Nature of the superconductor–insulator transition in disordered superconductors

Island hopping As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition from a superconducting to an insulating state. Dubi et al . use numerical simulations to study this transition — or, as it turns out, two ty...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 449; no. 7164; pp. 876 - 880
Main Authors Dubi, Yonatan, Meir, Yigal, Avishai, Yshai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.10.2007
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Island hopping As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition from a superconducting to an insulating state. Dubi et al . use numerical simulations to study this transition — or, as it turns out, two types of transition. The key effect of disorder is to create 'islands' of strong superconductivity, coupled by regions that are only weakly superconducting. In the case of weak disorder, an increasing magnetic field eventually destroys the superconducting state throughout the material, leading to an insulator. When disorder is strong, superconductivity persists in the islands, and the effect of a magnetic field is to suppress the coupling between them — again leading to an insulating state. These findings may be relevant to the high-temperature superconductors, where intrinsic disorder may play a role. As a superconducting thin film is made more disordered, or subject to an increasing magnetic field, a point is reached when the material undergoes a transition from a superconducting to an insulating state. Numerical simulations have been used to shed light on the nature of this transition, or, as it turns out, two types of transition. The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder 1 , experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field 2 . The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high- T c ) superconductors are intrinsically disordered 3 , 4 , 5 . Here we present numerical simulations of the superconductor–insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor–insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments 6 , 7 , explains the recently observed huge magneto-resistance peak in disordered thin films 8 , 9 , 10 and may be relevant to the observation of ‘the pseudogap phenomenon’ in underdoped high- T c superconductors 11 , 12 .
AbstractList The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.
The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.
The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero- resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T sub(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T sub(c) superconductors.
Island hopping As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition from a superconducting to an insulating state. Dubi et al . use numerical simulations to study this transition — or, as it turns out, two types of transition. The key effect of disorder is to create 'islands' of strong superconductivity, coupled by regions that are only weakly superconducting. In the case of weak disorder, an increasing magnetic field eventually destroys the superconducting state throughout the material, leading to an insulator. When disorder is strong, superconductivity persists in the islands, and the effect of a magnetic field is to suppress the coupling between them — again leading to an insulating state. These findings may be relevant to the high-temperature superconductors, where intrinsic disorder may play a role. As a superconducting thin film is made more disordered, or subject to an increasing magnetic field, a point is reached when the material undergoes a transition from a superconducting to an insulating state. Numerical simulations have been used to shed light on the nature of this transition, or, as it turns out, two types of transition. The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder 1 , experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field 2 . The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high- T c ) superconductors are intrinsically disordered 3 , 4 , 5 . Here we present numerical simulations of the superconductor–insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor–insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments 6 , 7 , explains the recently observed huge magneto-resistance peak in disordered thin films 8 , 9 , 10 and may be relevant to the observation of ‘the pseudogap phenomenon’ in underdoped high- T c superconductors 11 , 12 .
Audience Academic
Author Meir, Yigal
Avishai, Yshai
Dubi, Yonatan
Author_xml – sequence: 1
  givenname: Yonatan
  surname: Dubi
  fullname: Dubi, Yonatan
  organization: Department of Physics, Ben Gurion University
– sequence: 2
  givenname: Yigal
  surname: Meir
  fullname: Meir, Yigal
  email: ymeir@bgu.ac.il
  organization: Department of Physics, Ben Gurion University, The Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel
– sequence: 3
  givenname: Yshai
  surname: Avishai
  fullname: Avishai, Yshai
  organization: Department of Physics, Ben Gurion University, The Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17943125$$D View this record in MEDLINE/PubMed
BookMark eNqF0k9v0zAYBnALDbFucOKOIg4TCDL8L7ZzrCo2Jk1DwBDHyHVeF0-p3dmJBDe-A99wnwR3HepadaAcEkW_50lsvwdozwcPCD0n-Jhgpt553Q8RsCAKP0IjwqUouVByD40wpqrEiol9dJDSFca4IpI_QftE1pwRWo3Qp4vbdBFs0X-HIg0LiCb4djB9iDe_fjufhk7n56KP2ifXu-AL54vWpRBbiNBuZdJT9NjqLsGzu_sh-nry_nLyoTz_eHo2GZ-XRlSyL8EyDZjZWgtGgIJWTE2V1QKsZdYSjCWeSqq0Zpq1oqaUTAWpuRFEC5V__xAdrXoXMVwPkPpm7pKBrtMewpAaoTjBVMoMX_0TElmxquKkqv9PsaKkJliSTF9u0aswRJ9X3FDMK4Eruvx0uUIz3UHjvA15F80MPETd5VO0Lr8eE1VLrqTk69INbxbuurmPjnegfLUwd2Zn6-uNQDY9_OhnekipOfvyedO-ediOL79NLjb1i7tNGKZzaJtFdHMdfzZ_52tdZ2JIKYJdE9wsp7e5N71Zky1tXK-XI5dX6LoHMm9XmZSb_Qzi-hx28T_Y2P_t
CODEN NATUAS
CitedBy_id crossref_primary_10_1038_srep05438
crossref_primary_10_1016_j_mtphys_2023_101019
crossref_primary_10_1088_1361_6528_aa5e88
crossref_primary_10_1103_PhysRevB_107_L140502
crossref_primary_10_1103_PhysRevB_92_064512
crossref_primary_10_1002_apxr_202300086
crossref_primary_10_1103_PhysRevB_84_014514
crossref_primary_10_1103_PhysRevB_105_134508
crossref_primary_10_1103_PhysRevB_86_134531
crossref_primary_10_1103_PhysRevB_99_094204
crossref_primary_10_1073_pnas_2017810118
crossref_primary_10_1016_j_physe_2009_06_041
crossref_primary_10_1103_PhysRevLett_117_255302
crossref_primary_10_1103_PhysRevB_105_125112
crossref_primary_10_1103_PhysRevB_84_100507
crossref_primary_10_1103_PhysRevB_96_144507
crossref_primary_10_3390_condmat8040095
crossref_primary_10_1063_1_3517172
crossref_primary_10_1103_PhysRevB_109_054516
crossref_primary_10_1103_PhysRevB_87_184509
crossref_primary_10_1103_PhysRevB_79_214515
crossref_primary_10_1016_j_aop_2020_168167
crossref_primary_10_1088_2515_7639_ac8e34
crossref_primary_10_1103_PhysRevE_78_036601
crossref_primary_10_1021_acs_nanolett_4c04386
crossref_primary_10_1051_anphys_2009003
crossref_primary_10_1103_PhysRevB_80_214510
crossref_primary_10_1016_j_physa_2019_123646
crossref_primary_10_1088_1367_2630_17_10_103008
crossref_primary_10_1103_PhysRevB_96_104509
crossref_primary_10_1038_s41427_021_00323_x
crossref_primary_10_1103_PhysRevResearch_4_043159
crossref_primary_10_1088_1361_6668_ad4a35
crossref_primary_10_1002_adma_202401118
crossref_primary_10_1007_JHEP02_2022_068
crossref_primary_10_1088_1361_648X_aae870
crossref_primary_10_1126_sciadv_1600664
crossref_primary_10_1088_2053_1583_aa6917
crossref_primary_10_1103_PhysRevB_80_214506
crossref_primary_10_1103_PhysRevB_77_214503
crossref_primary_10_1021_acs_nanolett_3c03870
crossref_primary_10_1088_0256_307X_33_7_074202
crossref_primary_10_1103_PhysRevB_98_184515
crossref_primary_10_1016_j_physc_2013_11_011
crossref_primary_10_1103_PhysRevB_87_064512
crossref_primary_10_1103_PhysRevB_96_104513
crossref_primary_10_1103_PhysRevD_88_126004
crossref_primary_10_1088_1361_6463_aa6bdb
crossref_primary_10_1021_jacs_4c17794
crossref_primary_10_7498_aps_62_057303
crossref_primary_10_1103_PhysRevB_99_035135
crossref_primary_10_1103_PhysRevB_79_094509
crossref_primary_10_1038_s42005_024_01709_3
crossref_primary_10_3762_bjnano_15_19
crossref_primary_10_1142_S0217979210056451
crossref_primary_10_1103_PhysRevB_110_094513
crossref_primary_10_1103_PhysRevA_89_053609
crossref_primary_10_1103_PhysRevB_106_L161114
crossref_primary_10_1103_PhysRevB_98_064501
crossref_primary_10_1088_1361_648X_ad0275
crossref_primary_10_1088_1742_6596_150_5_052035
crossref_primary_10_1126_sciadv_adp1402
crossref_primary_10_1038_srep02274
crossref_primary_10_1103_PhysRevB_95_014504
crossref_primary_10_1103_PhysRevLett_108_177006
crossref_primary_10_1038_s41567_020_0905_x
crossref_primary_10_1103_PhysRevB_88_014503
crossref_primary_10_1038_nphys3227
crossref_primary_10_7498_aps_71_20212289
crossref_primary_10_1038_srep19496
crossref_primary_10_1103_PhysRevB_110_174502
crossref_primary_10_1021_acsami_4c13602
crossref_primary_10_1103_PhysRevB_79_134504
crossref_primary_10_1103_PhysRevLett_103_157001
crossref_primary_10_1088_1361_648X_ac360b
crossref_primary_10_1103_PhysRevE_88_052140
crossref_primary_10_1209_0295_5075_119_17004
crossref_primary_10_1038_s41598_022_11862_w
crossref_primary_10_1103_PhysRevApplied_23_034007
crossref_primary_10_1088_1742_6596_150_5_052149
crossref_primary_10_1103_PhysRevB_98_054512
crossref_primary_10_1103_PhysRevB_105_094203
crossref_primary_10_1038_s41598_018_22451_1
crossref_primary_10_1016_j_physc_2012_12_011
crossref_primary_10_1103_PhysRevB_105_195146
crossref_primary_10_1103_PhysRevB_76_224511
crossref_primary_10_1103_PhysRevLett_106_047001
crossref_primary_10_1103_PhysRevB_106_064512
crossref_primary_10_1038_ncomms12262
crossref_primary_10_1103_PhysRevB_84_064528
crossref_primary_10_1103_PhysRevB_97_100503
crossref_primary_10_7566_JPSJ_82_074715
crossref_primary_10_1103_PhysRevB_104_144514
crossref_primary_10_7498_aps_71_20221594
crossref_primary_10_1103_PhysRevB_100_224511
crossref_primary_10_1088_0957_4484_27_47_47LT02
crossref_primary_10_1140_epjb_e2018_90351_x
crossref_primary_10_1002_andp_20095211208
crossref_primary_10_1103_PhysRevB_88_024509
crossref_primary_10_1103_PhysRevMaterials_3_113606
crossref_primary_10_1103_PhysRevB_98_165142
crossref_primary_10_1088_1751_8113_47_2_025002
crossref_primary_10_1143_JPSJ_78_034715
crossref_primary_10_1209_0295_5075_108_27007
crossref_primary_10_1063_1_4818629
crossref_primary_10_1103_PhysRevB_77_144523
crossref_primary_10_3390_cryst10121116
crossref_primary_10_1103_PhysRevLett_108_207004
crossref_primary_10_1103_PhysRevLett_104_220602
crossref_primary_10_1088_1742_6596_400_2_022044
crossref_primary_10_1088_1742_6596_1147_1_012106
crossref_primary_10_1016_j_tsf_2010_07_003
crossref_primary_10_1007_s10948_008_0396_y
crossref_primary_10_1103_PhysRevLett_107_067003
crossref_primary_10_1088_0953_2048_28_9_095011
crossref_primary_10_1103_PhysRevB_83_104517
crossref_primary_10_1038_nature07071
crossref_primary_10_1209_0295_5075_96_47004
crossref_primary_10_1007_s41365_020_0738_4
crossref_primary_10_1016_j_ssc_2011_01_007
crossref_primary_10_1103_PhysRevLett_111_207004
crossref_primary_10_2298_NTRP2303194K
crossref_primary_10_1007_s10948_012_2051_x
crossref_primary_10_1103_PhysRevB_87_054512
crossref_primary_10_1142_S0217979209063377
crossref_primary_10_1063_1_5006694
crossref_primary_10_1063_5_0214910
crossref_primary_10_1103_PhysRevB_88_235130
crossref_primary_10_1140_epjb_e2013_40337_3
crossref_primary_10_1103_PhysRevB_103_014512
crossref_primary_10_1016_j_jpcs_2010_10_061
crossref_primary_10_1038_s41598_021_03668_z
crossref_primary_10_1103_PhysRevB_84_014529
crossref_primary_10_1103_PhysRevA_97_033617
crossref_primary_10_1038_srep22623
crossref_primary_10_1103_PhysRevB_83_144504
crossref_primary_10_1140_epjb_e2015_50284_6
crossref_primary_10_1103_PhysRevB_107_184512
crossref_primary_10_1088_1742_6596_376_1_012001
crossref_primary_10_1103_PhysRevB_85_140507
crossref_primary_10_1038_s41467_018_06444_2
crossref_primary_10_1038_s41535_021_00312_x
crossref_primary_10_1134_S1063776119120173
crossref_primary_10_1088_1367_2630_13_2_023020
crossref_primary_10_1364_OPTICA_3_000836
crossref_primary_10_1002_adma_202301206
crossref_primary_10_1103_PhysRevB_95_035105
crossref_primary_10_1016_j_physb_2017_03_044
crossref_primary_10_1103_PhysRevLett_111_187002
crossref_primary_10_1016_j_aop_2012_12_007
crossref_primary_10_1103_PhysRevB_77_140501
crossref_primary_10_1103_PhysRevB_98_020503
crossref_primary_10_1073_pnas_1522435113
crossref_primary_10_1021_acs_nanolett_8b04065
crossref_primary_10_1209_0295_5075_105_67002
crossref_primary_10_1038_s41535_025_00733_y
crossref_primary_10_1103_PhysRevLett_125_147002
crossref_primary_10_1016_j_mee_2017_10_012
crossref_primary_10_1088_0953_2048_28_2_025002
crossref_primary_10_1103_PhysRevA_90_013632
crossref_primary_10_1103_PhysRevB_97_214524
crossref_primary_10_1016_j_jallcom_2012_02_059
crossref_primary_10_1038_srep04081
crossref_primary_10_1103_PhysRevLett_119_247001
crossref_primary_10_1038_srep13466
crossref_primary_10_1103_PhysRevB_100_045149
crossref_primary_10_1109_TASC_2009_2019251
crossref_primary_10_1155_2013_104379
crossref_primary_10_1103_PhysRevB_105_104503
crossref_primary_10_1103_PhysRevLett_101_157006
crossref_primary_10_1016_j_physd_2013_04_005
crossref_primary_10_1103_PhysRevB_104_054503
crossref_primary_10_1103_PhysRevA_93_053609
crossref_primary_10_1103_PhysRevE_82_010101
crossref_primary_10_1038_srep01357
crossref_primary_10_1103_PhysRevB_102_060501
crossref_primary_10_1103_PhysRevB_102_054501
crossref_primary_10_1016_j_physc_2015_01_005
crossref_primary_10_1103_PhysRevB_88_184510
crossref_primary_10_1103_PhysRevLett_109_017002
crossref_primary_10_1016_j_physc_2023_1354302
crossref_primary_10_1021_acs_nanolett_0c04963
crossref_primary_10_1103_PhysRevB_100_174518
crossref_primary_10_1103_PhysRevB_93_155408
crossref_primary_10_1103_PhysRevLett_121_047003
crossref_primary_10_1140_epjb_e2012_30216_x
crossref_primary_10_1103_PhysRevB_99_104509
crossref_primary_10_1038_s41586_019_1408_8
crossref_primary_10_1002_qute_201800058
crossref_primary_10_1007_JHEP10_2024_042
crossref_primary_10_1155_2013_236823
crossref_primary_10_1088_1361_6633_ad14f3
crossref_primary_10_1016_j_physrep_2021_02_004
crossref_primary_10_1002_pssb_202000165
crossref_primary_10_3938_jkps_62_2223
crossref_primary_10_1038_srep02677
crossref_primary_10_1103_PhysRevB_78_014506
crossref_primary_10_1103_PhysRevLett_127_127002
crossref_primary_10_1088_1468_6996_9_4_044201
crossref_primary_10_1140_epjb_e2019_90488_0
crossref_primary_10_1103_PhysRevLett_107_206803
crossref_primary_10_1063_5_0004641
crossref_primary_10_1103_PhysRevB_106_245114
crossref_primary_10_1088_0256_307X_32_1_010302
crossref_primary_10_1038_s41567_023_02029_z
crossref_primary_10_1073_pnas_1920502117
crossref_primary_10_1103_PhysRevResearch_6_023291
crossref_primary_10_1103_PhysRevA_77_033632
crossref_primary_10_1103_PhysRevB_96_214206
crossref_primary_10_1073_pnas_2202496119
crossref_primary_10_1103_PhysRevA_77_033631
crossref_primary_10_1103_PhysRevB_108_054506
crossref_primary_10_59717_j_xinn_mater_2024_100102
crossref_primary_10_1073_pnas_2015970118
crossref_primary_10_1103_PhysRevLett_106_230403
crossref_primary_10_3390_condmat3010008
crossref_primary_10_1103_PhysRevResearch_2_023136
crossref_primary_10_1103_PhysRevB_108_L140504
crossref_primary_10_1016_j_physc_2007_08_031
crossref_primary_10_1038_s42005_022_00933_z
crossref_primary_10_1103_PhysRevMaterials_8_024801
crossref_primary_10_1021_acsnano_5b05450
crossref_primary_10_1103_PhysRevB_92_174531
crossref_primary_10_1007_s11051_013_1782_3
crossref_primary_10_1016_j_physa_2012_07_052
crossref_primary_10_1103_PhysRevB_94_024106
crossref_primary_10_1103_PhysRevB_78_054501
crossref_primary_10_1007_s11433_015_5713_4
crossref_primary_10_1073_pnas_1909276116
crossref_primary_10_1088_1361_6528_ad0602
crossref_primary_10_1088_1367_2630_ad6800
crossref_primary_10_1103_PhysRevLett_109_167002
crossref_primary_10_7498_aps_72_20221594
crossref_primary_10_1103_PhysRevB_106_054521
crossref_primary_10_1103_PhysRevB_108_014505
crossref_primary_10_1103_PhysRevB_84_064513
crossref_primary_10_3390_condmat9010006
crossref_primary_10_1038_s41535_021_00329_2
crossref_primary_10_1103_PhysRevB_105_L140503
crossref_primary_10_1103_PhysRevB_100_064506
crossref_primary_10_1103_PhysRevB_89_174506
crossref_primary_10_1103_PhysRevB_91_220508
crossref_primary_10_1088_1361_648X_aacd85
crossref_primary_10_1103_PhysRevB_99_205115
crossref_primary_10_1103_PhysRevB_92_174526
crossref_primary_10_1103_PhysRevB_105_064509
crossref_primary_10_1103_PhysRevB_92_140501
crossref_primary_10_1103_PhysRevB_95_134513
crossref_primary_10_12693_APhysPolA_118_406
crossref_primary_10_1038_nphys2037
crossref_primary_10_1038_s41598_019_51986_0
crossref_primary_10_1088_0953_2048_22_1_014008
crossref_primary_10_1103_PhysRevB_78_024507
crossref_primary_10_1103_PhysRevB_84_024522
crossref_primary_10_1103_PhysRevB_78_024502
crossref_primary_10_1155_2020_2021576
crossref_primary_10_1088_1361_648X_ad1bf6
crossref_primary_10_1103_PhysRevB_96_054509
crossref_primary_10_1016_j_physd_2009_01_015
crossref_primary_10_1103_PhysRevB_90_214515
crossref_primary_10_1103_PhysRevB_84_024508
crossref_primary_10_1103_PhysRevA_91_031604
crossref_primary_10_1209_0295_5075_88_30009
crossref_primary_10_1103_PhysRevLett_116_057001
crossref_primary_10_1039_D4NR02639J
crossref_primary_10_1103_PhysRevA_86_053612
crossref_primary_10_1007_s10948_012_2077_0
crossref_primary_10_1103_PhysRevB_96_060508
crossref_primary_10_1103_PhysRevLett_111_160403
crossref_primary_10_1103_RevModPhys_83_471
crossref_primary_10_1103_PhysRevB_101_144503
crossref_primary_10_1016_j_cpc_2013_07_012
crossref_primary_10_1088_0953_8984_26_2_025705
crossref_primary_10_1103_PhysRevA_93_043621
crossref_primary_10_1103_PhysRevLett_110_037002
crossref_primary_10_1088_0953_8984_26_2_025704
crossref_primary_10_1103_PhysRevB_85_195141
crossref_primary_10_1103_PhysRevB_104_045138
crossref_primary_10_1038_nphys1635
crossref_primary_10_1103_PhysRevA_83_053847
crossref_primary_10_1088_1361_648X_aca380
crossref_primary_10_1103_PhysRevB_94_165150
crossref_primary_10_1088_0953_8984_26_9_095701
crossref_primary_10_1063_5_0147430
crossref_primary_10_1038_s41598_021_86819_6
crossref_primary_10_1063_1_3496457
crossref_primary_10_1103_PhysRevB_99_094507
crossref_primary_10_1039_D4TC01500B
crossref_primary_10_1063_1_4984953
crossref_primary_10_1088_1402_4896_ad0d8c
crossref_primary_10_1103_PhysRevLett_105_267001
crossref_primary_10_1088_1742_6596_391_1_012086
crossref_primary_10_1103_PhysRevB_94_085104
crossref_primary_10_1209_0295_5075_109_17010
crossref_primary_10_7498_aps_61_226101
crossref_primary_10_1088_0953_8984_22_25_255702
crossref_primary_10_1088_0957_4484_25_37_375201
crossref_primary_10_1103_PhysRevB_92_024509
crossref_primary_10_1209_0295_5075_91_47003
crossref_primary_10_1088_1367_2630_18_1_013046
crossref_primary_10_1038_srep02979
crossref_primary_10_1103_PhysRevA_83_031604
crossref_primary_10_1103_PhysRevB_94_155119
crossref_primary_10_1103_PhysRevLett_106_127003
crossref_primary_10_1038_nphys1892
crossref_primary_10_1038_s41598_020_75968_9
crossref_primary_10_1103_PhysRevB_101_104509
crossref_primary_10_1103_PhysRevB_110_085103
crossref_primary_10_1038_srep13503
crossref_primary_10_1103_PhysRevB_106_L180503
crossref_primary_10_1103_PhysRevB_82_104515
crossref_primary_10_1002_andp_200910393
Cites_doi 10.1103/PhysRevB.75.184530
10.1103/PhysRevLett.76.1529
10.1103/PhysRev.108.1175
10.1103/PhysRevLett.65.927
10.1134/1.1765178
10.1103/PhysRevLett.64.587
10.1063/1.882069
10.1103/PhysRevB.32.5658
10.1063/1.1777362
10.1103/PhysRevLett.87.087001
10.1103/PhysRevB.63.104502
10.1103/PhysRevLett.65.923
10.1103/PhysRevLett.69.1604
10.1038/35095012
10.1016/0022-3697(59)90036-8
10.1103/PhysRevB.73.054509
10.1103/PhysRevLett.9.266
10.1023/A:1007867710512
10.1103/PhysRevB.71.014514
10.1016/0038-1098(94)90242-9
10.1103/PhysRevLett.74.3037
10.1209/epl/i2001-00232-4
10.1103/PhysRevLett.81.3940
10.1088/0034-4885/62/1/002
10.1103/PhysRevLett.92.107005
10.1103/PhysRevLett.94.217001
10.1103/PhysRevB.73.094521
10.1038/374434a0
ContentType Journal Article
Copyright Springer Nature Limited 2007
COPYRIGHT 2007 Nature Publishing Group
Copyright Nature Publishing Group Oct 18, 2007
Copyright_xml – notice: Springer Nature Limited 2007
– notice: COPYRIGHT 2007 Nature Publishing Group
– notice: Copyright Nature Publishing Group Oct 18, 2007
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7SC
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
7X8
DOI 10.1038/nature06180
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Materials Research Database
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database
Materials Research Database

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Biology
EISSN 1476-4687
1476-4679
EndPage 880
ExternalDocumentID 1367664931
A189748774
17943125
10_1038_nature06180
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1VR
29M
2KS
2XV
354
39C
3O-
3V.
4.4
41X
42X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABTAH
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
USG
VOH
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZGI
ZHY
ZKB
ZKG
ZY4
~02
~7V
~88
~8M
~G0
~KM
1CY
1OL
1VW
3EH
41~
663
79B
AAJYS
AARCD
AAVBQ
AAYXX
ABDPE
ABFSG
ACBNA
ACBTR
ACMFV
ACSTC
ACTDY
ADGHP
ADRHT
ADXHL
AETEA
AEZWR
AFANA
AFBBN
AFHIU
AGQPQ
AHWEU
AIXLP
AJUXI
ALPWD
ATHPR
CITATION
FA8
FAC
HG6
J5H
LGEZI
LOTEE
LSO
N4W
NADUK
NFIDA
NXXTH
ODYON
PHGZM
PHGZT
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZE2
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
36B
7SC
7SP
7SR
7TB
7U5
8BQ
ABCQX
AFWHJ
AHBCP
AHOSX
AIBTJ
D0L
F28
JG9
JQ2
KR7
L7M
L~C
L~D
NNMJJ
QF4
QM4
QN7
QO4
7X8
ID FETCH-LOGICAL-c657t-ef3ae03f9a631e2ea838b8fa6eff3ff10070b728aa3a3d69221b6194c61a68943
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Tue Aug 05 10:15:19 EDT 2025
Thu Aug 07 14:12:19 EDT 2025
Fri Jul 11 06:44:26 EDT 2025
Sat Aug 23 12:52:37 EDT 2025
Fri Jun 13 00:46:53 EDT 2025
Tue Jun 10 15:34:07 EDT 2025
Tue Jun 10 21:36:24 EDT 2025
Fri Jun 27 03:47:37 EDT 2025
Fri Jun 27 03:31:36 EDT 2025
Mon Jul 21 06:03:30 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Tue Jul 01 02:56:51 EDT 2025
Fri Feb 21 02:37:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7164
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c657t-ef3ae03f9a631e2ea838b8fa6eff3ff10070b728aa3a3d69221b6194c61a68943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 17943125
PQID 204560527
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_68410277
proquest_miscellaneous_1753554159
proquest_miscellaneous_1082191071
proquest_journals_204560527
gale_infotracgeneralonefile_A189748774
gale_infotraccpiq_189748774
gale_infotracacademiconefile_A189748774
gale_incontextgauss_ISR_A189748774
gale_incontextgauss_ATWCN_A189748774
pubmed_primary_17943125
crossref_primary_10_1038_nature06180
crossref_citationtrail_10_1038_nature06180
springer_journals_10_1038_nature06180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-18
PublicationDateYYYYMMDD 2007-10-18
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-18
  day: 18
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2007
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References VF Gantmakher (BFnature06180_CR9) 1996; 82
TI Baturina (BFnature06180_CR29) 2004; 79
A Ghosal (BFnature06180_CR18) 1998; 81
D Ephron (BFnature06180_CR24) 1996; 76
AF Hebard (BFnature06180_CR26) 1990; 65
S Reich (BFnature06180_CR3) 2000; 13
H Aubin (BFnature06180_CR25) 2006; 73
K Das Gupta (BFnature06180_CR28) 2001; 63
PW Anderson (BFnature06180_CR1) 1959; 11
SH Pan (BFnature06180_CR5) 2001; 413
MPA Fisher (BFnature06180_CR15) 1990; 64
M Ma (BFnature06180_CR14) 1985; 32
T Timusk (BFnature06180_CR11) 1999; 62
G Alvarez (BFnature06180_CR12) 2005; 71
G Sambandamurthy (BFnature06180_CR10) 2004; 92
VM Galitski (BFnature06180_CR17) 2001; 87
RW Crane (BFnature06180_CR7) 2007; 75
VJ Emery (BFnature06180_CR30) 1995; 374
M Mayr (BFnature06180_CR20) 2005; 94
AM Clogston (BFnature06180_CR22) 1962; 9
A Yazdani (BFnature06180_CR27) 1995; 74
PG De-Gennes (BFnature06180_CR19) 1966
BS Chandrasekhar (BFnature06180_CR23) 1962; 1
D Kowal (BFnature06180_CR6) 1994; 90
AM Goldman (BFnature06180_CR2) 1998; 51
Y Dubi (BFnature06180_CR21) 2006; 73
T Cren (BFnature06180_CR4) 2001; 54
MA Paalanen (BFnature06180_CR8) 1992; 69
J Bardeen (BFnature06180_CR13) 1957; 108
MPA Fisher (BFnature06180_CR16) 1990; 65
References_xml – volume: 75
  start-page: 184530
  year: 2007
  ident: BFnature06180_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.184530
– volume: 76
  start-page: 1529
  year: 1996
  ident: BFnature06180_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.1529
– volume: 108
  start-page: 1175
  year: 1957
  ident: BFnature06180_CR13
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.1175
– volume: 65
  start-page: 927
  year: 1990
  ident: BFnature06180_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.927
– volume: 79
  start-page: 337
  year: 2004
  ident: BFnature06180_CR29
  publication-title: JETP Lett.
  doi: 10.1134/1.1765178
– volume: 64
  start-page: 587
  year: 1990
  ident: BFnature06180_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.587
– volume: 51
  start-page: 39
  year: 1998
  ident: BFnature06180_CR2
  publication-title: Phys. Today
  doi: 10.1063/1.882069
– volume: 32
  start-page: 5658
  year: 1985
  ident: BFnature06180_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.32.5658
– volume: 1
  start-page: 7
  year: 1962
  ident: BFnature06180_CR23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1777362
– volume: 87
  start-page: 087001
  year: 2001
  ident: BFnature06180_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.087001
– volume: 63
  start-page: 104502
  year: 2001
  ident: BFnature06180_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.104502
– volume: 65
  start-page: 923
  year: 1990
  ident: BFnature06180_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.923
– volume: 69
  start-page: 1604
  year: 1992
  ident: BFnature06180_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1604
– volume: 413
  start-page: 282
  year: 2001
  ident: BFnature06180_CR5
  publication-title: Nature
  doi: 10.1038/35095012
– volume: 11
  start-page: 26
  year: 1959
  ident: BFnature06180_CR1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(59)90036-8
– volume: 73
  start-page: 054509
  year: 2006
  ident: BFnature06180_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.054509
– volume: 9
  start-page: 266
  year: 1962
  ident: BFnature06180_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.9.266
– volume: 13
  start-page: 855
  year: 2000
  ident: BFnature06180_CR3
  publication-title: J. Superconductivity
  doi: 10.1023/A:1007867710512
– volume: 71
  start-page: 014514
  year: 2005
  ident: BFnature06180_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.014514
– volume: 90
  start-page: 783
  year: 1994
  ident: BFnature06180_CR6
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(94)90242-9
– volume: 82
  start-page: 951
  year: 1996
  ident: BFnature06180_CR9
  publication-title: J. Exp. Theor. Phys.
– volume: 74
  start-page: 3037
  year: 1995
  ident: BFnature06180_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3037
– volume-title: Superconductivity of Metals and Alloys
  year: 1966
  ident: BFnature06180_CR19
– volume: 54
  start-page: 84
  year: 2001
  ident: BFnature06180_CR4
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2001-00232-4
– volume: 81
  start-page: 3940
  year: 1998
  ident: BFnature06180_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.3940
– volume: 62
  start-page: 61
  year: 1999
  ident: BFnature06180_CR11
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/62/1/002
– volume: 92
  start-page: 107005
  year: 2004
  ident: BFnature06180_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.107005
– volume: 94
  start-page: 217001
  year: 2005
  ident: BFnature06180_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.217001
– volume: 73
  start-page: 094521
  year: 2006
  ident: BFnature06180_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.094521
– volume: 374
  start-page: 434
  year: 1995
  ident: BFnature06180_CR30
  publication-title: Nature
  doi: 10.1038/374434a0
SSID ssj0005174
ssj0014407
Score 2.4466014
Snippet Island hopping As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition...
The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 876
SubjectTerms Disorders
Electron density
Fluctuations
Humanities and Social Sciences
Islands
letter
Magnetic fields
multidisciplinary
Order parameters
Science
Science (multidisciplinary)
Scientists
Superconductivity
Superconductors
Thin films
Title Nature of the superconductor–insulator transition in disordered superconductors
URI https://link.springer.com/article/10.1038/nature06180
https://www.ncbi.nlm.nih.gov/pubmed/17943125
https://www.proquest.com/docview/204560527
https://www.proquest.com/docview/1082191071
https://www.proquest.com/docview/1753554159
https://www.proquest.com/docview/68410277
Volume 449
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9swDCZ6YMBehrY76nZLvaG7Chj1FVl5GrKgWTdg2dC1WN4EWZaKAoOdxsn_HykrJ9K--EW0IYuSSIqfPgKcZmmoWGFUUGiZBmnHxEGeGxMUaTtHlWsd2fJtPwfs8ib9MWwPHTandrDK2Z5oN-qiUnRGfk606eh6x9mX0X1ARaMoueoqaGzDboSGhhBdvP9tgfBYI2F21_PChJ83rJloy4gOcskgrW_LS3ZpLVFq7U9_D545x9HvNprehy1dHsATC-BU9QHsu0Va-58ck_Tn5_BrYDvgV8ZHP8-vpyM9xviXKF6rcWBh6BRz-xMyWBa75d-VfuEIOXWx9kb9Am76F9e9y8BVUAgUa2eTQJtE6jAxHclw3GMtecJzbiTTxiTGEEIizLOYS5nIpGCdOI5yOtZQLJKMmNlfwk5ZlfoQ_CzHSFKFOiIGL5XlPJQY_TDJlcrSNFEenM2GUShHL05VLv4Jm-ZOuFgacw9O58KjhlXjATHShyCeipKAMLdyWteie_23NxDdiGMsxNF99eDdJrHvf65WhD46IVNhv5R01w_w74gBa0XyeEVSje7uxVLrh5XW20anGz8zm0XC7Qu1mM9iD97OW3FBU5ZGlrqa1sTYilYEo_LoERkMMtEPRFfUg5MHZBhPI0rQe_CqmcKLkSZSQHRsPXg_m9OLHm5Qw9Gjf3IMT-15N6F8-GvYmYyn-g06apO8BdvZMMMn70UtuzRbsPv1YvD76j9t40Cw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXRMsrFGhALS8pahJnE-8BoVWh7NJ2kehW9BYcx64qoWS72RXiR_EfmXGcfWnbW8-eWI5nMo_48zcAO0nkyzjX0suViLyorUMvy7T28qiVocqVCkz7tuN-3D2Nvp21ztbgX3MXhmCVjU80jjovJf0j3yPadEy9w-TT8NKjplF0uNp00Kit4lD9_YMVW_Wx9xnVuxuGB18G-13PNhXwZNxKxp7STCif6baIcSmhEpzxjGsRK62Z1gQa8LMk5EIwwfK4HYZBRpW-jAMRE1k5znsLbkcMAzldTD_4OkOULJE-2-uAPuN7NUsnxk6in5wLgMthYC4OLh3Mmnh38ADu20TV7dSWtQFrqtiEOwYwKqtN2LBOoXLfWebq9w_he98swC21i3mlW02GaoT1NlHKliPPwN6pxnfHFCANVsy9KNzcEoCqfOmJ6hGc3sjmPob1oizUU3CTDCtX6auAGMNkknFfYLUVCy5lEkVMOvCh2cZUWjpz6qrxOzXH6oync3vuwM5UeFizeFwhRvpIiRejIODNuZhUVdoZ_Nzvp52AY-3FMV124PUqsd7JjwWht1ZIl7guKex1B3w7YtxakNxakJTDi8t0bvTNwuh5rdOV0zRWlFo_VKXTr8aBV9NRdCB0KiQKVU4qYojFqBVgqnmNDBa1mHdi6uvA9hUyMY8CAgQ48KQ24dlOEwkhJtIO7DY2PVvhCjU8u_ZNtuFud3B8lB71-odbcM_8ayeEEX8O6-PRRL3AJHGcvTSfpgu_btoX_AfUBXpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviI2vMGABbXxJ0ZI4TdwHhKqOamVQEGxib8Zx7GkSSrqmFeJP47_jLnG6tOr2tmf_Ejm-833E598B7CSRr-LMKC_TMvKirgm9NDXGy6JOiiLXOqjat30ZxQfH0aeTzska_GvuwlBZZWMTK0OdFYr-ke8RbTqG3pipG1sV8W1_8GF87lEDKTpobbpp1BpyqP_-weytfD_cR1HvhuHg41H_wLMNBjwVd5Kppw2T2memK2OcVqglZzzlRsbaGGYMFRD4aRJyKZlkWdwNwyClrF_FgYyJuBzfewNuJizhtMV4v1VdskQAba8G-ozv1Yyd6EeJirLlDJddQssnLh3SVr5vcA_u2qDV7dVatgFrOt-EW1XxqCo3YcMaiNJ9Y1ms396Hr6NqAm5hXIwx3XI21hPMvYletph4VQk85fvulJxlVTfmnuVuZslAdbb0RPkAjq9lcR_Cel7k-jG4SYpZrPJ1QOxhKkm5LzHziiVXKokiphx41yyjUJbanDps_BbVETvjorXmDuzMweOa0eMSGMlDEEdGTup2KmdlKXpHP_sj0Qs45mEcQ2cHXq6CDX98XwC9tiBT4LyUtFcf8OuIfWsBubWAVOOzc9EafbUwelrLdOVrGi0S1iaVYr6DHHgxH0VjQidEMtfFrCS2WPRgAYadV2AwwcUYFMNgB7YvwcQ8Cqg4wIFHtQpfrDQREmJQ7cBuo9MXM1whhidXfsk23EYrID4PR4dbcKf67U7FRvwprE8nM_0M48Vp-rzamS78um5T8B8UsX5x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nature+of+the+superconductor-insulator+transition+in+disordered+superconductors&rft.jtitle=Nature&rft.au=Dubi%2C+Yonatan&rft.au=Meir%2C+Yigal&rft.au=Avishai%2C+Yshai&rft.date=2007-10-18&rft.issn=0028-0836&rft.eissn=1476-4679&rft.volume=449&rft.issue=7164&rft.spage=876&rft.epage=880&rft_id=info:doi/10.1038%2Fnature06180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon