Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects
Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects Helen Karakelides 1 , Yan W. Asmann 1 , Maureen L. Bigelow 1 , Kevin R. Short 1 , Ketan Dhatariya 1 , Jill Coenen-Schimke 1 , Jane Kahl 1 , Debabrata Mukhopadhyay 2 and K. Sree...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 56; no. 11; pp. 2683 - 2689 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.11.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects
Helen Karakelides 1 ,
Yan W. Asmann 1 ,
Maureen L. Bigelow 1 ,
Kevin R. Short 1 ,
Ketan Dhatariya 1 ,
Jill Coenen-Schimke 1 ,
Jane Kahl 1 ,
Debabrata Mukhopadhyay 2 and
K. Sreekumaran Nair 1
1 Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
2 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
Address correspondence and reprint requests to K. Sreekumaran Nair, MD, PhD, Mayo Clinic, 200 First St. SW, Joseph 5-194,
Rochester, MN 55905. E-mail: nair.sree{at}mayo.edu
Abstract
OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis
that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial
ATP production by temporarily depriving type 1 diabetic patients of insulin treatment.
RESEARCH DESIGN AND METHODS—We withdrew insulin for 8.6 ± 0.6 h in nine C-peptide–negative type 1 diabetic subjects and measured
muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with
insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate,
and other substrates; and urinary nitrogen.
RESULTS—Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids,
β-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP
production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial
gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved
in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways
were increased.
CONCLUSIONS—Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation
genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved
in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation
that may interact with mitochondrial changes occurred.
COX5B, cytochrome c oxidase subunit 5
CRU, Clinical Research Unit
HIF, hypoxia-inducible factor
IPA, ingenuity pathway analysis
MAPR, mitochondrial ATP production rate
NIH, National Institutes of Health
SDH, succinate dehydrogenase
TCA, tricarboxylic acid
TFAM, mitochondrial transcription factor A
UCP, uncoupling protein
UQCR, ubiquinol cytochrome c reductase
VEGF, vascular endothelial growth factor
Footnotes
Published ahead of print at http://diabetes.diabetesjournals.org on 27 July 2007. DOI: 10.2337/db07-0378.
Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-0378 .
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Received March 20, 2007.
Accepted July 23, 2007.
DIABETES |
---|---|
AbstractList | OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment.
RESEARCH DESIGN AND METHODS—We withdrew insulin for 8.6 ± 0.6 h in nine C-peptide–negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen.
RESULTS—Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, β-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased.
CONCLUSIONS—Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. We withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects Helen Karakelides 1 , Yan W. Asmann 1 , Maureen L. Bigelow 1 , Kevin R. Short 1 , Ketan Dhatariya 1 , Jill Coenen-Schimke 1 , Jane Kahl 1 , Debabrata Mukhopadhyay 2 and K. Sreekumaran Nair 1 1 Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 2 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota Address correspondence and reprint requests to K. Sreekumaran Nair, MD, PhD, Mayo Clinic, 200 First St. SW, Joseph 5-194, Rochester, MN 55905. E-mail: nair.sree{at}mayo.edu Abstract OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. RESEARCH DESIGN AND METHODS—We withdrew insulin for 8.6 ± 0.6 h in nine C-peptide–negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. RESULTS—Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, β-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. CONCLUSIONS—Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. COX5B, cytochrome c oxidase subunit 5 CRU, Clinical Research Unit HIF, hypoxia-inducible factor IPA, ingenuity pathway analysis MAPR, mitochondrial ATP production rate NIH, National Institutes of Health SDH, succinate dehydrogenase TCA, tricarboxylic acid TFAM, mitochondrial transcription factor A UCP, uncoupling protein UQCR, ubiquinol cytochrome c reductase VEGF, vascular endothelial growth factor Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 27 July 2007. DOI: 10.2337/db07-0378. Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-0378 . The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received March 20, 2007. Accepted July 23, 2007. DIABETES Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment.OBJECTIVEMuscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment.We withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen.RESEARCH DESIGN AND METHODSWe withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen.Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased.RESULTSWithdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased.Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.CONCLUSIONSInsulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. We withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. OBJECTIVE-Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. RESEARCH DESIGN AND METHODS-We withdrew insulin for 8.6 plus or minus 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. RESULTS-Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, {szligbeta}-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. CONCLUSIONS-Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. |
Audience | Professional |
Author | K. Sreekumaran Nair Helen Karakelides Kevin R. Short Yan W. Asmann Debabrata Mukhopadhyay Maureen L. Bigelow Jill Coenen-Schimke Jane Kahl Ketan Dhatariya |
Author_xml | – sequence: 1 givenname: Helen surname: Karakelides fullname: Karakelides, Helen organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota – sequence: 2 givenname: Yan W. surname: Asmann fullname: Asmann, Yan W. organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota – sequence: 3 givenname: Maureen L. surname: Bigelow fullname: Bigelow, Maureen L. organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota – sequence: 4 givenname: Kevin R. surname: Short fullname: Short, Kevin R. organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota – sequence: 5 givenname: Ketan surname: Dhatariya fullname: Dhatariya, Ketan organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota – sequence: 6 givenname: Jill surname: Coenen-Schimke fullname: Coenen-Schimke, Jill organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota – sequence: 7 givenname: Jane surname: Kahl fullname: Kahl, Jane organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota – sequence: 8 givenname: Debabrata surname: Mukhopadhyay fullname: Mukhopadhyay, Debabrata organization: Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota – sequence: 9 givenname: K. Sreekumaran surname: Nair fullname: Nair, K. Sreekumaran organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19214953$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17660267$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ltr2zAUB3AzOtbL9rAvMMRgg8Hc6mJL0WNIu6yQ0sIy2JuQ5eNEQbEyye5W9uWnXEZICQwZbMzvyD5H__PspPUtZNlbgi8pY-KqrrDIMRODF9kZkUzmjIofJ9kZxoTmREhxmp3HuMAY87ReZadEcI4pF2fZn5umAdMh36DbNvbOtugaVsE-6s76FqXrro_GAbqznTdz39bBaoeG0wf0EHzdmw3TbY3G0AKaBt1GE-yqQxN4BBdR2nD6tAJE0LXVFXTWoG99tUjfjK-zl412Ed7s7hfZ9y8309HXfHI_vh0NJ7nh5aDLQUrSlKALwXhFWckpHxham7qgmhkmRWVKyWpDZFPWILRscKVTf4JDwUwj2UX2cbvvKvifPcROLW004JxuwfdR8UFRCDwo_wspLgSlZA3fP4ML34c2NaEo4YUQJRcJ5Vs00w6UbRvfBW1maUxBu3SAjU2vh0RgSSVlPPnLIz6tGpbWHC34dFCQTAe_u5nuY1SD8eTQ5ses8c7BDFSa9-j-0L_bddhXS6hVisRShyf1LzkJfNgBHY12TTp4Y-PeSUoKWbL9T5rgYwzQ7AlW6_SqdXrVOr3JXj2zxnabIKZJWHe04vO2Ym5n8182gKo3KYO4fyi5IkSl0DD2FzY3_CE |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1016_j_clnu_2009_09_001 crossref_primary_10_4239_wjd_v14_i10_1463 crossref_primary_10_3389_fphys_2018_00579 crossref_primary_10_1093_ajcn_nqaa431 crossref_primary_10_1371_journal_pone_0010538 crossref_primary_10_1111_eci_14128 crossref_primary_10_1152_ajpendo_00351_2009 crossref_primary_10_1016_j_celrep_2019_02_081 crossref_primary_10_2139_ssrn_3155720 crossref_primary_10_1016_j_cmet_2017_06_010 crossref_primary_10_1172_JCI146415 crossref_primary_10_3390_ijms23074022 crossref_primary_10_1016_j_tem_2020_04_005 crossref_primary_10_1111_jcmm_12490 crossref_primary_10_1186_s13395_021_00272_7 crossref_primary_10_1210_clinem_dgab261 crossref_primary_10_1002_jez_2726 crossref_primary_10_1016_j_preteyeres_2022_101051 crossref_primary_10_2337_db10_0371 crossref_primary_10_1111_j_1365_2796_2010_02298_x crossref_primary_10_1042_BCJ20210264 crossref_primary_10_2174_1573399820666230822151740 crossref_primary_10_3390_ijms22126403 crossref_primary_10_1016_j_intimp_2023_110883 crossref_primary_10_1038_s41390_021_01618_z crossref_primary_10_1016_j_numecd_2012_05_006 crossref_primary_10_1016_S1957_2557_19_30168_3 crossref_primary_10_1002_dmrr_879 crossref_primary_10_2337_db15_0823 crossref_primary_10_3390_ijms21186559 crossref_primary_10_1016_j_jpba_2016_06_041 crossref_primary_10_1016_j_tem_2008_08_001 crossref_primary_10_2337_db13_1794 crossref_primary_10_1111_j_1399_5448_2010_00699_x crossref_primary_10_1007_s13760_024_02706_7 crossref_primary_10_1210_er_2009_0027 crossref_primary_10_1210_jc_2009_1822 crossref_primary_10_1186_s13098_017_0294_1 crossref_primary_10_1152_ajpendo_00495_2019 crossref_primary_10_1016_j_clnu_2009_04_014 crossref_primary_10_1016_j_diabres_2023_110697 crossref_primary_10_3390_metabo12111017 crossref_primary_10_2337_db18_0416 crossref_primary_10_2337_dc09_0264 crossref_primary_10_1089_ars_2012_4910 crossref_primary_10_1096_fj_201802043R crossref_primary_10_1007_s00125_008_1122_9 crossref_primary_10_1111_pedi_13007 crossref_primary_10_1210_jc_2009_1331 crossref_primary_10_1089_ars_2009_2531 crossref_primary_10_1007_s00109_012_0887_y crossref_primary_10_3390_biom10111475 crossref_primary_10_3390_ijms18061156 crossref_primary_10_1152_ajpendo_00175_2016 crossref_primary_10_1007_s00125_021_05540_1 crossref_primary_10_1016_j_bbagen_2013_11_007 crossref_primary_10_1016_j_phrs_2021_105783 crossref_primary_10_1007_s12170_012_0283_8 crossref_primary_10_1016_j_metabol_2008_06_015 crossref_primary_10_3390_nu12103087 crossref_primary_10_3390_ijms24021724 crossref_primary_10_1152_ajpregu_00395_2011 crossref_primary_10_1016_j_cophys_2022_100491 crossref_primary_10_1152_ajpendo_00027_2008 crossref_primary_10_1016_j_jvs_2012_10_011 crossref_primary_10_1007_s00125_018_4785_x crossref_primary_10_1016_j_bbadis_2012_04_009 crossref_primary_10_1016_j_beem_2012_06_001 crossref_primary_10_1111_j_1748_1716_2010_02124_x crossref_primary_10_1172_JCI120843 crossref_primary_10_1002_edm2_448 crossref_primary_10_1097_MED_0b013e32830c6b8e crossref_primary_10_1002_imt2_237 crossref_primary_10_1172_jci_insight_144014 crossref_primary_10_1139_apnm_2023_0004 crossref_primary_10_1152_ajpendo_00756_2009 crossref_primary_10_1007_s00109_014_1244_0 crossref_primary_10_1021_ac900424c crossref_primary_10_1016_j_cbi_2017_05_003 crossref_primary_10_1042_BJ20102071 crossref_primary_10_1371_journal_pone_0032391 crossref_primary_10_1016_j_mad_2014_01_008 crossref_primary_10_1038_s41598_019_39362_4 crossref_primary_10_2337_db11_0874 crossref_primary_10_3390_metabo13020295 crossref_primary_10_1016_j_jchromb_2020_122347 crossref_primary_10_33549_physiolres_933745 crossref_primary_10_1089_dia_2013_0068 crossref_primary_10_1007_s00018_020_03670_0 crossref_primary_10_3390_ijms24043399 crossref_primary_10_2337_db13_0303 crossref_primary_10_2337_db12_1152 crossref_primary_10_1016_j_bbadis_2020_165744 crossref_primary_10_1016_j_metabol_2016_06_008 crossref_primary_10_1172_JCI46405 crossref_primary_10_1210_jc_2011_2587 crossref_primary_10_2337_db14_0765 |
Cites_doi | 10.1152/ajpendo.2001.280.2.E203 10.1210/jcem-64-5-896 10.1172/JCI113570 10.2337/db05-1230 10.1007/BF00253494 10.1152/ajpendo.1990.259.2.E204 10.1016/j.bbrc.2006.11.027 10.1152/ajpendo.1992.263.5.E1010 10.1126/science.1082889 10.1038/ng1180 10.2337/diabetes.25.12.1091 10.1016/j.it.2005.06.007 10.1016/j.amjmed.2006.01.009 10.2337/diabetes.54.3.765 10.1016/S0092-8674(00)80611-X 10.1172/JCI111519 10.1096/fasebj.9.8.7768357 10.1371/journal.pmed.0020233 10.1113/eph8802513 10.1073/pnas.1032913100 10.1056/NEJM200406033502320 10.1016/j.ccr.2004.11.022 10.1002/1521-4036(200210)44:7<789::AID-BIMJ789>3.0.CO;2-# 10.1016/j.tem.2003.08.004 10.1080/07853890310018458 10.1073/pnas.98.1.31 10.1073/pnas.0501559102 10.1091/mbc.e04-12-1082 10.1152/ajpendo.2001.280.5.E761 10.1038/nrc1013 10.1016/S0005-2728(01)00228-6 10.1007/s001250100596 10.1073/pnas.1332551100 10.2337/diabetes.47.11.1748 10.1016/S0021-9673(01)90918-5 10.1056/NEJM199001253220403 10.1249/00005768-199506000-00012 10.1182/blood-2005-03-1138 10.1073/pnas.95.20.11715 10.2337/diabetes.51.6.1913 10.2337/diabetes.54.1.8 10.1172/JCI118000 |
ClassificationCodes | 2834 2833 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS COPYRIGHT 2007 American Diabetes Association Copyright American Diabetes Association Nov 2007 |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: COPYRIGHT 2007 American Diabetes Association – notice: Copyright American Diabetes Association Nov 2007 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 8FD FR3 P64 RC3 7X8 |
DOI | 10.2337/db07-0378 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Research Library Prep MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 2689 |
ExternalDocumentID | 1379819791 A170929236 17660267 19214953 10_2337_db07_0378 diabetes_56_11_2683 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01-DK-41973 – fundername: NCRR NIH HHS grantid: UL1-RR-024150-01 |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFFNX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ H~9 IAG IAO IEA IHR INH INR IOF IPO J5H K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 354 6PF AAFWJ AAKAS AAYOK AAYXX ACGFO ADGHP ADZCM AEGXH AERZD AIAGR AIZAD ALIPV BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM 1CY 8F7 AI. IQODW MVM O5R O5S PJZUB PPXIY PQGLB VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK K9. PKEHL Q9U 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c658t-e991f5ea4736b2356268c2dcd42a3c397bc593dc19f5de7a9f0ba66076e43cf93 |
IEDL.DBID | 7X7 |
ISSN | 0012-1797 1939-327X |
IngestDate | Fri Jul 11 00:28:34 EDT 2025 Fri Jul 11 15:43:55 EDT 2025 Fri Jul 25 19:40:55 EDT 2025 Fri Jun 13 00:49:06 EDT 2025 Tue Jun 10 21:27:24 EDT 2025 Fri Jun 27 05:52:26 EDT 2025 Tue Jun 10 20:05:59 EDT 2025 Thu Apr 03 07:00:23 EDT 2025 Mon Jul 21 09:15:45 EDT 2025 Tue Jul 01 03:03:57 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Fri Jan 15 19:45:56 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Endocrinopathy Human Immunopathology Pancreatic hormone Mitochondria Gene Type 1 diabetes Autoimmune disease Muscle ATP Insulin |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c658t-e991f5ea4736b2356268c2dcd42a3c397bc593dc19f5de7a9f0ba66076e43cf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://diabetesjournals.org/diabetes/article-pdf/56/11/2683/385374/zdb01107002683.pdf |
PMID | 17660267 |
PQID | 216477567 |
PQPubID | 34443 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_17660267 gale_incontextcollege_GICCO_A170929236 gale_infotracacademiconefile_A170929236 proquest_journals_216477567 pascalfrancis_primary_19214953 crossref_primary_10_2337_db07_0378 proquest_miscellaneous_68447085 proquest_miscellaneous_20472215 gale_incontextgauss_8GL_A170929236 highwire_diabetes_diabetes_56_11_2683 gale_infotracgeneralonefile_A170929236 crossref_citationtrail_10_2337_db07_0378 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-01 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2007 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 2022031208335974800_R24 2022031208335974800_R25 2022031208335974800_R22 2022031208335974800_R44 2022031208335974800_R23 2022031208335974800_R28 2022031208335974800_R29 2022031208335974800_R26 2022031208335974800_R27 2022031208335974800_R31 2022031208335974800_R10 2022031208335974800_R32 2022031208335974800_R30 2022031208335974800_R13 2022031208335974800_R35 2022031208335974800_R14 2022031208335974800_R36 2022031208335974800_R8 2022031208335974800_R11 2022031208335974800_R33 2022031208335974800_R9 2022031208335974800_R12 2022031208335974800_R34 2022031208335974800_R17 2022031208335974800_R39 2022031208335974800_R18 2022031208335974800_R15 2022031208335974800_R37 2022031208335974800_R16 2022031208335974800_R38 2022031208335974800_R2 2022031208335974800_R3 2022031208335974800_R19 2022031208335974800_R1 2022031208335974800_R6 2022031208335974800_R7 2022031208335974800_R4 2022031208335974800_R5 2022031208335974800_R20 2022031208335974800_R42 2022031208335974800_R21 2022031208335974800_R43 2022031208335974800_R40 2022031208335974800_R41 |
References_xml | – ident: 2022031208335974800_R17 doi: 10.1152/ajpendo.2001.280.2.E203 – ident: 2022031208335974800_R26 doi: 10.1210/jcem-64-5-896 – ident: 2022031208335974800_R19 doi: 10.1172/JCI113570 – ident: 2022031208335974800_R2 doi: 10.2337/db05-1230 – ident: 2022031208335974800_R14 doi: 10.1007/BF00253494 – ident: 2022031208335974800_R22 doi: 10.1152/ajpendo.1990.259.2.E204 – ident: 2022031208335974800_R37 doi: 10.1016/j.bbrc.2006.11.027 – ident: 2022031208335974800_R16 doi: 10.1152/ajpendo.1992.263.5.E1010 – ident: 2022031208335974800_R8 doi: 10.1126/science.1082889 – ident: 2022031208335974800_R11 doi: 10.1038/ng1180 – ident: 2022031208335974800_R4 doi: 10.2337/diabetes.25.12.1091 – ident: 2022031208335974800_R35 doi: 10.1016/j.it.2005.06.007 – ident: 2022031208335974800_R42 doi: 10.1016/j.amjmed.2006.01.009 – ident: 2022031208335974800_R18 doi: 10.2337/diabetes.54.3.765 – ident: 2022031208335974800_R28 doi: 10.1016/S0092-8674(00)80611-X – ident: 2022031208335974800_R43 doi: 10.1172/JCI111519 – ident: 2022031208335974800_R12 doi: 10.1016/j.amjmed.2006.01.009 – ident: 2022031208335974800_R29 doi: 10.1096/fasebj.9.8.7768357 – ident: 2022031208335974800_R3 doi: 10.1371/journal.pmed.0020233 – ident: 2022031208335974800_R38 doi: 10.1113/eph8802513 – ident: 2022031208335974800_R10 doi: 10.1073/pnas.1032913100 – ident: 2022031208335974800_R41 doi: 10.1056/NEJM200406033502320 – ident: 2022031208335974800_R34 doi: 10.1016/j.ccr.2004.11.022 – ident: 2022031208335974800_R24 doi: 10.1002/1521-4036(200210)44:7<789::AID-BIMJ789>3.0.CO;2-# – ident: 2022031208335974800_R30 doi: 10.1016/j.tem.2003.08.004 – ident: 2022031208335974800_R33 doi: 10.1080/07853890310018458 – ident: 2022031208335974800_R23 doi: 10.1073/pnas.98.1.31 – ident: 2022031208335974800_R6 – ident: 2022031208335974800_R7 doi: 10.1073/pnas.0501559102 – ident: 2022031208335974800_R36 doi: 10.1091/mbc.e04-12-1082 – ident: 2022031208335974800_R21 doi: 10.1152/ajpendo.2001.280.5.E761 – ident: 2022031208335974800_R31 doi: 10.1038/nrc1013 – ident: 2022031208335974800_R32 doi: 10.1016/S0005-2728(01)00228-6 – ident: 2022031208335974800_R25 doi: 10.1007/s001250100596 – ident: 2022031208335974800_R1 doi: 10.1073/pnas.1332551100 – ident: 2022031208335974800_R15 doi: 10.2337/diabetes.47.11.1748 – ident: 2022031208335974800_R20 doi: 10.1016/S0021-9673(01)90918-5 – ident: 2022031208335974800_R44 doi: 10.1056/NEJM199001253220403 – ident: 2022031208335974800_R13 doi: 10.1249/00005768-199506000-00012 – ident: 2022031208335974800_R40 doi: 10.1182/blood-2005-03-1138 – ident: 2022031208335974800_R39 doi: 10.1073/pnas.95.20.11715 – ident: 2022031208335974800_R9 doi: 10.2337/diabetes.51.6.1913 – ident: 2022031208335974800_R5 doi: 10.2337/diabetes.54.1.8 – ident: 2022031208335974800_R27 doi: 10.1172/JCI118000 |
SSID | ssj0006060 |
Score | 2.2663162 |
Snippet | Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects
Helen Karakelides 1 ,
Yan W. Asmann... OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial... Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may... OBJECTIVE-Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial... |
SourceID | proquest gale pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2683 |
SubjectTerms | Adenosine Triphosphate - metabolism Adult Amino acids Biological and medical sciences Blood Glucose - metabolism Body Mass Index Cardiovascular disease Catheters Cytochrome Diabetes Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - genetics Diabetes Mellitus, Type 1 - metabolism Diabetes. Impaired glucose tolerance Diabetics DNA Primers Dosage and administration Drug therapy Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Evaluation Fatty Acids, Nonesterified - blood Genes Genetic aspects Genetic transcription Glucose Health aspects Humans Hypotheses Insulin Insulin - deficiency Insulin resistance Medical sciences Mitochondria, Muscle - metabolism Mitochondrial DNA Muscle, Skeletal - metabolism Oligonucleotide Array Sequence Analysis Oxidative Phosphorylation Peptides Phosphorylation Plasma Polymerase Chain Reaction Protons Research design Transcription (Genetics) Transcription, Genetic Type 1 diabetes Vascular endothelial growth factor |
Title | Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects |
URI | http://diabetes.diabetesjournals.org/content/56/11/2683.abstract https://www.ncbi.nlm.nih.gov/pubmed/17660267 https://www.proquest.com/docview/216477567 https://www.proquest.com/docview/20472215 https://www.proquest.com/docview/68447085 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxAvaPxcGBQLweAlWhI7dvKEStkYaB0V2qS-WY7tTEgo6Zb2iX-eu9hpqbQhVVWlfk1qn33-fDl_R8g7ZyuTF-D9yiIpYs7LJNawUMRlzRkTTOSZw7PD03Nxesm_z_N5yM3pQlrl4BN7R21bgzHyowyFr2Qu5KfFdYxFo_DhaqigcZ_sonIZZnTJ-Xq_lQA39ydQ0gxVOKUXFsoYk0e2wggdw-Jq_yxHg1MelIIxUVJ30Fe1L3JxNwvtV6OTPfIo0Eg69nZ_TO655gl5MA0Pyp-SP16VmLY1_eazzekXt7gJpcwovKarDn5JpzCjwQM2FgciHV_M6MxrwCJMN5aiLjXtV7Tev9AzzDLqKFwQt7A0pT6n5peh4IMwqNM9I5cnxxeT0zjUWYgN8I9l7IAj1rnTXDJRZQwYkShMZo3lmWYGCAuYs2TWpGWdWyd1WSeVFiKRwnFm6pI9JztN27h9QplzsrRSm9zm3BmuK-AP0gprDHA7ZiLycehuZYIIOdbC-K1gM4KWUWgZhZaJyNs1dOGVN24DHaLNFCpZNJgqY3y4RUH7Jj_UOJUJ8L-MCbjaNvBKr7pOFV_PtkAfAqhu4V8ZHY4oQNtQJWsLebiFvPIa4bcB3w-jSQ3R9M2HXMAOTEF3s4iMtobapsll1ucAR-RgGHsquJlOrSdFRN6svwX_gA99dOPaFUB6OdA0vxshCs4lWCciL_yQ3txbir5C2cv_3vuAPOwD3v0BzVdkZ3mzcq-BqS2rUT8f4b2YpCOy-_n4fPbzL6ILPg0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqQRcEG9MoV0hWrhYTbzrXfuAUOiDhCYhQqnU23a9u64qVU6oEyHEb-I_MuO1EyK13CrlECkTv2b8zWNnvyHknbOZiRNAvzRpJyHnaTvU4CjCNOeMCSbiyOHe4eFI9E7517P4bIP8afbCYFtlg4kVUNupwRr5foTEVzIW8tPsR4hDo3BxtZmg4a3ixP36CRlb-bF_COrdjaLjo8lBL6yHCoQGnO08dBAQ5bHTXDKRRQzcv0hMZI3lkWYGvDNce8qs6aR5bJ3Uad7OtBCQ7jvOTI7cS4D4m5xBJtMim5-PRuPvS-iHbMDveelEyPspPZVRxJjctxnWBBmOc_vHATZuoOEmxtZMXYJ2cj9W4_a4t_J_x4_IwzpwpV1vaY_JhiuekHvDemn-KfnteZDpNKd9399OD93suh6eRuEzXJTwTzoEDAHMLSyaPu1OxnTsWWdRTBeWIhM2rXxohWh0gH1NJYUDYtJMO9R38VwaCqiHZaTyGTm9EyU8J61iWriXhDLnZGqlNrGNuTNcZxCxSCusMRBNMhOQD83jVqamPcfpG1cK0h_UjELNKNRMQN4uRWee6-MmoT3UmULujAKbc4wv8Ci4v4NvqtuRbYg4IybgaOuCF3pRlir5MlgTel8L5VO4KqPrTRFwb8jLtSa5tyZ54VnJbxLcbaxJNfX71ZdYQM6n4HGzgGyvmdrqltOo6joOyFZje6oGtlItX8OA7Cx_BUTCZSZduOkCRCoC0k58u4RIOJegnYC88Ca9OrcU1Uy0V_899w6535sMB2rQH51skQdVub3aHvqatObXC_cG4sR5tl2_nZSc3zUg_AW5y3pF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBalg7KXse6n164VY-32YhJLtmQ_jBGaZc2adHloIW-aLMmlMJysThhjf9n-u91ZdrJAu7dCHgK52Jbv9N2ddPqOkLfO5iZJAf2ytJuGcZx1Qw2OIsyKmHPBRcIcnh0en4vTy_jLNJlukT_tWRgsq2wxsQZqOzO4Rt5hSHwlEyE7RVMVMekPPs5_hNhACjda224a3kLO3K-fkL1VH4Z9UPURY4NPFyenYdNgIDTgeBehg-CoSJyOJRc54xAKiNQwa2zMNDfgqWEcGbcmyorEOqmzoptrISD1dzE3BfIwAfo_kDyJcIrJ6SrX60Je4E-_RAwZQKUnNWKcy47NcXWQY2O3f1xh6xBalmIs0tQV6KnwDTbujoBrTzh4TB41ISzteZvbJVuufEJ2xs0m_VPy2zMi01lBh77Snfbd_KZpo0bhM15W8E86BjQB9C0tTgLau5jQieefRTFdWoqc2LT2pjW20RFWOFUULojpM42or-e5NhTwDxeUqmfk8l5U8Jxsl7PSvSSUOyczK7VJbBI7E-scYhdphTUG4kpuAvK-fd3KNATo2Ifju4JECDWjUDMKNROQNyvRuWf9uE3oGHWmkEWjRIM0fqlHwfhOvqpeJLsQezIu4Gqbgld6WVUq_TzaEHrXCBUzeCqjm-MRMDZk6NqQPN6QvPL85LcJHrXWpNqV_PWXRED2p-B184AcbJjaesgZq-uPA7LX2p5qIK5SqwkZkMPVr4BNuOGkSzdbgkhNRRold0uINI4laCcgL7xJr-8tRd0d7dV_731IdgAG1Gh4frZHHtbr7vU50X2yvbhZutcQMC7yg3pqUvLtvrHgLw8QfRU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Insulin+Deprivation+on+Muscle+Mitochondrial+ATP+Production+and+Gene+Transcript+Levels+in+Type+1+Diabetic+Subjects&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Karakelides%2C+Helen&rft.au=Asmann%2C+Yan+W&rft.au=Bigelow%2C+Maureen+L&rft.au=Short%2C+Kevin+R&rft.date=2007-11-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=56&rft.issue=11&rft.spage=2683&rft_id=info:doi/10.2337%2Fdb07-0378&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1379819791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |