/nmeth.2563 – ident: e_1_2_8_52_1 doi: 10.1038/ncomms12405 – ident: e_1_2_8_9_1 doi: 10.1038/nbt.4096 – volume: 2 start-page: 303 year: 2011 ident: e_1_2_8_23_1 article-title: RNAi‐mediated knockdown of α‐enolase increases the sensitivity of tumor cells to antitubulin chemotherapeutics publication-title: Int J Biochem Mol Biol – ident: e_1_2_8_12_1 doi: 10.1039/C4SC03676J – volume: 8 year: 2013 ident: e_1_2_8_34_1 article-title: SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring publication-title: PLoS One – ident: e_1_2_8_55_1 doi: 10.1159/000076335 – ident: e_1_2_8_27_1 doi: 10.1016/0092-8674(84)90457-4 – ident: e_1_2_8_10_1 doi: 10.1126/science.aam8940 – ident: e_1_2_8_7_1 doi: 10.1016/j.cell.2015.11.007 – ident: e_1_2_8_30_1 doi: 10.1126/science.1250212 – ident: e_1_2_8_57_1 doi: 10.1126/science.aal3321 – ident: e_1_2_8_64_1 doi: 10.1093/bioinformatics/btt593 – ident: e_1_2_8_18_1 doi: 10.1016/j.molonc.2015.07.006 – ident: e_1_2_8_50_1 doi: 10.1002/ijc.24837 – ident: e_1_2_8_6_1 doi: 10.1093/molbev/msu173 – ident: e_1_2_8_40_1 doi: 10.32614/CRAN.package.uwot – ident: e_1_2_8_21_1 doi: 10.1016/j.cell.2019.09.016 – ident: e_1_2_8_41_1 doi: 10.1073/pnas.1612826113 – ident: e_1_2_8_11_1 doi: 10.1126/science.aaa6090 – volume: 19 start-page: 646 year: 1992 ident: e_1_2_8_48_1 article-title: Taxol: the first of the taxanes, an important new class of antitumor agents publication-title: Semin Oncol – ident: e_1_2_8_35_1 doi: 10.1186/s13059-014-0550-8 – ident: e_1_2_8_13_1 doi: 10.1038/cdd.2011.168 – ident: e_1_2_8_60_1 doi: 10.1093/nar/gkt111 – ident: e_1_2_8_20_1 doi: 10.1038/s41586-019-1049-y – ident: e_1_2_8_16_1 doi: 10.1126/science.aao4277 – ident: e_1_2_8_2_1 doi: 10.1124/mol.106.029702 – volume: 59 start-page: 4625 year: 1999 ident: e_1_2_8_56_1 article-title: Taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus publication-title: Cancer Res – ident: e_1_2_8_31_1 doi: 10.1038/nprot.2014.191 – ident: e_1_2_8_33_1 doi: 10.1016/j.cels.2015.12.004 – ident: e_1_2_8_25_1 doi: 10.1038/nbt.4091 – ident: e_1_2_8_8_1 doi: 10.1038/nprot.2016.105 – ident: e_1_2_8_26_1 doi: 10.1074/jbc.M008522200 – ident: e_1_2_8_5_1 doi: 10.7554/eLife.45239 – ident: e_1_2_8_47_1 doi: 10.7554/eLife.24060 – ident: e_1_2_8_61_1 doi: 10.1073/pnas.1903808116 – volume: 8 start-page: 6 year: 2013 ident: e_1_2_8_62_1 article-title: mBeRFP, an Improved Large Stokes Shift Red Fluorescent Protein publication-title: PLoS One – ident: e_1_2_8_65_1 doi: 10.1186/1476-4598-9-33 – ident: e_1_2_8_22_1 doi: 10.1371/journal.pbio.3000225 – ident: e_1_2_8_32_1 doi: 10.1038/onc.2012.212 – ident: e_1_2_8_51_1 doi: 10.1038/nature22794 – ident: e_1_2_8_42_1 doi: 10.1186/1471-2105-10-202 – ident: e_1_2_8_3_1 doi: 10.1101/gad.6.10.1899 – ident: e_1_2_8_58_1 doi: 10.1038/nbt.2859 – ident: e_1_2_8_49_1 doi: 10.1186/s13059-017-1272-5 – ident: e_1_2_8_46_1 doi: 10.1038/nmeth.4150 – ident: e_1_2_8_53_1 doi: 10.1002/cncr.24282 – ident: e_1_2_8_59_1 doi: 10.1083/jcb.135.3.689 – ident: e_1_2_8_38_1 doi: 10.1038/s41588-018-0122-z – year: 2018 ident: e_1_2_8_63_1 article-title: SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data publication-title: bioRxiv – ident: e_1_2_8_37_1 doi: 10.1093/nar/gkx183 – ident: e_1_2_8_43_1 doi: 10.1007/s10549-006-9293-x – ident: e_1_2_8_15_1 doi: 10.1038/nprot.2007.291 – ident: e_1_2_8_44_1 doi: 10.1038/s41592-018-0111-2 – ident: e_1_2_8_4_1 doi: 10.1038/ncomms11636 – ident: e_1_2_8_17_1 doi: 10.1016/j.bbapap.2008.09.017 – ident: e_1_2_8_29_1 doi: 10.1038/ncomms11468 – ident: e_1_2_8_36_1 doi: 10.1371/journal.pone.0221505 – reference: 32543109 - Mol Syst Biol. 2020 Jun;16(6):e9640. doi: 10.15252/msb.20209640 |
SSID | ssj0038182 |
Score | 2.5016196 |
Snippet | Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains... Abstract Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e9442 |
SubjectTerms | Annotations Apoptosis Automation Cell Line Cell Nucleus Shape - drug effects Cells - cytology EMBO22 Experiments Flow Cytometry Fluorescence Gene expression Genetic engineering genetic screening Genetic Testing Genotype & phenotype Genotypes Heterogeneity Humans Identification methods Localization Method Methods microscopy Microscopy, Fluorescence - instrumentation Morphology Nuclear Localization Signals - metabolism Paclitaxel Paclitaxel - pharmacology pharmacology Phenotype Phenotypes Proteins Reagents Ribonucleic acid RNA subcellular localization Transcriptome - drug effects Transcriptome - genetics transcriptomics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSkhcEP8EShUkBJdG3dhO7D22qFWFVDhApd6s-I8i0aRis4fe-gg8I0_SGTsJRLBw4RbFk8QejzPfxJNvAF7ZwLzkZSiCKkUhfCgLo3woTClcYMIKEcl0Tt7Xx6fi3Vl19kupL8oJS_TASXF7gYuwcBy9uvFiKTG8UI5qr6Hbkw3GFvT2RZ83BlPpHUxuiA2MmijL9i5WBmNBFBSCzTxQJOr_E7r8PUly2imd49joiI7uwd0BQeb7qef34ZZvH8DtVFPy6iF8oMyNH9ffhwI8l-t-N7-grLv4_wk2kN9y-aoj-oDPed_lcUve9jl9w6ek1PycUmQ6tCyPEP0RnB4dfnp7XAxVEwpLW6RFw7hxtnQYKXFm_TLUPHDVWMlNI5VVQUjGXS2dCcG40pQ0xHIplGlYFYLjj2Gr7Vr_FHLuQ6WWvqKkTeEXlVnYyqnApEOYYSqZwe6oSW0HSnGqbPFVU2hBiteoeD0qPoPXk_hl4tLYJHhA0zIJEQV2PIGGoQfD0P8yjAy2x0nVw7pcaUYF12qFQeGGZvTViIg5Xv1yasYFRzPQtL5bx1ssuKjxiRk8SSYydZQjoCQCvwzkzHhmI5m3tF_OI6k34UiMxjN4M5rZz25tUFIRrfDvqtQnHw_S0bP_odTncIfunHLltmGr_7b2LxCV9WYnLsAbsQozpA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYQFVIvVR-0TYEqlVB7Ie3GdmLngKpSFSGkLYd2JW5W_IJKkNDdrAS3_oT-xv6SzjgPFMFyi2I7icczmW_iyTeE7BpPnWCpT7xMecKdTxMtnU90yq2n3HAeyHSm3_OjGT8-zU5vKYU6AS7uDe2wntRsfvHx-vfNZzD4_a56D_10udAQ6VGIVDi8jR-BUxJoo1M-bCigX6IdxeadISOXFJj774Obd7Mmh63TMbANnunwKXnSQcr4S6sDz8iaq56TjbbI5M0LcoKpHP_-_O0q8lwtm734EtPwwg8p0ICOzMaLGvkEzuKmjsMevWli_KiPWarxOebM1KBqDjD7Jpkdfvv59SjpyigkBvdMk5IybU1qIXRi1LjC58wzWRrBdCmkkZ4LymwurPZe21SnOMW04FKXNPPespdkvaor95rEzPlMFi7DLE7uJpmemMxKT4UF3KEzEZG9XpLKdBzjWOriQmGsgYJXIHjVCz4i74fuVy25xqqOB7gsQyfkxA4n6vmZ6kxMecb9xDLAf9rxQkAgKi1W6QOAJEqIQiOy3S-q6vVMoa4UuYQocUUzOG-AyAxGvxuawQJxBcrK1ctwiQnjOdwxIq9aFRkelAHCREa_iIiR8oxmMm6pfp0Hlm8ElhCeR-RDr2a3j7VCSEnQwodFqaY_DtqjNw9PeIs8xjFtWtw2WW_mS7cDAKzRb4Np_QdNti98 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQERIXBOUVWqogIbg0Yv2KvUe6alVVKhygUm9W_KJIbVKx2QO3_oT-xv4SZpwHRO1W3KLYzmM8znyTGX9DyHsXWVCcxiJqKgoRIi2sDrGwVPjIhBMikekcfykPT8TRqTztk2hwL8y_8XvJJPt0sbTgxTHwQgR8aR9KyktU3kW5GD64aHNYT595a8jE3CRW_rug5O2MyDEsOgWtyeocPCVPeriYf-7m9xl5EOpN8qgrIPn7OfmKaRo3V9d9tZ3LVbubX2CKXdpsAg1opHy-bJAr4EfeNnmKv7s2xx_2mIGan2E-TANqFACPvyAnB_vfF4dFXyKhcBgPLSrGrXfUg1vEmQvzWPLIdeUUt5XSTkehGPel8jZG66ml-Ip0LrStmIzR85dko27q8JrkPESp50FihqYIM2lnTnodmfKAKaxUGdkdJGlczx-OZSzODfoRKHgDgjeD4DPyYex-2RFnrOu4h9MydkK-63QC1MD0y8dELuLMc8B2Noi5AidTe6zAB-BHVeBhZmR7mFTTL8KlYVhdrdTgAa5pBsMM8JfD6HdjM6wunIGqDs0qXWLGRQl3zMirTkXGB-WAHpGtLyNqojyTN5m21D_PEoM3gkZwvTPycVCzv4-1RkhF0sL7RWmOv-11R2_--8pb5DEedtlv22Sj_bUKbwFntXYnrbI_cyskLA priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQERIXVMorpa1SCcGlERvbiZ1ji6iqSgUkqNSbFT-mRaJJ1c0euPET-I38EmacB0SwSNxWsZN1xjOeb-LxN4y9cMCDEjlkoHOZyQB5ZnWAzObSA5dOykimc_auPDmXpxfFxVDnlM7C9PwQ0wc3soy4XpOB13Y5Vuwh1tDrpcX4jmN8InENvkvHa4k8n8sP41JM3oj3JyJxHLziA8kmPeD177fPnFLk7v8b4Pwzb3LaPJ1D2-ibjjfZgwFUpoe9Fjxkd0Kzxe71ZSa_PmLvKZnjx7fvQ02em1V3kF5TIl48koIN5Mp8umyJUeAy7do07tK7LqXP-pSnml5R1kyLyhYQtT9m58dvP705yYZCCpmjXdOs5sJ6l3sMngR3oYJSgNC1U8LWSjsNUnHhS-UtgPW5zekV80pqW_MCwIsnbKNpm_CMpSJAoatQUB6nDIvCLlzhNXDlEXnYQiXsYJSkcQPLOBW7-GIo2iDBGxS8GQWfsJdT95ueXmNdxyOalqkTsWLHC-3tpRmMzICQsPACEaANslIYimpPdfoQIqka49CE7YyTagZTXRpONdhKjXHimmZ03wiSBd69PzWjDdIM1E1oV_ERCyFL_MeEPe1VZBqoQIxJnH4JUzPlmb3JvKX5fBV5vglaYoCesFejmv0a1hohZVEL_y1Kc_bxqP-1_Z_9n7P7dLHPlNthG93tKuwiJuvsXrS7n9NDMKw priority: 102 providerName: Wiley-Blackwell |
Title | High‐throughput, microscope‐based sorting to dissect cellular heterogeneity |
URI | https://link.springer.com/article/10.15252/msb.20209442 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20209442 https://www.ncbi.nlm.nih.gov/pubmed/32500953 https://www.proquest.com/docview/2417968956 https://www.proquest.com/docview/2447197738 https://www.proquest.com/docview/2410346971 https://pubmed.ncbi.nlm.nih.gov/PMC7273721 https://doaj.org/article/f34f0d3435be4971918d05251757a448 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RVkhcEG8MJTISgkutxrtr7-aESNSqQkqpgEq5Wd5XW4naoXEO3PgJ_EZ-CTPrB4ogvURJdpN4Z2c93-x--QbgjfHMSZ76xKtUJML5NNHK-USnwnomjBBBTGd-mp-ci4-LbNFtuK06WmV_Tww3alsb2iM_xDAkUwQrXL1ffk-oahSdrnYlNHZgj6TLiNIlF0PCRcGIdbqaGcvY4fVKY0bIMKMRbCMOBbn-_2HMf6mSw3npJpoN4ej4AdzvcGT8oZ34h3DHVY_gbltZ8sdj-ET8jd8_f3VleJbr5iC-Ju5d-BcKNlD0svGqJhGBi7ip43Awb5qYdvKJmhpfElGmRv9yCNSfwPnx0dfZSdLVTkgMHZQmJePamtRivsSZcROfc89VaSTXpVRGeSEZt7m02nttU53SENOJULpkmfeWP4Xdqq7cc4i585mauIyom8KNMz02mVWeSYtgQ2cygoPekoXphMWpvsW3ghIMMnyBhi96w0fwdui-bBU1tnWc0rQMnUgIO7xR31wU3boqPBd-bDmCPu3EBD0kVZZK8yEqkiWmnhHs95NadKtzVTAqu5YrTA23NPeuFsHroRmXHc1AWbl6Hb5izEWOvxjBs9ZFhgvlCCtJxi8CueE8GyPZbKmuLoO0N6FJzMkjeNe72d_L2mKkJHjh7aYs5l-m7bMXtw_4Jdyjz7RcuH3YbW7W7hWirkaPYIeJs1FYYCPYmx6dnn3GV7N8Ngr7GPg4F-oPrikyEg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVAheEHcMBYzE5aVW4911dvOAEIFWKW0Cglbqm_He2kptHJpEqG98Al_CR_ElzPiGLEjf-hZlNxt7dnbnHO_xDMBz45mTPPaRV7GIhPNxpJXzkY6F9UwYIYpkOqNxb7gvPhwkByvwq34XhmSV9Z5YbNQ2N_SMfAPDkIwRrHD1ZvotoqpRdLpal9Ao3WLHnX9HyjZ7vf0e5_cFY1ube--GUVVVIDJ0hBhljGtrYotMgjPj-r7HPVeZkVxnUhnlhWTc9qTV3msb65h0kkj1lc5Y4r3lOO4VWBUcqUwHVgeb40-f672fwh-rMnkmLGEbpzONHJQhhxKsFfmKAgH_Q7X_ijObE9o2fi4C4NZNuFEh1_Bt6Wq3YMVNbsPVspbl-R34SIqR3z9-VoV_pov5enhKar_ivRdsoHhpw1lOaQsOw3keFlIAMw_p7IDEsOERSXNy9GiH1OAu7F-KXe9BZ5JP3AMIufOJ6ruExKLCdRPdNYlVnkmL8EYnMoD12pKpqVKZU0WNk5QoDRk-RcOnteEDeNl0n5Y5PJZ1HNC0NJ0o9XbxRX52mFYrOfVc-K7lCDO1E330yVhZKgaIOExmSHYDWKsnNa32g1nKqNBbTyEZXdJcO3cAz5pmXOg0A9nE5YtiiC4XPfzHAO6XLtJcKEcgS4kDA5At52ndSbtlcnxUJBMn_CoZjvmqdrO_l7XESFHhhRebMh19GZSfHl58w0_h2nBvtJvubo93HsF1-n2pxFuDzvxs4R4j5pvrJ9VCC-HrZa_tP052bYA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqViAuiDdpCwQJwaVRE9uJveK0BVZloQWpVOrNil8tEk1W3eyBGz-B38gvYcZ5oKgs4raKnWwyHme-Lx5_Q8gL46kTLPOJlxlPuPNZoqXzic649ZQbzoOYztFxcXjK52f52QZ53e-FCdnu_ZJku6cBVZqqZn9hfV-vh-5fLjVwOwrchMP7d0sWqQTmtTWdzk_m_YsYYxHtZDWvnTQKQ0Gt_28Q83qm5LBcOgazIRrN7pDbHYyMp-243yUbrrpHbrSFJb_fJ58wfePXj59dFZ7FqtmLLzH1LmxCgQYMXjZe1qghcB43dRzW5U0T44d8zEyNLzBPpgb3coDTH5DT2bsvbw6TrnRCYnCdNCkp09ZkFugSo8ZNfME8k6URTJdCGum5oMwWwmrvtc10ho-YTbjUJc29t-wh2azqyj0mMXM-lxOXY-Ymd2muU5Nb6amwgDV0LiKy11tSmU5XHMtbfFPIL9DwCgyvesNH5OXQfdEKaqzreIDDMnRCHexwoL46V920Up5xn1oGmE87PhFAPqXFynwAikQJzDMiu_2gqm5yLhXFqmuFBGa4phkCNsBiBmc_H5ph1uEIlJWrV-ESKeMF_GNEHrUuMtwoA1SJKn4RESPnGT3JuKX6ehGUvRFMAiWPyKvezf7c1hojJcEL_21KdXRy0P7a_u8rPyM3P7-dqY_vjz_skFt4tE2Q2yWbzdXKPQEo1uin3ZT7DTbYMMc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90throughput%2C+microscope%E2%80%90based+sorting+to+dissect+cellular+heterogeneity&rft.jtitle=Molecular+systems+biology&rft.au=Hasle%2C+Nicholas&rft.au=Cooke%2C+Anthony&rft.au=Srivatsan%2C+Sanjay&rft.au=Huang%2C+Heather&rft.date=2020-06-01&rft.pub=EMBO+Press&rft.eissn=1744-4292&rft.volume=16&rft.issue=6&rft_id=info:doi/10.15252%2Fmsb.20209442 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |