A hybrid Bi-LSTM and RBM approach for advanced underwater object detection
This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid mod...
Saved in:
Published in | PloS one Vol. 19; no. 11; p. e0313708 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
22.11.2024
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model’s suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments. |
---|---|
AbstractList | This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model’s suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments. This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model's suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments.This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model's suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments. |
Audience | Academic |
Author | P., Karthikeyan S., Manimurugan Aborokbah, Majed M. Paul, Anand Ammad-Uddin, Mohammad C., Narmatha Ganesan, Subramaniam T., Rajendran |
Author_xml | – sequence: 1 givenname: Manimurugan surname: S. fullname: S., Manimurugan – sequence: 2 givenname: Karthikeyan orcidid: 0000-0001-8977-5520 surname: P. fullname: P., Karthikeyan – sequence: 3 givenname: Narmatha surname: C. fullname: C., Narmatha – sequence: 4 givenname: Majed M. surname: Aborokbah fullname: Aborokbah, Majed M. – sequence: 5 givenname: Anand surname: Paul fullname: Paul, Anand – sequence: 6 givenname: Subramaniam surname: Ganesan fullname: Ganesan, Subramaniam – sequence: 7 givenname: Rajendran orcidid: 0000-0003-0759-1846 surname: T. fullname: T., Rajendran – sequence: 8 givenname: Mohammad surname: Ammad-Uddin fullname: Ammad-Uddin, Mohammad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39576806$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNURD_gHyCIhITgkMWOE8c5bqsCixZVagtXyx_jXa-ycWon0P57HDatuqgH5MNYrx7PjN-Z4-SgdS0kyWuMZphU-NPGDb4VzayL8gyRqCH2LDnCNckzmiNy8Oh-mByHsEGoJIzSF8khqcuKMkSPkm_zdH0nvdXpqc2WV9ffU9Hq9PI0xq7zTqh1apxPhf4lWgU6HVoN_rfowadObkD1qYY-Buval8lzI5oAr6Z4kvz4fH599jVbXnxZnM2XmaIl7TMgupJKFwoBRYQqSZFmqoQCpCTCIKOA4ZxRJLExUJRaY1NTKJVE0oDA5CR5u8vbNS7wyYbAowM5qosqH4nFjtBObHjn7Vb4O-6E5X8F51dc-N6qBrimpJCIiFLXVWwJMUJLVWFRaFaYClDM9WGq5t3NAKHnWxsUNI1owQ27srhAFSMRffcP-nRzE7USsb5tjeu9UGNSPmc4EiXFNFKzJ6h4NGytiiM3Nup7Dz7uPYhMD7f9Sgwh8MXV5f-zFz_32feP2DWIpl8H1wzjxMM--Gb6_SC3oB9sv9-1CBQ7QHkXggfzgGDEx5W-t4uPK82nlSZ_AMgu5Ro |
Cites_doi | 10.1016/j.specom.2017.02.009 10.3390/jmse11030677 10.1109/JSEN.2019.2925830 10.1109/ACCESS.2019.2909318 10.1109/ICISCE50968.2020.00084 10.1016/j.ecoinf.2022.101923 10.1121/1.2133000 10.1186/s13173-021-00117-7 10.1109/ACCESS.2018.2810267 10.1016/j.trc.2015.03.014 10.3390/rs13224706 10.1109/CVPR.2016.90 10.1016/j.procs.2021.04.106 10.1109/ACCESS.2019.2939201 10.1007/s10489-021-02293-7 10.1016/j.ecoinf.2021.101469 10.1016/j.compeleceng.2022.108159 10.1007/s10596-018-9747-3 10.1109/ICIPMC55686.2022.00012 10.1007/s00521-019-04200-1 10.1007/s11042-021-11230-2 10.1109/ACCESS.2018.2800685 10.1016/j.micpro.2022.104628 10.1109/ACCESS.2019.2922038 10.1109/ACCESS.2019.2923462 10.1109/CVPRW.2018.00187 10.3390/app13042746 10.1016/j.autcon.2022.104440 10.1109/ACCESS.2017.2747901 10.1016/j.procs.2020.03.123 10.1109/ACCESS.2019.2891579 10.1016/j.knosys.2016.06.031 10.1016/j.ecoinf.2020.101088 10.3390/s21051807 10.1109/IJCNN48605.2020.9207506 10.1016/j.ecoinf.2023.102401 |
ContentType | Journal Article |
Copyright | Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. COPYRIGHT 2024 Public Library of Science This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. – notice: COPYRIGHT 2024 Public Library of Science – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
DOI | 10.1371/journal.pone.0313708 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | 3132094721 oai_doaj_org_article_d634b03a5d974c008365c71a4d84f7e0 A817215616 39576806 10_1371_journal_pone_0313708 |
Genre | Journal Article |
GeographicLocations | Saudi Arabia |
GeographicLocations_xml | – name: Saudi Arabia |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
ID | FETCH-LOGICAL-c656t-e3d7bcd4c0e6036cb60d8c5e4ebb3af0fce812860b1ffe45dd1f96e5cb0bfea13 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 13 01:18:35 EDT 2025 Wed Aug 27 01:31:47 EDT 2025 Fri Jul 11 05:29:51 EDT 2025 Fri Jul 25 11:15:58 EDT 2025 Tue Jun 17 21:56:06 EDT 2025 Tue Jun 10 20:54:14 EDT 2025 Fri Jun 27 05:14:23 EDT 2025 Fri Jun 27 05:14:11 EDT 2025 Thu May 22 21:23:28 EDT 2025 Mon Jul 21 06:03:36 EDT 2025 Tue Jul 01 02:56:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Creative Commons CC0 public domain |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c656t-e3d7bcd4c0e6036cb60d8c5e4ebb3af0fce812860b1ffe45dd1f96e5cb0bfea13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8977-5520 0000-0003-0759-1846 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0313708 |
PMID | 39576806 |
PQID | 3132094721 |
PQPubID | 1436336 |
PageCount | e0313708 |
ParticipantIDs | plos_journals_3132094721 doaj_primary_oai_doaj_org_article_d634b03a5d974c008365c71a4d84f7e0 proquest_miscellaneous_3132140783 proquest_journals_3132094721 gale_infotracmisc_A817215616 gale_infotracacademiconefile_A817215616 gale_incontextgauss_ISR_A817215616 gale_incontextgauss_IOV_A817215616 gale_healthsolutions_A817215616 pubmed_primary_39576806 crossref_primary_10_1371_journal_pone_0313708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-22 |
PublicationDateYYYYMMDD | 2024-11-22 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2024 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | S. Cai (pone.0313708.ref011) 2022; 102 H.E.D. Mohamed (pone.0313708.ref018) 2020; 170 M. Zhang (pone.0313708.ref007) 2021; 13 L. Jiao (pone.0313708.ref003) 2019; 7 J Zhang (pone.0313708.ref043) 2022; 72 pone.0313708.ref016 pone.0313708.ref038 pone.0313708.ref017 L. Wu (pone.0313708.ref031) 2019; 7 pone.0313708.ref037 pone.0313708.ref010 K Liu (pone.0313708.ref044) 2023; 11 P. Drews-Jr (pone.0313708.ref001) 2021; 27 M. Sung (pone.0313708.ref022) 2019; 19 F. Han (pone.0313708.ref015) 2020; 2020 D. Ji (pone.0313708.ref009) 2020; 17 pone.0313708.ref019 F. Han (pone.0313708.ref012) 2020; 2020 M. Capó (pone.0313708.ref033) 2017; 117 pone.0313708.ref041 O. Fresnedo (pone.0313708.ref035) 2019; 7 S. K. Baduge (pone.0313708.ref005) 2022; 141 N. Jiang (pone.0313708.ref014) 2021; 187 K. Himri (pone.0313708.ref008) 2021; 21 A. Jalal (pone.0313708.ref023) 2020; 57 Z. Yu (pone.0313708.ref029) 2017; 5 K. Panetta (pone.0313708.ref006) 2021 H Wang (pone.0313708.ref025) 2023; 13 T. Song (pone.0313708.ref027) 2019; 7 A. Ogawa (pone.0313708.ref040) 2017; 89 pone.0313708.ref024 K. Peng (pone.0313708.ref028) 2018; 6 S. S. Chouhan (pone.0313708.ref030) 2018; 6 S. A. Fulop (pone.0313708.ref036) 2006; 119 J. Yan (pone.0313708.ref020) 2022; 2299 S. Mathias (pone.0313708.ref021) 2021; 66 V. Krishnan (pone.0313708.ref013) 2022; 94 A. M. Sheri (pone.0313708.ref032) 2019; 7 S.K. Pal (pone.0313708.ref002) 2021; 51 P Liu (pone.0313708.ref026) 2024; 79 S.K. Pal (pone.0313708.ref004) 2020; 32 X Ma (pone.0313708.ref039) 2015; 54 P. K. Mishra (pone.0313708.ref034) 2018; 22 X Wei (pone.0313708.ref042) 2021; 80 |
References_xml | – volume: 89 start-page: 70 year: 2017 ident: pone.0313708.ref040 article-title: Error detections and accuracy estimations I automatic speech recognitions using deep bidirectional recurrent neural network publication-title: Speech Commun. doi: 10.1016/j.specom.2017.02.009 – volume: 11 start-page: 677 issue: 3 year: 2023 ident: pone.0313708.ref044 article-title: Underwater target detection based on improved YOLOv7 publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse11030677 – volume: 19 start-page: 9929 issue: 21 year: 2019 ident: pone.0313708.ref022 article-title: Crosstalks removal in forward scans sonar images using deep learning for objects detections publication-title: IEEE Sens. J doi: 10.1109/JSEN.2019.2925830 – ident: pone.0313708.ref041 – year: 2021 ident: pone.0313708.ref006 article-title: Comprehensive underwater objects tracking benchmarks data set and underwater images enhancements with GAN publication-title: IEEE J. Oceanic Eng – volume: 7 start-page: 48405 year: 2019 ident: pone.0313708.ref035 article-title: Transmissions of analog information over the multiple access relay channels using zero-delay non-linear mapping publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909318 – ident: pone.0313708.ref019 doi: 10.1109/ICISCE50968.2020.00084 – volume: 72 start-page: 101923 year: 2022 ident: pone.0313708.ref043 article-title: YoloXT: A object detection algorithm for marine benthos publication-title: Ecol. Inform doi: 10.1016/j.ecoinf.2022.101923 – volume: 119 start-page: 360 issue: 1 year: 2006 ident: pone.0313708.ref036 article-title: Algorithm for computing the time-corrected instantaneous frequency (reassigned) spectrograms, with application publication-title: J.Acoust. Soc. Amer. doi: 10.1121/1.2133000 – volume: 27 start-page: 1 issue: 1 year: 2021 ident: pone.0313708.ref001 article-title: Underwater image segmentations in the wild using deep learning publication-title: J. Braz. Comput. Soc doi: 10.1186/s13173-021-00117-7 – volume: 6 start-page: 11897 year: 2018 ident: pone.0313708.ref028 article-title: Clustering approach based on mini-batch k-means for intrusions detection systems over big data publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810267 – ident: pone.0313708.ref037 – volume: 54 start-page: 187 year: 2015 ident: pone.0313708.ref039 article-title: Long short-term memory neural networks for traffic speeds predictions using remote microwave sensor data publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2015.03.014 – volume: 13 start-page: 4706 issue: 22 year: 2021 ident: pone.0313708.ref007 article-title: Lightweight underwater objects detections based on YOLO v4 and multi-scaled attentional features fusion publication-title: Remote Sens. (Basel) doi: 10.3390/rs13224706 – ident: pone.0313708.ref010 doi: 10.1109/CVPR.2016.90 – volume: 187 start-page: 52 year: 2021 ident: pone.0313708.ref014 article-title: Optimization of underwater markers detections based on YOLOv3 publication-title: Procedia Comput. Sci doi: 10.1016/j.procs.2021.04.106 – volume: 2020 year: 2020 ident: pone.0313708.ref015 article-title: Underwater image processing and object detection based on deep CNN method publication-title: Journal of Sensors – volume: 7 start-page: 128837 year: 2019 ident: pone.0313708.ref003 article-title: A survey of deep learning-based objects detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – volume: 2299 year: 2022 ident: pone.0313708.ref020 article-title: Underwater Object Detection Algorithm Based On Attention Mechanism And Cross-Stage Partial Fast Spatial Pyramidal Pooling publication-title: Frontiers in Marine Science – volume: 51 start-page: 6400 issue: 9 year: 2021 ident: pone.0313708.ref002 article-title: Deep learning in multi-objects detections and tracking: state of the art publication-title: Appl. Intell doi: 10.1007/s10489-021-02293-7 – volume: 66 start-page: 101469 year: 2021 ident: pone.0313708.ref021 article-title: Underwater objects detections based on bi-dimension empirical modes decompositions and Gaussian Mixtures Model approach publication-title: Ecol. Inform doi: 10.1016/j.ecoinf.2021.101469 – volume: 102 start-page: 108159 year: 2022 ident: pone.0313708.ref011 article-title: Underwater object detection using collaborative weakly supervision publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2022.108159 – volume: 22 start-page: 1203 issue: 5 year: 2018 ident: pone.0313708.ref034 article-title: Hybrid Gaussian-cubic radial basis function for scattered data interpolations publication-title: Comput. Geosci doi: 10.1007/s10596-018-9747-3 – ident: pone.0313708.ref017 doi: 10.1109/ICIPMC55686.2022.00012 – volume: 32 start-page: 16533 issue: 21 year: 2020 ident: pone.0313708.ref004 article-title: Granulated deep learning and z-number in motion detections and objects recognition publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04200-1 – volume: 80 start-page: 33747 issue: 25 year: 2021 ident: pone.0313708.ref042 article-title: Underwater target detection with an attention mechanism and improved scale publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11230-2 – volume: 6 start-page: 8852 year: 2018 ident: pone.0313708.ref030 article-title: Bacterial foraging optimizations based radial basis functions neural networks (BRBFNN) for identifications and classifications of plant leaf disease: An automatic approach toward plant pathology publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2800685 – ident: pone.0313708.ref038 – volume: 17 issue: 3 year: 2020 ident: pone.0313708.ref009 article-title: Design and development of autonomous robotic fish for object detection and tracking publication-title: Int. J. Adv. Rob. Syst – volume: 94 start-page: 104628 year: 2022 ident: pone.0313708.ref013 article-title: Hybridization of Deep Convolutional Neural Network for Underwater Object Detection and Tracking Model publication-title: Microprocessors and Microsystems doi: 10.1016/j.micpro.2022.104628 – volume: 7 start-page: 77268 year: 2019 ident: pone.0313708.ref031 article-title: Two-stages shot boundary detections via features fusion and spatial-temporal convolution neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922038 – volume: 7 start-page: 78954 year: 2019 ident: pone.0313708.ref032 article-title: Boosting discriminations information-based documents clustering using consensus and classifications publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923462 – ident: pone.0313708.ref024 doi: 10.1109/CVPRW.2018.00187 – volume: 13 start-page: 2746 issue: 4 year: 2023 ident: pone.0313708.ref025 article-title: Underwater Object Detection Method Based on Improved Faster RCNN publication-title: Appl. Sci doi: 10.3390/app13042746 – volume: 141 start-page: 104440 year: 2022 ident: pone.0313708.ref005 article-title: Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications publication-title: Autom. Constr doi: 10.1016/j.autcon.2022.104440 – volume: 5 start-page: 18271 year: 2017 ident: pone.0313708.ref029 article-title: Analog networks-coded modulations with maximum Euclidean distances: Mapping criterion and constellation designs publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2747901 – volume: 170 start-page: 539 issue: 2019 year: 2020 ident: pone.0313708.ref018 article-title: MSR-YOLO: method to enhance fish detections and tracking in fish farm publication-title: Procedia Comput. Sci doi: 10.1016/j.procs.2020.03.123 – volume: 2020 year: 2020 ident: pone.0313708.ref012 article-title: Underwater images processing and objects detections based on deep CNN methods publication-title: J. Sensors – volume: 7 start-page: 12177 year: 2019 ident: pone.0313708.ref027 article-title: MPED: A multi-modal physiological emotions databases for discrete emotions recognitions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – volume: 117 start-page: 56 year: 2017 ident: pone.0313708.ref033 article-title: An efficient approximations to the K-means clustering for massive data publication-title: Knowl.-Based Syst doi: 10.1016/j.knosys.2016.06.031 – volume: 57 start-page: 101088 year: 2020 ident: pone.0313708.ref023 article-title: Fish detection and species classification in underwater environments using deep learning with temporal information publication-title: Ecol. Inform doi: 10.1016/j.ecoinf.2020.101088 – volume: 21 start-page: 1807 issue: 5 year: 2021 ident: pone.0313708.ref008 article-title: Underwater objects recognitions using points-feature, bayesian estimations and semantics information publication-title: Sensors doi: 10.3390/s21051807 – ident: pone.0313708.ref016 doi: 10.1109/IJCNN48605.2020.9207506 – volume: 79 start-page: 102401 year: 2024 ident: pone.0313708.ref026 article-title: YWnet: A convolutional block attention-based fusion deep learning method for complex underwater small target detection publication-title: Ecol. Inform doi: 10.1016/j.ecoinf.2023.102401 |
SSID | ssj0053866 |
Score | 2.473013 |
Snippet | This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of... |
SourceID | plos doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | e0313708 |
SubjectTerms | Accuracy Animals Artificial intelligence Classification Computer vision Datasets Deep sea Design and construction Detectors Equipment and supplies Fish Fourier transforms Long short-term memory Machine vision Marine resources Neural networks Neural Networks, Computer Resource development Underwater Underwater exploration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQn_aC2AYssDGDkICHbEntOO5jOzGNiYG0H2hvln8OJJRUTSrEf89d4kSrBIIHHtpK9TVqv_Plvqt9nwl5LZiAaeFDCo8y5TbwVGp4MoZDgilNMBIbhS8-ibMbfn5b3N476gv3hPXywD1wx04wbjKmCwfM1yJjEIUtc82d5KH0XbUOOW8opvp7MESxELFRjpX5cfTL0bKu_BGqFZZ4nOS9RNTp9Y935cnye938mXJ2qef0EXkYOSOd9991mzzw1Q7ZjlHZ0LdROvrdLjmf068_sQeLLr6lH6-uL6iuHL1cwGvUDqdAUumw8E-xg2z1A-jmitYG_5Ghzrfd5qzqMbk5fX99cpbG0xJSC5ysTT1zpbEOMPIC0pI1InPSFp57Y5gOWbAekrkUmclD8LxwLg8z4QtrMhO8ztkTMqkAnz1CjQjMTP1MSu048AepAfLMZDMbWAkFYULSATq17EUxVLcyVkIx0WOiEGoVoU7IAvEdbVHSunsDHK2io9XfHJ2QQ_SO6vtDx8BUc4lVLNBAkZBXnQXKWlS4b-ZOr5tGffj85R-Mri43jN5Eo1C3K2117FWA34RyWRuW-xuWEJx2Y3gP59KASqNQKRMqahiGTw7z6_fDL8dhvCjuhat8ve5t8m75NSFP-3k5IourrkJm4tn_QPw52ZoChcPOy-l0n0za1dofAAVrzYsu2n4BjogrOg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXLggltcGFjAICThk12kcxz2hFlGWFQvSPtDeLD8XJJSUpBXi3zOTOIFKgDg0lepJoo5nPN94HibkmcgFiIUPKXzKlNvAU6nhYgwHA1OaYCQWCh9_EIfn_OiiuIgbbm1MqxzWxG6hdrXFPfIDbDEIrgg4LK9W31I8NQqjq_EIjavkWgaWBlO65PLtsBKDLgsRy-XyMjuIs7O_qiu_jz0LSzxU8jdz1HXtH9fmyepr3f4deHYGaHmT3IjIkc77qd4hV3x1i-xE3Wzpi9hA-uVtcjSnn39gJRZdfEnfn54dU105erKA79hBnAJUpUP4n2IdWfMdQGdDa4P7MtT5dZeiVd0h58s3Z68P03hmQmoBma1Tn7vSWMct8wKMkzWCOWkLz70xuQ4sWA8mXQpmshA8L5zLwkz4whpmgtdZfpdMKuDPLqFGhNxM_UxK7TigCKkLWzLDZjbkJbiFCUkH1qlV3xpDdfGxElyKnicKWa0iqxOyQP6OtNjYuvuhbi5V1BPlRM4Ny3XhwNGxCBAFvDXT3EkeSs8S8hhnR_VVoqN6qrlEXxbAoEjI044Cm1tUmD1zqTdtq959_PQfRKcnW0TPI1Go1422OlYswH_CpllblHtblKCidmt4F2Vp4Eqrfgkz3DnI15-Hn4zD-FDMiKt8velpsi4Im5B7vVyOnMXYq5BM3P_3wx-Q61OAaFhZOZ3ukcm62fiHALHW5lGnRz8BZ6cjVA priority: 102 providerName: ProQuest |
Title | A hybrid Bi-LSTM and RBM approach for advanced underwater object detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39576806 https://www.proquest.com/docview/3132094721 https://www.proquest.com/docview/3132140783 https://doaj.org/article/d634b03a5d974c008365c71a4d84f7e0 http://dx.doi.org/10.1371/journal.pone.0313708 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytYxSDkICHVEnj2O4DQu20MiY6ULeivUW2Yw-kKSlJK9h_z53zIVXapD3EkeJLolzucr_L-e4IecdjDmJhXQCbCJhxLJAKBq0ZGBihnZaYKDw_4ydLdnqZXO6Qtmdrw8DqVtcO-0kty-vhvz83n0HhP_muDSJqTxquitwOsRahwOzfXbBNAnsazFkXVwDt9tFLRC0BH4Vxk0x311W2jJWv6d99uXur66K6G5Z68zR7TB41uJJOakHYIzs2f0L2Gs2t6IemvPTHp-R0Qn_dYJ4Wnf4Ovp1fzKnKM7qYwr6pL04ByNJ2cQDFLLPyL0DSkhYa_9rQzK79Aq78GVnOji-OToKmo0JgALetAxtnQpuMmdByMF1G8zCTJrHMah0rFzpjweBLHurIOcuSLIvcmNvE6FA7q6L4OenlwJ99QjV3sR7ZsZQqY4AxpEqMCHU4Ni4W4DT2SdCyLl3VhTNSHz0T4HDUPEmR1WnD6j6ZIn87Wix77Q8U5VXaaFGa8ZjpMFZJBm6QQfjI4a6RYplkTtiwT17j20nrHNJOedOJRE8XoCLvk7eeAktf5Li25kptqir9-v3nPYjOF1tE7xsiV6xLZVSTzwDPhCW1tigPtyhBgc3W9D7KUsuVKsVqmuB1wzSc2crX7dNvumm8KK6Xy22xqWkiH6Ltkxe1XHacxcgslyE_uM9TviQPRwDjMPtyNDokvXW5sa8Ahq31gDwQlwJGeRThOPsyILvT47Mfi4H_sTHwmvcfSB0yPg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcIALorwaKHRBIODg1o_12jkglAAhaZMitWnV27LPgoTsYCeq-qf4jcz4EYgEiEsPjqXsZK2MZ2e-2Z0HIc95xEEsrPPgSjymHfNSCR9KMTAwiXIqxUTh6SEfnbD9s_hsg_xoc2EwrLLViZWiNrnGPfI9LDEIrgg4LG_n3z3sGoWnq20LjVosDuzlBbhs5Zvxe3i_L8Jw-GH2buQ1XQU8Ddhl4dnIJEobpn3LQX1rxX2T6tgyq1Qkne-0BaOXcl8FzlkWGxO4HrexVr5yVgYRzHuNXGcRWHLMTB9-bDU_6A7Om_S8KAn2GmnYneeZ3cUaiQk2sfzN_FVdAla2oDP_lpd_B7qVwRveJrcapEr7tWhtkg2b3SGbjS4o6aumYPXru2S_T79cYuYXHXz1JsezKZWZoUcDuDcVyylAY9qGG1DMWysuAOQWNFe4D0SNXVQhYdk9cnIl3LxPOhnwZ4tQxV2kQttLU2kYoJZUxjrxld_TLkrADe0Sr2WdmNelOER1HpeAC1PzRCCrRcPqLhkgf1e0WEi7-iIvzkWzLoXhEVN-JGMDjpVGQMrhqYFkJmUusX6X7ODbEXVW6kodiH6KvjOAT94lzyoKLKaRYbTOuVyWpRh_Ov0PouOjNaKXDZHLF4XUssmQgP-ERbrWKLfXKEEl6LXhLZSlliul-LV44JetfP15-OlqGCfFCLzM5suaJqgOfbvkQS2XK87iWS9Pff7w35PvkBuj2XQiJuPDg0fkZgjwELM6w3CbdBbF0j4GeLdQT6o1Rcnnq17EPwHQxmOk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VICFeEOWqodAFgYAHNz7XmweEkpao6QXqpb4t3qsgITvEiar-NX4dM_baEAkQL31IImUna2U8xzfeOQh5yWIGYmGsD6_MT5RNfJ7Dm5QJOJhMWsmxUPjgkO2cJrvn6fkK-dHWwmBaZWsTa0OtS4XPyPvYYhBCEQhY-talRXzaHr-ffvdxghSetLbjNBoR2TNXlxC-Ve8m23CvX0XR-MPJ1o7vJgz4CnDM3DexzqTSiQoMA1OuJAs0V6lJjJRxbgOrDDhAzgIZWmuSVOvQDphJlQykNXkYw743yM0szjjqGN_q0kvAjjDmSvXiLOw7ydicloXZxH6JGQ60_M0V1hMDOr_Qm34rq7-D3tr5je-SOw610mEjZqtkxRT3yKqzCxV945pXv71Pdof0yxVWgdHRV3__-OSA5oWmRyP4dN3LKcBk2qYeUKxhm10C4J3RUuIzIarNvE4PKx6Q02vh5kPSK4A_a4RKZmMZmQHnuU4AwfA8VVkgg4GycQYhqUf8lnVi2rTlEPXZXAbhTMMTgawWjtUeGSF_O1psql1_Uc4uhNNRoVmcyCDOUw1BlkJwyuCqYZ5ontjMBB7ZwLsjmgrVzjSIIcc4GoAo88iLmgIbaxQoohf5oqrE5OPZfxAdHy0RvXZEtpzPcpW7agn4T9iwa4lyfYkSzINaWl5DWWq5UolfigS_bOXrz8vPu2XcFLPxClMuGpqwPgD2yKNGLjvO4rkv4wF7_O_NN8gtUF-xPznce0JuR4AUscAzitZJbz5bmKeA9ObyWa1SlHy-bh3-Cev6Z6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Bi-LSTM+and+RBM+approach+for+advanced+underwater+object+detection&rft.jtitle=PloS+one&rft.au=S.%2C+Manimurugan&rft.au=P.%2C+Karthikeyan&rft.au=C.%2C+Narmatha&rft.au=Aborokbah%2C+Majed+M&rft.date=2024-11-22&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=11&rft.spage=e0313708&rft_id=info:doi/10.1371%2Fjournal.pone.0313708&rft.externalDBID=ISR&rft.externalDocID=A817215616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |