ISOWN: accurate somatic mutation identification in the absence of normal tissue controls

A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which...

Full description

Saved in:
Bibliographic Details
Published inGenome medicine Vol. 9; no. 1; p. 59
Main Authors Kalatskaya, Irina, Trinh, Quang M, Spears, Melanie, McPherson, John D, Bartlett, John M S, Stein, Lincoln
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 29.06.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison. In this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues). In this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN .
AbstractList BACKGROUNDA key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison.RESULTSIn this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues).CONCLUSIONSIn this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN .
Background A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison. Results In this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues). Conclusions In this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN.
Abstract Background A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison. Results In this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues). Conclusions In this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN .
A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison. In this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues). In this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN .
ArticleNumber 59
Audience Academic
Author McPherson, John D
Trinh, Quang M
Bartlett, John M S
Kalatskaya, Irina
Spears, Melanie
Stein, Lincoln
Author_xml – sequence: 1
  givenname: Irina
  orcidid: 0000-0002-1663-859X
  surname: Kalatskaya
  fullname: Kalatskaya, Irina
  email: ikalats@gmail.com
  organization: Informatics and Bio-computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ikalats@gmail.com
– sequence: 2
  givenname: Quang M
  surname: Trinh
  fullname: Trinh, Quang M
  organization: Informatics and Bio-computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
– sequence: 3
  givenname: Melanie
  surname: Spears
  fullname: Spears, Melanie
  organization: Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
– sequence: 4
  givenname: John D
  surname: McPherson
  fullname: McPherson, John D
  organization: Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
– sequence: 5
  givenname: John M S
  surname: Bartlett
  fullname: Bartlett, John M S
  organization: Edinburgh Cancer Research UK Centre, MRC IGMM, University of Edinburgh, Edinburgh, UK
– sequence: 6
  givenname: Lincoln
  surname: Stein
  fullname: Stein, Lincoln
  organization: Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28659176$$D View this record in MEDLINE/PubMed
BookMark eNptUk2LFDEQbWTF_dAf4EUaBPHSa9L56ngQlsWPgcU9qLi3UJ2unsnQnaxJt-C_N-2My4xIDpVU3ntJVb3z4sQHj0XxnJJLShv5JlFGFKsIVRXhXFb6UXFGlcgbze9ODvanxXlKW0Ikr7l6UpzWjRSaKnlW3K2-3H7__LYEa-cIE5YpjDA5W47zlGPwpevQT653dn_05bTBEtqE3mIZ-tKHOMJQTi6lGUsb_BTDkJ4Wj3sYEj7bx4vi24f3X68_VTe3H1fXVzeVlUJNlQViQWphSa-V1LXCru1lbbFDQTThbd3UtmUtra1Qou0Zs7wGVJ0AUQvC2EWx2ul2AbbmProR4i8TwJk_iRDXBmIuaEDDGsUFow1XVHEQupVY6waspAi9ZW3WerfTup_bETubC48wHIke33i3Mevw0wiuCZXLZ17vBWL4MWOazOiSxWEAj2FOhmrKG94wJTP05T_QbZijz61aUELmQfED1BpyAc73Ib9rF1FzxbXKxTRiQV3-B5VXh6PLA8He5fwR4dUBYYMwTJsUhnmZcDoG0h3QxpBSxP6hGZSYxYNm50GTPWgWDxqdOS8Ou_jA-Gs69hv7o9d3
CitedBy_id crossref_primary_10_1016_j_jmoldx_2019_05_005
crossref_primary_10_1093_bib_bbac381
crossref_primary_10_1093_nar_gkad519
crossref_primary_10_1186_s12967_022_03230_z
crossref_primary_10_3233_JIFS_169913
crossref_primary_10_1016_j_csbj_2018_01_003
crossref_primary_10_1186_s13073_017_0462_9
crossref_primary_10_1200_PO_18_00373
crossref_primary_10_1038_s41523_020_0165_z
crossref_primary_10_1038_s41398_018_0342_0
crossref_primary_10_1126_scitranslmed_aar7939
crossref_primary_10_1002_ijc_32295
crossref_primary_10_1093_narcan_zcab040
crossref_primary_10_3389_fonc_2019_00119
crossref_primary_10_1109_TCBB_2023_3291134
crossref_primary_10_1186_s12920_020_00820_y
crossref_primary_10_1109_TCBB_2020_2975181
crossref_primary_10_1016_j_jbi_2023_104429
crossref_primary_10_1200_CCI_19_00130
crossref_primary_10_1093_bioinformatics_btac828
crossref_primary_10_1186_s13073_018_0547_0
crossref_primary_10_7717_peerj_10897
crossref_primary_10_1038_s41392_020_00412_3
crossref_primary_10_1093_bib_bbaa272
crossref_primary_10_1016_j_csbj_2019_04_002
crossref_primary_10_1093_bioinformatics_bty518
crossref_primary_10_1142_S0219720021400175
crossref_primary_10_1371_journal_pone_0202982
Cites_doi 10.1002/0471142905.hg0720s76
10.1093/bioinformatics/bth261
10.1038/ng.3076
10.1371/journal.pone.0059494
10.1186/s12918-016-0306-z
10.1038/ncomms12605
10.1093/nar/gkr1073
10.1038/nature11017
10.1158/2159-8290.CD-12-0231
10.1038/ng.2591
10.1093/bioinformatics/btp324
10.1093/nar/gkw971
10.2307/2347628
10.1093/bioinformatics/btt395
10.1007/3-540-36755-1_14
10.1093/bioinformatics/bts271
10.1093/nar/gku1075
10.1016/S0092-8674(00)81683-9
10.1093/nar/29.1.308
10.1016/0092-8674(92)90408-5
10.1038/nature11252
10.1038/nature12634
10.1016/S0140-6736(10)62312-4
10.1038/ncomms10001
10.1371/journal.pone.0151664
10.1093/nar/gkq603
10.1146/annurev-med-051010-162644
10.1093/nar/gkr407
10.1038/ng.3677
10.1214/aos/1028144844
10.1093/carcin/bgw066
10.1186/s12918-016-0300-5
10.1038/nature12477
10.1016/j.cell.2015.12.028
10.1038/nbt.2514
10.1197/jamia.M1733
10.1038/nature11547
10.1186/s13059-016-1029-6
10.1038/ng.3659
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s). 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s). 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13073-017-0446-9
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-994X
EndPage 59
ExternalDocumentID oai_doaj_org_article_3874531847174a59b6e298ac61eafc3b
A497318856
10_1186_s13073_017_0446_9
28659176
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-56
-5G
-BR
0R~
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
ABDBF
ABUWG
ACGFS
ACJQM
ACRMQ
ADINQ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIAM
BBNVY
BENPR
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CUY
CVF
DIK
E3Z
EBD
EBLON
EBS
ECM
EIF
EJD
ESX
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
LK8
M1P
M7P
MK0
M~E
NPM
O5R
O5S
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SBL
SOJ
TUS
UKHRP
AAYXX
CITATION
AFGXO
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c657t-ca0ca695c0f976927edbf62cede50904b282cb3b12c575bf33c42ae7d5a525033
IEDL.DBID RPM
ISSN 1756-994X
IngestDate Tue Oct 22 15:12:12 EDT 2024
Tue Sep 17 20:37:11 EDT 2024
Fri Oct 25 06:31:36 EDT 2024
Thu Oct 10 15:07:35 EDT 2024
Tue Nov 19 20:56:48 EST 2024
Tue Nov 12 23:23:46 EST 2024
Tue Aug 20 22:12:56 EDT 2024
Thu Sep 12 18:11:00 EDT 2024
Sat Sep 28 08:50:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Somatic mutation
Variant classification
Matching normal tissue
Next-generation sequencing
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c657t-ca0ca695c0f976927edbf62cede50904b282cb3b12c575bf33c42ae7d5a525033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1663-859X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490163/
PMID 28659176
PQID 1915624746
PQPubID 2040231
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3874531847174a59b6e298ac61eafc3b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5490163
proquest_miscellaneous_1914848376
proquest_journals_1915624746
gale_infotracmisc_A497318856
gale_infotracacademiconefile_A497318856
gale_healthsolutions_A497318856
crossref_primary_10_1186_s13073_017_0446_9
pubmed_primary_28659176
PublicationCentury 2000
PublicationDate 2017-06-29
PublicationDateYYYYMMDD 2017-06-29
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-29
  day: 29
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome medicine
PublicationTitleAlternate Genome Med
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 27615322 - Nat Commun. 2016 Sep 12;7:12605
23945592 - Nature. 2013 Aug 22;500(7463):415-21
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
23103869 - Nature. 2012 Nov 15;491(7424):399-405
23315928 - Curr Protoc Hum Genet. 2013 Jan;Chapter 7:Unit7.20
22581179 - Bioinformatics. 2012 Jul 15;28(14):1811-7
27668655 - Nat Genet. 2016 Nov;48(11):1327-1329
1568247 - Cell. 1992 Apr 17;69(2):275-81
27595477 - Nat Genet. 2016 Oct;48(10 ):1131-41
21247627 - Lancet. 2011 Jan 22;377(9762):321-31
11125122 - Nucleic Acids Res. 2001 Jan 1;29(1):308-11
10647931 - Cell. 2000 Jan 7;100(1):57-70
23525077 - Nat Genet. 2013 May;45(5):478-86
24132290 - Nature. 2013 Oct 17;502(7471):333-9
22248320 - Annu Rev Med. 2012;63:35-61
23884480 - Bioinformatics. 2013 Sep 15;29(18):2238-44
26824661 - Cell. 2016 Jan 28;164(3):550-63
20601685 - Nucleic Acids Res. 2010 Sep;38(16):e164
23103856 - Cancer Discov. 2013 Jan;3(1):112-23
25355519 - Nucleic Acids Res. 2015 Jan;43(Database issue):D805-11
27557938 - Genome Biol. 2016 Aug 24;17 (1):178
21727090 - Nucleic Acids Res. 2011 Sep 1;39(17):e118
22810696 - Nature. 2012 Jul 18;487(7407):330-7
26647970 - Nat Commun. 2015 Dec 09;6:10001
23396013 - Nat Biotechnol. 2013 Mar;31(3):213-9
27899611 - Nucleic Acids Res. 2017 Jan 4;45(D1):D840-D845
27002637 - PLoS One. 2016 Mar 22;11(3):e0151664
15073010 - Bioinformatics. 2004 Oct 12;20(15):2479-81
23577066 - PLoS One. 2013;8(4):e59494
26537074 - J BUON. 2015 Sep-Oct;20(5):1267-75
22722201 - Nature. 2012 May 16;486(7403):400-4
15684123 - J Am Med Inform Assoc. 2005 May-Jun;12(3):296-8
27267998 - Carcinogenesis. 2016 Aug;37(8):817-826
22127862 - Nucleic Acids Res. 2012 Mar;40(6):2426-31
27489955 - BMC Syst Biol. 2016 Aug 01;10 Suppl 2:47
25151357 - Nat Genet. 2014 Oct;46(10):1097-102
27587275 - BMC Syst Biol. 2016 Aug 26;10 Suppl 3:62
SA Forbes (446_CR25) 2015; 43
G Hripcsak (446_CR30) 2005; 12
Y Liu (446_CR16) 2016; 10
S Vural (446_CR10) 2016; 10
S Mimaki (446_CR9) 2016; 37
AV Biankin (446_CR6) 2012; 491
WW Cohen (446_CR34) 1995
D Hanahan (446_CR1) 2000; 100
A Young (446_CR2) 2013; 3
AM Dulak (446_CR22) 2013; 45
J Wang (446_CR12) 2015; 20
CT Saunders (446_CR15) 2012; 28
RC Quinlan (446_CR35) 1993
Y Fan (446_CR14) 2016; 17
E Frank (446_CR29) 2004; 20
H Li (446_CR23) 2009; 25
KJ Karczewski (446_CR27) 2017; 45
D Tamborero (446_CR44) 2013; 29
B Reva (446_CR26) 2011; 39
446_CR28
LB Alexandrov (446_CR31) 2013; 500
Cancer Genome Atlas Network (446_CR42) 2012; 487
M Secrier (446_CR11) 2016; 48
V Heinrich (446_CR32) 2012; 40
PJ Stephens (446_CR43) 2012; 486
TS Alioto (446_CR21) 2015; 6
T Hastie (446_CR40) 1998; 26
YB Gao (446_CR4) 2014; 46
S Behjati (446_CR8) 2016; 7
K Wang (446_CR24) 2010; 38
H Shen (446_CR18) 2013; 8
Y Li (446_CR3) 1992; 69
N Riaz (446_CR13) 2016; 48
M Ceccarelli (446_CR5) 2016; 164
CJ Velde van de (446_CR41) 2011; 377
AB Krøigård (446_CR45) 2016; 11
446_CR33
K Cibulskis (446_CR17) 2013; 31
446_CR36
C Kandoth (446_CR7) 2013; 502
ST Sherry (446_CR20) 2001; 29
446_CR38
C Gonzaga-Jauregui (446_CR19) 2012; 63
446_CR37
446_CR39
References_xml – ident: 446_CR28
  doi: 10.1002/0471142905.hg0720s76
– volume: 20
  start-page: 2479
  year: 2004
  ident: 446_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth261
  contributor:
    fullname: E Frank
– volume: 46
  start-page: 1097
  year: 2014
  ident: 446_CR4
  publication-title: Nat Genet
  doi: 10.1038/ng.3076
  contributor:
    fullname: YB Gao
– volume: 8
  start-page: e59494
  year: 2013
  ident: 446_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059494
  contributor:
    fullname: H Shen
– start-page: 115
  volume-title: Proceedings of the twelfth international conference on machine learning
  year: 1995
  ident: 446_CR34
  contributor:
    fullname: WW Cohen
– volume: 10
  start-page: 62
  issue: Suppl 3
  year: 2016
  ident: 446_CR10
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-016-0306-z
  contributor:
    fullname: S Vural
– volume: 7
  start-page: 12605
  year: 2016
  ident: 446_CR8
  publication-title: Nat Commun
  doi: 10.1038/ncomms12605
  contributor:
    fullname: S Behjati
– volume: 40
  start-page: 2426
  year: 2012
  ident: 446_CR32
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1073
  contributor:
    fullname: V Heinrich
– volume: 486
  start-page: 400
  year: 2012
  ident: 446_CR43
  publication-title: Nature
  doi: 10.1038/nature11017
  contributor:
    fullname: PJ Stephens
– ident: 446_CR33
– volume: 3
  start-page: 112
  year: 2013
  ident: 446_CR2
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0231
  contributor:
    fullname: A Young
– volume: 45
  start-page: 478
  year: 2013
  ident: 446_CR22
  publication-title: Nat Genet
  doi: 10.1038/ng.2591
  contributor:
    fullname: AM Dulak
– volume: 25
  start-page: 1754
  year: 2009
  ident: 446_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
  contributor:
    fullname: H Li
– volume: 45
  start-page: D840
  issue: D1
  year: 2017
  ident: 446_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw971
  contributor:
    fullname: KJ Karczewski
– ident: 446_CR38
– ident: 446_CR39
  doi: 10.2307/2347628
– volume: 29
  start-page: 2238
  year: 2013
  ident: 446_CR44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt395
  contributor:
    fullname: D Tamborero
– ident: 446_CR37
  doi: 10.1007/3-540-36755-1_14
– volume: 28
  start-page: 1811
  year: 2012
  ident: 446_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts271
  contributor:
    fullname: CT Saunders
– volume: 43
  start-page: D805
  year: 2015
  ident: 446_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1075
  contributor:
    fullname: SA Forbes
– volume: 100
  start-page: 57
  year: 2000
  ident: 446_CR1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
  contributor:
    fullname: D Hanahan
– volume: 29
  start-page: 308
  year: 2001
  ident: 446_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.1.308
  contributor:
    fullname: ST Sherry
– volume: 69
  start-page: 275
  year: 1992
  ident: 446_CR3
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90408-5
  contributor:
    fullname: Y Li
– volume: 487
  start-page: 330
  year: 2012
  ident: 446_CR42
  publication-title: Nature
  doi: 10.1038/nature11252
  contributor:
    fullname: Cancer Genome Atlas Network
– volume: 502
  start-page: 333
  year: 2013
  ident: 446_CR7
  publication-title: Nature
  doi: 10.1038/nature12634
  contributor:
    fullname: C Kandoth
– volume: 377
  start-page: 321
  year: 2011
  ident: 446_CR41
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)62312-4
  contributor:
    fullname: CJ Velde van de
– volume: 6
  start-page: 10001
  year: 2015
  ident: 446_CR21
  publication-title: Nat Commun
  doi: 10.1038/ncomms10001
  contributor:
    fullname: TS Alioto
– volume: 20
  start-page: 1267
  year: 2015
  ident: 446_CR12
  publication-title: J BUON
  contributor:
    fullname: J Wang
– volume: 11
  start-page: e0151664
  year: 2016
  ident: 446_CR45
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151664
  contributor:
    fullname: AB Krøigård
– volume: 38
  start-page: e164
  year: 2010
  ident: 446_CR24
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq603
  contributor:
    fullname: K Wang
– volume: 63
  start-page: 35
  year: 2012
  ident: 446_CR19
  publication-title: Annu Rev Med
  doi: 10.1146/annurev-med-051010-162644
  contributor:
    fullname: C Gonzaga-Jauregui
– volume: 39
  start-page: e118
  year: 2011
  ident: 446_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr407
  contributor:
    fullname: B Reva
– ident: 446_CR36
– volume: 48
  start-page: 1327
  year: 2016
  ident: 446_CR13
  publication-title: Nat Genet
  doi: 10.1038/ng.3677
  contributor:
    fullname: N Riaz
– volume: 26
  start-page: 451
  year: 1998
  ident: 446_CR40
  publication-title: Ann Stat
  doi: 10.1214/aos/1028144844
  contributor:
    fullname: T Hastie
– volume: 37
  start-page: 817
  year: 2016
  ident: 446_CR9
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgw066
  contributor:
    fullname: S Mimaki
– volume: 10
  start-page: 47
  issue: Suppl 2
  year: 2016
  ident: 446_CR16
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-016-0300-5
  contributor:
    fullname: Y Liu
– volume: 500
  start-page: 415
  year: 2013
  ident: 446_CR31
  publication-title: Nature
  doi: 10.1038/nature12477
  contributor:
    fullname: LB Alexandrov
– volume: 164
  start-page: 550
  year: 2016
  ident: 446_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.028
  contributor:
    fullname: M Ceccarelli
– volume: 31
  start-page: 213
  year: 2013
  ident: 446_CR17
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2514
  contributor:
    fullname: K Cibulskis
– volume: 12
  start-page: 296
  year: 2005
  ident: 446_CR30
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M1733
  contributor:
    fullname: G Hripcsak
– volume: 491
  start-page: 399
  year: 2012
  ident: 446_CR6
  publication-title: Nature
  doi: 10.1038/nature11547
  contributor:
    fullname: AV Biankin
– volume-title: 4.5: Programs for machine learning
  year: 1993
  ident: 446_CR35
  contributor:
    fullname: RC Quinlan
– volume: 17
  start-page: 178
  year: 2016
  ident: 446_CR14
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1029-6
  contributor:
    fullname: Y Fan
– volume: 48
  start-page: 1131
  year: 2016
  ident: 446_CR11
  publication-title: Nat Genet
  doi: 10.1038/ng.3659
  contributor:
    fullname: M Secrier
SSID ssj0064247
Score 2.385668
Snippet A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to...
Background A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the...
BACKGROUNDA key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the...
Abstract Background A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 59
SubjectTerms Artificial intelligence
Breast cancer
Cancer
Clinical trials
Datasets
DNA Mutational Analysis - methods
Formaldehyde
Gene mutations
Genetic aspects
Genetic polymorphisms
Genomes
High-Throughput Nucleotide Sequencing - methods
Humans
Learning algorithms
Matching normal tissue
Mutation
Neoplasms - genetics
Next-generation sequencing
Nucleotide sequence
Paraffin
Software
Somatic mutation
Studies
Supervised Machine Learning
Tumors
Variant classification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6ysOBFfDu6rhEEQQjbnVd3vO0uLqvgetDFuYUkneCC9og9c_DfW5Vkhmk8ePHYUzXQXa98RSpfCHkVklaudZr52DQMloDE-qELjDtpOG-0ERrPO3-80pfX8sNSLfeu-sKZsEIPXAx3IpCPHQIPimgnnTJeR256F3QbXQrC5-rb8G0zVWowgGrZ1T3MttcnU4uhzLAi4wYmM7NVKJP1_12S99ak-bzk3gJ0cZfcqciRnpY3vkduxfE-OSx3Sf5-QJbvP3_6evWWuhA2SP9Ap1VmY6U_NmW3nd4MdTKoPo4UwB91fsLkpqtER8Sv3-k6-4LWIfbpIbm-ePfl_JLVaxNY0Kpbs-Ca4LRRoUmANQzv4uCT5iEOEdBBIz10WcEL3_IAWM0nIYLkLnaDcrjHKcQjcjCuxviEUO8RPghuYhIyRgnwIaXBSAVNktfKL8ibrRntz8KOYXNX0WtbbG7B5hZtbs2CnKGhd4pIbJ1_AHfb6m77L3cvyAt0ky2nRHfpaU8l3sHV90ovyOusgQkK3gqunjOAL0Kqq5nm0UwTEivMxdtQsDWxJwvtLSBG2UkQv9yJ8Z84rDbG1SbryB6Z-kHncYmc3UfjQWDokEHSzWJqZpW5ZLz5lmm_oZMHfC6e_g8zPiO3ec4Gzbg5IgfrX5v4HNDV2h_nRPoDDKEgTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA-6h-DL4berp0YQBCFcm6Rp44vcyR2n4Crq4b6FJE30wGvP6-6D_70zaXa9Ivi4zZRuJ_Pxm85khpAXPqrKllYxF4qCgQuIrGlrz7iVmvNCaaHwvPOHhTo5le-X1TJ_cBtyWeXGJiZD3fYev5HvQ1wBrlrWUr25-MVwahRmV_MIjetkh5eiaWZk5_Bo8enzxhYDuJZ1zmWWjdofShRphpYZE5lMT7xRatr_r2m-4pumdZNXHNHxLbKbESQ9GLf8NrkWujvkxjhT8vddsnz35eO3xWtqvV9jGwg69KkrKz1fj1l3etbmCqH8s6MAAql1Ayo57SPtEMf-pKu0JzQXsw_3yOnx0de3JyyPT2BeVfWKeVt4q3TliwiYQ_M6tC4q7kMbACUU0kG05Z1wJfeA2VwUwktuQ91WFnOdQtwns67vwkNCnUMYIbgOUcgQJMCIGFstKwiWnKrcnLzasNFcjF0yTIouGmVGnhvguUGeGz0nh8joLSE2uE4X-svvJuuLEdiGH-wN-M5a2ko7FbhurFdlsNELeOIz3CYznhbdqqk5kDiLq2kqNScvEwUqKuyWt_m8AbwRtryaUO5NKEHB_HR5IwomK_hg_orjnDzfLuOdWLTWhX6daGSDHfuB5sEoOduXxgPBECnDSj2RqQlXpivd2Y_U_hsiesDp4tH__9ZjcpMnOVeM6z0yW12uwxPATyv3NCvJH7ANGdU
  priority: 102
  providerName: ProQuest
Title ISOWN: accurate somatic mutation identification in the absence of normal tissue controls
URI https://www.ncbi.nlm.nih.gov/pubmed/28659176
https://www.proquest.com/docview/1915624746
https://search.proquest.com/docview/1914848376
https://pubmed.ncbi.nlm.nih.gov/PMC5490163
https://doaj.org/article/3874531847174a59b6e298ac61eafc3b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2ISReEN8rjGIkJCSkrIm_EvO2TRsDaWUCJvpm2Y4DldZkWtoH_nvunKRaxBsvlVJflOZ85_tdffczIe98paTNrEpcSNMEQkCVFGXuE2aFZixVmivsd76Yq_Mr8WUhFztEDr0wsWjfu-Vhfb06rJe_Y23lzcrPhjqx2eXFCeQ0gFT4bJfsQvgdUvRu-QU8LfJ--zIr1KzN0IoTXIxx7zJBmlDsxoQ0RY1iUaTs_3dhvhOZxlWTd8LQ2SPysMeP9Kj7nY_JTqifkPvdiZJ_npLF5-9ff84_Uuv9BkkgaNtETla62nR77nRZ9vVB_WVNAQJS61p0cdpUtEYUe03XcUZoX8rePiNXZ6c_Ts6T_vCExCuZrxNvU2-Vlj6tAHFolofSVYr5UAbACKlwkGt5x13GPCA2V3HuBbMhL6XFnU7On5O9uqnDPqHOIYjgTIeKixAEgIiqKrWQkCo5Jd2EfBjUaG46jgwTc4tCmU79BtRvUP1GT8gxKnoriPTW8Yvm9pfpJ9lwJOGH1QYiZy6s1E4FpgvrVRZs5Tk88Q1Ok-l6RbdOao4EnsRVFFJNyPsogW4Ks-Vt320Ab4SEVyPJg5EkuJcfDw-mYHr3bg0kuYAbRS5g-O12GO_EkrU6NJsoIwrk6weZF53lbF96MMAJyUc2NdLKeAR8IZJ_97b_8r_vfEUesOgNKmH6gOytbzfhNQCrtZuCOy3yKbl3fDq__DaNf0_A56dFNo0u9heFxCXK
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4IXxDeFwYyEhIRkLbEdJ-YFbWhTB1tBsIm-WbZjwyRIxtI-8N9zl7hlERKPjS9Kc76P3-XOd4S89FEVNreKuZBlDFxAZFVdesat1JxnSguF551P5mp2Jt8vikX64Nalssq1TewNdd16_Ea-C3EFuGpZSvX24hfDqVGYXU0jNK6TLeycXkzI1v7B_NPntS0GcC3LlMvMK7Xb5SjSDC0zJjKZHnmjvmn_v6b5im8a101ecUSHd8jthCDp3rDld8m10NwjN4aZkr_vk8XRl49f52-o9X6FbSBo1_ZdWenP1ZB1p-d1qhBKPxsKIJBa16GS0zbSBnHsD7rs94SmYvbuATk7PDh9N2NpfALzqiiXzNvMW6ULn0XAHJqXoXZRcR_qACghkw6iLe-Ey7kHzOaiEF5yG8q6sJjrFOIhmTRtEx4T6hzCCMF1iEKGIAFGxFhrWUCw5FThpuT1mo3mYuiSYfroolJm4LkBnhvkudFTso-M3hBig-v-Qnv5zSR9MQLb8IO9Ad9ZSltopwLXlfUqDzZ6AU_cwW0yw2nRjZqaPYmzuKqqUFPyqqdARYXd8jadN4A3wpZXI8rtESUomB8vr0XBJAXvzF9xnJIXm2W8E4vWmtCuehpZYcd-oHk0SM7mpfFAMETKsFKOZGrElfFKc_69b_8NET3gdPHk_39rh9ycnZ4cm-Oj-Yen5BbvZV4xrrfJZHm5Cs8ASy3d86QwfwD-ehy9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCMQL4jcdgxkJCQkpS2I7TsLbGFQbsDIJJvpm2Y7NKq1JtbQP_PfcOUnViDceW1_U5nyf7zv5_JmQt9bLTKdaRsYlSQQpwEdFlduIaVEylsiSSzzvfD6Tp5fiyzyb71z1FZr2rVkc1dfLo3pxFXorV0sbD31i8cX5CdQ0wFR4vKp8fJvcyTgE2VCod4swsGqR95uYaSHjNsVYjnBJxh3MCMVC8UwmFCtylJGCcP-_y_NOfhr3Tu4ko-lD8qBnkfS4-7ePyC1XPyZ3u3sl_zwh87Mf33_NPlBt7QalIGjbBGVWutx0O-90UfVdQv3HmgIRpNq0CHTaeFojl72m6zAvtG9ob5-Sy-nnnyenUX-FQmRllq8jqxOrZZnZxAPvKFnuKuMls65ywBQSYaDisoablFngbcZzbgXTLq8yjfudnD8je3VTuxeEGoNUgrPSeS6cE0AlvK9KkUHBZGRmJuT94Ea16pQyVKgwCqk69ytwv0L3q3JCPqKjt4Yoch2-aG5-q36qFUcpflhzIH_mQmelkY6VhbYyddpbDr94iNOkuhOjW6iqY4H3cRVFJifkXbBAsMJsWd2fOYA3QtmrkeXByBJAZsfDQyioHuStglIX2KPIBQy_2Q7jk9i4VrtmE2xEgar9YPO8i5ztSw8BOCH5KKZGXhmPACKCBHiPgP3_fvKQ3Lv4NFXfzmZfX5L7LABDRqw8IHvrm417BUxrbV4HTP0Fb4Qlyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ISOWN%3A+accurate+somatic+mutation+identification+in+the+absence+of+normal+tissue+controls&rft.jtitle=Genome+medicine&rft.au=Kalatskaya%2C+Irina&rft.au=Trinh%2C+Quang+M.&rft.au=Spears%2C+Melanie&rft.au=McPherson%2C+John+D.&rft.date=2017-06-29&rft.issn=1756-994X&rft.eissn=1756-994X&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2Fs13073-017-0446-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13073_017_0446_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-994X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-994X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-994X&client=summon