Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol

An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1−3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal,...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 111; pp. 526 - 541
Main Authors Yushkevich, Paul A., Amaral, Robert S.C., Augustinack, Jean C., Bender, Andrew R., Bernstein, Jeffrey D., Boccardi, Marina, Bocchetta, Martina, Burggren, Alison C., Carr, Valerie A., Chakravarty, M. Mallar, Chételat, Gaël, Daugherty, Ana M., Davachi, Lila, Ding, Song-Lin, Ekstrom, Arne, Geerlings, Mirjam I., Hassan, Abdul, Huang, Yushan, Iglesias, J. Eugenio, La Joie, Renaud, Kerchner, Geoffrey A., LaRocque, Karen F., Libby, Laura A., Malykhin, Nikolai, Mueller, Susanne G., Olsen, Rosanna K., Palombo, Daniela J., Parekh, Mansi B., Pluta, John B., Preston, Alison R., Pruessner, Jens C., Ranganath, Charan, Raz, Naftali, Schlichting, Margaret L., Schoemaker, Dorothee, Singh, Sachi, Stark, Craig E.L., Suthana, Nanthia, Tompary, Alexa, Turowski, Marta M., Van Leemput, Koen, Wagner, Anthony D., Wang, Lei, Winterburn, Julie L., Wisse, Laura E.M., Yassa, Michael A., Zeineh, Michael M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2015.01.004

Cover

Abstract An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1−3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. MRI scans of a single healthy adult human subject were acquired both at 3T and 7T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. •We compare 21 manual protocols for labeling hippocampal and parahippocampal subfields.•21 research groups applied their own manual segmentation protocol to the same anatomy.•Fuzzy similarity metrics used to quantify disagreement between protocols•Greatest disagreement is along the CA1/subiculum boundary, anterior hippocampus.•We propose a strategy for developing a harmonized segmentation protocol.
AbstractList An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1−3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. MRI scans of a single healthy adult human subject were acquired both at 3T and 7T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. •We compare 21 manual protocols for labeling hippocampal and parahippocampal subfields.•21 research groups applied their own manual segmentation protocol to the same anatomy.•Fuzzy similarity metrics used to quantify disagreement between protocols•Greatest disagreement is along the CA1/subiculum boundary, anterior hippocampus.•We propose a strategy for developing a harmonized segmentation protocol.
Objective An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. Method MRI scans of a single healthy adult human subject were acquired both at 3T and 7T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. Results The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. Conclusions The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.
An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.
An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol.OBJECTIVEAn increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol.MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement.METHODMRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement.The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail.RESULTSThe differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail.The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.CONCLUSIONSThe combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.
Author Pluta, John B.
Schoemaker, Dorothee
Hassan, Abdul
Preston, Alison R.
Augustinack, Jean C.
Yassa, Michael A.
Wisse, Laura E.M.
Ranganath, Charan
Raz, Naftali
Van Leemput, Koen
Bocchetta, Martina
Schlichting, Margaret L.
Amaral, Robert S.C.
Bernstein, Jeffrey D.
Zeineh, Michael M.
Boccardi, Marina
Ding, Song-Lin
Iglesias, J. Eugenio
Yushkevich, Paul A.
Davachi, Lila
Chételat, Gaël
Geerlings, Mirjam I.
Chakravarty, M. Mallar
Palombo, Daniela J.
LaRocque, Karen F.
Mueller, Susanne G.
Kerchner, Geoffrey A.
Pruessner, Jens C.
Parekh, Mansi B.
Stark, Craig E.L.
Singh, Sachi
Ekstrom, Arne
Carr, Valerie A.
Wagner, Anthony D.
La Joie, Renaud
Burggren, Alison C.
Tompary, Alexa
Libby, Laura A.
Turowski, Marta M.
Huang, Yushan
Olsen, Rosanna K.
Wang, Lei
Suthana, Nanthia
Daugherty, Ana M.
Bender, Andrew R.
Malykhin, Nikolai
Winterburn, Julie L.
AuthorAffiliation z VA Boston Healthcare System
u Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastian, Spain
ae Department of Neuroscience, The University of Texas at Austin
j Department of Psychology, Stanford University
af McGill Centre for Studies in Aging, Faculty of Medicine, McGill University
k Departments of Psychiatry and Biomedical Engineering, McGill University
aa Department of Radiology, Stanford University
am Department of Radiology, Northwestern University Feinberg School of Medicine
t Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
y Rotman Research Institute, Baycrest
ak Department of Applied Mathematics and Computer Science, Technical University of Denmark
n Department of Pyschology, New York University
c A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital
f Stanford Center for Memory Disorders
ah Department of Psychiatry and Behavioral Sciences, Northwestern Univer
AuthorAffiliation_xml – name: g LENITEM (Lboratory of Epidemiology, Neuroimaging and Telemedicine) - IRCCS Centro S. Giovanni di Dio - Fatebenefratelli
– name: t Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
– name: x Center for Imaging of Neurodegenerative Diseases, VAMC San Francisco
– name: aj Department of Neurosurgery, University of California, Los Angeles
– name: ak Department of Applied Mathematics and Computer Science, Technical University of Denmark
– name: aa Department of Radiology, Stanford University
– name: ac Department of Psychology, The University of Texas at Austin
– name: h Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
– name: i Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
– name: o Center for Neural Science
– name: k Departments of Psychiatry and Biomedical Engineering, McGill University
– name: m Psychology Department, Wayne State University
– name: af McGill Centre for Studies in Aging, Faculty of Medicine, McGill University
– name: r Department of Psychology, University of California, Davis
– name: ah Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine
– name: a Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania
– name: w Department of Radiology, University of California, San Francisco
– name: ae Department of Neuroscience, The University of Texas at Austin
– name: c A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital
– name: al Neurosciences Program, Stanford University
– name: b Cerebral Imaging Centre, Doulgas Mental Health University Insitute, McGill University
– name: v Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
– name: n Department of Pyschology, New York University
– name: ai Department of Neurobiology and Behavior, University of California, Irvine
– name: am Department of Radiology, Northwestern University Feinberg School of Medicine
– name: q Center for Neuroscience, University of California, Davis
– name: ab Department of Biostatistics, University of Pennsylvania
– name: j Department of Psychology, Stanford University
– name: d Institute of Gerontology, Wayne State University
– name: f Stanford Center for Memory Disorders
– name: l INSERM U1077, Universitè de Caen Basse-Normandie UMR-S1077, Ecole Pratique des Hautes Etudes, UMR-S1077, CHU de Caen U1077; Caen, France
– name: ag Department of Psychology, McGill University
– name: ad Center for Learning and Memory, The University of Texas at Austin
– name: y Rotman Research Institute, Baycrest
– name: e Department of Neurology and Neurological Sciences, Stanford University School of Medicine
– name: s Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht
– name: u Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastian, Spain
– name: p Allen Institute for Brain Science
– name: z VA Boston Healthcare System
Author_xml – sequence: 1
  givenname: Paul A.
  orcidid: 0000-0001-8543-4016
  surname: Yushkevich
  fullname: Yushkevich, Paul A.
  email: pauly2@upenn.edu
  organization: Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA
– sequence: 2
  givenname: Robert S.C.
  surname: Amaral
  fullname: Amaral, Robert S.C.
  organization: Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Canada
– sequence: 3
  givenname: Jean C.
  surname: Augustinack
  fullname: Augustinack, Jean C.
  organization: A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, USA
– sequence: 4
  givenname: Andrew R.
  surname: Bender
  fullname: Bender, Andrew R.
  organization: Institute of Gerontology, Wayne State University, USA
– sequence: 5
  givenname: Jeffrey D.
  surname: Bernstein
  fullname: Bernstein, Jeffrey D.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, USA
– sequence: 6
  givenname: Marina
  surname: Boccardi
  fullname: Boccardi, Marina
  organization: LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Italy
– sequence: 7
  givenname: Martina
  surname: Bocchetta
  fullname: Bocchetta, Martina
  organization: LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Italy
– sequence: 8
  givenname: Alison C.
  surname: Burggren
  fullname: Burggren, Alison C.
  organization: Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
– sequence: 9
  givenname: Valerie A.
  surname: Carr
  fullname: Carr, Valerie A.
  organization: Department of Psychology, Stanford University, USA
– sequence: 10
  givenname: M. Mallar
  surname: Chakravarty
  fullname: Chakravarty, M. Mallar
  organization: Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Canada
– sequence: 11
  givenname: Gaël
  surname: Chételat
  fullname: Chételat, Gaël
  organization: INSERM U1077, Universitè de Caen Basse-Normandie, UMR-S1077, Ecole Pratique des Hautes Etudes, CHU de Caen, U1077, Caen, France
– sequence: 12
  givenname: Ana M.
  surname: Daugherty
  fullname: Daugherty, Ana M.
  organization: Institute of Gerontology, Wayne State University, USA
– sequence: 13
  givenname: Lila
  surname: Davachi
  fullname: Davachi, Lila
  organization: Department of Psychology, New York University, USA
– sequence: 14
  givenname: Song-Lin
  surname: Ding
  fullname: Ding, Song-Lin
  organization: Allen Institute for Brain Science, USA
– sequence: 15
  givenname: Arne
  surname: Ekstrom
  fullname: Ekstrom, Arne
  organization: Center for Neuroscience, University of California, Davis, USA
– sequence: 16
  givenname: Mirjam I.
  surname: Geerlings
  fullname: Geerlings, Mirjam I.
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands
– sequence: 17
  givenname: Abdul
  surname: Hassan
  fullname: Hassan, Abdul
  organization: Center for Neuroscience, University of California, Davis, USA
– sequence: 18
  givenname: Yushan
  surname: Huang
  fullname: Huang, Yushan
  organization: Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
– sequence: 19
  givenname: J. Eugenio
  surname: Iglesias
  fullname: Iglesias, J. Eugenio
  organization: A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, USA
– sequence: 20
  givenname: Renaud
  surname: La Joie
  fullname: La Joie, Renaud
  organization: INSERM U1077, Universitè de Caen Basse-Normandie, UMR-S1077, Ecole Pratique des Hautes Etudes, CHU de Caen, U1077, Caen, France
– sequence: 21
  givenname: Geoffrey A.
  surname: Kerchner
  fullname: Kerchner, Geoffrey A.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, USA
– sequence: 22
  givenname: Karen F.
  orcidid: 0000-0002-6058-2706
  surname: LaRocque
  fullname: LaRocque, Karen F.
  organization: Department of Psychology, Stanford University, USA
– sequence: 23
  givenname: Laura A.
  orcidid: 0000-0003-1484-4573
  surname: Libby
  fullname: Libby, Laura A.
  organization: Center for Neuroscience, University of California, Davis, USA
– sequence: 24
  givenname: Nikolai
  surname: Malykhin
  fullname: Malykhin, Nikolai
  organization: Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
– sequence: 25
  givenname: Susanne G.
  surname: Mueller
  fullname: Mueller, Susanne G.
  organization: Department of Radiology, University of California, San Francisco, USA
– sequence: 26
  givenname: Rosanna K.
  surname: Olsen
  fullname: Olsen, Rosanna K.
  organization: Rotman Research Institute, Baycrest, Canada
– sequence: 27
  givenname: Daniela J.
  surname: Palombo
  fullname: Palombo, Daniela J.
  organization: VA Boston Healthcare System, USA
– sequence: 28
  givenname: Mansi B.
  surname: Parekh
  fullname: Parekh, Mansi B.
  organization: Department of Radiology, Stanford University, USA
– sequence: 29
  givenname: John B.
  surname: Pluta
  fullname: Pluta, John B.
  organization: Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA
– sequence: 30
  givenname: Alison R.
  surname: Preston
  fullname: Preston, Alison R.
  organization: Department of Psychology, The University of Texas at Austin, USA
– sequence: 31
  givenname: Jens C.
  surname: Pruessner
  fullname: Pruessner, Jens C.
  organization: McGill Centre for Studies in Aging, Faculty of Medicine, McGill University, Canada
– sequence: 32
  givenname: Charan
  surname: Ranganath
  fullname: Ranganath, Charan
  organization: Center for Neuroscience, University of California, Davis, USA
– sequence: 33
  givenname: Naftali
  surname: Raz
  fullname: Raz, Naftali
  organization: Institute of Gerontology, Wayne State University, USA
– sequence: 34
  givenname: Margaret L.
  surname: Schlichting
  fullname: Schlichting, Margaret L.
  organization: Department of Psychology, The University of Texas at Austin, USA
– sequence: 35
  givenname: Dorothee
  surname: Schoemaker
  fullname: Schoemaker, Dorothee
  organization: McGill Centre for Studies in Aging, Faculty of Medicine, McGill University, Canada
– sequence: 36
  givenname: Sachi
  surname: Singh
  fullname: Singh, Sachi
  organization: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA
– sequence: 37
  givenname: Craig E.L.
  surname: Stark
  fullname: Stark, Craig E.L.
  organization: Department of Neurobiology and Behavior, University of California, Irvine, USA
– sequence: 38
  givenname: Nanthia
  surname: Suthana
  fullname: Suthana, Nanthia
  organization: Department of Neurosurgery, University of California, Los Angeles, USA
– sequence: 39
  givenname: Alexa
  surname: Tompary
  fullname: Tompary, Alexa
  organization: Department of Psychology, New York University, USA
– sequence: 40
  givenname: Marta M.
  surname: Turowski
  fullname: Turowski, Marta M.
  organization: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA
– sequence: 41
  givenname: Koen
  orcidid: 0000-0001-6466-5309
  surname: Van Leemput
  fullname: Van Leemput, Koen
  organization: A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, USA
– sequence: 42
  givenname: Anthony D.
  orcidid: 0000-0003-0624-4543
  surname: Wagner
  fullname: Wagner, Anthony D.
  organization: Department of Psychology, Stanford University, USA
– sequence: 43
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA
– sequence: 44
  givenname: Julie L.
  surname: Winterburn
  fullname: Winterburn, Julie L.
  organization: Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Canada
– sequence: 45
  givenname: Laura E.M.
  surname: Wisse
  fullname: Wisse, Laura E.M.
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands
– sequence: 46
  givenname: Michael A.
  surname: Yassa
  fullname: Yassa, Michael A.
  organization: Department of Neurobiology and Behavior, University of California, Irvine, USA
– sequence: 47
  givenname: Michael M.
  surname: Zeineh
  fullname: Zeineh, Michael M.
  organization: Department of Radiology, Stanford University, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25596463$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1v1DAQjFAR_YC_gCzxwssd6zixEx4QVQVtpSIEKs_WnuPc-XDsYCeHyu_hh-L0ehTupZUs2ZJnZnd25zg7cN7pLCMU5hQof7OeOz0Gbzpc6nkOtJwDnQMUT7IjCnU5q0uRH0zvks0qSuvD7DjGNQDUtKieZYd5Wda84Owo-_1lRDeYAQez0UT5rsdgonfEtySnpA9-8MrbSFofiMWFtsYtycr0vVeYwJbEcdEabZtI0DUk0XHvN-il8S4S46azMRtPPn29fEuu_U8ME42sMHTemV-6IVEvO-2mdlIPu-rPs6ct2qhf3N0n2bePH67PLmZXn88vz06vZoqXYpg1dQ482S1FRTUwUVeAHJWqG8q4ygXnrSihAFEgKlbxRYmtKKpcY44F5S07yd5tdftx0elGpUYCWtmHNOhwIz0a-f-PMyu59BtZsEoApUng9Z1A8D9GHQfZmai0tei0H6OkggEIVlX1I6CQdsVYojwI5YLmqfqt6qs96NqPwaWhTagimeW3bb781-dfg7tY3A9CBR9j0K1UZruTZNtYSUFOOZRreZ9DOeVQApUph0mg2hPY1XgE9f2WqtOmN0YHqVLmjEL7Xd_IxpuHJf4AnFUAXA
CitedBy_id crossref_primary_10_1016_j_dcn_2018_03_009
crossref_primary_10_1002_hbm_24464
crossref_primary_10_1038_s41467_024_49823_8
crossref_primary_10_1007_s11682_024_00952_0
crossref_primary_10_1007_s11682_017_9819_3
crossref_primary_10_1371_journal_pone_0270339
crossref_primary_10_3171_2015_9_FOCUS15326
crossref_primary_10_1016_j_neuroimage_2020_116932
crossref_primary_10_3389_fnagi_2023_1284619
crossref_primary_10_1016_j_neuropsychologia_2017_12_014
crossref_primary_10_1016_j_biopsych_2018_08_021
crossref_primary_10_7554_eLife_77945
crossref_primary_10_1002_jmri_25447
crossref_primary_10_1016_j_cortex_2020_02_022
crossref_primary_10_1016_j_neuroimage_2017_11_054
crossref_primary_10_3389_fnana_2023_1114757
crossref_primary_10_1016_j_neuroimage_2017_09_016
crossref_primary_10_1016_j_nicl_2017_12_036
crossref_primary_10_1093_braincomms_fcad309
crossref_primary_10_1002_hbm_22825
crossref_primary_10_1016_j_media_2017_09_006
crossref_primary_10_1016_j_neuroimage_2016_09_070
crossref_primary_10_1097_PRS_0000000000010526
crossref_primary_10_1111_ane_12926
crossref_primary_10_1016_j_neurobiolaging_2021_03_018
crossref_primary_10_7554_eLife_87634
crossref_primary_10_1016_j_eplepsyres_2020_106279
crossref_primary_10_1016_j_tins_2021_06_005
crossref_primary_10_3174_ajnr_A7244
crossref_primary_10_1002_hipo_23097
crossref_primary_10_1016_j_nlm_2018_03_006
crossref_primary_10_1002_hipo_22681
crossref_primary_10_1016_j_nicl_2018_10_021
crossref_primary_10_1016_j_jalz_2016_12_009
crossref_primary_10_1016_j_neuroimage_2017_03_047
crossref_primary_10_1016_j_nicl_2019_101860
crossref_primary_10_1038_nrn_2015_24
crossref_primary_10_1186_s13024_019_0325_5
crossref_primary_10_1007_s10072_020_04653_6
crossref_primary_10_1016_j_neurobiolaging_2020_01_011
crossref_primary_10_1016_j_ynstr_2022_100469
crossref_primary_10_3389_fendo_2023_1265470
crossref_primary_10_1162_jocn_a_01385
crossref_primary_10_7554_eLife_88404_4
crossref_primary_10_1002_jnr_24831
crossref_primary_10_1016_j_cortex_2015_09_002
crossref_primary_10_1016_j_neuropsychologia_2017_04_036
crossref_primary_10_1002_hbm_22859
crossref_primary_10_1002_hbm_23948
crossref_primary_10_3389_fnagi_2017_00038
crossref_primary_10_1016_j_bpsgos_2024_100414
crossref_primary_10_1016_j_neuroimage_2018_03_009
crossref_primary_10_1016_j_neuroimage_2021_118011
crossref_primary_10_3233_JAD_160944
crossref_primary_10_1016_j_jpsychires_2018_08_012
crossref_primary_10_1016_j_neuroimage_2017_06_008
crossref_primary_10_1080_14737175_2021_1956904
crossref_primary_10_3389_fncir_2022_876789
crossref_primary_10_1523_ENEURO_0290_19_2020
crossref_primary_10_1002_hipo_22554
crossref_primary_10_1016_j_ynstr_2022_100456
crossref_primary_10_1016_j_neuroimage_2022_119656
crossref_primary_10_1038_s41598_022_05287_8
crossref_primary_10_1212_WNL_0000000000009362
crossref_primary_10_1002_hipo_22671
crossref_primary_10_1016_j_nicl_2021_102655
crossref_primary_10_3233_JAD_240483
crossref_primary_10_3897_rio_2_e8816
crossref_primary_10_1002_npr2_12031
crossref_primary_10_1002_hipo_23637
crossref_primary_10_1038_s41598_024_59440_6
crossref_primary_10_1111_desc_12344
crossref_primary_10_1038_s41598_021_81362_w
crossref_primary_10_1038_s41598_020_73328_1
crossref_primary_10_1093_geronb_gbx181
crossref_primary_10_1016_j_brainres_2019_146591
crossref_primary_10_1523_JNEUROSCI_3225_16_2017
crossref_primary_10_1016_j_jpsychires_2019_02_008
crossref_primary_10_1002_jnr_70028
crossref_primary_10_1038_s41592_024_02237_2
crossref_primary_10_1002_hbm_26715
crossref_primary_10_1002_dev_22333
crossref_primary_10_1093_cercor_bhy211
crossref_primary_10_1016_j_neuroimage_2019_116328
crossref_primary_10_1038_s41380_020_0853_y
crossref_primary_10_1016_j_neuron_2018_01_039
crossref_primary_10_1016_j_neuroimage_2016_11_031
crossref_primary_10_1161_STROKEAHA_120_031743
crossref_primary_10_2139_ssrn_3155768
crossref_primary_10_1016_j_jneumeth_2024_110359
crossref_primary_10_1093_cercor_bhw154
crossref_primary_10_1038_s41598_019_49970_9
crossref_primary_10_1016_j_nicl_2020_102182
crossref_primary_10_1016_j_neuroimage_2020_116563
crossref_primary_10_7554_eLife_88404
crossref_primary_10_1002_alz_14161
crossref_primary_10_3233_JAD_179920
crossref_primary_10_3389_fnagi_2017_00306
crossref_primary_10_1002_hbm_25858
crossref_primary_10_1016_j_neurobiolaging_2023_06_003
crossref_primary_10_1002_hbm_23559
crossref_primary_10_1038_s41467_021_26560_w
crossref_primary_10_1093_cercor_bhy244
crossref_primary_10_1002_hipo_23571
crossref_primary_10_1002_hipo_23330
crossref_primary_10_1002_cne_24212
crossref_primary_10_1002_hipo_23217
crossref_primary_10_1002_jmri_29514
crossref_primary_10_1111_jon_12973
crossref_primary_10_1007_s10334_016_0573_0
crossref_primary_10_1177_2398212817701448
crossref_primary_10_1016_j_neuroimage_2024_120767
crossref_primary_10_1093_arclin_acy066
crossref_primary_10_1016_j_media_2020_101850
crossref_primary_10_1016_j_neuroimage_2019_116348
crossref_primary_10_1002_hipo_22598
crossref_primary_10_1093_cercor_bhw299
crossref_primary_10_1007_s12264_017_0186_2
crossref_primary_10_1016_j_neuroimage_2022_119616
crossref_primary_10_1016_j_neuroimage_2019_01_061
crossref_primary_10_1016_j_neurobiolaging_2022_05_003
crossref_primary_10_3389_fninf_2023_1130845
crossref_primary_10_1016_j_neuroimage_2021_117931
crossref_primary_10_1038_s41593_020_00711_6
crossref_primary_10_1016_j_neuroimage_2016_10_027
crossref_primary_10_1016_j_neuropsychologia_2020_107623
crossref_primary_10_1016_j_cobeha_2020_01_017
crossref_primary_10_1016_j_nicl_2017_05_022
crossref_primary_10_1162_jocn_a_01919
crossref_primary_10_1002_hipo_23592
crossref_primary_10_1002_hbm_23891
crossref_primary_10_3389_fneur_2021_674275
crossref_primary_10_1002_hbm_23090
crossref_primary_10_1002_aur_3170
crossref_primary_10_1038_s41398_023_02719_5
crossref_primary_10_1016_j_neuroimage_2019_01_051
crossref_primary_10_1016_j_neurobiolaging_2018_10_013
crossref_primary_10_1002_hipo_22818
crossref_primary_10_1016_j_dadm_2019_04_001
crossref_primary_10_1016_j_neuropsychologia_2018_12_015
crossref_primary_10_1016_j_neuroscience_2015_08_033
crossref_primary_10_1016_j_neurobiolaging_2020_03_006
crossref_primary_10_1016_j_neurobiolaging_2017_04_025
crossref_primary_10_7554_eLife_70119
crossref_primary_10_1002_hipo_23582
crossref_primary_10_1152_jn_00149_2015
crossref_primary_10_3389_fbioe_2022_754344
crossref_primary_10_1002_hbm_24607
crossref_primary_10_1016_j_bbr_2019_02_019
crossref_primary_10_1016_j_neuroimage_2017_04_035
crossref_primary_10_1002_hbm_25139
crossref_primary_10_1002_hipo_22809
crossref_primary_10_1101_lm_053628_122
crossref_primary_10_3389_fnagi_2023_1212197
crossref_primary_10_1016_j_dcn_2021_100947
crossref_primary_10_1073_pnas_1801093115
crossref_primary_10_1073_pnas_1603312113
crossref_primary_10_1002_hipo_23133
crossref_primary_10_1093_cercor_bhz252
crossref_primary_10_1111_joa_14167
crossref_primary_10_1002_hipo_22717
crossref_primary_10_1016_j_dcn_2022_101085
crossref_primary_10_1016_j_neurobiolaging_2018_09_021
crossref_primary_10_1523_ENEURO_0098_16_2016
crossref_primary_10_1007_s00429_020_02172_w
crossref_primary_10_1073_pnas_1819993116
crossref_primary_10_1111_jon_12809
crossref_primary_10_1002_hbm_70054
crossref_primary_10_1016_j_neuroimage_2015_04_042
crossref_primary_10_1016_j_neuroimage_2023_120406
crossref_primary_10_1016_j_neuroimage_2015_12_039
crossref_primary_10_1016_j_cortex_2024_08_011
crossref_primary_10_1111_cdep_12353
crossref_primary_10_1002_hipo_22829
crossref_primary_10_7554_eLife_87634_4
crossref_primary_10_1038_s41598_024_54370_9
crossref_primary_10_1002_hbm_23897
crossref_primary_10_1016_j_neuroimage_2019_02_066
crossref_primary_10_1002_hbm_23654
crossref_primary_10_1002_hbm_24628
crossref_primary_10_3389_fnagi_2020_00079
crossref_primary_10_1002_hbm_23970
crossref_primary_10_1016_j_neurobiolaging_2017_08_001
crossref_primary_10_1002_cne_25604
crossref_primary_10_1038_s41467_017_02752_1
crossref_primary_10_3233_JAD_170932
crossref_primary_10_1016_j_neuroimage_2017_09_049
crossref_primary_10_3233_JAD_200159
crossref_primary_10_3389_fnhum_2020_00228
crossref_primary_10_3389_fnana_2023_1149674
crossref_primary_10_3389_fnagi_2017_00383
crossref_primary_10_1016_j_bpsgos_2023_07_001
crossref_primary_10_1016_j_neuron_2020_06_030
crossref_primary_10_1007_s00429_018_1802_2
crossref_primary_10_1016_j_neuroimage_2021_118076
crossref_primary_10_1523_JNEUROSCI_3664_16_2017
crossref_primary_10_1002_hbm_23042
crossref_primary_10_1016_j_tins_2021_10_003
crossref_primary_10_1002_hbm_23289
crossref_primary_10_1002_hipo_23024
crossref_primary_10_1021_acs_jproteome_2c00143
crossref_primary_10_1523_JNEUROSCI_0564_19_2019
crossref_primary_10_1016_j_neurobiolaging_2022_02_004
crossref_primary_10_3389_fpsyt_2023_1060770
crossref_primary_10_1016_j_bbr_2017_06_049
crossref_primary_10_1016_j_neubiorev_2020_07_024
crossref_primary_10_1002_hipo_23172
crossref_primary_10_1002_hipo_23293
crossref_primary_10_3389_fnins_2021_546312
crossref_primary_10_3174_ajnr_A4659
crossref_primary_10_1073_pnas_1710654114
crossref_primary_10_1002_hipo_23177
crossref_primary_10_1186_s40708_023_00189_5
crossref_primary_10_1016_j_neuroimage_2015_11_049
crossref_primary_10_1016_j_nicl_2019_101824
crossref_primary_10_1016_j_neuroimage_2020_116947
crossref_primary_10_1038_s41593_021_00916_3
crossref_primary_10_1177_2470547017744538
crossref_primary_10_1038_sdata_2018_63
crossref_primary_10_1002_hipo_23606
crossref_primary_10_7554_eLife_83365
crossref_primary_10_1002_hbm_25249
crossref_primary_10_1016_j_neuroimage_2019_06_012
crossref_primary_10_1038_s41467_023_35967_6
crossref_primary_10_1007_s00429_023_02725_9
crossref_primary_10_1016_j_neuroimage_2017_03_016
crossref_primary_10_1002_hipo_23280
crossref_primary_10_1073_pnas_2307884120
crossref_primary_10_1002_hipo_23602
crossref_primary_10_1016_j_neuroimage_2023_120182
crossref_primary_10_3389_fnagi_2016_00139
crossref_primary_10_1016_j_neuropsychologia_2023_108656
crossref_primary_10_1016_j_visres_2019_10_007
crossref_primary_10_1093_neuonc_noac162
crossref_primary_10_1016_j_dcn_2018_12_011
crossref_primary_10_1111_nan_12659
crossref_primary_10_1002_hbm_70004
crossref_primary_10_1002_hbm_25119
Cites_doi 10.1148/radiol.11101651
10.1162/jocn_a_00435
10.1016/j.schres.2013.04.020
10.1001/archgenpsychiatry.2009.205
10.1016/j.jalz.2013.05.801
10.1523/JNEUROSCI.0521-14.2014
10.1038/nrn3085
10.1146/annurev.neuro.27.070203.144130
10.1002/hipo.20614
10.1016/j.neuroimage.2012.03.023
10.1046/j.1528-1157.2003.32701.x
10.1016/j.neurobiolaging.2003.12.005
10.1016/j.jalz.2014.05.130
10.1038/nrn3085-c1
10.1093/brain/awl274
10.1126/science.1152882
10.1016/j.neuroimage.2009.04.033
10.3174/ajnr.A2589
10.1002/hipo.20615
10.1016/j.neuroimage.2012.08.071
10.1093/cercor/10.4.433
10.1093/cercor/8.8.710
10.1212/WNL.0b013e3181f736a1
10.1016/j.neuroimage.2014.04.054
10.1007/978-1-4615-6616-8_9
10.1016/j.neuroimage.2012.05.065
10.3233/JAD-2011-0004
10.1016/j.neuroimage.2009.03.017
10.1002/hipo.22234
10.2307/1932409
10.1016/S1053-8119(03)00361-6
10.1073/pnas.1115396109
10.1016/j.pscychresns.2006.11.011
10.1016/j.neurobiolaging.2006.03.007
10.1016/j.neuroimage.2005.09.017
10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
10.2174/187152706778559273
10.1016/j.nicl.2013.08.007
10.1002/ar.1061
10.3389/fnhum.2012.00290
10.1016/j.neuroimage.2013.02.003
10.1016/S0197-4580(01)00270-6
10.1016/j.neuroimage.2010.06.024
10.1523/JNEUROSCI.1406-13.2013
10.1002/hbm.22627
10.1016/j.conb.2006.03.013
10.1148/radiol.09090897
10.1002/hipo.22153
10.1162/jocn.2009.21195
10.1523/JNEUROSCI.2245-09.2009
10.1016/j.jalz.2010.06.007
10.1126/science.1077775
10.1016/j.neuroimage.2012.06.048
10.1037/0033-2909.86.2.420
10.1176/ajp.152.5.738
10.1212/WNL.42.9.1743
10.1002/hbm.20331
10.1016/0197-4580(95)00021-6
10.1016/j.neuroimage.2009.09.042
10.1093/cercor/12.12.1342
10.1002/hbm.10062
10.1006/nimg.2000.0561
10.1523/JNEUROSCI.3711-11.2012
10.1002/1097-0029(20001001)51:1<101::AID-JEMT11>3.0.CO;2-H
10.1002/hipo.20779
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2010.03.040
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 1, 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 1, 2015
CorporateAuthor for the Hippocampal Subfields Group (HSG)
Hippocampal Subfields Group (HSG)
CorporateAuthor_xml – name: for the Hippocampal Subfields Group (HSG)
– name: Hippocampal Subfields Group (HSG)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
7SC
7U5
JQ2
L7M
L~C
L~D
5PM
DOI 10.1016/j.neuroimage.2015.01.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection‎ (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
ProQuest One Psychology
Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 541
ExternalDocumentID PMC4387011
3660606021
25596463
10_1016_j_neuroimage_2015_01_004
S1053811915000075
Genre Research Support, U.S. Gov't, Non-P.H.S
Multicenter Study
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: F32 AG005778
– fundername: NIMH NIH HHS
  grantid: R01-MH100121
– fundername: NIDA NIH HHS
  grantid: K01 DA034728
– fundername: NIMH NIH HHS
  grantid: R01-MH074692
– fundername: NIA NIH HHS
  grantid: R37-AG011230
– fundername: CIHR
  grantid: MOP-62963
– fundername: NIBIB NIH HHS
  grantid: P41-EB015896
– fundername: NIA NIH HHS
  grantid: R01 AG034613
– fundername: NIA NIH HHS
  grantid: R01-AG013308
– fundername: CIHR
  grantid: MOP 115011
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HMQ
HVGLF
HZ~
OK1
R2-
RIG
SEW
SNS
WUQ
XPP
ZMT
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
EFLBG
7QO
7SC
7U5
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c657t-d92068115781e037980a6acc9d136c2766f7504074aac386b5af7482ea2a416f3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:32:24 EDT 2025
Thu Sep 04 19:31:42 EDT 2025
Fri Sep 05 04:11:29 EDT 2025
Fri Sep 05 06:00:52 EDT 2025
Wed Aug 13 10:00:34 EDT 2025
Thu Apr 03 07:27:14 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Tue Jul 01 03:01:41 EDT 2025
Tue Aug 26 16:31:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Segmentation
Unified protocol
Perirhinal cortex
Parahippocampal gyrus
Medial temporal lobe
Hippocampal subfields
CA1
Dentate gyrus
CA3
Magnetic resonance imaging
CA2
Entorhinal cortex
Subiculum
Hippocampus
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c657t-d92068115781e037980a6acc9d136c2766f7504074aac386b5af7482ea2a416f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-6466-5309
0000-0001-8543-4016
0000-0003-1484-4573
0000-0002-6058-2706
0000-0003-0624-4543
PMID 25596463
PQID 1674482611
PQPubID 2031077
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387011
proquest_miscellaneous_1730073889
proquest_miscellaneous_1701483317
proquest_miscellaneous_1671211389
proquest_journals_1674482611
pubmed_primary_25596463
crossref_citationtrail_10_1016_j_neuroimage_2015_01_004
crossref_primary_10_1016_j_neuroimage_2015_01_004
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Frisoni, Jack (bb0105) 2011; 7
Zeineh, Engel, Thompson, Bookheimer (bb0395) 2001; 265
de Lanerolle, Kim, Williamson, Spencer, Zaveri, Eid, Spencer, Eid (bb0190) 2003; 44
Goncharova, Dickerson, Stoub, deToledo Morrell (bb0115) 2001; 22
Zeineh, Engel, Bookheimer (bb0390) 2000; 11
Winterburn, Pruessner, Chavez, Schira, Lobaugh, Voineskos, Chakravarty (bb0365) 2013; 74
Kerchner, Deutsch, Zeineh, Dougherty, Saranathan, Rutt (bb0165) 2012; 63
van Strien, Widerøe, van de Berg, Uylings (bb0325) 2012; 13
Olsen, Palombo, Rabin, Levine, Ryan, Rosenbaum (bb0245) 2013; 23
Libby, Ekstrom, Ragland, Ranganath (bb0195) 2012; 32
La Joie, Fouquet, Mézenge, Landeau, Villain, Mevel, Pélerin, Eustache, Desgranges, Chételat (bb0180) 2010; 53
Bakker, Kirwan, Miller, Stark (bb0030) 2008; 319
Rosene, Van Hoesen (bb0290) 1987
Wang, Neylan, Mueller, Lenoci, Truran, Marmar, Weiner, Schuff (bb0350) 2010; 67
Boccardi, Bocchetta, Ganzola, Robitaille, Redolfi, Duchesne, Jack, Frisoni, EADC-ADNI Working Group on The Harmonized Protocol for Hippocampal Volumetry (bb0045) 2013
Boccardi, Bocchetta, Apostolova, Barnes, Bartzokis, Corbetta, DeCarli, deToledo Morrell, Firbank, Ganzola, Gerritsen, Henneman, Killiany, Malykhin, Pasqualetti, Pruessner, Redolfi, Robitaille, Soininen, Tolomeo, Wang, Watson, Wolf, Duvernoy, Duchesne, Jack, GB Frisoni for the EADC-ADNI Working Group on the Harmonized Protocol for Manual Hippocampal Segmentation (bb0040) 2014
Palombo, Amaral, Olsen, Müller, Todd, Anderson, Levine (bb0250) 2013; 33
Pereira, Valls-Pedret, Ros, Palacios, Falcón, Bargalló, Bartrés-Faz, Wahlund, Westman, Junque (bb0255) 2013; 24
Hanseeuw, Van Leemput, Kavec, Grandin, Seron, Ivanoiu (bb0125) 2011; 32
Pruessner, Köhler, Crane, Pruessner, Lord, Byrne, Kabani, Collins, Evans (bb0280) 2002; 12
Duvernoy (bb0085) 2005
Duncan, Tompary, Davachi (bb0080) 2014; 34
Preston, Bornstein, Hutchinson, Gaare, Glover, Wagner (bb0270) 2010; 22
Harding, Halliday, Kril (bb0130) 1998; 8
Simić, Kostović, Winblad, Bogdanović (bb0300) 1997; 379
Smith (bb0315) 2002; 17
Mueller, Stables, Du, Schuff, Truran, Cashdollar, Weiner (bb0225) 2007; 28
Yassa, Stark, Bakker, Albert, Gallagher, Stark (bb0380) 2010; 51
Gloor (bb0110) 1997
Mai, Paxinos, Voss (bb0205) 2008
Teicher, Anderson, Polcari (bb0330) 2012; 109
Lorente de Nó (bb0235) 1934; 46
Augustinack, Huber, Stevens, Roy, Frosch, van der Kouwe, Wald, Van Leemput, McKee, Fischl (bb0025) 2013; 64
Jenkinson, Bannister, Brady, Smith (bb0155) 2002; 17
Malykhin, Lebel, Coupland, Wilman, Carter (bb0215) 2010; 49
Bonnici, Chadwick, Kumaran, Hassabis, Weiskopf, Maguire (bb0060) 2012; 6
Wang, Swank, Glick, Gado, Miller, Morris, Csernansky (bb0345) 2003; 20
Pluta, Yushkevich, Das, Wolk (bb0265) 2012; 29
Yushkevich, Pluta, Wang, Xie, Ding, Gertje, Mancuso, Kliot, Das, Wolk (bb0385) 2015; 36
Wisse, Gerritsen, Zwanenburg, Kuijf, Luijten, Biessels, Geerlings (bb0370) 2012; 61
Braak, Braak (bb0065) 1995; 16
Amaral, Insausti (bb0010) 1990
Pipitone, Park, Winterburn, Lett, Lerch, Pruessner, Lepage, Voineskos, Chakravarty, the Alzheimer's Disease Neuroimaging Initiative (bb0260) 2014; 101
Lucassen, Heine, Muller, van der Beek, Wiegant, De Kloet, Joels, Fuchs, Swaab, Czeh (bb0200) 2006; 5
Grinstead, Speck, Paul, Silbert, Perkins, Rooney (bb0120) 2010
Shrout, Fleiss (bb0295) 1979; 86
Bocchetta, Boccardi, Ganzola, Apostolova, Preboske, Wolf, Ferrari, Pasqualetti, Robitaille, Duchesne, Jack, Frisoni (bb0055) 2014
Danielsson (bb0070) 1980; 14
Watson, Andermann, Gloor, Jones-Gotman, Peters, Evans, Olivier, Melanson, Leroux (bb0355) 1992; 42
Pruessner, Li, Serles, Pruessner, Collins, Kabani, Lupien, Evans (bb0285) 2000; 10
Wolk, Dunfee, Dickerson, Aizenstein, DeKosky (bb0375) 2011; 21
Amaral, Lavenex (bb0005) 2007
Insausti, Amaral (bb0145) 2012
Apostolova, Dinov, Dutton, Hayashi, Toga, Cummings, Thompson (bb0015) 2006; 129
Ekstrom, Bazih, Suthana, Al-Hakim, Ogura, Zeineh, Burggren, Bookheimer (bb0095) 2009; 47
West, Kawas, Stewart, Rudow, Troncoso (bb0360) 2004; 25
Olsen, Nichols, Chen, Hunt, Glover, Gabrieli, Wagner (bb0240) 2009; 29
Van Leemput, Bakkour, Benner, Wiggins, Wald, Augustinack, Dickerson, Golland, Fischl (bb0335) 2009; 19
Bender, Daugherty, Raz (bb0035) 2013; 25
Duvernoy (bb0090) 1998
La Joie, Perrotin, de La Sayette, Egret, Doeuvre, Belliard, Eustache, Desgranges, Chételat (bb0185) 2013; 3
Small, Schobel, Buxton, Witter, Barnes (bb0305) 2011; 12
Squire, Stark, Clarkx (bb0320) 2004; 27
Kirov, Hardy, Matsuda, Messinger, Cankurtaran, Warren, Wiggins, Perry, Babb, Goetz, George, Malaspina, Gonen (bb0170) 2013; 147
Wang, Miller, Gado, McKeel, Rothermich, Miller, Morris, Csernansky (bb0340) 2006; 30
Mueller, Weiner (bb0230) 2009; 19
Prudent, Kumar, Liu, Wiggins, Malaspina, Gonen (bb0275) 2010; 254
Kerchner, Hess, Hammond-Rosenbluth, Xu, Rabinovici, Kelley, Vigneron, Nelson, Miller (bb0160) 2010; 75
Malykhin, Bouchard, Ogilvie, Coupland, Seres, Camicioli (bb0210) 2007; 155
Henry, Chupin, Lehéricy, Strupp, Sikora, Sha, Ugurbil, Van de Moortele (bb0135) 2011; 261
Arnold, Franz, Gur, Gur, Shapiro, Moberg, Trojanowski (bb0020) 1995; 152
Dice (bb0075) 1945; 26
Small, Nava, Perera, Delapaz, Stern (bb0310) 2000; 51
Zeineh, Engel, Thompson, Bookheimer (bb0400) 2003; 299
Insausti, Juottonen, Soininen, Insausti, Partanen, Vainio, Laakso, Pitkänen (bb0150) 1998; 19
Fischl, Stevens, Rajendran, Yeo, Greve, Van Leemput, Polimeni, Kakunoori, Buckner, Pacheco, Salat, Melcher, Frosch, Hyman, Grant, Rosen, van der Kouwe, Wiggins, Wald, Augustinack (bb0100) 2009; 47
Insausti, Amaral (bb0140) 2004
Zeineh, Holdsworth, Skare, Atlas, Bammer (bb0405) 2012; 62
Moscovitch, Nadel, Winocur, Gilboa, Rosenbaum (bb0220) 2006; 16
Boccardi, Ganzola, Bocchetta, Pievani, Redolfi, Bartzokis, Camicioli, Csernansky, de Leon, deToledo Morrell, Killiany, Lehéricy, Pantel, Pruessner, Soininen, Watson, Duchesne, Jack, Frisoni (bb0050) 2011; 26
Kirwan, Jones, Miller, Stark (bb0175) 2007; 28
Augustinack (10.1016/j.neuroimage.2015.01.004_bb0025) 2013; 64
Wang (10.1016/j.neuroimage.2015.01.004_bb0350) 2010; 67
Winterburn (10.1016/j.neuroimage.2015.01.004_bb0365) 2013; 74
Van Leemput (10.1016/j.neuroimage.2015.01.004_bb0335) 2009; 19
La Joie (10.1016/j.neuroimage.2015.01.004_bb0185) 2013; 3
Zeineh (10.1016/j.neuroimage.2015.01.004_bb0405) 2012; 62
Frisoni (10.1016/j.neuroimage.2015.01.004_bb0105) 2011; 7
Prudent (10.1016/j.neuroimage.2015.01.004_bb0275) 2010; 254
Arnold (10.1016/j.neuroimage.2015.01.004_bb0020) 1995; 152
Squire (10.1016/j.neuroimage.2015.01.004_bb0320) 2004; 27
Watson (10.1016/j.neuroimage.2015.01.004_bb0355) 1992; 42
Kirov (10.1016/j.neuroimage.2015.01.004_bb0170) 2013; 147
Kirwan (10.1016/j.neuroimage.2015.01.004_bb0175) 2007; 28
Libby (10.1016/j.neuroimage.2015.01.004_bb0195) 2012; 32
Yushkevich (10.1016/j.neuroimage.2015.01.004_bb0385) 2015; 36
Fischl (10.1016/j.neuroimage.2015.01.004_bb0100) 2009; 47
Zeineh (10.1016/j.neuroimage.2015.01.004_bb0395) 2001; 265
Insausti (10.1016/j.neuroimage.2015.01.004_bb0140) 2004
Danielsson (10.1016/j.neuroimage.2015.01.004_bb0070) 1980; 14
Dice (10.1016/j.neuroimage.2015.01.004_bb0075) 1945; 26
de Lanerolle (10.1016/j.neuroimage.2015.01.004_bb0190) 2003; 44
Gloor (10.1016/j.neuroimage.2015.01.004_bb0110) 1997
Simić (10.1016/j.neuroimage.2015.01.004_bb0300) 1997; 379
Olsen (10.1016/j.neuroimage.2015.01.004_bb0240) 2009; 29
West (10.1016/j.neuroimage.2015.01.004_bb0360) 2004; 25
Boccardi (10.1016/j.neuroimage.2015.01.004_bb0045) 2013
Wolk (10.1016/j.neuroimage.2015.01.004_bb0375) 2011; 21
Rosene (10.1016/j.neuroimage.2015.01.004_bb0290) 1987
Amaral (10.1016/j.neuroimage.2015.01.004_bb0010) 1990
Grinstead (10.1016/j.neuroimage.2015.01.004_bb0120) 2010
Pluta (10.1016/j.neuroimage.2015.01.004_bb0265) 2012; 29
Wang (10.1016/j.neuroimage.2015.01.004_bb0345) 2003; 20
Bakker (10.1016/j.neuroimage.2015.01.004_bb0030) 2008; 319
Mai (10.1016/j.neuroimage.2015.01.004_bb0205) 2008
Harding (10.1016/j.neuroimage.2015.01.004_bb0130) 1998; 8
Malykhin (10.1016/j.neuroimage.2015.01.004_bb0210) 2007; 155
Bender (10.1016/j.neuroimage.2015.01.004_bb0035) 2013; 25
Hanseeuw (10.1016/j.neuroimage.2015.01.004_bb0125) 2011; 32
Lucassen (10.1016/j.neuroimage.2015.01.004_bb0200) 2006; 5
Lorente de Nó (10.1016/j.neuroimage.2015.01.004_bb0235) 1934; 46
Kerchner (10.1016/j.neuroimage.2015.01.004_bb0160) 2010; 75
Malykhin (10.1016/j.neuroimage.2015.01.004_bb0215) 2010; 49
Amaral (10.1016/j.neuroimage.2015.01.004_bb0005) 2007
Pruessner (10.1016/j.neuroimage.2015.01.004_bb0285) 2000; 10
Shrout (10.1016/j.neuroimage.2015.01.004_bb0295) 1979; 86
Bocchetta (10.1016/j.neuroimage.2015.01.004_bb0055) 2014
Insausti (10.1016/j.neuroimage.2015.01.004_bb0150) 1998; 19
Zeineh (10.1016/j.neuroimage.2015.01.004_bb0400) 2003; 299
Yassa (10.1016/j.neuroimage.2015.01.004_bb0380) 2010; 51
Teicher (10.1016/j.neuroimage.2015.01.004_bb0330) 2012; 109
Boccardi (10.1016/j.neuroimage.2015.01.004_bb0050) 2011; 26
Smith (10.1016/j.neuroimage.2015.01.004_bb0315) 2002; 17
Ekstrom (10.1016/j.neuroimage.2015.01.004_bb0095) 2009; 47
Apostolova (10.1016/j.neuroimage.2015.01.004_bb0015) 2006; 129
Wisse (10.1016/j.neuroimage.2015.01.004_bb0370) 2012; 61
Henry (10.1016/j.neuroimage.2015.01.004_bb0135) 2011; 261
Mueller (10.1016/j.neuroimage.2015.01.004_bb0225) 2007; 28
Wang (10.1016/j.neuroimage.2015.01.004_bb0340) 2006; 30
Preston (10.1016/j.neuroimage.2015.01.004_bb0270) 2010; 22
Jenkinson (10.1016/j.neuroimage.2015.01.004_bb0155) 2002; 17
Pereira (10.1016/j.neuroimage.2015.01.004_bb0255) 2013; 24
Pipitone (10.1016/j.neuroimage.2015.01.004_bb0260) 2014; 101
Pruessner (10.1016/j.neuroimage.2015.01.004_bb0280) 2002; 12
Small (10.1016/j.neuroimage.2015.01.004_bb0310) 2000; 51
Goncharova (10.1016/j.neuroimage.2015.01.004_bb0115) 2001; 22
La Joie (10.1016/j.neuroimage.2015.01.004_bb0180) 2010; 53
Boccardi (10.1016/j.neuroimage.2015.01.004_bb0040) 2014
Braak (10.1016/j.neuroimage.2015.01.004_bb0065) 1995; 16
van Strien (10.1016/j.neuroimage.2015.01.004_bb0325) 2012; 13
Kerchner (10.1016/j.neuroimage.2015.01.004_bb0165) 2012; 63
Mueller (10.1016/j.neuroimage.2015.01.004_bb0230) 2009; 19
Duvernoy (10.1016/j.neuroimage.2015.01.004_bb0090) 1998
Duvernoy (10.1016/j.neuroimage.2015.01.004_bb0085) 2005
Bonnici (10.1016/j.neuroimage.2015.01.004_bb0060) 2012; 6
Zeineh (10.1016/j.neuroimage.2015.01.004_bb0390) 2000; 11
Insausti (10.1016/j.neuroimage.2015.01.004_bb0145) 2012
Olsen (10.1016/j.neuroimage.2015.01.004_bb0245) 2013; 23
Duncan (10.1016/j.neuroimage.2015.01.004_bb0080) 2014; 34
Palombo (10.1016/j.neuroimage.2015.01.004_bb0250) 2013; 33
Moscovitch (10.1016/j.neuroimage.2015.01.004_bb0220) 2006; 16
Small (10.1016/j.neuroimage.2015.01.004_bb0305) 2011; 12
References_xml – volume: 147
  start-page: 362
  year: 2013
  end-page: 367
  ident: bb0170
  article-title: In vivo 7 tesla imaging of the dentate granule cell layer in schizophrenia
  publication-title: Schizophr. Res.
– volume: 47
  start-page: 42
  year: 2009
  end-page: 49
  ident: bb0095
  article-title: Advances in high-resolution imaging and computational unfolding of the human hippocampus
  publication-title: Neuroimage
– volume: 265
  start-page: 111
  year: 2001
  end-page: 120
  ident: bb0395
  article-title: Unfolding the human hippocampus with high resolution structural and functional MRI
  publication-title: Anat. Rec.
– volume: 19
  start-page: 558
  year: 2009
  end-page: 564
  ident: bb0230
  article-title: Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields
  publication-title: Hippocampus
– volume: 155
  start-page: 155
  year: 2007
  end-page: 165
  ident: bb0210
  article-title: Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail
  publication-title: Psychiatry Res.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0315
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 667
  year: 2003
  end-page: 682
  ident: bb0345
  article-title: Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging
  publication-title: Neuroimage
– volume: 261
  start-page: 199
  year: 2011
  end-page: 209
  ident: bb0135
  article-title: Hippocampal sclerosis in temporal lobe epilepsy: findings at 7
  publication-title: Radiology
– volume: 21
  start-page: 461
  year: 2011
  end-page: 466
  ident: bb0375
  article-title: A medial temporal lobe division of labor: insights from memory in aging and early Alzheimer disease
  publication-title: Hippocampus
– volume: 75
  start-page: 1381
  year: 2010
  end-page: 1387
  ident: bb0160
  article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI
  publication-title: Neurology
– volume: 36
  start-page: 258
  year: 2015
  end-page: 287
  ident: bb0385
  article-title: Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment
  publication-title: Hum. Brain Mapp.
– volume: 51
  start-page: 1242
  year: 2010
  end-page: 1252
  ident: bb0380
  article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment
  publication-title: Neuroimage
– volume: 47
  start-page: 8
  year: 2009
  end-page: 17
  ident: bb0100
  article-title: Predicting the location of entorhinal cortex from MRI
  publication-title: Neuroimage
– volume: 23
  start-page: 855
  year: 2013
  end-page: 860
  ident: bb0245
  article-title: Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high-resolution magnetic resonance imaging
  publication-title: Hippocampus
– volume: 7
  start-page: 171
  year: 2011
  end-page: 174
  ident: bb0105
  article-title: Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use
  publication-title: Alzheimers Dement.
– volume: 16
  start-page: 179
  year: 2006
  end-page: 190
  ident: bb0220
  article-title: The cognitive neuroscience of remote episodic, semantic and spatial memory
  publication-title: Curr. Opin. Neurobiol.
– volume: 51
  start-page: 101
  year: 2000
  end-page: 108
  ident: bb0310
  article-title: Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging
  publication-title: Microsc. Res. Tech.
– year: 1998
  ident: bb0090
  article-title: The Human Hippocampus, Functional Anatomy, Vascularization and Serial Sections With MRI
– volume: 28
  start-page: 719
  year: 2007
  end-page: 726
  ident: bb0225
  article-title: Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4
  publication-title: Neurobiol. Aging
– volume: 254
  start-page: 900
  year: 2010
  end-page: 906
  ident: bb0275
  article-title: Human hippocampal subfields in young adults at 7.0
  publication-title: Radiology
– volume: 379
  start-page: 482
  year: 1997
  end-page: 494
  ident: bb0300
  article-title: Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease
  publication-title: J. Comp. Neurol.
– volume: 34
  start-page: 11188
  year: 2014
  end-page: 11198
  ident: bb0080
  article-title: Associative encoding and retrieval are predicted by functional connectivity in distinct hippocampal area ca1 pathways
  publication-title: J. Neurosci.
– year: 1990
  ident: bb0010
  article-title: The hippocampal formation
  publication-title: The Human Nervous System
– start-page: 3034
  year: 2010
  ident: bb0120
  publication-title: Whole-brain FLAIR Using 3D TSE With Variable Flip Angle Readouts Optimized for 7 Tesla
– volume: 32
  start-page: 6550
  year: 2012
  end-page: 6560
  ident: bb0195
  article-title: Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging
  publication-title: J. Neurosci.
– volume: 22
  start-page: 156
  year: 2010
  end-page: 173
  ident: bb0270
  article-title: High-resolution fmri of content-sensitive subsequent memory responses in human medial temporal lobe
  publication-title: J. Cogn. Neurosci.
– volume: 32
  start-page: 1658
  year: 2011
  end-page: 1661
  ident: bb0125
  article-title: Mild cognitive impairment: differential atrophy in the hippocampal subfields
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 28
  start-page: 959
  year: 2007
  end-page: 966
  ident: bb0175
  article-title: High-resolution fMRI investigation of the medial temporal lobe
  publication-title: Hum. Brain Mapp.
– volume: 33
  start-page: 13088
  year: 2013
  end-page: 13093
  ident: bb0250
  article-title: Kibra polymorphism is associated with individual differences in hippocampal subregions: evidence from anatomical segmentation using high-resolution MRI
  publication-title: J. Neurosci.
– volume: 46
  start-page: 113
  year: 1934
  end-page: 177
  ident: bb0235
  article-title: Studies on the structure of the cerebral cortex. ii. Continuation of the study of the ammonic system
  publication-title: J. Psychol. Neurol.
– volume: 101
  start-page: 494
  year: 2014
  end-page: 512
  ident: bb0260
  article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates
  publication-title: Neuroimage
– volume: 19
  start-page: 549
  year: 2009
  end-page: 557
  ident: bb0335
  article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI
  publication-title: Hippocampus
– volume: 74
  start-page: 254
  year: 2013
  end-page: 265
  ident: bb0365
  article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3
  publication-title: Neuroimage
– volume: 10
  start-page: 433
  year: 2000
  end-page: 442
  ident: bb0285
  article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories
  publication-title: Cereb. Cortex
– start-page: 871
  year: 2004
  end-page: 914
  ident: bb0140
  article-title: Hippocampal formation
  publication-title: The Human Nervous System
– volume: 29
  start-page: 1
  year: 2012
  end-page: 15
  ident: bb0265
  article-title: In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI
  publication-title: J. Alzheimers Dis.
– volume: 152
  start-page: 738
  year: 1995
  end-page: 748
  ident: bb0020
  article-title: Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical–hippocampal interactions
  publication-title: Am. J. Psychiatry
– volume: 22
  start-page: 737
  year: 2001
  end-page: 745
  ident: bb0115
  article-title: MRI of human entorhinal cortex: a reliable protocol for volumetric measurement
  publication-title: Neurobiol. Aging
– year: 2013
  ident: bb0045
  article-title: Operationalizing protocol differences for EADC-ADNI manual hippocampal segmentation
  publication-title: Alzheimers Dement.
– volume: 53
  start-page: 506
  year: 2010
  end-page: 514
  ident: bb0180
  article-title: Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence
  publication-title: Neuroimage
– year: 2014
  ident: bb0040
  article-title: Delphi definition of the EADC-ADNI harmonized protocol for hippocampal segmentation on magnetic resonance
  publication-title: Alzheimers Dement.
– year: 2012
  ident: bb0145
  article-title: Hippocampal formation
  publication-title: The Human Nervous System
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0155
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 61
  start-page: 1043
  year: 2012
  end-page: 1049
  ident: bb0370
  article-title: Subfields of the hippocampal formation at 7
  publication-title: Neuroimage
– volume: 299
  start-page: 577
  year: 2003
  end-page: 580
  ident: bb0400
  article-title: Dynamics of the hippocampus during encoding and retrieval of face-name pairs
  publication-title: Science
– year: 2005
  ident: bb0085
  article-title: The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections With MRI
– volume: 29
  start-page: 11880
  year: 2009
  end-page: 11890
  ident: bb0240
  article-title: Performance-related sustained and anticipatory activity in human medial temporal lobe during delayed match-to-sample
  publication-title: J. Neurosci.
– volume: 26
  start-page: 61
  year: 2011
  end-page: 75
  ident: bb0050
  article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol
  publication-title: J. Alzheimers Dis.
– volume: 109
  start-page: E563
  year: 2012
  end-page: E572
  ident: bb0330
  article-title: Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 155
  year: 2013
  end-page: 162
  ident: bb0185
  article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia
  publication-title: NeuroImage
– volume: 24
  start-page: 403
  year: 2013
  end-page: 414
  ident: bb0255
  article-title: Regional vulnerability of hippocampal subfields to aging measured by structural and diffusion MRI
  publication-title: Hippocampus
– year: 2014
  ident: bb0055
  article-title: Harmonized benchmark labels of the hippocampus on magnetic resonance: the EADC-ADNI project
  publication-title: Alzheimers Dement.
– volume: 14
  start-page: 227
  year: 1980
  end-page: 248
  ident: bb0070
  article-title: Euclidean distance mapping
  publication-title: Comput. Vision Graph
– volume: 8
  start-page: 710
  year: 1998
  end-page: 718
  ident: bb0130
  article-title: Variation in hippocampal neuron number with age and brain volume
  publication-title: Cereb. Cortex
– volume: 30
  start-page: 52
  year: 2006
  end-page: 60
  ident: bb0340
  article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type
  publication-title: Neuroimage
– volume: 25
  start-page: 1205
  year: 2004
  end-page: 1212
  ident: bb0360
  article-title: Hippocampal neurons in pre-clinical Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 12
  start-page: 585
  year: 2011
  end-page: 601
  ident: bb0305
  article-title: A pathophysiological framework of hippocampal dysfunction in ageing and disease
  publication-title: Nat. Rev. Neurosci.
– volume: 86
  start-page: 420
  year: 1979
  end-page: 428
  ident: bb0295
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
– volume: 11
  start-page: 668
  year: 2000
  end-page: 683
  ident: bb0390
  article-title: Application of cortical unfolding techniques to functional MRI of the human hippocampal region
  publication-title: Neuroimage
– volume: 16
  start-page: 271
  year: 1995
  end-page: 278
  ident: bb0065
  article-title: Staging of Alzheimer's disease-related neurofibrillary changes
  publication-title: Neurobiol. Aging
– volume: 49
  start-page: 1224
  year: 2010
  end-page: 1230
  ident: bb0215
  article-title: In vivo quantification of hippocampal subfields using 4.7
  publication-title: Neuroimage
– volume: 67
  start-page: 296
  year: 2010
  end-page: 303
  ident: bb0350
  article-title: Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder
  publication-title: Arch. Gen. Psychiatry
– volume: 19
  start-page: 659
  year: 1998
  end-page: 671
  ident: bb0150
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: AJNR Am. J. Neuroradiol.
– start-page: 345
  year: 1987
  end-page: 456
  ident: bb0290
  article-title: The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections
  publication-title: Cereb. Cortex
– year: 2008
  ident: bb0205
  article-title: Atlas of the Human Brain
– volume: 62
  start-page: 2065
  year: 2012
  end-page: 2082
  ident: bb0405
  article-title: Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe
  publication-title: Neuroimage
– start-page: 325
  year: 1997
  end-page: 589
  ident: bb0110
  article-title: The temporal lobe and limbic system
  publication-title: Chapter 5: The Hippocampal System
– volume: 42
  start-page: 1743
  year: 1992
  end-page: 1750
  ident: bb0355
  article-title: Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging
  publication-title: Neurology
– volume: 63
  start-page: 194
  year: 2012
  end-page: 202
  ident: bb0165
  article-title: Hippocampal ca1 apical neuropil atrophy and memory performance in Alzheimer's disease
  publication-title: Neuroimage
– volume: 64
  start-page: 32
  year: 2013
  end-page: 42
  ident: bb0025
  article-title: Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI
  publication-title: Neuroimage
– start-page: 37
  year: 2007
  end-page: 114
  ident: bb0005
  article-title: Hippocampal Neuroanatomy
– volume: 129
  start-page: 2867
  year: 2006
  end-page: 2873
  ident: bb0015
  article-title: 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
– volume: 5
  start-page: 531
  year: 2006
  end-page: 546
  ident: bb0200
  article-title: Stress, depression and hippocampal apoptosis
  publication-title: CNS Neurol. Disord. Drug Targets
– volume: 319
  start-page: 1640
  year: 2008
  end-page: 1642
  ident: bb0030
  article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus
  publication-title: Science
– volume: 6
  start-page: 290
  year: 2012
  ident: bb0060
  article-title: Multi-voxel pattern analysis in human hippocampal subfields
  publication-title: Front. Hum. Neurosci.
– volume: 27
  start-page: 279
  year: 2004
  end-page: 306
  ident: bb0320
  article-title: The medial temporal lobe
  publication-title: Annu. Rev. Neurosci.
– volume: 12
  start-page: 1342
  year: 2002
  end-page: 1353
  ident: bb0280
  article-title: Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus
  publication-title: Cereb. Cortex
– volume: 25
  start-page: 1851
  year: 2013
  end-page: 1862
  ident: bb0035
  article-title: Vascular risk moderates associations between hippocampal subfield volumes and memory
  publication-title: J. Cogn. Neurosci.
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bb0075
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 13
  start-page: 70
  year: 2012
  ident: bb0325
  article-title: Imaging hippocampal subregions with in vivo MRI: advances and limitations
  publication-title: Nat. Rev. Neurosci.
– volume: 44
  start-page: 677
  year: 2003
  end-page: 687
  ident: bb0190
  article-title: A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories
  publication-title: Epilepsia
– volume: 14
  start-page: 227
  year: 1980
  ident: 10.1016/j.neuroimage.2015.01.004_bb0070
  article-title: Euclidean distance mapping
  publication-title: Comput. Vision Graph
– volume: 261
  start-page: 199
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.004_bb0135
  article-title: Hippocampal sclerosis in temporal lobe epilepsy: findings at 7T
  publication-title: Radiology
  doi: 10.1148/radiol.11101651
– volume: 25
  start-page: 1851
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0035
  article-title: Vascular risk moderates associations between hippocampal subfield volumes and memory
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00435
– volume: 147
  start-page: 362
  issue: 2-3
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0170
  article-title: In vivo 7 tesla imaging of the dentate granule cell layer in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2013.04.020
– year: 1998
  ident: 10.1016/j.neuroimage.2015.01.004_bb0090
– volume: 46
  start-page: 113
  year: 1934
  ident: 10.1016/j.neuroimage.2015.01.004_bb0235
  article-title: Studies on the structure of the cerebral cortex. ii. Continuation of the study of the ammonic system
  publication-title: J. Psychol. Neurol.
– year: 2008
  ident: 10.1016/j.neuroimage.2015.01.004_bb0205
– volume: 19
  start-page: 659
  year: 1998
  ident: 10.1016/j.neuroimage.2015.01.004_bb0150
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 67
  start-page: 296
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0350
  article-title: Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2009.205
– year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0045
  article-title: Operationalizing protocol differences for EADC-ADNI manual hippocampal segmentation
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2013.05.801
– year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0145
  article-title: Hippocampal formation
– volume: 34
  start-page: 11188
  year: 2014
  ident: 10.1016/j.neuroimage.2015.01.004_bb0080
  article-title: Associative encoding and retrieval are predicted by functional connectivity in distinct hippocampal area ca1 pathways
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0521-14.2014
– volume: 12
  start-page: 585
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.004_bb0305
  article-title: A pathophysiological framework of hippocampal dysfunction in ageing and disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3085
– volume: 27
  start-page: 279
  year: 2004
  ident: 10.1016/j.neuroimage.2015.01.004_bb0320
  article-title: The medial temporal lobe
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.27.070203.144130
– volume: 19
  start-page: 558
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.004_bb0230
  article-title: Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields
  publication-title: Hippocampus
  doi: 10.1002/hipo.20614
– volume: 61
  start-page: 1043
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0370
  article-title: Subfields of the hippocampal formation at 7T MRI: in vivo volumetric assessment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.023
– start-page: 37
  year: 2007
  ident: 10.1016/j.neuroimage.2015.01.004_bb0005
  article-title: Hippocampal Neuroanatomy
– volume: 44
  start-page: 677
  year: 2003
  ident: 10.1016/j.neuroimage.2015.01.004_bb0190
  article-title: A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.2003.32701.x
– volume: 25
  start-page: 1205
  year: 2004
  ident: 10.1016/j.neuroimage.2015.01.004_bb0360
  article-title: Hippocampal neurons in pre-clinical Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2003.12.005
– year: 2014
  ident: 10.1016/j.neuroimage.2015.01.004_bb0040
  article-title: Delphi definition of the EADC-ADNI harmonized protocol for hippocampal segmentation on magnetic resonance
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2014.05.130
– volume: 13
  start-page: 70
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0325
  article-title: Imaging hippocampal subregions with in vivo MRI: advances and limitations
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3085-c1
– volume: 129
  start-page: 2867
  year: 2006
  ident: 10.1016/j.neuroimage.2015.01.004_bb0015
  article-title: 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awl274
– volume: 319
  start-page: 1640
  year: 2008
  ident: 10.1016/j.neuroimage.2015.01.004_bb0030
  article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus
  publication-title: Science
  doi: 10.1126/science.1152882
– volume: 47
  start-page: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.004_bb0100
  article-title: Predicting the location of entorhinal cortex from MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.033
– volume: 29
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0265
  article-title: In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI
  publication-title: J. Alzheimers Dis.
– volume: 32
  start-page: 1658
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.004_bb0125
  article-title: Mild cognitive impairment: differential atrophy in the hippocampal subfields
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2589
– volume: 19
  start-page: 549
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.004_bb0335
  article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI
  publication-title: Hippocampus
  doi: 10.1002/hipo.20615
– volume: 64
  start-page: 32
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0025
  article-title: Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.071
– volume: 10
  start-page: 433
  year: 2000
  ident: 10.1016/j.neuroimage.2015.01.004_bb0285
  article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.4.433
– volume: 8
  start-page: 710
  year: 1998
  ident: 10.1016/j.neuroimage.2015.01.004_bb0130
  article-title: Variation in hippocampal neuron number with age and brain volume
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/8.8.710
– volume: 75
  start-page: 1381
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0160
  article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181f736a1
– volume: 101
  start-page: 494
  year: 2014
  ident: 10.1016/j.neuroimage.2015.01.004_bb0260
  article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.054
– start-page: 345
  year: 1987
  ident: 10.1016/j.neuroimage.2015.01.004_bb0290
  article-title: The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections
  publication-title: Cereb. Cortex
  doi: 10.1007/978-1-4615-6616-8_9
– volume: 62
  start-page: 2065
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0405
  article-title: Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.065
– volume: 26
  start-page: 61
  issue: Suppl. 3
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.004_bb0050
  article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-0004
– volume: 47
  start-page: 42
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.004_bb0095
  article-title: Advances in high-resolution imaging and computational unfolding of the human hippocampus
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.03.017
– volume: 24
  start-page: 403
  issue: 4
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0255
  article-title: Regional vulnerability of hippocampal subfields to aging measured by structural and diffusion MRI
  publication-title: Hippocampus
  doi: 10.1002/hipo.22234
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.neuroimage.2015.01.004_bb0075
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 20
  start-page: 667
  year: 2003
  ident: 10.1016/j.neuroimage.2015.01.004_bb0345
  article-title: Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00361-6
– volume: 109
  start-page: E563
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0330
  article-title: Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1115396109
– volume: 155
  start-page: 155
  year: 2007
  ident: 10.1016/j.neuroimage.2015.01.004_bb0210
  article-title: Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2006.11.011
– volume: 28
  start-page: 719
  year: 2007
  ident: 10.1016/j.neuroimage.2015.01.004_bb0225
  article-title: Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.03.007
– volume: 30
  start-page: 52
  year: 2006
  ident: 10.1016/j.neuroimage.2015.01.004_bb0340
  article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.017
– volume: 379
  start-page: 482
  year: 1997
  ident: 10.1016/j.neuroimage.2015.01.004_bb0300
  article-title: Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
– volume: 5
  start-page: 531
  year: 2006
  ident: 10.1016/j.neuroimage.2015.01.004_bb0200
  article-title: Stress, depression and hippocampal apoptosis
  publication-title: CNS Neurol. Disord. Drug Targets
  doi: 10.2174/187152706778559273
– start-page: 325
  year: 1997
  ident: 10.1016/j.neuroimage.2015.01.004_bb0110
  article-title: The temporal lobe and limbic system
– volume: 3
  start-page: 155
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0185
  article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2013.08.007
– volume: 265
  start-page: 111
  year: 2001
  ident: 10.1016/j.neuroimage.2015.01.004_bb0395
  article-title: Unfolding the human hippocampus with high resolution structural and functional MRI
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1061
– volume: 6
  start-page: 290
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0060
  article-title: Multi-voxel pattern analysis in human hippocampal subfields
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2012.00290
– volume: 74
  start-page: 254
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0365
  article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3t magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.003
– volume: 22
  start-page: 737
  year: 2001
  ident: 10.1016/j.neuroimage.2015.01.004_bb0115
  article-title: MRI of human entorhinal cortex: a reliable protocol for volumetric measurement
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(01)00270-6
– volume: 53
  start-page: 506
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0180
  article-title: Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.024
– year: 1990
  ident: 10.1016/j.neuroimage.2015.01.004_bb0010
  article-title: The hippocampal formation
– volume: 33
  start-page: 13088
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0250
  article-title: Kibra polymorphism is associated with individual differences in hippocampal subregions: evidence from anatomical segmentation using high-resolution MRI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1406-13.2013
– volume: 36
  start-page: 258
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2015.01.004_bb0385
  article-title: Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22627
– volume: 16
  start-page: 179
  year: 2006
  ident: 10.1016/j.neuroimage.2015.01.004_bb0220
  article-title: The cognitive neuroscience of remote episodic, semantic and spatial memory
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2006.03.013
– start-page: 871
  year: 2004
  ident: 10.1016/j.neuroimage.2015.01.004_bb0140
  article-title: Hippocampal formation
– volume: 254
  start-page: 900
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0275
  article-title: Human hippocampal subfields in young adults at 7.0T: feasibility of imaging
  publication-title: Radiology
  doi: 10.1148/radiol.09090897
– volume: 23
  start-page: 855
  issue: 10
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.004_bb0245
  article-title: Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high-resolution magnetic resonance imaging
  publication-title: Hippocampus
  doi: 10.1002/hipo.22153
– volume: 22
  start-page: 156
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0270
  article-title: High-resolution fmri of content-sensitive subsequent memory responses in human medial temporal lobe
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2009.21195
– year: 2014
  ident: 10.1016/j.neuroimage.2015.01.004_bb0055
  article-title: Harmonized benchmark labels of the hippocampus on magnetic resonance: the EADC-ADNI project
  publication-title: Alzheimers Dement.
– volume: 29
  start-page: 11880
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.004_bb0240
  article-title: Performance-related sustained and anticipatory activity in human medial temporal lobe during delayed match-to-sample
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2245-09.2009
– volume: 7
  start-page: 171
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.004_bb0105
  article-title: Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2010.06.007
– year: 2005
  ident: 10.1016/j.neuroimage.2015.01.004_bb0085
– volume: 299
  start-page: 577
  year: 2003
  ident: 10.1016/j.neuroimage.2015.01.004_bb0400
  article-title: Dynamics of the hippocampus during encoding and retrieval of face-name pairs
  publication-title: Science
  doi: 10.1126/science.1077775
– volume: 63
  start-page: 194
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0165
  article-title: Hippocampal ca1 apical neuropil atrophy and memory performance in Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.048
– volume: 86
  start-page: 420
  year: 1979
  ident: 10.1016/j.neuroimage.2015.01.004_bb0295
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 152
  start-page: 738
  year: 1995
  ident: 10.1016/j.neuroimage.2015.01.004_bb0020
  article-title: Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical–hippocampal interactions
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.152.5.738
– volume: 42
  start-page: 1743
  year: 1992
  ident: 10.1016/j.neuroimage.2015.01.004_bb0355
  article-title: Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging
  publication-title: Neurology
  doi: 10.1212/WNL.42.9.1743
– volume: 28
  start-page: 959
  year: 2007
  ident: 10.1016/j.neuroimage.2015.01.004_bb0175
  article-title: High-resolution fMRI investigation of the medial temporal lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20331
– volume: 16
  start-page: 271
  year: 1995
  ident: 10.1016/j.neuroimage.2015.01.004_bb0065
  article-title: Staging of Alzheimer's disease-related neurofibrillary changes
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(95)00021-6
– volume: 49
  start-page: 1224
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0215
  article-title: In vivo quantification of hippocampal subfields using 4.7T fast spin echo imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.042
– volume: 12
  start-page: 1342
  year: 2002
  ident: 10.1016/j.neuroimage.2015.01.004_bb0280
  article-title: Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/12.12.1342
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.neuroimage.2015.01.004_bb0315
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 11
  start-page: 668
  year: 2000
  ident: 10.1016/j.neuroimage.2015.01.004_bb0390
  article-title: Application of cortical unfolding techniques to functional MRI of the human hippocampal region
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0561
– volume: 32
  start-page: 6550
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.004_bb0195
  article-title: Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3711-11.2012
– volume: 51
  start-page: 101
  year: 2000
  ident: 10.1016/j.neuroimage.2015.01.004_bb0310
  article-title: Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/1097-0029(20001001)51:1<101::AID-JEMT11>3.0.CO;2-H
– volume: 21
  start-page: 461
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.004_bb0375
  article-title: A medial temporal lobe division of labor: insights from memory in aging and early Alzheimer disease
  publication-title: Hippocampus
  doi: 10.1002/hipo.20779
– start-page: 3034
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0120
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2015.01.004_bb0155
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 51
  start-page: 1242
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.004_bb0380
  article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.040
SSID ssj0009148
Score 2.583837
Snippet An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the...
Objective An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 526
SubjectTerms Adult
Biomedical materials
Boundaries
Brain research
CA1
CA2
CA3
Clinical Protocols - standards
Dentate gyrus
Entorhinal cortex
Hippocampal subfields
Hippocampus
Hippocampus - anatomy & histology
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Labels
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Manuals
Marking
Medial temporal lobe
Parahippocampal gyrus
Parahippocampal Gyrus - anatomy & histology
Perirhinal cortex
Segmentation
Subiculum
Substructures
Surgical implants
Unified protocol
Title Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915000075
https://www.ncbi.nlm.nih.gov/pubmed/25596463
https://www.proquest.com/docview/1674482611
https://www.proquest.com/docview/1671211389
https://www.proquest.com/docview/1701483317
https://www.proquest.com/docview/1730073889
https://pubmed.ncbi.nlm.nih.gov/PMC4387011
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgkxAviG8KYzISrxFJ7fiDFzSmTQPRaVSb1DfLsVMWtCWFtHvg7-EP5c5xUjZQNalqH3xulNz57hf77neEvLWpVhxeJRIurIYvz5Mi5WUCoV35QgopLdYOT47F0Rn_PMtnccOtjWmVvU8Mjto3DvfI32G2PAcsnGUfFj8S7BqFp6uxhcZdsh2oy8Ce5UyuSXcz3pXC5SxRIBAzebr8rsAXWV3CqsUEr468M7Zr-094-hd-3syi_CssHT4kDyKepHudATwid8r6Mbk3iSfmT8jvrytbh0IycGvUDV0HaTOn44wiTUMDttBSAK8ULCKUp9PzarGAIAfCF7RdFSHNraW29hSpwm-MYm8HsF1a1fi5qq4aOpl-ek9PQ0YuTKNIjw2-41fpaVt-u4zlTvVw9afk7PDgdP8oiZ0ZEidyuUy8HqdCIU-PysqUSa1SK6xz2mdMuLEUYo608QBPrHVMiSK3cwnaK-3YAgKcs2dkq27q8gWhlqFMAUBEca5Zqryeu1wDrtNcOO9HRPYKMS7SlmP3jAvT56d9N2tVGlSlSTMDqhyRbJi56Kg7bjFH9zo3fWkqOFMD8eUWc3d6IzHREbRmbbYj8mYYhiWM5zK2LptVkEGiPYCOG2Qkbv0yQHubZBgevCr8n-edbQ43jm-OggsGj_Oa1Q4CSDN-faSuzgPdOGfg07Ps5ebbe0Xu47PockF3yNby56p8DXhtWeyGRblLtvf2p19O4PfjwfHJ9A8ZrUaW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8KA4wEjxFJ7DoxEkIDNrVsrWDqpL0Zx3ZY0JYU0g7B37Nn_kbu8lU2ULWXSVVffE6U3PnuHP_ud4Q8176MOWwlPC60hD_LvcTnzoPQHtskElGksXZ4PBHDff7hYHCwRn63tTAIq2x9YuWobWHwG_lLRMtzyIWD4M3sm4ddo_B0tW2hUZvFjvv5A7Zs5evRe9DvizDc3pq-G3pNVwHPiEE096wMfREjx0wcOJ9FMva10MZIGzBhwkiIFCnPIbRqbVgskoFOI7iz06GG7CVlcN0rZJ1jRWuPrL_dmnzcW9L8BrwuvhswD-4hG-xQjSirGCqzY_ATCCmr6UKbBnH_CYj_JrzncZt_BcLtm-RGk8HSzdrkbpE1l98mV8fNGf0dcvppofOqdA0cKTVdn0NapDQMKBJDFGB9JYV0mYINVgXx9DCbzSCsgvARLRdJBawrqc4tRXLyc6PYTQJWC81y_J1kJwUd741e0WmFAYZpFAm5wVv9cpaW7stxU2CVd3e_S_YvRWv3SC8vcveAUM1QJoHUJ-ZcMj-2MjUDCZmk5MJY2ydRqxBlGqJ07NdxpFpE3Fe1VKVCVSo_UKDKPgm6mbOaLOQCc2Src9UWw4L7VhDRLjB3ozUS1bieUi0XSp8864bBaeBJkM5dsahkkNoPktUVMhF-bGaQX66SYXjUG-N17te22T047lUFFwxe5xmr7QSQ2PzsSJ4dVgTnnEEUCYKHqx_vKbk2nI531e5osvOIXMf3UiNRN0hv_n3hHkO2OE-eNEuUks-X7RX-AERPf6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkSpeEPcuFDASPEaNY68dIyGEKKsuZStArbRvxnEcGtQmC9ktgu_hK_g6ZnJbWtCqL5VW-5JxbjOeOY5nzhDy1IY6FrCUCIS0Gv5SESSh8AGE9jhNlFTKYu3wZF_uHoq30-F0jfzuamEwrbLzibWjTkuH38i3MVteABZmbDtr0yLe74xezr4G2EEKd1q7dhqNiez5H99h-Va9GO-Arp9F0ejNwevdoO0wEDg5VPMg1VEoY-SbiZkPudJxaKV1TqeMSxcpKTOkP4cwa63jsUyGNlNwF95GFpBMxuG8V8hVxQFVwVxSU7Uk_GWiKcMb8gCuoNssoia3rOaqzE_AY2ByWUMc2raK-09o_Bf6ns_g_Cskjm6Q6y2Wpa8a47tJ1nxxi2xM2t362-TXh4Ut6iI2cKnU9R0PaZnRiFGkiCjBDisKwJmCNdal8fQon80gwILwMa0WSZ1iV1FbpBRpys8dxb4SMG9oXuDvND8t6eTj-Dk9qLOBYRhFam7wWz99Siv_-aQttSr6q98hh5eis7tkvSgLv0mo5SiTAAiKhdA8jFOduaEGTKmFdGk6IKpTiHEtZTp27jg2XW7cF7NUpUFVmpAZUOWAsH7krKENucAY3encdGWx4MgNxLYLjN3qjMS0TqgyyykzIE_6w-A-cE_IFr5c1DJI8gewdYWMws_OHJDmKhmOm74xnudeY5v9g-OqVQrJ4XWesdpeACnOzx4p8qOa6lxwiCeM3V_9eI_JBvgC8268v_eAXMPX0qSkbpH1-beFfwiwcZ48qucnJZ8u2yH8AXoCgm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+comparison+of+21+protocols+for+labeling+hippocampal+subfields+and+parahippocampal+subregions+in+in+vivo+MRI%3A+Towards+a+harmonized+segmentation+protocol&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yushkevich%2C+Paul+A.&rft.au=Amaral%2C+Robert+S.C.&rft.au=Augustinack%2C+Jean+C.&rft.au=Bender%2C+Andrew+R.&rft.date=2015-05-01&rft.issn=1053-8119&rft.volume=111&rft.spage=526&rft.epage=541&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2015_01_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon