Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol
An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1−3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal,...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 111; pp. 526 - 541 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2015.01.004 |
Cover
Abstract | An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1−3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol.
MRI scans of a single healthy adult human subject were acquired both at 3T and 7T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement.
The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail.
The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.
•We compare 21 manual protocols for labeling hippocampal and parahippocampal subfields.•21 research groups applied their own manual segmentation protocol to the same anatomy.•Fuzzy similarity metrics used to quantify disagreement between protocols•Greatest disagreement is along the CA1/subiculum boundary, anterior hippocampus.•We propose a strategy for developing a harmonized segmentation protocol. |
---|---|
AbstractList | An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1−3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol.
MRI scans of a single healthy adult human subject were acquired both at 3T and 7T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement.
The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail.
The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.
•We compare 21 manual protocols for labeling hippocampal and parahippocampal subfields.•21 research groups applied their own manual segmentation protocol to the same anatomy.•Fuzzy similarity metrics used to quantify disagreement between protocols•Greatest disagreement is along the CA1/subiculum boundary, anterior hippocampus.•We propose a strategy for developing a harmonized segmentation protocol. Objective An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. Method MRI scans of a single healthy adult human subject were acquired both at 3T and 7T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. Results The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. Conclusions The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol.OBJECTIVEAn increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol.MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement.METHODMRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement.The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail.RESULTSThe differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail.The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.CONCLUSIONSThe combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. |
Author | Pluta, John B. Schoemaker, Dorothee Hassan, Abdul Preston, Alison R. Augustinack, Jean C. Yassa, Michael A. Wisse, Laura E.M. Ranganath, Charan Raz, Naftali Van Leemput, Koen Bocchetta, Martina Schlichting, Margaret L. Amaral, Robert S.C. Bernstein, Jeffrey D. Zeineh, Michael M. Boccardi, Marina Ding, Song-Lin Iglesias, J. Eugenio Yushkevich, Paul A. Davachi, Lila Chételat, Gaël Geerlings, Mirjam I. Chakravarty, M. Mallar Palombo, Daniela J. LaRocque, Karen F. Mueller, Susanne G. Kerchner, Geoffrey A. Pruessner, Jens C. Parekh, Mansi B. Stark, Craig E.L. Singh, Sachi Ekstrom, Arne Carr, Valerie A. Wagner, Anthony D. La Joie, Renaud Burggren, Alison C. Tompary, Alexa Libby, Laura A. Turowski, Marta M. Huang, Yushan Olsen, Rosanna K. Wang, Lei Suthana, Nanthia Daugherty, Ana M. Bender, Andrew R. Malykhin, Nikolai Winterburn, Julie L. |
AuthorAffiliation | z VA Boston Healthcare System u Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastian, Spain ae Department of Neuroscience, The University of Texas at Austin j Department of Psychology, Stanford University af McGill Centre for Studies in Aging, Faculty of Medicine, McGill University k Departments of Psychiatry and Biomedical Engineering, McGill University aa Department of Radiology, Stanford University am Department of Radiology, Northwestern University Feinberg School of Medicine t Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada y Rotman Research Institute, Baycrest ak Department of Applied Mathematics and Computer Science, Technical University of Denmark n Department of Pyschology, New York University c A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital f Stanford Center for Memory Disorders ah Department of Psychiatry and Behavioral Sciences, Northwestern Univer |
AuthorAffiliation_xml | – name: g LENITEM (Lboratory of Epidemiology, Neuroimaging and Telemedicine) - IRCCS Centro S. Giovanni di Dio - Fatebenefratelli – name: t Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada – name: x Center for Imaging of Neurodegenerative Diseases, VAMC San Francisco – name: aj Department of Neurosurgery, University of California, Los Angeles – name: ak Department of Applied Mathematics and Computer Science, Technical University of Denmark – name: aa Department of Radiology, Stanford University – name: ac Department of Psychology, The University of Texas at Austin – name: h Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy – name: i Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles – name: o Center for Neural Science – name: k Departments of Psychiatry and Biomedical Engineering, McGill University – name: m Psychology Department, Wayne State University – name: af McGill Centre for Studies in Aging, Faculty of Medicine, McGill University – name: r Department of Psychology, University of California, Davis – name: ah Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine – name: a Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania – name: w Department of Radiology, University of California, San Francisco – name: ae Department of Neuroscience, The University of Texas at Austin – name: c A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital – name: al Neurosciences Program, Stanford University – name: b Cerebral Imaging Centre, Doulgas Mental Health University Insitute, McGill University – name: v Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada – name: n Department of Pyschology, New York University – name: ai Department of Neurobiology and Behavior, University of California, Irvine – name: am Department of Radiology, Northwestern University Feinberg School of Medicine – name: q Center for Neuroscience, University of California, Davis – name: ab Department of Biostatistics, University of Pennsylvania – name: j Department of Psychology, Stanford University – name: d Institute of Gerontology, Wayne State University – name: f Stanford Center for Memory Disorders – name: l INSERM U1077, Universitè de Caen Basse-Normandie UMR-S1077, Ecole Pratique des Hautes Etudes, UMR-S1077, CHU de Caen U1077; Caen, France – name: ag Department of Psychology, McGill University – name: ad Center for Learning and Memory, The University of Texas at Austin – name: y Rotman Research Institute, Baycrest – name: e Department of Neurology and Neurological Sciences, Stanford University School of Medicine – name: s Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht – name: u Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastian, Spain – name: p Allen Institute for Brain Science – name: z VA Boston Healthcare System |
Author_xml | – sequence: 1 givenname: Paul A. orcidid: 0000-0001-8543-4016 surname: Yushkevich fullname: Yushkevich, Paul A. email: pauly2@upenn.edu organization: Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA – sequence: 2 givenname: Robert S.C. surname: Amaral fullname: Amaral, Robert S.C. organization: Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Canada – sequence: 3 givenname: Jean C. surname: Augustinack fullname: Augustinack, Jean C. organization: A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, USA – sequence: 4 givenname: Andrew R. surname: Bender fullname: Bender, Andrew R. organization: Institute of Gerontology, Wayne State University, USA – sequence: 5 givenname: Jeffrey D. surname: Bernstein fullname: Bernstein, Jeffrey D. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, USA – sequence: 6 givenname: Marina surname: Boccardi fullname: Boccardi, Marina organization: LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Italy – sequence: 7 givenname: Martina surname: Bocchetta fullname: Bocchetta, Martina organization: LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Italy – sequence: 8 givenname: Alison C. surname: Burggren fullname: Burggren, Alison C. organization: Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA – sequence: 9 givenname: Valerie A. surname: Carr fullname: Carr, Valerie A. organization: Department of Psychology, Stanford University, USA – sequence: 10 givenname: M. Mallar surname: Chakravarty fullname: Chakravarty, M. Mallar organization: Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Canada – sequence: 11 givenname: Gaël surname: Chételat fullname: Chételat, Gaël organization: INSERM U1077, Universitè de Caen Basse-Normandie, UMR-S1077, Ecole Pratique des Hautes Etudes, CHU de Caen, U1077, Caen, France – sequence: 12 givenname: Ana M. surname: Daugherty fullname: Daugherty, Ana M. organization: Institute of Gerontology, Wayne State University, USA – sequence: 13 givenname: Lila surname: Davachi fullname: Davachi, Lila organization: Department of Psychology, New York University, USA – sequence: 14 givenname: Song-Lin surname: Ding fullname: Ding, Song-Lin organization: Allen Institute for Brain Science, USA – sequence: 15 givenname: Arne surname: Ekstrom fullname: Ekstrom, Arne organization: Center for Neuroscience, University of California, Davis, USA – sequence: 16 givenname: Mirjam I. surname: Geerlings fullname: Geerlings, Mirjam I. organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands – sequence: 17 givenname: Abdul surname: Hassan fullname: Hassan, Abdul organization: Center for Neuroscience, University of California, Davis, USA – sequence: 18 givenname: Yushan surname: Huang fullname: Huang, Yushan organization: Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada – sequence: 19 givenname: J. Eugenio surname: Iglesias fullname: Iglesias, J. Eugenio organization: A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, USA – sequence: 20 givenname: Renaud surname: La Joie fullname: La Joie, Renaud organization: INSERM U1077, Universitè de Caen Basse-Normandie, UMR-S1077, Ecole Pratique des Hautes Etudes, CHU de Caen, U1077, Caen, France – sequence: 21 givenname: Geoffrey A. surname: Kerchner fullname: Kerchner, Geoffrey A. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, USA – sequence: 22 givenname: Karen F. orcidid: 0000-0002-6058-2706 surname: LaRocque fullname: LaRocque, Karen F. organization: Department of Psychology, Stanford University, USA – sequence: 23 givenname: Laura A. orcidid: 0000-0003-1484-4573 surname: Libby fullname: Libby, Laura A. organization: Center for Neuroscience, University of California, Davis, USA – sequence: 24 givenname: Nikolai surname: Malykhin fullname: Malykhin, Nikolai organization: Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada – sequence: 25 givenname: Susanne G. surname: Mueller fullname: Mueller, Susanne G. organization: Department of Radiology, University of California, San Francisco, USA – sequence: 26 givenname: Rosanna K. surname: Olsen fullname: Olsen, Rosanna K. organization: Rotman Research Institute, Baycrest, Canada – sequence: 27 givenname: Daniela J. surname: Palombo fullname: Palombo, Daniela J. organization: VA Boston Healthcare System, USA – sequence: 28 givenname: Mansi B. surname: Parekh fullname: Parekh, Mansi B. organization: Department of Radiology, Stanford University, USA – sequence: 29 givenname: John B. surname: Pluta fullname: Pluta, John B. organization: Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA – sequence: 30 givenname: Alison R. surname: Preston fullname: Preston, Alison R. organization: Department of Psychology, The University of Texas at Austin, USA – sequence: 31 givenname: Jens C. surname: Pruessner fullname: Pruessner, Jens C. organization: McGill Centre for Studies in Aging, Faculty of Medicine, McGill University, Canada – sequence: 32 givenname: Charan surname: Ranganath fullname: Ranganath, Charan organization: Center for Neuroscience, University of California, Davis, USA – sequence: 33 givenname: Naftali surname: Raz fullname: Raz, Naftali organization: Institute of Gerontology, Wayne State University, USA – sequence: 34 givenname: Margaret L. surname: Schlichting fullname: Schlichting, Margaret L. organization: Department of Psychology, The University of Texas at Austin, USA – sequence: 35 givenname: Dorothee surname: Schoemaker fullname: Schoemaker, Dorothee organization: McGill Centre for Studies in Aging, Faculty of Medicine, McGill University, Canada – sequence: 36 givenname: Sachi surname: Singh fullname: Singh, Sachi organization: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA – sequence: 37 givenname: Craig E.L. surname: Stark fullname: Stark, Craig E.L. organization: Department of Neurobiology and Behavior, University of California, Irvine, USA – sequence: 38 givenname: Nanthia surname: Suthana fullname: Suthana, Nanthia organization: Department of Neurosurgery, University of California, Los Angeles, USA – sequence: 39 givenname: Alexa surname: Tompary fullname: Tompary, Alexa organization: Department of Psychology, New York University, USA – sequence: 40 givenname: Marta M. surname: Turowski fullname: Turowski, Marta M. organization: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA – sequence: 41 givenname: Koen orcidid: 0000-0001-6466-5309 surname: Van Leemput fullname: Van Leemput, Koen organization: A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, USA – sequence: 42 givenname: Anthony D. orcidid: 0000-0003-0624-4543 surname: Wagner fullname: Wagner, Anthony D. organization: Department of Psychology, Stanford University, USA – sequence: 43 givenname: Lei surname: Wang fullname: Wang, Lei organization: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA – sequence: 44 givenname: Julie L. surname: Winterburn fullname: Winterburn, Julie L. organization: Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Canada – sequence: 45 givenname: Laura E.M. surname: Wisse fullname: Wisse, Laura E.M. organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands – sequence: 46 givenname: Michael A. surname: Yassa fullname: Yassa, Michael A. organization: Department of Neurobiology and Behavior, University of California, Irvine, USA – sequence: 47 givenname: Michael M. surname: Zeineh fullname: Zeineh, Michael M. organization: Department of Radiology, Stanford University, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25596463$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl1v1DAQjFAR_YC_gCzxwssd6zixEx4QVQVtpSIEKs_WnuPc-XDsYCeHyu_hh-L0ehTupZUs2ZJnZnd25zg7cN7pLCMU5hQof7OeOz0Gbzpc6nkOtJwDnQMUT7IjCnU5q0uRH0zvks0qSuvD7DjGNQDUtKieZYd5Wda84Owo-_1lRDeYAQez0UT5rsdgonfEtySnpA9-8MrbSFofiMWFtsYtycr0vVeYwJbEcdEabZtI0DUk0XHvN-il8S4S46azMRtPPn29fEuu_U8ME42sMHTemV-6IVEvO-2mdlIPu-rPs6ct2qhf3N0n2bePH67PLmZXn88vz06vZoqXYpg1dQ482S1FRTUwUVeAHJWqG8q4ygXnrSihAFEgKlbxRYmtKKpcY44F5S07yd5tdftx0elGpUYCWtmHNOhwIz0a-f-PMyu59BtZsEoApUng9Z1A8D9GHQfZmai0tei0H6OkggEIVlX1I6CQdsVYojwI5YLmqfqt6qs96NqPwaWhTagimeW3bb781-dfg7tY3A9CBR9j0K1UZruTZNtYSUFOOZRreZ9DOeVQApUph0mg2hPY1XgE9f2WqtOmN0YHqVLmjEL7Xd_IxpuHJf4AnFUAXA |
CitedBy_id | crossref_primary_10_1016_j_dcn_2018_03_009 crossref_primary_10_1002_hbm_24464 crossref_primary_10_1038_s41467_024_49823_8 crossref_primary_10_1007_s11682_024_00952_0 crossref_primary_10_1007_s11682_017_9819_3 crossref_primary_10_1371_journal_pone_0270339 crossref_primary_10_3171_2015_9_FOCUS15326 crossref_primary_10_1016_j_neuroimage_2020_116932 crossref_primary_10_3389_fnagi_2023_1284619 crossref_primary_10_1016_j_neuropsychologia_2017_12_014 crossref_primary_10_1016_j_biopsych_2018_08_021 crossref_primary_10_7554_eLife_77945 crossref_primary_10_1002_jmri_25447 crossref_primary_10_1016_j_cortex_2020_02_022 crossref_primary_10_1016_j_neuroimage_2017_11_054 crossref_primary_10_3389_fnana_2023_1114757 crossref_primary_10_1016_j_neuroimage_2017_09_016 crossref_primary_10_1016_j_nicl_2017_12_036 crossref_primary_10_1093_braincomms_fcad309 crossref_primary_10_1002_hbm_22825 crossref_primary_10_1016_j_media_2017_09_006 crossref_primary_10_1016_j_neuroimage_2016_09_070 crossref_primary_10_1097_PRS_0000000000010526 crossref_primary_10_1111_ane_12926 crossref_primary_10_1016_j_neurobiolaging_2021_03_018 crossref_primary_10_7554_eLife_87634 crossref_primary_10_1016_j_eplepsyres_2020_106279 crossref_primary_10_1016_j_tins_2021_06_005 crossref_primary_10_3174_ajnr_A7244 crossref_primary_10_1002_hipo_23097 crossref_primary_10_1016_j_nlm_2018_03_006 crossref_primary_10_1002_hipo_22681 crossref_primary_10_1016_j_nicl_2018_10_021 crossref_primary_10_1016_j_jalz_2016_12_009 crossref_primary_10_1016_j_neuroimage_2017_03_047 crossref_primary_10_1016_j_nicl_2019_101860 crossref_primary_10_1038_nrn_2015_24 crossref_primary_10_1186_s13024_019_0325_5 crossref_primary_10_1007_s10072_020_04653_6 crossref_primary_10_1016_j_neurobiolaging_2020_01_011 crossref_primary_10_1016_j_ynstr_2022_100469 crossref_primary_10_3389_fendo_2023_1265470 crossref_primary_10_1162_jocn_a_01385 crossref_primary_10_7554_eLife_88404_4 crossref_primary_10_1002_jnr_24831 crossref_primary_10_1016_j_cortex_2015_09_002 crossref_primary_10_1016_j_neuropsychologia_2017_04_036 crossref_primary_10_1002_hbm_22859 crossref_primary_10_1002_hbm_23948 crossref_primary_10_3389_fnagi_2017_00038 crossref_primary_10_1016_j_bpsgos_2024_100414 crossref_primary_10_1016_j_neuroimage_2018_03_009 crossref_primary_10_1016_j_neuroimage_2021_118011 crossref_primary_10_3233_JAD_160944 crossref_primary_10_1016_j_jpsychires_2018_08_012 crossref_primary_10_1016_j_neuroimage_2017_06_008 crossref_primary_10_1080_14737175_2021_1956904 crossref_primary_10_3389_fncir_2022_876789 crossref_primary_10_1523_ENEURO_0290_19_2020 crossref_primary_10_1002_hipo_22554 crossref_primary_10_1016_j_ynstr_2022_100456 crossref_primary_10_1016_j_neuroimage_2022_119656 crossref_primary_10_1038_s41598_022_05287_8 crossref_primary_10_1212_WNL_0000000000009362 crossref_primary_10_1002_hipo_22671 crossref_primary_10_1016_j_nicl_2021_102655 crossref_primary_10_3233_JAD_240483 crossref_primary_10_3897_rio_2_e8816 crossref_primary_10_1002_npr2_12031 crossref_primary_10_1002_hipo_23637 crossref_primary_10_1038_s41598_024_59440_6 crossref_primary_10_1111_desc_12344 crossref_primary_10_1038_s41598_021_81362_w crossref_primary_10_1038_s41598_020_73328_1 crossref_primary_10_1093_geronb_gbx181 crossref_primary_10_1016_j_brainres_2019_146591 crossref_primary_10_1523_JNEUROSCI_3225_16_2017 crossref_primary_10_1016_j_jpsychires_2019_02_008 crossref_primary_10_1002_jnr_70028 crossref_primary_10_1038_s41592_024_02237_2 crossref_primary_10_1002_hbm_26715 crossref_primary_10_1002_dev_22333 crossref_primary_10_1093_cercor_bhy211 crossref_primary_10_1016_j_neuroimage_2019_116328 crossref_primary_10_1038_s41380_020_0853_y crossref_primary_10_1016_j_neuron_2018_01_039 crossref_primary_10_1016_j_neuroimage_2016_11_031 crossref_primary_10_1161_STROKEAHA_120_031743 crossref_primary_10_2139_ssrn_3155768 crossref_primary_10_1016_j_jneumeth_2024_110359 crossref_primary_10_1093_cercor_bhw154 crossref_primary_10_1038_s41598_019_49970_9 crossref_primary_10_1016_j_nicl_2020_102182 crossref_primary_10_1016_j_neuroimage_2020_116563 crossref_primary_10_7554_eLife_88404 crossref_primary_10_1002_alz_14161 crossref_primary_10_3233_JAD_179920 crossref_primary_10_3389_fnagi_2017_00306 crossref_primary_10_1002_hbm_25858 crossref_primary_10_1016_j_neurobiolaging_2023_06_003 crossref_primary_10_1002_hbm_23559 crossref_primary_10_1038_s41467_021_26560_w crossref_primary_10_1093_cercor_bhy244 crossref_primary_10_1002_hipo_23571 crossref_primary_10_1002_hipo_23330 crossref_primary_10_1002_cne_24212 crossref_primary_10_1002_hipo_23217 crossref_primary_10_1002_jmri_29514 crossref_primary_10_1111_jon_12973 crossref_primary_10_1007_s10334_016_0573_0 crossref_primary_10_1177_2398212817701448 crossref_primary_10_1016_j_neuroimage_2024_120767 crossref_primary_10_1093_arclin_acy066 crossref_primary_10_1016_j_media_2020_101850 crossref_primary_10_1016_j_neuroimage_2019_116348 crossref_primary_10_1002_hipo_22598 crossref_primary_10_1093_cercor_bhw299 crossref_primary_10_1007_s12264_017_0186_2 crossref_primary_10_1016_j_neuroimage_2022_119616 crossref_primary_10_1016_j_neuroimage_2019_01_061 crossref_primary_10_1016_j_neurobiolaging_2022_05_003 crossref_primary_10_3389_fninf_2023_1130845 crossref_primary_10_1016_j_neuroimage_2021_117931 crossref_primary_10_1038_s41593_020_00711_6 crossref_primary_10_1016_j_neuroimage_2016_10_027 crossref_primary_10_1016_j_neuropsychologia_2020_107623 crossref_primary_10_1016_j_cobeha_2020_01_017 crossref_primary_10_1016_j_nicl_2017_05_022 crossref_primary_10_1162_jocn_a_01919 crossref_primary_10_1002_hipo_23592 crossref_primary_10_1002_hbm_23891 crossref_primary_10_3389_fneur_2021_674275 crossref_primary_10_1002_hbm_23090 crossref_primary_10_1002_aur_3170 crossref_primary_10_1038_s41398_023_02719_5 crossref_primary_10_1016_j_neuroimage_2019_01_051 crossref_primary_10_1016_j_neurobiolaging_2018_10_013 crossref_primary_10_1002_hipo_22818 crossref_primary_10_1016_j_dadm_2019_04_001 crossref_primary_10_1016_j_neuropsychologia_2018_12_015 crossref_primary_10_1016_j_neuroscience_2015_08_033 crossref_primary_10_1016_j_neurobiolaging_2020_03_006 crossref_primary_10_1016_j_neurobiolaging_2017_04_025 crossref_primary_10_7554_eLife_70119 crossref_primary_10_1002_hipo_23582 crossref_primary_10_1152_jn_00149_2015 crossref_primary_10_3389_fbioe_2022_754344 crossref_primary_10_1002_hbm_24607 crossref_primary_10_1016_j_bbr_2019_02_019 crossref_primary_10_1016_j_neuroimage_2017_04_035 crossref_primary_10_1002_hbm_25139 crossref_primary_10_1002_hipo_22809 crossref_primary_10_1101_lm_053628_122 crossref_primary_10_3389_fnagi_2023_1212197 crossref_primary_10_1016_j_dcn_2021_100947 crossref_primary_10_1073_pnas_1801093115 crossref_primary_10_1073_pnas_1603312113 crossref_primary_10_1002_hipo_23133 crossref_primary_10_1093_cercor_bhz252 crossref_primary_10_1111_joa_14167 crossref_primary_10_1002_hipo_22717 crossref_primary_10_1016_j_dcn_2022_101085 crossref_primary_10_1016_j_neurobiolaging_2018_09_021 crossref_primary_10_1523_ENEURO_0098_16_2016 crossref_primary_10_1007_s00429_020_02172_w crossref_primary_10_1073_pnas_1819993116 crossref_primary_10_1111_jon_12809 crossref_primary_10_1002_hbm_70054 crossref_primary_10_1016_j_neuroimage_2015_04_042 crossref_primary_10_1016_j_neuroimage_2023_120406 crossref_primary_10_1016_j_neuroimage_2015_12_039 crossref_primary_10_1016_j_cortex_2024_08_011 crossref_primary_10_1111_cdep_12353 crossref_primary_10_1002_hipo_22829 crossref_primary_10_7554_eLife_87634_4 crossref_primary_10_1038_s41598_024_54370_9 crossref_primary_10_1002_hbm_23897 crossref_primary_10_1016_j_neuroimage_2019_02_066 crossref_primary_10_1002_hbm_23654 crossref_primary_10_1002_hbm_24628 crossref_primary_10_3389_fnagi_2020_00079 crossref_primary_10_1002_hbm_23970 crossref_primary_10_1016_j_neurobiolaging_2017_08_001 crossref_primary_10_1002_cne_25604 crossref_primary_10_1038_s41467_017_02752_1 crossref_primary_10_3233_JAD_170932 crossref_primary_10_1016_j_neuroimage_2017_09_049 crossref_primary_10_3233_JAD_200159 crossref_primary_10_3389_fnhum_2020_00228 crossref_primary_10_3389_fnana_2023_1149674 crossref_primary_10_3389_fnagi_2017_00383 crossref_primary_10_1016_j_bpsgos_2023_07_001 crossref_primary_10_1016_j_neuron_2020_06_030 crossref_primary_10_1007_s00429_018_1802_2 crossref_primary_10_1016_j_neuroimage_2021_118076 crossref_primary_10_1523_JNEUROSCI_3664_16_2017 crossref_primary_10_1002_hbm_23042 crossref_primary_10_1016_j_tins_2021_10_003 crossref_primary_10_1002_hbm_23289 crossref_primary_10_1002_hipo_23024 crossref_primary_10_1021_acs_jproteome_2c00143 crossref_primary_10_1523_JNEUROSCI_0564_19_2019 crossref_primary_10_1016_j_neurobiolaging_2022_02_004 crossref_primary_10_3389_fpsyt_2023_1060770 crossref_primary_10_1016_j_bbr_2017_06_049 crossref_primary_10_1016_j_neubiorev_2020_07_024 crossref_primary_10_1002_hipo_23172 crossref_primary_10_1002_hipo_23293 crossref_primary_10_3389_fnins_2021_546312 crossref_primary_10_3174_ajnr_A4659 crossref_primary_10_1073_pnas_1710654114 crossref_primary_10_1002_hipo_23177 crossref_primary_10_1186_s40708_023_00189_5 crossref_primary_10_1016_j_neuroimage_2015_11_049 crossref_primary_10_1016_j_nicl_2019_101824 crossref_primary_10_1016_j_neuroimage_2020_116947 crossref_primary_10_1038_s41593_021_00916_3 crossref_primary_10_1177_2470547017744538 crossref_primary_10_1038_sdata_2018_63 crossref_primary_10_1002_hipo_23606 crossref_primary_10_7554_eLife_83365 crossref_primary_10_1002_hbm_25249 crossref_primary_10_1016_j_neuroimage_2019_06_012 crossref_primary_10_1038_s41467_023_35967_6 crossref_primary_10_1007_s00429_023_02725_9 crossref_primary_10_1016_j_neuroimage_2017_03_016 crossref_primary_10_1002_hipo_23280 crossref_primary_10_1073_pnas_2307884120 crossref_primary_10_1002_hipo_23602 crossref_primary_10_1016_j_neuroimage_2023_120182 crossref_primary_10_3389_fnagi_2016_00139 crossref_primary_10_1016_j_neuropsychologia_2023_108656 crossref_primary_10_1016_j_visres_2019_10_007 crossref_primary_10_1093_neuonc_noac162 crossref_primary_10_1016_j_dcn_2018_12_011 crossref_primary_10_1111_nan_12659 crossref_primary_10_1002_hbm_70004 crossref_primary_10_1002_hbm_25119 |
Cites_doi | 10.1148/radiol.11101651 10.1162/jocn_a_00435 10.1016/j.schres.2013.04.020 10.1001/archgenpsychiatry.2009.205 10.1016/j.jalz.2013.05.801 10.1523/JNEUROSCI.0521-14.2014 10.1038/nrn3085 10.1146/annurev.neuro.27.070203.144130 10.1002/hipo.20614 10.1016/j.neuroimage.2012.03.023 10.1046/j.1528-1157.2003.32701.x 10.1016/j.neurobiolaging.2003.12.005 10.1016/j.jalz.2014.05.130 10.1038/nrn3085-c1 10.1093/brain/awl274 10.1126/science.1152882 10.1016/j.neuroimage.2009.04.033 10.3174/ajnr.A2589 10.1002/hipo.20615 10.1016/j.neuroimage.2012.08.071 10.1093/cercor/10.4.433 10.1093/cercor/8.8.710 10.1212/WNL.0b013e3181f736a1 10.1016/j.neuroimage.2014.04.054 10.1007/978-1-4615-6616-8_9 10.1016/j.neuroimage.2012.05.065 10.3233/JAD-2011-0004 10.1016/j.neuroimage.2009.03.017 10.1002/hipo.22234 10.2307/1932409 10.1016/S1053-8119(03)00361-6 10.1073/pnas.1115396109 10.1016/j.pscychresns.2006.11.011 10.1016/j.neurobiolaging.2006.03.007 10.1016/j.neuroimage.2005.09.017 10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z 10.2174/187152706778559273 10.1016/j.nicl.2013.08.007 10.1002/ar.1061 10.3389/fnhum.2012.00290 10.1016/j.neuroimage.2013.02.003 10.1016/S0197-4580(01)00270-6 10.1016/j.neuroimage.2010.06.024 10.1523/JNEUROSCI.1406-13.2013 10.1002/hbm.22627 10.1016/j.conb.2006.03.013 10.1148/radiol.09090897 10.1002/hipo.22153 10.1162/jocn.2009.21195 10.1523/JNEUROSCI.2245-09.2009 10.1016/j.jalz.2010.06.007 10.1126/science.1077775 10.1016/j.neuroimage.2012.06.048 10.1037/0033-2909.86.2.420 10.1176/ajp.152.5.738 10.1212/WNL.42.9.1743 10.1002/hbm.20331 10.1016/0197-4580(95)00021-6 10.1016/j.neuroimage.2009.09.042 10.1093/cercor/12.12.1342 10.1002/hbm.10062 10.1006/nimg.2000.0561 10.1523/JNEUROSCI.3711-11.2012 10.1002/1097-0029(20001001)51:1<101::AID-JEMT11>3.0.CO;2-H 10.1002/hipo.20779 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2010.03.040 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 1, 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 1, 2015 |
CorporateAuthor | for the Hippocampal Subfields Group (HSG) Hippocampal Subfields Group (HSG) |
CorporateAuthor_xml | – name: for the Hippocampal Subfields Group (HSG) – name: Hippocampal Subfields Group (HSG) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 7SC 7U5 JQ2 L7M L~C L~D 5PM |
DOI | 10.1016/j.neuroimage.2015.01.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database ProQuest One Psychology Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 541 |
ExternalDocumentID | PMC4387011 3660606021 25596463 10_1016_j_neuroimage_2015_01_004 S1053811915000075 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Multicenter Study Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: F32 AG005778 – fundername: NIMH NIH HHS grantid: R01-MH100121 – fundername: NIDA NIH HHS grantid: K01 DA034728 – fundername: NIMH NIH HHS grantid: R01-MH074692 – fundername: NIA NIH HHS grantid: R37-AG011230 – fundername: CIHR grantid: MOP-62963 – fundername: NIBIB NIH HHS grantid: P41-EB015896 – fundername: NIA NIH HHS grantid: R01 AG034613 – fundername: NIA NIH HHS grantid: R01-AG013308 – fundername: CIHR grantid: MOP 115011 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HMQ HVGLF HZ~ OK1 R2- RIG SEW SNS WUQ XPP ZMT AACTN CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 EFLBG 7QO 7SC 7U5 JQ2 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c657t-d92068115781e037980a6acc9d136c2766f7504074aac386b5af7482ea2a416f3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:32:24 EDT 2025 Thu Sep 04 19:31:42 EDT 2025 Fri Sep 05 04:11:29 EDT 2025 Fri Sep 05 06:00:52 EDT 2025 Wed Aug 13 10:00:34 EDT 2025 Thu Apr 03 07:27:14 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 Tue Jul 01 03:01:41 EDT 2025 Tue Aug 26 16:31:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Segmentation Unified protocol Perirhinal cortex Parahippocampal gyrus Medial temporal lobe Hippocampal subfields CA1 Dentate gyrus CA3 Magnetic resonance imaging CA2 Entorhinal cortex Subiculum Hippocampus |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c657t-d92068115781e037980a6acc9d136c2766f7504074aac386b5af7482ea2a416f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0001-6466-5309 0000-0001-8543-4016 0000-0003-1484-4573 0000-0002-6058-2706 0000-0003-0624-4543 |
PMID | 25596463 |
PQID | 1674482611 |
PQPubID | 2031077 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387011 proquest_miscellaneous_1730073889 proquest_miscellaneous_1701483317 proquest_miscellaneous_1671211389 proquest_journals_1674482611 pubmed_primary_25596463 crossref_citationtrail_10_1016_j_neuroimage_2015_01_004 crossref_primary_10_1016_j_neuroimage_2015_01_004 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Frisoni, Jack (bb0105) 2011; 7 Zeineh, Engel, Thompson, Bookheimer (bb0395) 2001; 265 de Lanerolle, Kim, Williamson, Spencer, Zaveri, Eid, Spencer, Eid (bb0190) 2003; 44 Goncharova, Dickerson, Stoub, deToledo Morrell (bb0115) 2001; 22 Zeineh, Engel, Bookheimer (bb0390) 2000; 11 Winterburn, Pruessner, Chavez, Schira, Lobaugh, Voineskos, Chakravarty (bb0365) 2013; 74 Kerchner, Deutsch, Zeineh, Dougherty, Saranathan, Rutt (bb0165) 2012; 63 van Strien, Widerøe, van de Berg, Uylings (bb0325) 2012; 13 Olsen, Palombo, Rabin, Levine, Ryan, Rosenbaum (bb0245) 2013; 23 Libby, Ekstrom, Ragland, Ranganath (bb0195) 2012; 32 La Joie, Fouquet, Mézenge, Landeau, Villain, Mevel, Pélerin, Eustache, Desgranges, Chételat (bb0180) 2010; 53 Bakker, Kirwan, Miller, Stark (bb0030) 2008; 319 Rosene, Van Hoesen (bb0290) 1987 Wang, Neylan, Mueller, Lenoci, Truran, Marmar, Weiner, Schuff (bb0350) 2010; 67 Boccardi, Bocchetta, Ganzola, Robitaille, Redolfi, Duchesne, Jack, Frisoni, EADC-ADNI Working Group on The Harmonized Protocol for Hippocampal Volumetry (bb0045) 2013 Boccardi, Bocchetta, Apostolova, Barnes, Bartzokis, Corbetta, DeCarli, deToledo Morrell, Firbank, Ganzola, Gerritsen, Henneman, Killiany, Malykhin, Pasqualetti, Pruessner, Redolfi, Robitaille, Soininen, Tolomeo, Wang, Watson, Wolf, Duvernoy, Duchesne, Jack, GB Frisoni for the EADC-ADNI Working Group on the Harmonized Protocol for Manual Hippocampal Segmentation (bb0040) 2014 Palombo, Amaral, Olsen, Müller, Todd, Anderson, Levine (bb0250) 2013; 33 Pereira, Valls-Pedret, Ros, Palacios, Falcón, Bargalló, Bartrés-Faz, Wahlund, Westman, Junque (bb0255) 2013; 24 Hanseeuw, Van Leemput, Kavec, Grandin, Seron, Ivanoiu (bb0125) 2011; 32 Pruessner, Köhler, Crane, Pruessner, Lord, Byrne, Kabani, Collins, Evans (bb0280) 2002; 12 Duvernoy (bb0085) 2005 Duncan, Tompary, Davachi (bb0080) 2014; 34 Preston, Bornstein, Hutchinson, Gaare, Glover, Wagner (bb0270) 2010; 22 Harding, Halliday, Kril (bb0130) 1998; 8 Simić, Kostović, Winblad, Bogdanović (bb0300) 1997; 379 Smith (bb0315) 2002; 17 Mueller, Stables, Du, Schuff, Truran, Cashdollar, Weiner (bb0225) 2007; 28 Yassa, Stark, Bakker, Albert, Gallagher, Stark (bb0380) 2010; 51 Gloor (bb0110) 1997 Mai, Paxinos, Voss (bb0205) 2008 Teicher, Anderson, Polcari (bb0330) 2012; 109 Lorente de Nó (bb0235) 1934; 46 Augustinack, Huber, Stevens, Roy, Frosch, van der Kouwe, Wald, Van Leemput, McKee, Fischl (bb0025) 2013; 64 Jenkinson, Bannister, Brady, Smith (bb0155) 2002; 17 Malykhin, Lebel, Coupland, Wilman, Carter (bb0215) 2010; 49 Bonnici, Chadwick, Kumaran, Hassabis, Weiskopf, Maguire (bb0060) 2012; 6 Wang, Swank, Glick, Gado, Miller, Morris, Csernansky (bb0345) 2003; 20 Pluta, Yushkevich, Das, Wolk (bb0265) 2012; 29 Yushkevich, Pluta, Wang, Xie, Ding, Gertje, Mancuso, Kliot, Das, Wolk (bb0385) 2015; 36 Wisse, Gerritsen, Zwanenburg, Kuijf, Luijten, Biessels, Geerlings (bb0370) 2012; 61 Braak, Braak (bb0065) 1995; 16 Amaral, Insausti (bb0010) 1990 Pipitone, Park, Winterburn, Lett, Lerch, Pruessner, Lepage, Voineskos, Chakravarty, the Alzheimer's Disease Neuroimaging Initiative (bb0260) 2014; 101 Lucassen, Heine, Muller, van der Beek, Wiegant, De Kloet, Joels, Fuchs, Swaab, Czeh (bb0200) 2006; 5 Grinstead, Speck, Paul, Silbert, Perkins, Rooney (bb0120) 2010 Shrout, Fleiss (bb0295) 1979; 86 Bocchetta, Boccardi, Ganzola, Apostolova, Preboske, Wolf, Ferrari, Pasqualetti, Robitaille, Duchesne, Jack, Frisoni (bb0055) 2014 Danielsson (bb0070) 1980; 14 Watson, Andermann, Gloor, Jones-Gotman, Peters, Evans, Olivier, Melanson, Leroux (bb0355) 1992; 42 Pruessner, Li, Serles, Pruessner, Collins, Kabani, Lupien, Evans (bb0285) 2000; 10 Wolk, Dunfee, Dickerson, Aizenstein, DeKosky (bb0375) 2011; 21 Amaral, Lavenex (bb0005) 2007 Insausti, Amaral (bb0145) 2012 Apostolova, Dinov, Dutton, Hayashi, Toga, Cummings, Thompson (bb0015) 2006; 129 Ekstrom, Bazih, Suthana, Al-Hakim, Ogura, Zeineh, Burggren, Bookheimer (bb0095) 2009; 47 West, Kawas, Stewart, Rudow, Troncoso (bb0360) 2004; 25 Olsen, Nichols, Chen, Hunt, Glover, Gabrieli, Wagner (bb0240) 2009; 29 Van Leemput, Bakkour, Benner, Wiggins, Wald, Augustinack, Dickerson, Golland, Fischl (bb0335) 2009; 19 Bender, Daugherty, Raz (bb0035) 2013; 25 Duvernoy (bb0090) 1998 La Joie, Perrotin, de La Sayette, Egret, Doeuvre, Belliard, Eustache, Desgranges, Chételat (bb0185) 2013; 3 Small, Schobel, Buxton, Witter, Barnes (bb0305) 2011; 12 Squire, Stark, Clarkx (bb0320) 2004; 27 Kirov, Hardy, Matsuda, Messinger, Cankurtaran, Warren, Wiggins, Perry, Babb, Goetz, George, Malaspina, Gonen (bb0170) 2013; 147 Wang, Miller, Gado, McKeel, Rothermich, Miller, Morris, Csernansky (bb0340) 2006; 30 Mueller, Weiner (bb0230) 2009; 19 Prudent, Kumar, Liu, Wiggins, Malaspina, Gonen (bb0275) 2010; 254 Kerchner, Hess, Hammond-Rosenbluth, Xu, Rabinovici, Kelley, Vigneron, Nelson, Miller (bb0160) 2010; 75 Malykhin, Bouchard, Ogilvie, Coupland, Seres, Camicioli (bb0210) 2007; 155 Henry, Chupin, Lehéricy, Strupp, Sikora, Sha, Ugurbil, Van de Moortele (bb0135) 2011; 261 Arnold, Franz, Gur, Gur, Shapiro, Moberg, Trojanowski (bb0020) 1995; 152 Dice (bb0075) 1945; 26 Small, Nava, Perera, Delapaz, Stern (bb0310) 2000; 51 Zeineh, Engel, Thompson, Bookheimer (bb0400) 2003; 299 Insausti, Juottonen, Soininen, Insausti, Partanen, Vainio, Laakso, Pitkänen (bb0150) 1998; 19 Fischl, Stevens, Rajendran, Yeo, Greve, Van Leemput, Polimeni, Kakunoori, Buckner, Pacheco, Salat, Melcher, Frosch, Hyman, Grant, Rosen, van der Kouwe, Wiggins, Wald, Augustinack (bb0100) 2009; 47 Insausti, Amaral (bb0140) 2004 Zeineh, Holdsworth, Skare, Atlas, Bammer (bb0405) 2012; 62 Moscovitch, Nadel, Winocur, Gilboa, Rosenbaum (bb0220) 2006; 16 Boccardi, Ganzola, Bocchetta, Pievani, Redolfi, Bartzokis, Camicioli, Csernansky, de Leon, deToledo Morrell, Killiany, Lehéricy, Pantel, Pruessner, Soininen, Watson, Duchesne, Jack, Frisoni (bb0050) 2011; 26 Kirwan, Jones, Miller, Stark (bb0175) 2007; 28 Augustinack (10.1016/j.neuroimage.2015.01.004_bb0025) 2013; 64 Wang (10.1016/j.neuroimage.2015.01.004_bb0350) 2010; 67 Winterburn (10.1016/j.neuroimage.2015.01.004_bb0365) 2013; 74 Van Leemput (10.1016/j.neuroimage.2015.01.004_bb0335) 2009; 19 La Joie (10.1016/j.neuroimage.2015.01.004_bb0185) 2013; 3 Zeineh (10.1016/j.neuroimage.2015.01.004_bb0405) 2012; 62 Frisoni (10.1016/j.neuroimage.2015.01.004_bb0105) 2011; 7 Prudent (10.1016/j.neuroimage.2015.01.004_bb0275) 2010; 254 Arnold (10.1016/j.neuroimage.2015.01.004_bb0020) 1995; 152 Squire (10.1016/j.neuroimage.2015.01.004_bb0320) 2004; 27 Watson (10.1016/j.neuroimage.2015.01.004_bb0355) 1992; 42 Kirov (10.1016/j.neuroimage.2015.01.004_bb0170) 2013; 147 Kirwan (10.1016/j.neuroimage.2015.01.004_bb0175) 2007; 28 Libby (10.1016/j.neuroimage.2015.01.004_bb0195) 2012; 32 Yushkevich (10.1016/j.neuroimage.2015.01.004_bb0385) 2015; 36 Fischl (10.1016/j.neuroimage.2015.01.004_bb0100) 2009; 47 Zeineh (10.1016/j.neuroimage.2015.01.004_bb0395) 2001; 265 Insausti (10.1016/j.neuroimage.2015.01.004_bb0140) 2004 Danielsson (10.1016/j.neuroimage.2015.01.004_bb0070) 1980; 14 Dice (10.1016/j.neuroimage.2015.01.004_bb0075) 1945; 26 de Lanerolle (10.1016/j.neuroimage.2015.01.004_bb0190) 2003; 44 Gloor (10.1016/j.neuroimage.2015.01.004_bb0110) 1997 Simić (10.1016/j.neuroimage.2015.01.004_bb0300) 1997; 379 Olsen (10.1016/j.neuroimage.2015.01.004_bb0240) 2009; 29 West (10.1016/j.neuroimage.2015.01.004_bb0360) 2004; 25 Boccardi (10.1016/j.neuroimage.2015.01.004_bb0045) 2013 Wolk (10.1016/j.neuroimage.2015.01.004_bb0375) 2011; 21 Rosene (10.1016/j.neuroimage.2015.01.004_bb0290) 1987 Amaral (10.1016/j.neuroimage.2015.01.004_bb0010) 1990 Grinstead (10.1016/j.neuroimage.2015.01.004_bb0120) 2010 Pluta (10.1016/j.neuroimage.2015.01.004_bb0265) 2012; 29 Wang (10.1016/j.neuroimage.2015.01.004_bb0345) 2003; 20 Bakker (10.1016/j.neuroimage.2015.01.004_bb0030) 2008; 319 Mai (10.1016/j.neuroimage.2015.01.004_bb0205) 2008 Harding (10.1016/j.neuroimage.2015.01.004_bb0130) 1998; 8 Malykhin (10.1016/j.neuroimage.2015.01.004_bb0210) 2007; 155 Bender (10.1016/j.neuroimage.2015.01.004_bb0035) 2013; 25 Hanseeuw (10.1016/j.neuroimage.2015.01.004_bb0125) 2011; 32 Lucassen (10.1016/j.neuroimage.2015.01.004_bb0200) 2006; 5 Lorente de Nó (10.1016/j.neuroimage.2015.01.004_bb0235) 1934; 46 Kerchner (10.1016/j.neuroimage.2015.01.004_bb0160) 2010; 75 Malykhin (10.1016/j.neuroimage.2015.01.004_bb0215) 2010; 49 Amaral (10.1016/j.neuroimage.2015.01.004_bb0005) 2007 Pruessner (10.1016/j.neuroimage.2015.01.004_bb0285) 2000; 10 Shrout (10.1016/j.neuroimage.2015.01.004_bb0295) 1979; 86 Bocchetta (10.1016/j.neuroimage.2015.01.004_bb0055) 2014 Insausti (10.1016/j.neuroimage.2015.01.004_bb0150) 1998; 19 Zeineh (10.1016/j.neuroimage.2015.01.004_bb0400) 2003; 299 Yassa (10.1016/j.neuroimage.2015.01.004_bb0380) 2010; 51 Teicher (10.1016/j.neuroimage.2015.01.004_bb0330) 2012; 109 Boccardi (10.1016/j.neuroimage.2015.01.004_bb0050) 2011; 26 Smith (10.1016/j.neuroimage.2015.01.004_bb0315) 2002; 17 Ekstrom (10.1016/j.neuroimage.2015.01.004_bb0095) 2009; 47 Apostolova (10.1016/j.neuroimage.2015.01.004_bb0015) 2006; 129 Wisse (10.1016/j.neuroimage.2015.01.004_bb0370) 2012; 61 Henry (10.1016/j.neuroimage.2015.01.004_bb0135) 2011; 261 Mueller (10.1016/j.neuroimage.2015.01.004_bb0225) 2007; 28 Wang (10.1016/j.neuroimage.2015.01.004_bb0340) 2006; 30 Preston (10.1016/j.neuroimage.2015.01.004_bb0270) 2010; 22 Jenkinson (10.1016/j.neuroimage.2015.01.004_bb0155) 2002; 17 Pereira (10.1016/j.neuroimage.2015.01.004_bb0255) 2013; 24 Pipitone (10.1016/j.neuroimage.2015.01.004_bb0260) 2014; 101 Pruessner (10.1016/j.neuroimage.2015.01.004_bb0280) 2002; 12 Small (10.1016/j.neuroimage.2015.01.004_bb0310) 2000; 51 Goncharova (10.1016/j.neuroimage.2015.01.004_bb0115) 2001; 22 La Joie (10.1016/j.neuroimage.2015.01.004_bb0180) 2010; 53 Boccardi (10.1016/j.neuroimage.2015.01.004_bb0040) 2014 Braak (10.1016/j.neuroimage.2015.01.004_bb0065) 1995; 16 van Strien (10.1016/j.neuroimage.2015.01.004_bb0325) 2012; 13 Kerchner (10.1016/j.neuroimage.2015.01.004_bb0165) 2012; 63 Mueller (10.1016/j.neuroimage.2015.01.004_bb0230) 2009; 19 Duvernoy (10.1016/j.neuroimage.2015.01.004_bb0090) 1998 Duvernoy (10.1016/j.neuroimage.2015.01.004_bb0085) 2005 Bonnici (10.1016/j.neuroimage.2015.01.004_bb0060) 2012; 6 Zeineh (10.1016/j.neuroimage.2015.01.004_bb0390) 2000; 11 Insausti (10.1016/j.neuroimage.2015.01.004_bb0145) 2012 Olsen (10.1016/j.neuroimage.2015.01.004_bb0245) 2013; 23 Duncan (10.1016/j.neuroimage.2015.01.004_bb0080) 2014; 34 Palombo (10.1016/j.neuroimage.2015.01.004_bb0250) 2013; 33 Moscovitch (10.1016/j.neuroimage.2015.01.004_bb0220) 2006; 16 Small (10.1016/j.neuroimage.2015.01.004_bb0305) 2011; 12 |
References_xml | – volume: 147 start-page: 362 year: 2013 end-page: 367 ident: bb0170 article-title: In vivo 7 tesla imaging of the dentate granule cell layer in schizophrenia publication-title: Schizophr. Res. – volume: 47 start-page: 42 year: 2009 end-page: 49 ident: bb0095 article-title: Advances in high-resolution imaging and computational unfolding of the human hippocampus publication-title: Neuroimage – volume: 265 start-page: 111 year: 2001 end-page: 120 ident: bb0395 article-title: Unfolding the human hippocampus with high resolution structural and functional MRI publication-title: Anat. Rec. – volume: 19 start-page: 558 year: 2009 end-page: 564 ident: bb0230 article-title: Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields publication-title: Hippocampus – volume: 155 start-page: 155 year: 2007 end-page: 165 ident: bb0210 article-title: Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail publication-title: Psychiatry Res. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0315 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 20 start-page: 667 year: 2003 end-page: 682 ident: bb0345 article-title: Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging publication-title: Neuroimage – volume: 261 start-page: 199 year: 2011 end-page: 209 ident: bb0135 article-title: Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 publication-title: Radiology – volume: 21 start-page: 461 year: 2011 end-page: 466 ident: bb0375 article-title: A medial temporal lobe division of labor: insights from memory in aging and early Alzheimer disease publication-title: Hippocampus – volume: 75 start-page: 1381 year: 2010 end-page: 1387 ident: bb0160 article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI publication-title: Neurology – volume: 36 start-page: 258 year: 2015 end-page: 287 ident: bb0385 article-title: Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment publication-title: Hum. Brain Mapp. – volume: 51 start-page: 1242 year: 2010 end-page: 1252 ident: bb0380 article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment publication-title: Neuroimage – volume: 47 start-page: 8 year: 2009 end-page: 17 ident: bb0100 article-title: Predicting the location of entorhinal cortex from MRI publication-title: Neuroimage – volume: 23 start-page: 855 year: 2013 end-page: 860 ident: bb0245 article-title: Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high-resolution magnetic resonance imaging publication-title: Hippocampus – volume: 7 start-page: 171 year: 2011 end-page: 174 ident: bb0105 article-title: Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use publication-title: Alzheimers Dement. – volume: 16 start-page: 179 year: 2006 end-page: 190 ident: bb0220 article-title: The cognitive neuroscience of remote episodic, semantic and spatial memory publication-title: Curr. Opin. Neurobiol. – volume: 51 start-page: 101 year: 2000 end-page: 108 ident: bb0310 article-title: Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging publication-title: Microsc. Res. Tech. – year: 1998 ident: bb0090 article-title: The Human Hippocampus, Functional Anatomy, Vascularization and Serial Sections With MRI – volume: 28 start-page: 719 year: 2007 end-page: 726 ident: bb0225 article-title: Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4 publication-title: Neurobiol. Aging – volume: 254 start-page: 900 year: 2010 end-page: 906 ident: bb0275 article-title: Human hippocampal subfields in young adults at 7.0 publication-title: Radiology – volume: 379 start-page: 482 year: 1997 end-page: 494 ident: bb0300 article-title: Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease publication-title: J. Comp. Neurol. – volume: 34 start-page: 11188 year: 2014 end-page: 11198 ident: bb0080 article-title: Associative encoding and retrieval are predicted by functional connectivity in distinct hippocampal area ca1 pathways publication-title: J. Neurosci. – year: 1990 ident: bb0010 article-title: The hippocampal formation publication-title: The Human Nervous System – start-page: 3034 year: 2010 ident: bb0120 publication-title: Whole-brain FLAIR Using 3D TSE With Variable Flip Angle Readouts Optimized for 7 Tesla – volume: 32 start-page: 6550 year: 2012 end-page: 6560 ident: bb0195 article-title: Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging publication-title: J. Neurosci. – volume: 22 start-page: 156 year: 2010 end-page: 173 ident: bb0270 article-title: High-resolution fmri of content-sensitive subsequent memory responses in human medial temporal lobe publication-title: J. Cogn. Neurosci. – volume: 32 start-page: 1658 year: 2011 end-page: 1661 ident: bb0125 article-title: Mild cognitive impairment: differential atrophy in the hippocampal subfields publication-title: AJNR Am. J. Neuroradiol. – volume: 28 start-page: 959 year: 2007 end-page: 966 ident: bb0175 article-title: High-resolution fMRI investigation of the medial temporal lobe publication-title: Hum. Brain Mapp. – volume: 33 start-page: 13088 year: 2013 end-page: 13093 ident: bb0250 article-title: Kibra polymorphism is associated with individual differences in hippocampal subregions: evidence from anatomical segmentation using high-resolution MRI publication-title: J. Neurosci. – volume: 46 start-page: 113 year: 1934 end-page: 177 ident: bb0235 article-title: Studies on the structure of the cerebral cortex. ii. Continuation of the study of the ammonic system publication-title: J. Psychol. Neurol. – volume: 101 start-page: 494 year: 2014 end-page: 512 ident: bb0260 article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates publication-title: Neuroimage – volume: 19 start-page: 549 year: 2009 end-page: 557 ident: bb0335 article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI publication-title: Hippocampus – volume: 74 start-page: 254 year: 2013 end-page: 265 ident: bb0365 article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3 publication-title: Neuroimage – volume: 10 start-page: 433 year: 2000 end-page: 442 ident: bb0285 article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories publication-title: Cereb. Cortex – start-page: 871 year: 2004 end-page: 914 ident: bb0140 article-title: Hippocampal formation publication-title: The Human Nervous System – volume: 29 start-page: 1 year: 2012 end-page: 15 ident: bb0265 article-title: In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI publication-title: J. Alzheimers Dis. – volume: 152 start-page: 738 year: 1995 end-page: 748 ident: bb0020 article-title: Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical–hippocampal interactions publication-title: Am. J. Psychiatry – volume: 22 start-page: 737 year: 2001 end-page: 745 ident: bb0115 article-title: MRI of human entorhinal cortex: a reliable protocol for volumetric measurement publication-title: Neurobiol. Aging – year: 2013 ident: bb0045 article-title: Operationalizing protocol differences for EADC-ADNI manual hippocampal segmentation publication-title: Alzheimers Dement. – volume: 53 start-page: 506 year: 2010 end-page: 514 ident: bb0180 article-title: Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence publication-title: Neuroimage – year: 2014 ident: bb0040 article-title: Delphi definition of the EADC-ADNI harmonized protocol for hippocampal segmentation on magnetic resonance publication-title: Alzheimers Dement. – year: 2012 ident: bb0145 article-title: Hippocampal formation publication-title: The Human Nervous System – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bb0155 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 61 start-page: 1043 year: 2012 end-page: 1049 ident: bb0370 article-title: Subfields of the hippocampal formation at 7 publication-title: Neuroimage – volume: 299 start-page: 577 year: 2003 end-page: 580 ident: bb0400 article-title: Dynamics of the hippocampus during encoding and retrieval of face-name pairs publication-title: Science – year: 2005 ident: bb0085 article-title: The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections With MRI – volume: 29 start-page: 11880 year: 2009 end-page: 11890 ident: bb0240 article-title: Performance-related sustained and anticipatory activity in human medial temporal lobe during delayed match-to-sample publication-title: J. Neurosci. – volume: 26 start-page: 61 year: 2011 end-page: 75 ident: bb0050 article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol publication-title: J. Alzheimers Dis. – volume: 109 start-page: E563 year: 2012 end-page: E572 ident: bb0330 article-title: Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 155 year: 2013 end-page: 162 ident: bb0185 article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia publication-title: NeuroImage – volume: 24 start-page: 403 year: 2013 end-page: 414 ident: bb0255 article-title: Regional vulnerability of hippocampal subfields to aging measured by structural and diffusion MRI publication-title: Hippocampus – year: 2014 ident: bb0055 article-title: Harmonized benchmark labels of the hippocampus on magnetic resonance: the EADC-ADNI project publication-title: Alzheimers Dement. – volume: 14 start-page: 227 year: 1980 end-page: 248 ident: bb0070 article-title: Euclidean distance mapping publication-title: Comput. Vision Graph – volume: 8 start-page: 710 year: 1998 end-page: 718 ident: bb0130 article-title: Variation in hippocampal neuron number with age and brain volume publication-title: Cereb. Cortex – volume: 30 start-page: 52 year: 2006 end-page: 60 ident: bb0340 article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type publication-title: Neuroimage – volume: 25 start-page: 1205 year: 2004 end-page: 1212 ident: bb0360 article-title: Hippocampal neurons in pre-clinical Alzheimer's disease publication-title: Neurobiol. Aging – volume: 12 start-page: 585 year: 2011 end-page: 601 ident: bb0305 article-title: A pathophysiological framework of hippocampal dysfunction in ageing and disease publication-title: Nat. Rev. Neurosci. – volume: 86 start-page: 420 year: 1979 end-page: 428 ident: bb0295 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. – volume: 11 start-page: 668 year: 2000 end-page: 683 ident: bb0390 article-title: Application of cortical unfolding techniques to functional MRI of the human hippocampal region publication-title: Neuroimage – volume: 16 start-page: 271 year: 1995 end-page: 278 ident: bb0065 article-title: Staging of Alzheimer's disease-related neurofibrillary changes publication-title: Neurobiol. Aging – volume: 49 start-page: 1224 year: 2010 end-page: 1230 ident: bb0215 article-title: In vivo quantification of hippocampal subfields using 4.7 publication-title: Neuroimage – volume: 67 start-page: 296 year: 2010 end-page: 303 ident: bb0350 article-title: Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder publication-title: Arch. Gen. Psychiatry – volume: 19 start-page: 659 year: 1998 end-page: 671 ident: bb0150 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: AJNR Am. J. Neuroradiol. – start-page: 345 year: 1987 end-page: 456 ident: bb0290 article-title: The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections publication-title: Cereb. Cortex – year: 2008 ident: bb0205 article-title: Atlas of the Human Brain – volume: 62 start-page: 2065 year: 2012 end-page: 2082 ident: bb0405 article-title: Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe publication-title: Neuroimage – start-page: 325 year: 1997 end-page: 589 ident: bb0110 article-title: The temporal lobe and limbic system publication-title: Chapter 5: The Hippocampal System – volume: 42 start-page: 1743 year: 1992 end-page: 1750 ident: bb0355 article-title: Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging publication-title: Neurology – volume: 63 start-page: 194 year: 2012 end-page: 202 ident: bb0165 article-title: Hippocampal ca1 apical neuropil atrophy and memory performance in Alzheimer's disease publication-title: Neuroimage – volume: 64 start-page: 32 year: 2013 end-page: 42 ident: bb0025 article-title: Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI publication-title: Neuroimage – start-page: 37 year: 2007 end-page: 114 ident: bb0005 article-title: Hippocampal Neuroanatomy – volume: 129 start-page: 2867 year: 2006 end-page: 2873 ident: bb0015 article-title: 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease publication-title: Brain – volume: 5 start-page: 531 year: 2006 end-page: 546 ident: bb0200 article-title: Stress, depression and hippocampal apoptosis publication-title: CNS Neurol. Disord. Drug Targets – volume: 319 start-page: 1640 year: 2008 end-page: 1642 ident: bb0030 article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus publication-title: Science – volume: 6 start-page: 290 year: 2012 ident: bb0060 article-title: Multi-voxel pattern analysis in human hippocampal subfields publication-title: Front. Hum. Neurosci. – volume: 27 start-page: 279 year: 2004 end-page: 306 ident: bb0320 article-title: The medial temporal lobe publication-title: Annu. Rev. Neurosci. – volume: 12 start-page: 1342 year: 2002 end-page: 1353 ident: bb0280 article-title: Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus publication-title: Cereb. Cortex – volume: 25 start-page: 1851 year: 2013 end-page: 1862 ident: bb0035 article-title: Vascular risk moderates associations between hippocampal subfield volumes and memory publication-title: J. Cogn. Neurosci. – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bb0075 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 13 start-page: 70 year: 2012 ident: bb0325 article-title: Imaging hippocampal subregions with in vivo MRI: advances and limitations publication-title: Nat. Rev. Neurosci. – volume: 44 start-page: 677 year: 2003 end-page: 687 ident: bb0190 article-title: A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories publication-title: Epilepsia – volume: 14 start-page: 227 year: 1980 ident: 10.1016/j.neuroimage.2015.01.004_bb0070 article-title: Euclidean distance mapping publication-title: Comput. Vision Graph – volume: 261 start-page: 199 year: 2011 ident: 10.1016/j.neuroimage.2015.01.004_bb0135 article-title: Hippocampal sclerosis in temporal lobe epilepsy: findings at 7T publication-title: Radiology doi: 10.1148/radiol.11101651 – volume: 25 start-page: 1851 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0035 article-title: Vascular risk moderates associations between hippocampal subfield volumes and memory publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00435 – volume: 147 start-page: 362 issue: 2-3 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0170 article-title: In vivo 7 tesla imaging of the dentate granule cell layer in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2013.04.020 – year: 1998 ident: 10.1016/j.neuroimage.2015.01.004_bb0090 – volume: 46 start-page: 113 year: 1934 ident: 10.1016/j.neuroimage.2015.01.004_bb0235 article-title: Studies on the structure of the cerebral cortex. ii. Continuation of the study of the ammonic system publication-title: J. Psychol. Neurol. – year: 2008 ident: 10.1016/j.neuroimage.2015.01.004_bb0205 – volume: 19 start-page: 659 year: 1998 ident: 10.1016/j.neuroimage.2015.01.004_bb0150 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: AJNR Am. J. Neuroradiol. – volume: 67 start-page: 296 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0350 article-title: Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2009.205 – year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0045 article-title: Operationalizing protocol differences for EADC-ADNI manual hippocampal segmentation publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2013.05.801 – year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0145 article-title: Hippocampal formation – volume: 34 start-page: 11188 year: 2014 ident: 10.1016/j.neuroimage.2015.01.004_bb0080 article-title: Associative encoding and retrieval are predicted by functional connectivity in distinct hippocampal area ca1 pathways publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0521-14.2014 – volume: 12 start-page: 585 year: 2011 ident: 10.1016/j.neuroimage.2015.01.004_bb0305 article-title: A pathophysiological framework of hippocampal dysfunction in ageing and disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3085 – volume: 27 start-page: 279 year: 2004 ident: 10.1016/j.neuroimage.2015.01.004_bb0320 article-title: The medial temporal lobe publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.27.070203.144130 – volume: 19 start-page: 558 year: 2009 ident: 10.1016/j.neuroimage.2015.01.004_bb0230 article-title: Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields publication-title: Hippocampus doi: 10.1002/hipo.20614 – volume: 61 start-page: 1043 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0370 article-title: Subfields of the hippocampal formation at 7T MRI: in vivo volumetric assessment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.023 – start-page: 37 year: 2007 ident: 10.1016/j.neuroimage.2015.01.004_bb0005 article-title: Hippocampal Neuroanatomy – volume: 44 start-page: 677 year: 2003 ident: 10.1016/j.neuroimage.2015.01.004_bb0190 article-title: A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories publication-title: Epilepsia doi: 10.1046/j.1528-1157.2003.32701.x – volume: 25 start-page: 1205 year: 2004 ident: 10.1016/j.neuroimage.2015.01.004_bb0360 article-title: Hippocampal neurons in pre-clinical Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2003.12.005 – year: 2014 ident: 10.1016/j.neuroimage.2015.01.004_bb0040 article-title: Delphi definition of the EADC-ADNI harmonized protocol for hippocampal segmentation on magnetic resonance publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2014.05.130 – volume: 13 start-page: 70 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0325 article-title: Imaging hippocampal subregions with in vivo MRI: advances and limitations publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3085-c1 – volume: 129 start-page: 2867 year: 2006 ident: 10.1016/j.neuroimage.2015.01.004_bb0015 article-title: 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awl274 – volume: 319 start-page: 1640 year: 2008 ident: 10.1016/j.neuroimage.2015.01.004_bb0030 article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus publication-title: Science doi: 10.1126/science.1152882 – volume: 47 start-page: 8 year: 2009 ident: 10.1016/j.neuroimage.2015.01.004_bb0100 article-title: Predicting the location of entorhinal cortex from MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.033 – volume: 29 start-page: 1 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0265 article-title: In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI publication-title: J. Alzheimers Dis. – volume: 32 start-page: 1658 year: 2011 ident: 10.1016/j.neuroimage.2015.01.004_bb0125 article-title: Mild cognitive impairment: differential atrophy in the hippocampal subfields publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A2589 – volume: 19 start-page: 549 year: 2009 ident: 10.1016/j.neuroimage.2015.01.004_bb0335 article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI publication-title: Hippocampus doi: 10.1002/hipo.20615 – volume: 64 start-page: 32 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0025 article-title: Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.071 – volume: 10 start-page: 433 year: 2000 ident: 10.1016/j.neuroimage.2015.01.004_bb0285 article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories publication-title: Cereb. Cortex doi: 10.1093/cercor/10.4.433 – volume: 8 start-page: 710 year: 1998 ident: 10.1016/j.neuroimage.2015.01.004_bb0130 article-title: Variation in hippocampal neuron number with age and brain volume publication-title: Cereb. Cortex doi: 10.1093/cercor/8.8.710 – volume: 75 start-page: 1381 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0160 article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI publication-title: Neurology doi: 10.1212/WNL.0b013e3181f736a1 – volume: 101 start-page: 494 year: 2014 ident: 10.1016/j.neuroimage.2015.01.004_bb0260 article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.054 – start-page: 345 year: 1987 ident: 10.1016/j.neuroimage.2015.01.004_bb0290 article-title: The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections publication-title: Cereb. Cortex doi: 10.1007/978-1-4615-6616-8_9 – volume: 62 start-page: 2065 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0405 article-title: Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.065 – volume: 26 start-page: 61 issue: Suppl. 3 year: 2011 ident: 10.1016/j.neuroimage.2015.01.004_bb0050 article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-0004 – volume: 47 start-page: 42 year: 2009 ident: 10.1016/j.neuroimage.2015.01.004_bb0095 article-title: Advances in high-resolution imaging and computational unfolding of the human hippocampus publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.03.017 – volume: 24 start-page: 403 issue: 4 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0255 article-title: Regional vulnerability of hippocampal subfields to aging measured by structural and diffusion MRI publication-title: Hippocampus doi: 10.1002/hipo.22234 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.neuroimage.2015.01.004_bb0075 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 20 start-page: 667 year: 2003 ident: 10.1016/j.neuroimage.2015.01.004_bb0345 article-title: Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00361-6 – volume: 109 start-page: E563 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0330 article-title: Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1115396109 – volume: 155 start-page: 155 year: 2007 ident: 10.1016/j.neuroimage.2015.01.004_bb0210 article-title: Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2006.11.011 – volume: 28 start-page: 719 year: 2007 ident: 10.1016/j.neuroimage.2015.01.004_bb0225 article-title: Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.03.007 – volume: 30 start-page: 52 year: 2006 ident: 10.1016/j.neuroimage.2015.01.004_bb0340 article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.017 – volume: 379 start-page: 482 year: 1997 ident: 10.1016/j.neuroimage.2015.01.004_bb0300 article-title: Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z – volume: 5 start-page: 531 year: 2006 ident: 10.1016/j.neuroimage.2015.01.004_bb0200 article-title: Stress, depression and hippocampal apoptosis publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/187152706778559273 – start-page: 325 year: 1997 ident: 10.1016/j.neuroimage.2015.01.004_bb0110 article-title: The temporal lobe and limbic system – volume: 3 start-page: 155 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0185 article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia publication-title: NeuroImage doi: 10.1016/j.nicl.2013.08.007 – volume: 265 start-page: 111 year: 2001 ident: 10.1016/j.neuroimage.2015.01.004_bb0395 article-title: Unfolding the human hippocampus with high resolution structural and functional MRI publication-title: Anat. Rec. doi: 10.1002/ar.1061 – volume: 6 start-page: 290 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0060 article-title: Multi-voxel pattern analysis in human hippocampal subfields publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00290 – volume: 74 start-page: 254 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0365 article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3t magnetic resonance imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.003 – volume: 22 start-page: 737 year: 2001 ident: 10.1016/j.neuroimage.2015.01.004_bb0115 article-title: MRI of human entorhinal cortex: a reliable protocol for volumetric measurement publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(01)00270-6 – volume: 53 start-page: 506 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0180 article-title: Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.024 – year: 1990 ident: 10.1016/j.neuroimage.2015.01.004_bb0010 article-title: The hippocampal formation – volume: 33 start-page: 13088 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0250 article-title: Kibra polymorphism is associated with individual differences in hippocampal subregions: evidence from anatomical segmentation using high-resolution MRI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1406-13.2013 – volume: 36 start-page: 258 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2015.01.004_bb0385 article-title: Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22627 – volume: 16 start-page: 179 year: 2006 ident: 10.1016/j.neuroimage.2015.01.004_bb0220 article-title: The cognitive neuroscience of remote episodic, semantic and spatial memory publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2006.03.013 – start-page: 871 year: 2004 ident: 10.1016/j.neuroimage.2015.01.004_bb0140 article-title: Hippocampal formation – volume: 254 start-page: 900 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0275 article-title: Human hippocampal subfields in young adults at 7.0T: feasibility of imaging publication-title: Radiology doi: 10.1148/radiol.09090897 – volume: 23 start-page: 855 issue: 10 year: 2013 ident: 10.1016/j.neuroimage.2015.01.004_bb0245 article-title: Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high-resolution magnetic resonance imaging publication-title: Hippocampus doi: 10.1002/hipo.22153 – volume: 22 start-page: 156 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0270 article-title: High-resolution fmri of content-sensitive subsequent memory responses in human medial temporal lobe publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2009.21195 – year: 2014 ident: 10.1016/j.neuroimage.2015.01.004_bb0055 article-title: Harmonized benchmark labels of the hippocampus on magnetic resonance: the EADC-ADNI project publication-title: Alzheimers Dement. – volume: 29 start-page: 11880 year: 2009 ident: 10.1016/j.neuroimage.2015.01.004_bb0240 article-title: Performance-related sustained and anticipatory activity in human medial temporal lobe during delayed match-to-sample publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2245-09.2009 – volume: 7 start-page: 171 year: 2011 ident: 10.1016/j.neuroimage.2015.01.004_bb0105 article-title: Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2010.06.007 – year: 2005 ident: 10.1016/j.neuroimage.2015.01.004_bb0085 – volume: 299 start-page: 577 year: 2003 ident: 10.1016/j.neuroimage.2015.01.004_bb0400 article-title: Dynamics of the hippocampus during encoding and retrieval of face-name pairs publication-title: Science doi: 10.1126/science.1077775 – volume: 63 start-page: 194 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0165 article-title: Hippocampal ca1 apical neuropil atrophy and memory performance in Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.048 – volume: 86 start-page: 420 year: 1979 ident: 10.1016/j.neuroimage.2015.01.004_bb0295 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – volume: 152 start-page: 738 year: 1995 ident: 10.1016/j.neuroimage.2015.01.004_bb0020 article-title: Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical–hippocampal interactions publication-title: Am. J. Psychiatry doi: 10.1176/ajp.152.5.738 – volume: 42 start-page: 1743 year: 1992 ident: 10.1016/j.neuroimage.2015.01.004_bb0355 article-title: Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging publication-title: Neurology doi: 10.1212/WNL.42.9.1743 – volume: 28 start-page: 959 year: 2007 ident: 10.1016/j.neuroimage.2015.01.004_bb0175 article-title: High-resolution fMRI investigation of the medial temporal lobe publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20331 – volume: 16 start-page: 271 year: 1995 ident: 10.1016/j.neuroimage.2015.01.004_bb0065 article-title: Staging of Alzheimer's disease-related neurofibrillary changes publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(95)00021-6 – volume: 49 start-page: 1224 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0215 article-title: In vivo quantification of hippocampal subfields using 4.7T fast spin echo imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.042 – volume: 12 start-page: 1342 year: 2002 ident: 10.1016/j.neuroimage.2015.01.004_bb0280 article-title: Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus publication-title: Cereb. Cortex doi: 10.1093/cercor/12.12.1342 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2015.01.004_bb0315 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 11 start-page: 668 year: 2000 ident: 10.1016/j.neuroimage.2015.01.004_bb0390 article-title: Application of cortical unfolding techniques to functional MRI of the human hippocampal region publication-title: Neuroimage doi: 10.1006/nimg.2000.0561 – volume: 32 start-page: 6550 year: 2012 ident: 10.1016/j.neuroimage.2015.01.004_bb0195 article-title: Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3711-11.2012 – volume: 51 start-page: 101 year: 2000 ident: 10.1016/j.neuroimage.2015.01.004_bb0310 article-title: Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging publication-title: Microsc. Res. Tech. doi: 10.1002/1097-0029(20001001)51:1<101::AID-JEMT11>3.0.CO;2-H – volume: 21 start-page: 461 year: 2011 ident: 10.1016/j.neuroimage.2015.01.004_bb0375 article-title: A medial temporal lobe division of labor: insights from memory in aging and early Alzheimer disease publication-title: Hippocampus doi: 10.1002/hipo.20779 – start-page: 3034 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0120 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2015.01.004_bb0155 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 51 start-page: 1242 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2015.01.004_bb0380 article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.040 |
SSID | ssj0009148 |
Score | 2.583837 |
Snippet | An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the... Objective An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 526 |
SubjectTerms | Adult Biomedical materials Boundaries Brain research CA1 CA2 CA3 Clinical Protocols - standards Dentate gyrus Entorhinal cortex Hippocampal subfields Hippocampus Hippocampus - anatomy & histology Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Labels Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Manuals Marking Medial temporal lobe Parahippocampal gyrus Parahippocampal Gyrus - anatomy & histology Perirhinal cortex Segmentation Subiculum Substructures Surgical implants Unified protocol |
Title | Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915000075 https://www.ncbi.nlm.nih.gov/pubmed/25596463 https://www.proquest.com/docview/1674482611 https://www.proquest.com/docview/1671211389 https://www.proquest.com/docview/1701483317 https://www.proquest.com/docview/1730073889 https://pubmed.ncbi.nlm.nih.gov/PMC4387011 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgkxAviG8KYzISrxFJ7fiDFzSmTQPRaVSb1DfLsVMWtCWFtHvg7-EP5c5xUjZQNalqH3xulNz57hf77neEvLWpVhxeJRIurIYvz5Mi5WUCoV35QgopLdYOT47F0Rn_PMtnccOtjWmVvU8Mjto3DvfI32G2PAcsnGUfFj8S7BqFp6uxhcZdsh2oy8Ce5UyuSXcz3pXC5SxRIBAzebr8rsAXWV3CqsUEr468M7Zr-094-hd-3syi_CssHT4kDyKepHudATwid8r6Mbk3iSfmT8jvrytbh0IycGvUDV0HaTOn44wiTUMDttBSAK8ULCKUp9PzarGAIAfCF7RdFSHNraW29hSpwm-MYm8HsF1a1fi5qq4aOpl-ek9PQ0YuTKNIjw2-41fpaVt-u4zlTvVw9afk7PDgdP8oiZ0ZEidyuUy8HqdCIU-PysqUSa1SK6xz2mdMuLEUYo608QBPrHVMiSK3cwnaK-3YAgKcs2dkq27q8gWhlqFMAUBEca5Zqryeu1wDrtNcOO9HRPYKMS7SlmP3jAvT56d9N2tVGlSlSTMDqhyRbJi56Kg7bjFH9zo3fWkqOFMD8eUWc3d6IzHREbRmbbYj8mYYhiWM5zK2LptVkEGiPYCOG2Qkbv0yQHubZBgevCr8n-edbQ43jm-OggsGj_Oa1Q4CSDN-faSuzgPdOGfg07Ps5ebbe0Xu47PockF3yNby56p8DXhtWeyGRblLtvf2p19O4PfjwfHJ9A8ZrUaW |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8KA4wEjxFJ7DoxEkIDNrVsrWDqpL0Zx3ZY0JYU0g7B37Nn_kbu8lU2ULWXSVVffE6U3PnuHP_ud4Q8176MOWwlPC60hD_LvcTnzoPQHtskElGksXZ4PBHDff7hYHCwRn63tTAIq2x9YuWobWHwG_lLRMtzyIWD4M3sm4ddo_B0tW2hUZvFjvv5A7Zs5evRe9DvizDc3pq-G3pNVwHPiEE096wMfREjx0wcOJ9FMva10MZIGzBhwkiIFCnPIbRqbVgskoFOI7iz06GG7CVlcN0rZJ1jRWuPrL_dmnzcW9L8BrwuvhswD-4hG-xQjSirGCqzY_ATCCmr6UKbBnH_CYj_JrzncZt_BcLtm-RGk8HSzdrkbpE1l98mV8fNGf0dcvppofOqdA0cKTVdn0NapDQMKBJDFGB9JYV0mYINVgXx9DCbzSCsgvARLRdJBawrqc4tRXLyc6PYTQJWC81y_J1kJwUd741e0WmFAYZpFAm5wVv9cpaW7stxU2CVd3e_S_YvRWv3SC8vcveAUM1QJoHUJ-ZcMj-2MjUDCZmk5MJY2ydRqxBlGqJ07NdxpFpE3Fe1VKVCVSo_UKDKPgm6mbOaLOQCc2Src9UWw4L7VhDRLjB3ozUS1bieUi0XSp8864bBaeBJkM5dsahkkNoPktUVMhF-bGaQX66SYXjUG-N17te22T047lUFFwxe5xmr7QSQ2PzsSJ4dVgTnnEEUCYKHqx_vKbk2nI531e5osvOIXMf3UiNRN0hv_n3hHkO2OE-eNEuUks-X7RX-AERPf6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkSpeEPcuFDASPEaNY68dIyGEKKsuZStArbRvxnEcGtQmC9ktgu_hK_g6ZnJbWtCqL5VW-5JxbjOeOY5nzhDy1IY6FrCUCIS0Gv5SESSh8AGE9jhNlFTKYu3wZF_uHoq30-F0jfzuamEwrbLzibWjTkuH38i3MVteABZmbDtr0yLe74xezr4G2EEKd1q7dhqNiez5H99h-Va9GO-Arp9F0ejNwevdoO0wEDg5VPMg1VEoY-SbiZkPudJxaKV1TqeMSxcpKTOkP4cwa63jsUyGNlNwF95GFpBMxuG8V8hVxQFVwVxSU7Uk_GWiKcMb8gCuoNssoia3rOaqzE_AY2ByWUMc2raK-09o_Bf6ns_g_Cskjm6Q6y2Wpa8a47tJ1nxxi2xM2t362-TXh4Ut6iI2cKnU9R0PaZnRiFGkiCjBDisKwJmCNdal8fQon80gwILwMa0WSZ1iV1FbpBRpys8dxb4SMG9oXuDvND8t6eTj-Dk9qLOBYRhFam7wWz99Siv_-aQttSr6q98hh5eis7tkvSgLv0mo5SiTAAiKhdA8jFOduaEGTKmFdGk6IKpTiHEtZTp27jg2XW7cF7NUpUFVmpAZUOWAsH7krKENucAY3encdGWx4MgNxLYLjN3qjMS0TqgyyykzIE_6w-A-cE_IFr5c1DJI8gewdYWMws_OHJDmKhmOm74xnudeY5v9g-OqVQrJ4XWesdpeACnOzx4p8qOa6lxwiCeM3V_9eI_JBvgC8268v_eAXMPX0qSkbpH1-beFfwiwcZ48qucnJZ8u2yH8AXoCgm8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+comparison+of+21+protocols+for+labeling+hippocampal+subfields+and+parahippocampal+subregions+in+in+vivo+MRI%3A+Towards+a+harmonized+segmentation+protocol&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yushkevich%2C+Paul+A.&rft.au=Amaral%2C+Robert+S.C.&rft.au=Augustinack%2C+Jean+C.&rft.au=Bender%2C+Andrew+R.&rft.date=2015-05-01&rft.issn=1053-8119&rft.volume=111&rft.spage=526&rft.epage=541&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2015_01_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |