Nature of the superconductor–insulator transition in disordered superconductors
Island hopping As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition from a superconducting to an insulating state. Dubi et al . use numerical simulations to study this transition — or, as it turns out, two ty...
Saved in:
Published in | Nature Vol. 449; no. 7164; pp. 876 - 880 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.10.2007
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Island hopping
As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition from a superconducting to an insulating state. Dubi
et al
. use numerical simulations to study this transition — or, as it turns out, two types of transition. The key effect of disorder is to create 'islands' of strong superconductivity, coupled by regions that are only weakly superconducting. In the case of weak disorder, an increasing magnetic field eventually destroys the superconducting state throughout the material, leading to an insulator. When disorder is strong, superconductivity persists in the islands, and the effect of a magnetic field is to suppress the coupling between them — again leading to an insulating state. These findings may be relevant to the high-temperature superconductors, where intrinsic disorder may play a role.
As a superconducting thin film is made more disordered, or subject to an increasing magnetic field, a point is reached when the material undergoes a transition from a superconducting to an insulating state. Numerical simulations have been used to shed light on the nature of this transition, or, as it turns out, two types of transition.
The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder
1
, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field
2
. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-
T
c
) superconductors are intrinsically disordered
3
,
4
,
5
. Here we present numerical simulations of the superconductor–insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor–insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments
6
,
7
, explains the recently observed huge magneto-resistance peak in disordered thin films
8
,
9
,
10
and may be relevant to the observation of ‘the pseudogap phenomenon’ in underdoped high-
T
c
superconductors
11
,
12
. |
---|---|
AbstractList | The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors. The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors. The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero- resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T sub(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T sub(c) superconductors. Island hopping As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition from a superconducting to an insulating state. Dubi et al . use numerical simulations to study this transition — or, as it turns out, two types of transition. The key effect of disorder is to create 'islands' of strong superconductivity, coupled by regions that are only weakly superconducting. In the case of weak disorder, an increasing magnetic field eventually destroys the superconducting state throughout the material, leading to an insulator. When disorder is strong, superconductivity persists in the islands, and the effect of a magnetic field is to suppress the coupling between them — again leading to an insulating state. These findings may be relevant to the high-temperature superconductors, where intrinsic disorder may play a role. As a superconducting thin film is made more disordered, or subject to an increasing magnetic field, a point is reached when the material undergoes a transition from a superconducting to an insulating state. Numerical simulations have been used to shed light on the nature of this transition, or, as it turns out, two types of transition. The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder 1 , experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field 2 . The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high- T c ) superconductors are intrinsically disordered 3 , 4 , 5 . Here we present numerical simulations of the superconductor–insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor–insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments 6 , 7 , explains the recently observed huge magneto-resistance peak in disordered thin films 8 , 9 , 10 and may be relevant to the observation of ‘the pseudogap phenomenon’ in underdoped high- T c superconductors 11 , 12 . |
Audience | Academic |
Author | Meir, Yigal Avishai, Yshai Dubi, Yonatan |
Author_xml | – sequence: 1 givenname: Yonatan surname: Dubi fullname: Dubi, Yonatan organization: Department of Physics, Ben Gurion University – sequence: 2 givenname: Yigal surname: Meir fullname: Meir, Yigal email: ymeir@bgu.ac.il organization: Department of Physics, Ben Gurion University, The Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel – sequence: 3 givenname: Yshai surname: Avishai fullname: Avishai, Yshai organization: Department of Physics, Ben Gurion University, The Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17943125$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k9v0zAYBnALDbFucOKOIg4TCDL8L7ZzrCo2Jk1DwBDHyHVeF0-p3dmJBDe-A99wnwR3HepadaAcEkW_50lsvwdozwcPCD0n-Jhgpt553Q8RsCAKP0IjwqUouVByD40wpqrEiol9dJDSFca4IpI_QftE1pwRWo3Qp4vbdBFs0X-HIg0LiCb4djB9iDe_fjufhk7n56KP2ifXu-AL54vWpRBbiNBuZdJT9NjqLsGzu_sh-nry_nLyoTz_eHo2GZ-XRlSyL8EyDZjZWgtGgIJWTE2V1QKsZdYSjCWeSqq0Zpq1oqaUTAWpuRFEC5V__xAdrXoXMVwPkPpm7pKBrtMewpAaoTjBVMoMX_0TElmxquKkqv9PsaKkJliSTF9u0aswRJ9X3FDMK4Eruvx0uUIz3UHjvA15F80MPETd5VO0Lr8eE1VLrqTk69INbxbuurmPjnegfLUwd2Zn6-uNQDY9_OhnekipOfvyedO-ediOL79NLjb1i7tNGKZzaJtFdHMdfzZ_52tdZ2JIKYJdE9wsp7e5N71Zky1tXK-XI5dX6LoHMm9XmZSb_Qzi-hx28T_Y2P_t |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1038_srep05438 crossref_primary_10_1016_j_mtphys_2023_101019 crossref_primary_10_1088_1361_6528_aa5e88 crossref_primary_10_1103_PhysRevB_107_L140502 crossref_primary_10_1103_PhysRevB_92_064512 crossref_primary_10_1002_apxr_202300086 crossref_primary_10_1103_PhysRevB_84_014514 crossref_primary_10_1103_PhysRevB_105_134508 crossref_primary_10_1103_PhysRevB_86_134531 crossref_primary_10_1103_PhysRevB_99_094204 crossref_primary_10_1073_pnas_2017810118 crossref_primary_10_1016_j_physe_2009_06_041 crossref_primary_10_1103_PhysRevLett_117_255302 crossref_primary_10_1103_PhysRevB_105_125112 crossref_primary_10_1103_PhysRevB_84_100507 crossref_primary_10_1103_PhysRevB_96_144507 crossref_primary_10_3390_condmat8040095 crossref_primary_10_1063_1_3517172 crossref_primary_10_1103_PhysRevB_109_054516 crossref_primary_10_1103_PhysRevB_87_184509 crossref_primary_10_1103_PhysRevB_79_214515 crossref_primary_10_1016_j_aop_2020_168167 crossref_primary_10_1088_2515_7639_ac8e34 crossref_primary_10_1103_PhysRevE_78_036601 crossref_primary_10_1021_acs_nanolett_4c04386 crossref_primary_10_1051_anphys_2009003 crossref_primary_10_1103_PhysRevB_80_214510 crossref_primary_10_1016_j_physa_2019_123646 crossref_primary_10_1088_1367_2630_17_10_103008 crossref_primary_10_1103_PhysRevB_96_104509 crossref_primary_10_1038_s41427_021_00323_x crossref_primary_10_1103_PhysRevResearch_4_043159 crossref_primary_10_1088_1361_6668_ad4a35 crossref_primary_10_1002_adma_202401118 crossref_primary_10_1007_JHEP02_2022_068 crossref_primary_10_1088_1361_648X_aae870 crossref_primary_10_1126_sciadv_1600664 crossref_primary_10_1088_2053_1583_aa6917 crossref_primary_10_1103_PhysRevB_80_214506 crossref_primary_10_1103_PhysRevB_77_214503 crossref_primary_10_1021_acs_nanolett_3c03870 crossref_primary_10_1088_0256_307X_33_7_074202 crossref_primary_10_1103_PhysRevB_98_184515 crossref_primary_10_1016_j_physc_2013_11_011 crossref_primary_10_1103_PhysRevB_87_064512 crossref_primary_10_1103_PhysRevB_96_104513 crossref_primary_10_1103_PhysRevD_88_126004 crossref_primary_10_1088_1361_6463_aa6bdb crossref_primary_10_1021_jacs_4c17794 crossref_primary_10_7498_aps_62_057303 crossref_primary_10_1103_PhysRevB_99_035135 crossref_primary_10_1103_PhysRevB_79_094509 crossref_primary_10_1038_s42005_024_01709_3 crossref_primary_10_3762_bjnano_15_19 crossref_primary_10_1142_S0217979210056451 crossref_primary_10_1103_PhysRevB_110_094513 crossref_primary_10_1103_PhysRevA_89_053609 crossref_primary_10_1103_PhysRevB_106_L161114 crossref_primary_10_1103_PhysRevB_98_064501 crossref_primary_10_1088_1361_648X_ad0275 crossref_primary_10_1088_1742_6596_150_5_052035 crossref_primary_10_1126_sciadv_adp1402 crossref_primary_10_1038_srep02274 crossref_primary_10_1103_PhysRevB_95_014504 crossref_primary_10_1103_PhysRevLett_108_177006 crossref_primary_10_1038_s41567_020_0905_x crossref_primary_10_1103_PhysRevB_88_014503 crossref_primary_10_1038_nphys3227 crossref_primary_10_7498_aps_71_20212289 crossref_primary_10_1038_srep19496 crossref_primary_10_1103_PhysRevB_110_174502 crossref_primary_10_1021_acsami_4c13602 crossref_primary_10_1103_PhysRevB_79_134504 crossref_primary_10_1103_PhysRevLett_103_157001 crossref_primary_10_1088_1361_648X_ac360b crossref_primary_10_1103_PhysRevE_88_052140 crossref_primary_10_1209_0295_5075_119_17004 crossref_primary_10_1038_s41598_022_11862_w crossref_primary_10_1103_PhysRevApplied_23_034007 crossref_primary_10_1088_1742_6596_150_5_052149 crossref_primary_10_1103_PhysRevB_98_054512 crossref_primary_10_1103_PhysRevB_105_094203 crossref_primary_10_1038_s41598_018_22451_1 crossref_primary_10_1016_j_physc_2012_12_011 crossref_primary_10_1103_PhysRevB_105_195146 crossref_primary_10_1103_PhysRevB_76_224511 crossref_primary_10_1103_PhysRevLett_106_047001 crossref_primary_10_1103_PhysRevB_106_064512 crossref_primary_10_1038_ncomms12262 crossref_primary_10_1103_PhysRevB_84_064528 crossref_primary_10_1103_PhysRevB_97_100503 crossref_primary_10_7566_JPSJ_82_074715 crossref_primary_10_1103_PhysRevB_104_144514 crossref_primary_10_7498_aps_71_20221594 crossref_primary_10_1103_PhysRevB_100_224511 crossref_primary_10_1088_0957_4484_27_47_47LT02 crossref_primary_10_1140_epjb_e2018_90351_x crossref_primary_10_1002_andp_20095211208 crossref_primary_10_1103_PhysRevB_88_024509 crossref_primary_10_1103_PhysRevMaterials_3_113606 crossref_primary_10_1103_PhysRevB_98_165142 crossref_primary_10_1088_1751_8113_47_2_025002 crossref_primary_10_1143_JPSJ_78_034715 crossref_primary_10_1209_0295_5075_108_27007 crossref_primary_10_1063_1_4818629 crossref_primary_10_1103_PhysRevB_77_144523 crossref_primary_10_3390_cryst10121116 crossref_primary_10_1103_PhysRevLett_108_207004 crossref_primary_10_1103_PhysRevLett_104_220602 crossref_primary_10_1088_1742_6596_400_2_022044 crossref_primary_10_1088_1742_6596_1147_1_012106 crossref_primary_10_1016_j_tsf_2010_07_003 crossref_primary_10_1007_s10948_008_0396_y crossref_primary_10_1103_PhysRevLett_107_067003 crossref_primary_10_1088_0953_2048_28_9_095011 crossref_primary_10_1103_PhysRevB_83_104517 crossref_primary_10_1038_nature07071 crossref_primary_10_1209_0295_5075_96_47004 crossref_primary_10_1007_s41365_020_0738_4 crossref_primary_10_1016_j_ssc_2011_01_007 crossref_primary_10_1103_PhysRevLett_111_207004 crossref_primary_10_2298_NTRP2303194K crossref_primary_10_1007_s10948_012_2051_x crossref_primary_10_1103_PhysRevB_87_054512 crossref_primary_10_1142_S0217979209063377 crossref_primary_10_1063_1_5006694 crossref_primary_10_1063_5_0214910 crossref_primary_10_1103_PhysRevB_88_235130 crossref_primary_10_1140_epjb_e2013_40337_3 crossref_primary_10_1103_PhysRevB_103_014512 crossref_primary_10_1016_j_jpcs_2010_10_061 crossref_primary_10_1038_s41598_021_03668_z crossref_primary_10_1103_PhysRevB_84_014529 crossref_primary_10_1103_PhysRevA_97_033617 crossref_primary_10_1038_srep22623 crossref_primary_10_1103_PhysRevB_83_144504 crossref_primary_10_1140_epjb_e2015_50284_6 crossref_primary_10_1103_PhysRevB_107_184512 crossref_primary_10_1088_1742_6596_376_1_012001 crossref_primary_10_1103_PhysRevB_85_140507 crossref_primary_10_1038_s41467_018_06444_2 crossref_primary_10_1038_s41535_021_00312_x crossref_primary_10_1134_S1063776119120173 crossref_primary_10_1088_1367_2630_13_2_023020 crossref_primary_10_1364_OPTICA_3_000836 crossref_primary_10_1002_adma_202301206 crossref_primary_10_1103_PhysRevB_95_035105 crossref_primary_10_1016_j_physb_2017_03_044 crossref_primary_10_1103_PhysRevLett_111_187002 crossref_primary_10_1016_j_aop_2012_12_007 crossref_primary_10_1103_PhysRevB_77_140501 crossref_primary_10_1103_PhysRevB_98_020503 crossref_primary_10_1073_pnas_1522435113 crossref_primary_10_1021_acs_nanolett_8b04065 crossref_primary_10_1209_0295_5075_105_67002 crossref_primary_10_1038_s41535_025_00733_y crossref_primary_10_1103_PhysRevLett_125_147002 crossref_primary_10_1016_j_mee_2017_10_012 crossref_primary_10_1088_0953_2048_28_2_025002 crossref_primary_10_1103_PhysRevA_90_013632 crossref_primary_10_1103_PhysRevB_97_214524 crossref_primary_10_1016_j_jallcom_2012_02_059 crossref_primary_10_1038_srep04081 crossref_primary_10_1103_PhysRevLett_119_247001 crossref_primary_10_1038_srep13466 crossref_primary_10_1103_PhysRevB_100_045149 crossref_primary_10_1109_TASC_2009_2019251 crossref_primary_10_1155_2013_104379 crossref_primary_10_1103_PhysRevB_105_104503 crossref_primary_10_1103_PhysRevLett_101_157006 crossref_primary_10_1016_j_physd_2013_04_005 crossref_primary_10_1103_PhysRevB_104_054503 crossref_primary_10_1103_PhysRevA_93_053609 crossref_primary_10_1103_PhysRevE_82_010101 crossref_primary_10_1038_srep01357 crossref_primary_10_1103_PhysRevB_102_060501 crossref_primary_10_1103_PhysRevB_102_054501 crossref_primary_10_1016_j_physc_2015_01_005 crossref_primary_10_1103_PhysRevB_88_184510 crossref_primary_10_1103_PhysRevLett_109_017002 crossref_primary_10_1016_j_physc_2023_1354302 crossref_primary_10_1021_acs_nanolett_0c04963 crossref_primary_10_1103_PhysRevB_100_174518 crossref_primary_10_1103_PhysRevB_93_155408 crossref_primary_10_1103_PhysRevLett_121_047003 crossref_primary_10_1140_epjb_e2012_30216_x crossref_primary_10_1103_PhysRevB_99_104509 crossref_primary_10_1038_s41586_019_1408_8 crossref_primary_10_1002_qute_201800058 crossref_primary_10_1007_JHEP10_2024_042 crossref_primary_10_1155_2013_236823 crossref_primary_10_1088_1361_6633_ad14f3 crossref_primary_10_1016_j_physrep_2021_02_004 crossref_primary_10_1002_pssb_202000165 crossref_primary_10_3938_jkps_62_2223 crossref_primary_10_1038_srep02677 crossref_primary_10_1103_PhysRevB_78_014506 crossref_primary_10_1103_PhysRevLett_127_127002 crossref_primary_10_1088_1468_6996_9_4_044201 crossref_primary_10_1140_epjb_e2019_90488_0 crossref_primary_10_1103_PhysRevLett_107_206803 crossref_primary_10_1063_5_0004641 crossref_primary_10_1103_PhysRevB_106_245114 crossref_primary_10_1088_0256_307X_32_1_010302 crossref_primary_10_1038_s41567_023_02029_z crossref_primary_10_1073_pnas_1920502117 crossref_primary_10_1103_PhysRevResearch_6_023291 crossref_primary_10_1103_PhysRevA_77_033632 crossref_primary_10_1103_PhysRevB_96_214206 crossref_primary_10_1073_pnas_2202496119 crossref_primary_10_1103_PhysRevA_77_033631 crossref_primary_10_1103_PhysRevB_108_054506 crossref_primary_10_59717_j_xinn_mater_2024_100102 crossref_primary_10_1073_pnas_2015970118 crossref_primary_10_1103_PhysRevLett_106_230403 crossref_primary_10_3390_condmat3010008 crossref_primary_10_1103_PhysRevResearch_2_023136 crossref_primary_10_1103_PhysRevB_108_L140504 crossref_primary_10_1016_j_physc_2007_08_031 crossref_primary_10_1038_s42005_022_00933_z crossref_primary_10_1103_PhysRevMaterials_8_024801 crossref_primary_10_1021_acsnano_5b05450 crossref_primary_10_1103_PhysRevB_92_174531 crossref_primary_10_1007_s11051_013_1782_3 crossref_primary_10_1016_j_physa_2012_07_052 crossref_primary_10_1103_PhysRevB_94_024106 crossref_primary_10_1103_PhysRevB_78_054501 crossref_primary_10_1007_s11433_015_5713_4 crossref_primary_10_1073_pnas_1909276116 crossref_primary_10_1088_1361_6528_ad0602 crossref_primary_10_1088_1367_2630_ad6800 crossref_primary_10_1103_PhysRevLett_109_167002 crossref_primary_10_7498_aps_72_20221594 crossref_primary_10_1103_PhysRevB_106_054521 crossref_primary_10_1103_PhysRevB_108_014505 crossref_primary_10_1103_PhysRevB_84_064513 crossref_primary_10_3390_condmat9010006 crossref_primary_10_1038_s41535_021_00329_2 crossref_primary_10_1103_PhysRevB_105_L140503 crossref_primary_10_1103_PhysRevB_100_064506 crossref_primary_10_1103_PhysRevB_89_174506 crossref_primary_10_1103_PhysRevB_91_220508 crossref_primary_10_1088_1361_648X_aacd85 crossref_primary_10_1103_PhysRevB_99_205115 crossref_primary_10_1103_PhysRevB_92_174526 crossref_primary_10_1103_PhysRevB_105_064509 crossref_primary_10_1103_PhysRevB_92_140501 crossref_primary_10_1103_PhysRevB_95_134513 crossref_primary_10_12693_APhysPolA_118_406 crossref_primary_10_1038_nphys2037 crossref_primary_10_1038_s41598_019_51986_0 crossref_primary_10_1088_0953_2048_22_1_014008 crossref_primary_10_1103_PhysRevB_78_024507 crossref_primary_10_1103_PhysRevB_84_024522 crossref_primary_10_1103_PhysRevB_78_024502 crossref_primary_10_1155_2020_2021576 crossref_primary_10_1088_1361_648X_ad1bf6 crossref_primary_10_1103_PhysRevB_96_054509 crossref_primary_10_1016_j_physd_2009_01_015 crossref_primary_10_1103_PhysRevB_90_214515 crossref_primary_10_1103_PhysRevB_84_024508 crossref_primary_10_1103_PhysRevA_91_031604 crossref_primary_10_1209_0295_5075_88_30009 crossref_primary_10_1103_PhysRevLett_116_057001 crossref_primary_10_1039_D4NR02639J crossref_primary_10_1103_PhysRevA_86_053612 crossref_primary_10_1007_s10948_012_2077_0 crossref_primary_10_1103_PhysRevB_96_060508 crossref_primary_10_1103_PhysRevLett_111_160403 crossref_primary_10_1103_RevModPhys_83_471 crossref_primary_10_1103_PhysRevB_101_144503 crossref_primary_10_1016_j_cpc_2013_07_012 crossref_primary_10_1088_0953_8984_26_2_025705 crossref_primary_10_1103_PhysRevA_93_043621 crossref_primary_10_1103_PhysRevLett_110_037002 crossref_primary_10_1088_0953_8984_26_2_025704 crossref_primary_10_1103_PhysRevB_85_195141 crossref_primary_10_1103_PhysRevB_104_045138 crossref_primary_10_1038_nphys1635 crossref_primary_10_1103_PhysRevA_83_053847 crossref_primary_10_1088_1361_648X_aca380 crossref_primary_10_1103_PhysRevB_94_165150 crossref_primary_10_1088_0953_8984_26_9_095701 crossref_primary_10_1063_5_0147430 crossref_primary_10_1038_s41598_021_86819_6 crossref_primary_10_1063_1_3496457 crossref_primary_10_1103_PhysRevB_99_094507 crossref_primary_10_1039_D4TC01500B crossref_primary_10_1063_1_4984953 crossref_primary_10_1088_1402_4896_ad0d8c crossref_primary_10_1103_PhysRevLett_105_267001 crossref_primary_10_1088_1742_6596_391_1_012086 crossref_primary_10_1103_PhysRevB_94_085104 crossref_primary_10_1209_0295_5075_109_17010 crossref_primary_10_7498_aps_61_226101 crossref_primary_10_1088_0953_8984_22_25_255702 crossref_primary_10_1088_0957_4484_25_37_375201 crossref_primary_10_1103_PhysRevB_92_024509 crossref_primary_10_1209_0295_5075_91_47003 crossref_primary_10_1088_1367_2630_18_1_013046 crossref_primary_10_1038_srep02979 crossref_primary_10_1103_PhysRevA_83_031604 crossref_primary_10_1103_PhysRevB_94_155119 crossref_primary_10_1103_PhysRevLett_106_127003 crossref_primary_10_1038_nphys1892 crossref_primary_10_1038_s41598_020_75968_9 crossref_primary_10_1103_PhysRevB_101_104509 crossref_primary_10_1103_PhysRevB_110_085103 crossref_primary_10_1038_srep13503 crossref_primary_10_1103_PhysRevB_106_L180503 crossref_primary_10_1103_PhysRevB_82_104515 crossref_primary_10_1002_andp_200910393 |
Cites_doi | 10.1103/PhysRevB.75.184530 10.1103/PhysRevLett.76.1529 10.1103/PhysRev.108.1175 10.1103/PhysRevLett.65.927 10.1134/1.1765178 10.1103/PhysRevLett.64.587 10.1063/1.882069 10.1103/PhysRevB.32.5658 10.1063/1.1777362 10.1103/PhysRevLett.87.087001 10.1103/PhysRevB.63.104502 10.1103/PhysRevLett.65.923 10.1103/PhysRevLett.69.1604 10.1038/35095012 10.1016/0022-3697(59)90036-8 10.1103/PhysRevB.73.054509 10.1103/PhysRevLett.9.266 10.1023/A:1007867710512 10.1103/PhysRevB.71.014514 10.1016/0038-1098(94)90242-9 10.1103/PhysRevLett.74.3037 10.1209/epl/i2001-00232-4 10.1103/PhysRevLett.81.3940 10.1088/0034-4885/62/1/002 10.1103/PhysRevLett.92.107005 10.1103/PhysRevLett.94.217001 10.1103/PhysRevB.73.094521 10.1038/374434a0 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2007 COPYRIGHT 2007 Nature Publishing Group Copyright Nature Publishing Group Oct 18, 2007 |
Copyright_xml | – notice: Springer Nature Limited 2007 – notice: COPYRIGHT 2007 Nature Publishing Group – notice: Copyright Nature Publishing Group Oct 18, 2007 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 |
DOI | 10.1038/nature06180 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) Materials Research Database Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database Materials Research Database Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Biology |
EISSN | 1476-4687 1476-4679 |
EndPage | 880 |
ExternalDocumentID | 1367664931 A189748774 17943125 10_1038_nature06180 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .GJ .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1VR 29M 2KS 2XV 354 39C 3O- 3V. 4.4 41X 42X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYOK AAYZH ABAWZ ABDBF ABDQB ABEFU ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABTAH ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFHKK AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL USG VOH VQA VVN WH7 WOW X7L X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YYP YZZ Z5M ZCA ZGI ZHY ZKB ZKG ZY4 ~02 ~7V ~88 ~8M ~G0 ~KM 1CY 1OL 1VW 3EH 41~ 663 79B AAJYS AARCD AAVBQ AAYXX ABDPE ABFSG ACBNA ACBTR ACMFV ACSTC ACTDY ADGHP ADRHT ADXHL AETEA AEZWR AFANA AFBBN AFHIU AGQPQ AHWEU AIXLP AJUXI ALPWD ATHPR CITATION FA8 FAC HG6 J5H LGEZI LOTEE LSO N4W NADUK NFIDA NXXTH ODYON PHGZM PHGZT PV9 QS- R4F RHI SKT TUD UBY UHB XOL YJ6 YQI YQJ YV5 YXA YYQ ZCG ZE2 NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 36B 7SC 7SP 7SR 7TB 7U5 8BQ ABCQX AFWHJ AHBCP AHOSX AIBTJ D0L F28 JG9 JQ2 KR7 L7M L~C L~D NNMJJ QF4 QM4 QN7 QO4 7X8 |
ID | FETCH-LOGICAL-c657t-ef3ae03f9a631e2ea838b8fa6eff3ff10070b728aa3a3d69221b6194c61a68943 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Tue Aug 05 10:15:19 EDT 2025 Thu Aug 07 14:12:19 EDT 2025 Fri Jul 11 06:44:26 EDT 2025 Sat Aug 23 12:52:37 EDT 2025 Fri Jun 13 00:46:53 EDT 2025 Tue Jun 10 15:34:07 EDT 2025 Tue Jun 10 21:36:24 EDT 2025 Fri Jun 27 03:47:37 EDT 2025 Fri Jun 27 03:31:36 EDT 2025 Mon Jul 21 06:03:30 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Tue Jul 01 02:56:51 EDT 2025 Fri Feb 21 02:37:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7164 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c657t-ef3ae03f9a631e2ea838b8fa6eff3ff10070b728aa3a3d69221b6194c61a68943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 17943125 |
PQID | 204560527 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_68410277 proquest_miscellaneous_1753554159 proquest_miscellaneous_1082191071 proquest_journals_204560527 gale_infotracgeneralonefile_A189748774 gale_infotraccpiq_189748774 gale_infotracacademiconefile_A189748774 gale_incontextgauss_ISR_A189748774 gale_incontextgauss_ATWCN_A189748774 pubmed_primary_17943125 crossref_primary_10_1038_nature06180 crossref_citationtrail_10_1038_nature06180 springer_journals_10_1038_nature06180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-18 |
PublicationDateYYYYMMDD | 2007-10-18 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-18 day: 18 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2007 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | VF Gantmakher (BFnature06180_CR9) 1996; 82 TI Baturina (BFnature06180_CR29) 2004; 79 A Ghosal (BFnature06180_CR18) 1998; 81 D Ephron (BFnature06180_CR24) 1996; 76 AF Hebard (BFnature06180_CR26) 1990; 65 S Reich (BFnature06180_CR3) 2000; 13 H Aubin (BFnature06180_CR25) 2006; 73 K Das Gupta (BFnature06180_CR28) 2001; 63 PW Anderson (BFnature06180_CR1) 1959; 11 SH Pan (BFnature06180_CR5) 2001; 413 MPA Fisher (BFnature06180_CR15) 1990; 64 M Ma (BFnature06180_CR14) 1985; 32 T Timusk (BFnature06180_CR11) 1999; 62 G Alvarez (BFnature06180_CR12) 2005; 71 G Sambandamurthy (BFnature06180_CR10) 2004; 92 VM Galitski (BFnature06180_CR17) 2001; 87 RW Crane (BFnature06180_CR7) 2007; 75 VJ Emery (BFnature06180_CR30) 1995; 374 M Mayr (BFnature06180_CR20) 2005; 94 AM Clogston (BFnature06180_CR22) 1962; 9 A Yazdani (BFnature06180_CR27) 1995; 74 PG De-Gennes (BFnature06180_CR19) 1966 BS Chandrasekhar (BFnature06180_CR23) 1962; 1 D Kowal (BFnature06180_CR6) 1994; 90 AM Goldman (BFnature06180_CR2) 1998; 51 Y Dubi (BFnature06180_CR21) 2006; 73 T Cren (BFnature06180_CR4) 2001; 54 MA Paalanen (BFnature06180_CR8) 1992; 69 J Bardeen (BFnature06180_CR13) 1957; 108 MPA Fisher (BFnature06180_CR16) 1990; 65 |
References_xml | – volume: 75 start-page: 184530 year: 2007 ident: BFnature06180_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.184530 – volume: 76 start-page: 1529 year: 1996 ident: BFnature06180_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.1529 – volume: 108 start-page: 1175 year: 1957 ident: BFnature06180_CR13 publication-title: Phys. Rev. doi: 10.1103/PhysRev.108.1175 – volume: 65 start-page: 927 year: 1990 ident: BFnature06180_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.927 – volume: 79 start-page: 337 year: 2004 ident: BFnature06180_CR29 publication-title: JETP Lett. doi: 10.1134/1.1765178 – volume: 64 start-page: 587 year: 1990 ident: BFnature06180_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.587 – volume: 51 start-page: 39 year: 1998 ident: BFnature06180_CR2 publication-title: Phys. Today doi: 10.1063/1.882069 – volume: 32 start-page: 5658 year: 1985 ident: BFnature06180_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.32.5658 – volume: 1 start-page: 7 year: 1962 ident: BFnature06180_CR23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1777362 – volume: 87 start-page: 087001 year: 2001 ident: BFnature06180_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.087001 – volume: 63 start-page: 104502 year: 2001 ident: BFnature06180_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.104502 – volume: 65 start-page: 923 year: 1990 ident: BFnature06180_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.923 – volume: 69 start-page: 1604 year: 1992 ident: BFnature06180_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1604 – volume: 413 start-page: 282 year: 2001 ident: BFnature06180_CR5 publication-title: Nature doi: 10.1038/35095012 – volume: 11 start-page: 26 year: 1959 ident: BFnature06180_CR1 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(59)90036-8 – volume: 73 start-page: 054509 year: 2006 ident: BFnature06180_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.054509 – volume: 9 start-page: 266 year: 1962 ident: BFnature06180_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.9.266 – volume: 13 start-page: 855 year: 2000 ident: BFnature06180_CR3 publication-title: J. Superconductivity doi: 10.1023/A:1007867710512 – volume: 71 start-page: 014514 year: 2005 ident: BFnature06180_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.014514 – volume: 90 start-page: 783 year: 1994 ident: BFnature06180_CR6 publication-title: Solid State Commun. doi: 10.1016/0038-1098(94)90242-9 – volume: 82 start-page: 951 year: 1996 ident: BFnature06180_CR9 publication-title: J. Exp. Theor. Phys. – volume: 74 start-page: 3037 year: 1995 ident: BFnature06180_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3037 – volume-title: Superconductivity of Metals and Alloys year: 1966 ident: BFnature06180_CR19 – volume: 54 start-page: 84 year: 2001 ident: BFnature06180_CR4 publication-title: Europhys. Lett. doi: 10.1209/epl/i2001-00232-4 – volume: 81 start-page: 3940 year: 1998 ident: BFnature06180_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.3940 – volume: 62 start-page: 61 year: 1999 ident: BFnature06180_CR11 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/62/1/002 – volume: 92 start-page: 107005 year: 2004 ident: BFnature06180_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.107005 – volume: 94 start-page: 217001 year: 2005 ident: BFnature06180_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.217001 – volume: 73 start-page: 094521 year: 2006 ident: BFnature06180_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.094521 – volume: 374 start-page: 434 year: 1995 ident: BFnature06180_CR30 publication-title: Nature doi: 10.1038/374434a0 |
SSID | ssj0005174 ssj0014407 |
Score | 2.4466014 |
Snippet | Island hopping
As a superconducting thin film becomes disordered and subject to an increasing magnetic field, a point is reached when it undergoes a transition... The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 876 |
SubjectTerms | Disorders Electron density Fluctuations Humanities and Social Sciences Islands letter Magnetic fields multidisciplinary Order parameters Science Science (multidisciplinary) Scientists Superconductivity Superconductors Thin films |
Title | Nature of the superconductor–insulator transition in disordered superconductors |
URI | https://link.springer.com/article/10.1038/nature06180 https://www.ncbi.nlm.nih.gov/pubmed/17943125 https://www.proquest.com/docview/204560527 https://www.proquest.com/docview/1082191071 https://www.proquest.com/docview/1753554159 https://www.proquest.com/docview/68410277 |
Volume | 449 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9swDCZ6YMBehrY76nZLvaG7Chj1FVl5GrKgWTdg2dC1WN4EWZaKAoOdxsn_HykrJ9K--EW0IYuSSIqfPgKcZmmoWGFUUGiZBmnHxEGeGxMUaTtHlWsd2fJtPwfs8ib9MWwPHTandrDK2Z5oN-qiUnRGfk606eh6x9mX0X1ARaMoueoqaGzDboSGhhBdvP9tgfBYI2F21_PChJ83rJloy4gOcskgrW_LS3ZpLVFq7U9_D545x9HvNprehy1dHsATC-BU9QHsu0Va-58ck_Tn5_BrYDvgV8ZHP8-vpyM9xviXKF6rcWBh6BRz-xMyWBa75d-VfuEIOXWx9kb9Am76F9e9y8BVUAgUa2eTQJtE6jAxHclw3GMtecJzbiTTxiTGEEIizLOYS5nIpGCdOI5yOtZQLJKMmNlfwk5ZlfoQ_CzHSFKFOiIGL5XlPJQY_TDJlcrSNFEenM2GUShHL05VLv4Jm-ZOuFgacw9O58KjhlXjATHShyCeipKAMLdyWteie_23NxDdiGMsxNF99eDdJrHvf65WhD46IVNhv5R01w_w74gBa0XyeEVSje7uxVLrh5XW20anGz8zm0XC7Qu1mM9iD97OW3FBU5ZGlrqa1sTYilYEo_LoERkMMtEPRFfUg5MHZBhPI0rQe_CqmcKLkSZSQHRsPXg_m9OLHm5Qw9Gjf3IMT-15N6F8-GvYmYyn-g06apO8BdvZMMMn70UtuzRbsPv1YvD76j9t40Cw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXRMsrFGhALS8pahJnE-8BoVWh7NJ2kehW9BYcx64qoWS72RXiR_EfmXGcfWnbW8-eWI5nMo_48zcAO0nkyzjX0suViLyorUMvy7T28qiVocqVCkz7tuN-3D2Nvp21ztbgX3MXhmCVjU80jjovJf0j3yPadEy9w-TT8NKjplF0uNp00Kit4lD9_YMVW_Wx9xnVuxuGB18G-13PNhXwZNxKxp7STCif6baIcSmhEpzxjGsRK62Z1gQa8LMk5EIwwfK4HYZBRpW-jAMRE1k5znsLbkcMAzldTD_4OkOULJE-2-uAPuN7NUsnxk6in5wLgMthYC4OLh3Mmnh38ADu20TV7dSWtQFrqtiEOwYwKqtN2LBOoXLfWebq9w_he98swC21i3mlW02GaoT1NlHKliPPwN6pxnfHFCANVsy9KNzcEoCqfOmJ6hGc3sjmPob1oizUU3CTDCtX6auAGMNkknFfYLUVCy5lEkVMOvCh2cZUWjpz6qrxOzXH6oync3vuwM5UeFizeFwhRvpIiRejIODNuZhUVdoZ_Nzvp52AY-3FMV124PUqsd7JjwWht1ZIl7guKex1B3w7YtxakNxakJTDi8t0bvTNwuh5rdOV0zRWlFo_VKXTr8aBV9NRdCB0KiQKVU4qYojFqBVgqnmNDBa1mHdi6uvA9hUyMY8CAgQ48KQ24dlOEwkhJtIO7DY2PVvhCjU8u_ZNtuFud3B8lB71-odbcM_8ayeEEX8O6-PRRL3AJHGcvTSfpgu_btoX_AfUBXpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviI2vMGABbXxJ0ZI4TdwHhKqOamVQEGxib8Zx7GkSSrqmFeJP47_jLnG6tOr2tmf_Ejm-833E598B7CSRr-LMKC_TMvKirgm9NDXGy6JOiiLXOqjat30ZxQfH0aeTzska_GvuwlBZZWMTK0OdFYr-ke8RbTqG3pipG1sV8W1_8GF87lEDKTpobbpp1BpyqP_-weytfD_cR1HvhuHg41H_wLMNBjwVd5Kppw2T2memK2OcVqglZzzlRsbaGGYMFRD4aRJyKZlkWdwNwyClrF_FgYyJuBzfewNuJizhtMV4v1VdskQAba8G-ozv1Yyd6EeJirLlDJddQssnLh3SVr5vcA_u2qDV7dVatgFrOt-EW1XxqCo3YcMaiNJ9Y1ms396Hr6NqAm5hXIwx3XI21hPMvYletph4VQk85fvulJxlVTfmnuVuZslAdbb0RPkAjq9lcR_Cel7k-jG4SYpZrPJ1QOxhKkm5LzHziiVXKokiphx41yyjUJbanDps_BbVETvjorXmDuzMweOa0eMSGMlDEEdGTup2KmdlKXpHP_sj0Qs45mEcQ2cHXq6CDX98XwC9tiBT4LyUtFcf8OuIfWsBubWAVOOzc9EafbUwelrLdOVrGi0S1iaVYr6DHHgxH0VjQidEMtfFrCS2WPRgAYadV2AwwcUYFMNgB7YvwcQ8Cqg4wIFHtQpfrDQREmJQ7cBuo9MXM1whhidXfsk23EYrID4PR4dbcKf67U7FRvwprE8nM_0M48Vp-rzamS78um5T8B8UsX5x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nature+of+the+superconductor-insulator+transition+in+disordered+superconductors&rft.jtitle=Nature&rft.au=Dubi%2C+Yonatan&rft.au=Meir%2C+Yigal&rft.au=Avishai%2C+Yshai&rft.date=2007-10-18&rft.issn=0028-0836&rft.eissn=1476-4679&rft.volume=449&rft.issue=7164&rft.spage=876&rft.epage=880&rft_id=info:doi/10.1038%2Fnature06180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |