Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects

Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects Helen Karakelides 1 , Yan W. Asmann 1 , Maureen L. Bigelow 1 , Kevin R. Short 1 , Ketan Dhatariya 1 , Jill Coenen-Schimke 1 , Jane Kahl 1 , Debabrata Mukhopadhyay 2 and K. Sree...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 56; no. 11; pp. 2683 - 2689
Main Authors Karakelides, Helen, Asmann, Yan W., Bigelow, Maureen L., Short, Kevin R., Dhatariya, Ketan, Coenen-Schimke, Jill, Kahl, Jane, Mukhopadhyay, Debabrata, Nair, K. Sreekumaran
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.11.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects Helen Karakelides 1 , Yan W. Asmann 1 , Maureen L. Bigelow 1 , Kevin R. Short 1 , Ketan Dhatariya 1 , Jill Coenen-Schimke 1 , Jane Kahl 1 , Debabrata Mukhopadhyay 2 and K. Sreekumaran Nair 1 1 Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 2 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota Address correspondence and reprint requests to K. Sreekumaran Nair, MD, PhD, Mayo Clinic, 200 First St. SW, Joseph 5-194, Rochester, MN 55905. E-mail: nair.sree{at}mayo.edu Abstract OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. RESEARCH DESIGN AND METHODS—We withdrew insulin for 8.6 ± 0.6 h in nine C-peptide–negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. RESULTS—Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, β-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. CONCLUSIONS—Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. COX5B, cytochrome c oxidase subunit 5 CRU, Clinical Research Unit HIF, hypoxia-inducible factor IPA, ingenuity pathway analysis MAPR, mitochondrial ATP production rate NIH, National Institutes of Health SDH, succinate dehydrogenase TCA, tricarboxylic acid TFAM, mitochondrial transcription factor A UCP, uncoupling protein UQCR, ubiquinol cytochrome c reductase VEGF, vascular endothelial growth factor Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 27 July 2007. DOI: 10.2337/db07-0378. Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-0378 . The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received March 20, 2007. Accepted July 23, 2007. DIABETES
AbstractList OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. RESEARCH DESIGN AND METHODS—We withdrew insulin for 8.6 ± 0.6 h in nine C-peptide–negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. RESULTS—Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, β-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. CONCLUSIONS—Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.
Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. We withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.
Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects Helen Karakelides 1 , Yan W. Asmann 1 , Maureen L. Bigelow 1 , Kevin R. Short 1 , Ketan Dhatariya 1 , Jill Coenen-Schimke 1 , Jane Kahl 1 , Debabrata Mukhopadhyay 2 and K. Sreekumaran Nair 1 1 Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 2 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota Address correspondence and reprint requests to K. Sreekumaran Nair, MD, PhD, Mayo Clinic, 200 First St. SW, Joseph 5-194, Rochester, MN 55905. E-mail: nair.sree{at}mayo.edu Abstract OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. RESEARCH DESIGN AND METHODS—We withdrew insulin for 8.6 ± 0.6 h in nine C-peptide–negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. RESULTS—Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, β-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. CONCLUSIONS—Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred. COX5B, cytochrome c oxidase subunit 5 CRU, Clinical Research Unit HIF, hypoxia-inducible factor IPA, ingenuity pathway analysis MAPR, mitochondrial ATP production rate NIH, National Institutes of Health SDH, succinate dehydrogenase TCA, tricarboxylic acid TFAM, mitochondrial transcription factor A UCP, uncoupling protein UQCR, ubiquinol cytochrome c reductase VEGF, vascular endothelial growth factor Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 27 July 2007. DOI: 10.2337/db07-0378. Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-0378 . The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received March 20, 2007. Accepted July 23, 2007. DIABETES
Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment.OBJECTIVEMuscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment.We withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen.RESEARCH DESIGN AND METHODSWe withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen.Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased.RESULTSWithdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased.Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.CONCLUSIONSInsulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.
Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. We withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.
OBJECTIVE-Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. RESEARCH DESIGN AND METHODS-We withdrew insulin for 8.6 plus or minus 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. RESULTS-Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, {szligbeta}-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. CONCLUSIONS-Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.
Audience Professional
Author K. Sreekumaran Nair
Helen Karakelides
Kevin R. Short
Yan W. Asmann
Debabrata Mukhopadhyay
Maureen L. Bigelow
Jill Coenen-Schimke
Jane Kahl
Ketan Dhatariya
Author_xml – sequence: 1
  givenname: Helen
  surname: Karakelides
  fullname: Karakelides, Helen
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
– sequence: 2
  givenname: Yan W.
  surname: Asmann
  fullname: Asmann, Yan W.
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
– sequence: 3
  givenname: Maureen L.
  surname: Bigelow
  fullname: Bigelow, Maureen L.
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
– sequence: 4
  givenname: Kevin R.
  surname: Short
  fullname: Short, Kevin R.
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
– sequence: 5
  givenname: Ketan
  surname: Dhatariya
  fullname: Dhatariya, Ketan
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
– sequence: 6
  givenname: Jill
  surname: Coenen-Schimke
  fullname: Coenen-Schimke, Jill
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
– sequence: 7
  givenname: Jane
  surname: Kahl
  fullname: Kahl, Jane
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
– sequence: 8
  givenname: Debabrata
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Debabrata
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
– sequence: 9
  givenname: K. Sreekumaran
  surname: Nair
  fullname: Nair, K. Sreekumaran
  organization: Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19214953$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17660267$$D View this record in MEDLINE/PubMed
BookMark eNqF0ltr2zAUB3AzOtbL9rAvMMRgg8Hc6mJL0WNIu6yQ0sIy2JuQ5eNEQbEyye5W9uWnXEZICQwZbMzvyD5H__PspPUtZNlbgi8pY-KqrrDIMRODF9kZkUzmjIofJ9kZxoTmREhxmp3HuMAY87ReZadEcI4pF2fZn5umAdMh36DbNvbOtugaVsE-6s76FqXrro_GAbqznTdz39bBaoeG0wf0EHzdmw3TbY3G0AKaBt1GE-yqQxN4BBdR2nD6tAJE0LXVFXTWoG99tUjfjK-zl412Ed7s7hfZ9y8309HXfHI_vh0NJ7nh5aDLQUrSlKALwXhFWckpHxham7qgmhkmRWVKyWpDZFPWILRscKVTf4JDwUwj2UX2cbvvKvifPcROLW004JxuwfdR8UFRCDwo_wspLgSlZA3fP4ML34c2NaEo4YUQJRcJ5Vs00w6UbRvfBW1maUxBu3SAjU2vh0RgSSVlPPnLIz6tGpbWHC34dFCQTAe_u5nuY1SD8eTQ5ses8c7BDFSa9-j-0L_bddhXS6hVisRShyf1LzkJfNgBHY12TTp4Y-PeSUoKWbL9T5rgYwzQ7AlW6_SqdXrVOr3JXj2zxnabIKZJWHe04vO2Ym5n8182gKo3KYO4fyi5IkSl0DD2FzY3_CE
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1016_j_clnu_2009_09_001
crossref_primary_10_4239_wjd_v14_i10_1463
crossref_primary_10_3389_fphys_2018_00579
crossref_primary_10_1093_ajcn_nqaa431
crossref_primary_10_1371_journal_pone_0010538
crossref_primary_10_1111_eci_14128
crossref_primary_10_1152_ajpendo_00351_2009
crossref_primary_10_1016_j_celrep_2019_02_081
crossref_primary_10_2139_ssrn_3155720
crossref_primary_10_1016_j_cmet_2017_06_010
crossref_primary_10_1172_JCI146415
crossref_primary_10_3390_ijms23074022
crossref_primary_10_1016_j_tem_2020_04_005
crossref_primary_10_1111_jcmm_12490
crossref_primary_10_1186_s13395_021_00272_7
crossref_primary_10_1210_clinem_dgab261
crossref_primary_10_1002_jez_2726
crossref_primary_10_1016_j_preteyeres_2022_101051
crossref_primary_10_2337_db10_0371
crossref_primary_10_1111_j_1365_2796_2010_02298_x
crossref_primary_10_1042_BCJ20210264
crossref_primary_10_2174_1573399820666230822151740
crossref_primary_10_3390_ijms22126403
crossref_primary_10_1016_j_intimp_2023_110883
crossref_primary_10_1038_s41390_021_01618_z
crossref_primary_10_1016_j_numecd_2012_05_006
crossref_primary_10_1016_S1957_2557_19_30168_3
crossref_primary_10_1002_dmrr_879
crossref_primary_10_2337_db15_0823
crossref_primary_10_3390_ijms21186559
crossref_primary_10_1016_j_jpba_2016_06_041
crossref_primary_10_1016_j_tem_2008_08_001
crossref_primary_10_2337_db13_1794
crossref_primary_10_1111_j_1399_5448_2010_00699_x
crossref_primary_10_1007_s13760_024_02706_7
crossref_primary_10_1210_er_2009_0027
crossref_primary_10_1210_jc_2009_1822
crossref_primary_10_1186_s13098_017_0294_1
crossref_primary_10_1152_ajpendo_00495_2019
crossref_primary_10_1016_j_clnu_2009_04_014
crossref_primary_10_1016_j_diabres_2023_110697
crossref_primary_10_3390_metabo12111017
crossref_primary_10_2337_db18_0416
crossref_primary_10_2337_dc09_0264
crossref_primary_10_1089_ars_2012_4910
crossref_primary_10_1096_fj_201802043R
crossref_primary_10_1007_s00125_008_1122_9
crossref_primary_10_1111_pedi_13007
crossref_primary_10_1210_jc_2009_1331
crossref_primary_10_1089_ars_2009_2531
crossref_primary_10_1007_s00109_012_0887_y
crossref_primary_10_3390_biom10111475
crossref_primary_10_3390_ijms18061156
crossref_primary_10_1152_ajpendo_00175_2016
crossref_primary_10_1007_s00125_021_05540_1
crossref_primary_10_1016_j_bbagen_2013_11_007
crossref_primary_10_1016_j_phrs_2021_105783
crossref_primary_10_1007_s12170_012_0283_8
crossref_primary_10_1016_j_metabol_2008_06_015
crossref_primary_10_3390_nu12103087
crossref_primary_10_3390_ijms24021724
crossref_primary_10_1152_ajpregu_00395_2011
crossref_primary_10_1016_j_cophys_2022_100491
crossref_primary_10_1152_ajpendo_00027_2008
crossref_primary_10_1016_j_jvs_2012_10_011
crossref_primary_10_1007_s00125_018_4785_x
crossref_primary_10_1016_j_bbadis_2012_04_009
crossref_primary_10_1016_j_beem_2012_06_001
crossref_primary_10_1111_j_1748_1716_2010_02124_x
crossref_primary_10_1172_JCI120843
crossref_primary_10_1002_edm2_448
crossref_primary_10_1097_MED_0b013e32830c6b8e
crossref_primary_10_1002_imt2_237
crossref_primary_10_1172_jci_insight_144014
crossref_primary_10_1139_apnm_2023_0004
crossref_primary_10_1152_ajpendo_00756_2009
crossref_primary_10_1007_s00109_014_1244_0
crossref_primary_10_1021_ac900424c
crossref_primary_10_1016_j_cbi_2017_05_003
crossref_primary_10_1042_BJ20102071
crossref_primary_10_1371_journal_pone_0032391
crossref_primary_10_1016_j_mad_2014_01_008
crossref_primary_10_1038_s41598_019_39362_4
crossref_primary_10_2337_db11_0874
crossref_primary_10_3390_metabo13020295
crossref_primary_10_1016_j_jchromb_2020_122347
crossref_primary_10_33549_physiolres_933745
crossref_primary_10_1089_dia_2013_0068
crossref_primary_10_1007_s00018_020_03670_0
crossref_primary_10_3390_ijms24043399
crossref_primary_10_2337_db13_0303
crossref_primary_10_2337_db12_1152
crossref_primary_10_1016_j_bbadis_2020_165744
crossref_primary_10_1016_j_metabol_2016_06_008
crossref_primary_10_1172_JCI46405
crossref_primary_10_1210_jc_2011_2587
crossref_primary_10_2337_db14_0765
Cites_doi 10.1152/ajpendo.2001.280.2.E203
10.1210/jcem-64-5-896
10.1172/JCI113570
10.2337/db05-1230
10.1007/BF00253494
10.1152/ajpendo.1990.259.2.E204
10.1016/j.bbrc.2006.11.027
10.1152/ajpendo.1992.263.5.E1010
10.1126/science.1082889
10.1038/ng1180
10.2337/diabetes.25.12.1091
10.1016/j.it.2005.06.007
10.1016/j.amjmed.2006.01.009
10.2337/diabetes.54.3.765
10.1016/S0092-8674(00)80611-X
10.1172/JCI111519
10.1096/fasebj.9.8.7768357
10.1371/journal.pmed.0020233
10.1113/eph8802513
10.1073/pnas.1032913100
10.1056/NEJM200406033502320
10.1016/j.ccr.2004.11.022
10.1002/1521-4036(200210)44:7<789::AID-BIMJ789>3.0.CO;2-#
10.1016/j.tem.2003.08.004
10.1080/07853890310018458
10.1073/pnas.98.1.31
10.1073/pnas.0501559102
10.1091/mbc.e04-12-1082
10.1152/ajpendo.2001.280.5.E761
10.1038/nrc1013
10.1016/S0005-2728(01)00228-6
10.1007/s001250100596
10.1073/pnas.1332551100
10.2337/diabetes.47.11.1748
10.1016/S0021-9673(01)90918-5
10.1056/NEJM199001253220403
10.1249/00005768-199506000-00012
10.1182/blood-2005-03-1138
10.1073/pnas.95.20.11715
10.2337/diabetes.51.6.1913
10.2337/diabetes.54.1.8
10.1172/JCI118000
ClassificationCodes 2834
2833
ContentType Journal Article
Copyright 2008 INIST-CNRS
COPYRIGHT 2007 American Diabetes Association
Copyright American Diabetes Association Nov 2007
Copyright_xml – notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2007 American Diabetes Association
– notice: Copyright American Diabetes Association Nov 2007
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
8FD
FR3
P64
RC3
7X8
DOI 10.2337/db07-0378
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Research Library Prep

MEDLINE - Academic
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 2689
ExternalDocumentID 1379819791
A170929236
17660267
19214953
10_2337_db07_0378
diabetes_56_11_2683
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01-DK-41973
– fundername: NCRR NIH HHS
  grantid: UL1-RR-024150-01
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFFNX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
J5H
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
354
6PF
AAFWJ
AAKAS
AAYOK
AAYXX
ACGFO
ADGHP
ADZCM
AEGXH
AERZD
AIAGR
AIZAD
ALIPV
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
1CY
8F7
AI.
IQODW
MVM
O5R
O5S
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FK
K9.
PKEHL
Q9U
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c658t-e991f5ea4736b2356268c2dcd42a3c397bc593dc19f5de7a9f0ba66076e43cf93
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Fri Jul 11 00:28:34 EDT 2025
Fri Jul 11 15:43:55 EDT 2025
Fri Jul 25 19:40:55 EDT 2025
Fri Jun 13 00:49:06 EDT 2025
Tue Jun 10 21:27:24 EDT 2025
Fri Jun 27 05:52:26 EDT 2025
Tue Jun 10 20:05:59 EDT 2025
Thu Apr 03 07:00:23 EDT 2025
Mon Jul 21 09:15:45 EDT 2025
Tue Jul 01 03:03:57 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Fri Jan 15 19:45:56 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Endocrinopathy
Human
Immunopathology
Pancreatic hormone
Mitochondria
Gene
Type 1 diabetes
Autoimmune disease
Muscle
ATP
Insulin
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c658t-e991f5ea4736b2356268c2dcd42a3c397bc593dc19f5de7a9f0ba66076e43cf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://diabetesjournals.org/diabetes/article-pdf/56/11/2683/385374/zdb01107002683.pdf
PMID 17660267
PQID 216477567
PQPubID 34443
PageCount 7
ParticipantIDs pubmed_primary_17660267
gale_incontextcollege_GICCO_A170929236
gale_infotracacademiconefile_A170929236
proquest_journals_216477567
pascalfrancis_primary_19214953
crossref_primary_10_2337_db07_0378
proquest_miscellaneous_68447085
proquest_miscellaneous_20472215
gale_incontextgauss_8GL_A170929236
highwire_diabetes_diabetes_56_11_2683
gale_infotracgeneralonefile_A170929236
crossref_citationtrail_10_2337_db07_0378
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2007
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022031208335974800_R24
2022031208335974800_R25
2022031208335974800_R22
2022031208335974800_R44
2022031208335974800_R23
2022031208335974800_R28
2022031208335974800_R29
2022031208335974800_R26
2022031208335974800_R27
2022031208335974800_R31
2022031208335974800_R10
2022031208335974800_R32
2022031208335974800_R30
2022031208335974800_R13
2022031208335974800_R35
2022031208335974800_R14
2022031208335974800_R36
2022031208335974800_R8
2022031208335974800_R11
2022031208335974800_R33
2022031208335974800_R9
2022031208335974800_R12
2022031208335974800_R34
2022031208335974800_R17
2022031208335974800_R39
2022031208335974800_R18
2022031208335974800_R15
2022031208335974800_R37
2022031208335974800_R16
2022031208335974800_R38
2022031208335974800_R2
2022031208335974800_R3
2022031208335974800_R19
2022031208335974800_R1
2022031208335974800_R6
2022031208335974800_R7
2022031208335974800_R4
2022031208335974800_R5
2022031208335974800_R20
2022031208335974800_R42
2022031208335974800_R21
2022031208335974800_R43
2022031208335974800_R40
2022031208335974800_R41
References_xml – ident: 2022031208335974800_R17
  doi: 10.1152/ajpendo.2001.280.2.E203
– ident: 2022031208335974800_R26
  doi: 10.1210/jcem-64-5-896
– ident: 2022031208335974800_R19
  doi: 10.1172/JCI113570
– ident: 2022031208335974800_R2
  doi: 10.2337/db05-1230
– ident: 2022031208335974800_R14
  doi: 10.1007/BF00253494
– ident: 2022031208335974800_R22
  doi: 10.1152/ajpendo.1990.259.2.E204
– ident: 2022031208335974800_R37
  doi: 10.1016/j.bbrc.2006.11.027
– ident: 2022031208335974800_R16
  doi: 10.1152/ajpendo.1992.263.5.E1010
– ident: 2022031208335974800_R8
  doi: 10.1126/science.1082889
– ident: 2022031208335974800_R11
  doi: 10.1038/ng1180
– ident: 2022031208335974800_R4
  doi: 10.2337/diabetes.25.12.1091
– ident: 2022031208335974800_R35
  doi: 10.1016/j.it.2005.06.007
– ident: 2022031208335974800_R42
  doi: 10.1016/j.amjmed.2006.01.009
– ident: 2022031208335974800_R18
  doi: 10.2337/diabetes.54.3.765
– ident: 2022031208335974800_R28
  doi: 10.1016/S0092-8674(00)80611-X
– ident: 2022031208335974800_R43
  doi: 10.1172/JCI111519
– ident: 2022031208335974800_R12
  doi: 10.1016/j.amjmed.2006.01.009
– ident: 2022031208335974800_R29
  doi: 10.1096/fasebj.9.8.7768357
– ident: 2022031208335974800_R3
  doi: 10.1371/journal.pmed.0020233
– ident: 2022031208335974800_R38
  doi: 10.1113/eph8802513
– ident: 2022031208335974800_R10
  doi: 10.1073/pnas.1032913100
– ident: 2022031208335974800_R41
  doi: 10.1056/NEJM200406033502320
– ident: 2022031208335974800_R34
  doi: 10.1016/j.ccr.2004.11.022
– ident: 2022031208335974800_R24
  doi: 10.1002/1521-4036(200210)44:7<789::AID-BIMJ789>3.0.CO;2-#
– ident: 2022031208335974800_R30
  doi: 10.1016/j.tem.2003.08.004
– ident: 2022031208335974800_R33
  doi: 10.1080/07853890310018458
– ident: 2022031208335974800_R23
  doi: 10.1073/pnas.98.1.31
– ident: 2022031208335974800_R6
– ident: 2022031208335974800_R7
  doi: 10.1073/pnas.0501559102
– ident: 2022031208335974800_R36
  doi: 10.1091/mbc.e04-12-1082
– ident: 2022031208335974800_R21
  doi: 10.1152/ajpendo.2001.280.5.E761
– ident: 2022031208335974800_R31
  doi: 10.1038/nrc1013
– ident: 2022031208335974800_R32
  doi: 10.1016/S0005-2728(01)00228-6
– ident: 2022031208335974800_R25
  doi: 10.1007/s001250100596
– ident: 2022031208335974800_R1
  doi: 10.1073/pnas.1332551100
– ident: 2022031208335974800_R15
  doi: 10.2337/diabetes.47.11.1748
– ident: 2022031208335974800_R20
  doi: 10.1016/S0021-9673(01)90918-5
– ident: 2022031208335974800_R44
  doi: 10.1056/NEJM199001253220403
– ident: 2022031208335974800_R13
  doi: 10.1249/00005768-199506000-00012
– ident: 2022031208335974800_R40
  doi: 10.1182/blood-2005-03-1138
– ident: 2022031208335974800_R39
  doi: 10.1073/pnas.95.20.11715
– ident: 2022031208335974800_R9
  doi: 10.2337/diabetes.51.6.1913
– ident: 2022031208335974800_R5
  doi: 10.2337/diabetes.54.1.8
– ident: 2022031208335974800_R27
  doi: 10.1172/JCI118000
SSID ssj0006060
Score 2.2663162
Snippet Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects Helen Karakelides 1 , Yan W. Asmann...
OBJECTIVE—Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial...
Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may...
OBJECTIVE-Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2683
SubjectTerms Adenosine Triphosphate - metabolism
Adult
Amino acids
Biological and medical sciences
Blood Glucose - metabolism
Body Mass Index
Cardiovascular disease
Catheters
Cytochrome
Diabetes
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - genetics
Diabetes Mellitus, Type 1 - metabolism
Diabetes. Impaired glucose tolerance
Diabetics
DNA Primers
Dosage and administration
Drug therapy
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Evaluation
Fatty Acids, Nonesterified - blood
Genes
Genetic aspects
Genetic transcription
Glucose
Health aspects
Humans
Hypotheses
Insulin
Insulin - deficiency
Insulin resistance
Medical sciences
Mitochondria, Muscle - metabolism
Mitochondrial DNA
Muscle, Skeletal - metabolism
Oligonucleotide Array Sequence Analysis
Oxidative Phosphorylation
Peptides
Phosphorylation
Plasma
Polymerase Chain Reaction
Protons
Research design
Transcription (Genetics)
Transcription, Genetic
Type 1 diabetes
Vascular endothelial growth factor
Title Effect of Insulin Deprivation on Muscle Mitochondrial ATP Production and Gene Transcript Levels in Type 1 Diabetic Subjects
URI http://diabetes.diabetesjournals.org/content/56/11/2683.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17660267
https://www.proquest.com/docview/216477567
https://www.proquest.com/docview/20472215
https://www.proquest.com/docview/68447085
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxAvaPxcGBQLweAlWhI7dvKEStkYaB0V2qS-WY7tTEgo6Zb2iX-eu9hpqbQhVVWlfk1qn33-fDl_R8g7ZyuTF-D9yiIpYs7LJNawUMRlzRkTTOSZw7PD03Nxesm_z_N5yM3pQlrl4BN7R21bgzHyowyFr2Qu5KfFdYxFo_DhaqigcZ_sonIZZnTJ-Xq_lQA39ydQ0gxVOKUXFsoYk0e2wggdw-Jq_yxHg1MelIIxUVJ30Fe1L3JxNwvtV6OTPfIo0Eg69nZ_TO655gl5MA0Pyp-SP16VmLY1_eazzekXt7gJpcwovKarDn5JpzCjwQM2FgciHV_M6MxrwCJMN5aiLjXtV7Tev9AzzDLqKFwQt7A0pT6n5peh4IMwqNM9I5cnxxeT0zjUWYgN8I9l7IAj1rnTXDJRZQwYkShMZo3lmWYGCAuYs2TWpGWdWyd1WSeVFiKRwnFm6pI9JztN27h9QplzsrRSm9zm3BmuK-AP0gprDHA7ZiLycehuZYIIOdbC-K1gM4KWUWgZhZaJyNs1dOGVN24DHaLNFCpZNJgqY3y4RUH7Jj_UOJUJ8L-MCbjaNvBKr7pOFV_PtkAfAqhu4V8ZHY4oQNtQJWsLebiFvPIa4bcB3w-jSQ3R9M2HXMAOTEF3s4iMtobapsll1ucAR-RgGHsquJlOrSdFRN6svwX_gA99dOPaFUB6OdA0vxshCs4lWCciL_yQ3txbir5C2cv_3vuAPOwD3v0BzVdkZ3mzcq-BqS2rUT8f4b2YpCOy-_n4fPbzL6ILPg0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqQRcEG9MoV0hWrhYTbzrXfuAUOiDhCYhQqnU23a9u64qVU6oEyHEb-I_MuO1EyK13CrlECkTv2b8zWNnvyHknbOZiRNAvzRpJyHnaTvU4CjCNOeMCSbiyOHe4eFI9E7517P4bIP8afbCYFtlg4kVUNupwRr5foTEVzIW8tPsR4hDo3BxtZmg4a3ixP36CRlb-bF_COrdjaLjo8lBL6yHCoQGnO08dBAQ5bHTXDKRRQzcv0hMZI3lkWYGvDNce8qs6aR5bJ3Uad7OtBCQ7jvOTI7cS4D4m5xBJtMim5-PRuPvS-iHbMDveelEyPspPZVRxJjctxnWBBmOc_vHATZuoOEmxtZMXYJ2cj9W4_a4t_J_x4_IwzpwpV1vaY_JhiuekHvDemn-KfnteZDpNKd9399OD93suh6eRuEzXJTwTzoEDAHMLSyaPu1OxnTsWWdRTBeWIhM2rXxohWh0gH1NJYUDYtJMO9R38VwaCqiHZaTyGTm9EyU8J61iWriXhDLnZGqlNrGNuTNcZxCxSCusMRBNMhOQD83jVqamPcfpG1cK0h_UjELNKNRMQN4uRWee6-MmoT3UmULujAKbc4wv8Ci4v4NvqtuRbYg4IybgaOuCF3pRlir5MlgTel8L5VO4KqPrTRFwb8jLtSa5tyZ54VnJbxLcbaxJNfX71ZdYQM6n4HGzgGyvmdrqltOo6joOyFZje6oGtlItX8OA7Cx_BUTCZSZduOkCRCoC0k58u4RIOJegnYC88Ca9OrcU1Uy0V_899w6535sMB2rQH51skQdVub3aHvqatObXC_cG4sR5tl2_nZSc3zUg_AW5y3pF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBalg7KXse6n164VY-32YhJLtmQ_jBGaZc2adHloIW-aLMmlMJysThhjf9n-u91ZdrJAu7dCHgK52Jbv9N2ddPqOkLfO5iZJAf2ytJuGcZx1Qw2OIsyKmHPBRcIcnh0en4vTy_jLNJlukT_tWRgsq2wxsQZqOzO4Rt5hSHwlEyE7RVMVMekPPs5_hNhACjda224a3kLO3K-fkL1VH4Z9UPURY4NPFyenYdNgIDTgeBehg-CoSJyOJRc54xAKiNQwa2zMNDfgqWEcGbcmyorEOqmzoptrISD1dzE3BfIwAfo_kDyJcIrJ6SrX60Je4E-_RAwZQKUnNWKcy47NcXWQY2O3f1xh6xBalmIs0tQV6KnwDTbujoBrTzh4TB41ISzteZvbJVuufEJ2xs0m_VPy2zMi01lBh77Snfbd_KZpo0bhM15W8E86BjQB9C0tTgLau5jQieefRTFdWoqc2LT2pjW20RFWOFUULojpM42or-e5NhTwDxeUqmfk8l5U8Jxsl7PSvSSUOyczK7VJbBI7E-scYhdphTUG4kpuAvK-fd3KNATo2Ifju4JECDWjUDMKNROQNyvRuWf9uE3oGHWmkEWjRIM0fqlHwfhOvqpeJLsQezIu4Gqbgld6WVUq_TzaEHrXCBUzeCqjm-MRMDZk6NqQPN6QvPL85LcJHrXWpNqV_PWXRED2p-B184AcbJjaesgZq-uPA7LX2p5qIK5SqwkZkMPVr4BNuOGkSzdbgkhNRRold0uINI4laCcgL7xJr-8tRd0d7dV_731IdgAG1Gh4frZHHtbr7vU50X2yvbhZutcQMC7yg3pqUvLtvrHgLw8QfRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Insulin+Deprivation+on+Muscle+Mitochondrial+ATP+Production+and+Gene+Transcript+Levels+in+Type+1+Diabetic+Subjects&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Karakelides%2C+Helen&rft.au=Asmann%2C+Yan+W&rft.au=Bigelow%2C+Maureen+L&rft.au=Short%2C+Kevin+R&rft.date=2007-11-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=56&rft.issue=11&rft.spage=2683&rft_id=info:doi/10.2337%2Fdb07-0378&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1379819791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon