A hybrid Bi-LSTM and RBM approach for advanced underwater object detection

This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid mod...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 11; p. e0313708
Main Authors S., Manimurugan, P., Karthikeyan, C., Narmatha, Aborokbah, Majed M., Paul, Anand, Ganesan, Subramaniam, T., Rajendran, Ammad-Uddin, Mohammad
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 22.11.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model’s suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments.
AbstractList This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model’s suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments.
This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model's suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments.This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model's suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments.
Audience Academic
Author P., Karthikeyan
S., Manimurugan
Aborokbah, Majed M.
Paul, Anand
Ammad-Uddin, Mohammad
C., Narmatha
Ganesan, Subramaniam
T., Rajendran
Author_xml – sequence: 1
  givenname: Manimurugan
  surname: S.
  fullname: S., Manimurugan
– sequence: 2
  givenname: Karthikeyan
  orcidid: 0000-0001-8977-5520
  surname: P.
  fullname: P., Karthikeyan
– sequence: 3
  givenname: Narmatha
  surname: C.
  fullname: C., Narmatha
– sequence: 4
  givenname: Majed M.
  surname: Aborokbah
  fullname: Aborokbah, Majed M.
– sequence: 5
  givenname: Anand
  surname: Paul
  fullname: Paul, Anand
– sequence: 6
  givenname: Subramaniam
  surname: Ganesan
  fullname: Ganesan, Subramaniam
– sequence: 7
  givenname: Rajendran
  orcidid: 0000-0003-0759-1846
  surname: T.
  fullname: T., Rajendran
– sequence: 8
  givenname: Mohammad
  surname: Ammad-Uddin
  fullname: Ammad-Uddin, Mohammad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39576806$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gHyCIhITgkMWOE8c5bqsCixZVagtXyx_jXa-ycWon0P57HDatuqgH5MNYrx7PjN-Z4-SgdS0kyWuMZphU-NPGDb4VzayL8gyRqCH2LDnCNckzmiNy8Oh-mByHsEGoJIzSF8khqcuKMkSPkm_zdH0nvdXpqc2WV9ffU9Hq9PI0xq7zTqh1apxPhf4lWgU6HVoN_rfowadObkD1qYY-Buval8lzI5oAr6Z4kvz4fH599jVbXnxZnM2XmaIl7TMgupJKFwoBRYQqSZFmqoQCpCTCIKOA4ZxRJLExUJRaY1NTKJVE0oDA5CR5u8vbNS7wyYbAowM5qosqH4nFjtBObHjn7Vb4O-6E5X8F51dc-N6qBrimpJCIiFLXVWwJMUJLVWFRaFaYClDM9WGq5t3NAKHnWxsUNI1owQ27srhAFSMRffcP-nRzE7USsb5tjeu9UGNSPmc4EiXFNFKzJ6h4NGytiiM3Nup7Dz7uPYhMD7f9Sgwh8MXV5f-zFz_32feP2DWIpl8H1wzjxMM--Gb6_SC3oB9sv9-1CBQ7QHkXggfzgGDEx5W-t4uPK82nlSZ_AMgu5Ro
Cites_doi 10.1016/j.specom.2017.02.009
10.3390/jmse11030677
10.1109/JSEN.2019.2925830
10.1109/ACCESS.2019.2909318
10.1109/ICISCE50968.2020.00084
10.1016/j.ecoinf.2022.101923
10.1121/1.2133000
10.1186/s13173-021-00117-7
10.1109/ACCESS.2018.2810267
10.1016/j.trc.2015.03.014
10.3390/rs13224706
10.1109/CVPR.2016.90
10.1016/j.procs.2021.04.106
10.1109/ACCESS.2019.2939201
10.1007/s10489-021-02293-7
10.1016/j.ecoinf.2021.101469
10.1016/j.compeleceng.2022.108159
10.1007/s10596-018-9747-3
10.1109/ICIPMC55686.2022.00012
10.1007/s00521-019-04200-1
10.1007/s11042-021-11230-2
10.1109/ACCESS.2018.2800685
10.1016/j.micpro.2022.104628
10.1109/ACCESS.2019.2922038
10.1109/ACCESS.2019.2923462
10.1109/CVPRW.2018.00187
10.3390/app13042746
10.1016/j.autcon.2022.104440
10.1109/ACCESS.2017.2747901
10.1016/j.procs.2020.03.123
10.1109/ACCESS.2019.2891579
10.1016/j.knosys.2016.06.031
10.1016/j.ecoinf.2020.101088
10.3390/s21051807
10.1109/IJCNN48605.2020.9207506
10.1016/j.ecoinf.2023.102401
ContentType Journal Article
Copyright Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
COPYRIGHT 2024 Public Library of Science
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0313708
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database



MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3132094721
oai_doaj_org_article_d634b03a5d974c008365c71a4d84f7e0
A817215616
39576806
10_1371_journal_pone_0313708
Genre Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c656t-e3d7bcd4c0e6036cb60d8c5e4ebb3af0fce812860b1ffe45dd1f96e5cb0bfea13
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:35 EDT 2025
Wed Aug 27 01:31:47 EDT 2025
Fri Jul 11 05:29:51 EDT 2025
Fri Jul 25 11:15:58 EDT 2025
Tue Jun 17 21:56:06 EDT 2025
Tue Jun 10 20:54:14 EDT 2025
Fri Jun 27 05:14:23 EDT 2025
Fri Jun 27 05:14:11 EDT 2025
Thu May 22 21:23:28 EDT 2025
Mon Jul 21 06:03:36 EDT 2025
Tue Jul 01 02:56:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Creative Commons CC0 public domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c656t-e3d7bcd4c0e6036cb60d8c5e4ebb3af0fce812860b1ffe45dd1f96e5cb0bfea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8977-5520
0000-0003-0759-1846
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0313708
PMID 39576806
PQID 3132094721
PQPubID 1436336
PageCount e0313708
ParticipantIDs plos_journals_3132094721
doaj_primary_oai_doaj_org_article_d634b03a5d974c008365c71a4d84f7e0
proquest_miscellaneous_3132140783
proquest_journals_3132094721
gale_infotracmisc_A817215616
gale_infotracacademiconefile_A817215616
gale_incontextgauss_ISR_A817215616
gale_incontextgauss_IOV_A817215616
gale_healthsolutions_A817215616
pubmed_primary_39576806
crossref_primary_10_1371_journal_pone_0313708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-22
PublicationDateYYYYMMDD 2024-11-22
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S. Cai (pone.0313708.ref011) 2022; 102
H.E.D. Mohamed (pone.0313708.ref018) 2020; 170
M. Zhang (pone.0313708.ref007) 2021; 13
L. Jiao (pone.0313708.ref003) 2019; 7
J Zhang (pone.0313708.ref043) 2022; 72
pone.0313708.ref016
pone.0313708.ref038
pone.0313708.ref017
L. Wu (pone.0313708.ref031) 2019; 7
pone.0313708.ref037
pone.0313708.ref010
K Liu (pone.0313708.ref044) 2023; 11
P. Drews-Jr (pone.0313708.ref001) 2021; 27
M. Sung (pone.0313708.ref022) 2019; 19
F. Han (pone.0313708.ref015) 2020; 2020
D. Ji (pone.0313708.ref009) 2020; 17
pone.0313708.ref019
F. Han (pone.0313708.ref012) 2020; 2020
M. Capó (pone.0313708.ref033) 2017; 117
pone.0313708.ref041
O. Fresnedo (pone.0313708.ref035) 2019; 7
S. K. Baduge (pone.0313708.ref005) 2022; 141
N. Jiang (pone.0313708.ref014) 2021; 187
K. Himri (pone.0313708.ref008) 2021; 21
A. Jalal (pone.0313708.ref023) 2020; 57
Z. Yu (pone.0313708.ref029) 2017; 5
K. Panetta (pone.0313708.ref006) 2021
H Wang (pone.0313708.ref025) 2023; 13
T. Song (pone.0313708.ref027) 2019; 7
A. Ogawa (pone.0313708.ref040) 2017; 89
pone.0313708.ref024
K. Peng (pone.0313708.ref028) 2018; 6
S. S. Chouhan (pone.0313708.ref030) 2018; 6
S. A. Fulop (pone.0313708.ref036) 2006; 119
J. Yan (pone.0313708.ref020) 2022; 2299
S. Mathias (pone.0313708.ref021) 2021; 66
V. Krishnan (pone.0313708.ref013) 2022; 94
A. M. Sheri (pone.0313708.ref032) 2019; 7
S.K. Pal (pone.0313708.ref002) 2021; 51
P Liu (pone.0313708.ref026) 2024; 79
S.K. Pal (pone.0313708.ref004) 2020; 32
X Ma (pone.0313708.ref039) 2015; 54
P. K. Mishra (pone.0313708.ref034) 2018; 22
X Wei (pone.0313708.ref042) 2021; 80
References_xml – volume: 89
  start-page: 70
  year: 2017
  ident: pone.0313708.ref040
  article-title: Error detections and accuracy estimations I automatic speech recognitions using deep bidirectional recurrent neural network
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2017.02.009
– volume: 11
  start-page: 677
  issue: 3
  year: 2023
  ident: pone.0313708.ref044
  article-title: Underwater target detection based on improved YOLOv7
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse11030677
– volume: 19
  start-page: 9929
  issue: 21
  year: 2019
  ident: pone.0313708.ref022
  article-title: Crosstalks removal in forward scans sonar images using deep learning for objects detections
  publication-title: IEEE Sens. J
  doi: 10.1109/JSEN.2019.2925830
– ident: pone.0313708.ref041
– year: 2021
  ident: pone.0313708.ref006
  article-title: Comprehensive underwater objects tracking benchmarks data set and underwater images enhancements with GAN
  publication-title: IEEE J. Oceanic Eng
– volume: 7
  start-page: 48405
  year: 2019
  ident: pone.0313708.ref035
  article-title: Transmissions of analog information over the multiple access relay channels using zero-delay non-linear mapping
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909318
– ident: pone.0313708.ref019
  doi: 10.1109/ICISCE50968.2020.00084
– volume: 72
  start-page: 101923
  year: 2022
  ident: pone.0313708.ref043
  article-title: YoloXT: A object detection algorithm for marine benthos
  publication-title: Ecol. Inform
  doi: 10.1016/j.ecoinf.2022.101923
– volume: 119
  start-page: 360
  issue: 1
  year: 2006
  ident: pone.0313708.ref036
  article-title: Algorithm for computing the time-corrected instantaneous frequency (reassigned) spectrograms, with application
  publication-title: J.Acoust. Soc. Amer.
  doi: 10.1121/1.2133000
– volume: 27
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0313708.ref001
  article-title: Underwater image segmentations in the wild using deep learning
  publication-title: J. Braz. Comput. Soc
  doi: 10.1186/s13173-021-00117-7
– volume: 6
  start-page: 11897
  year: 2018
  ident: pone.0313708.ref028
  article-title: Clustering approach based on mini-batch k-means for intrusions detection systems over big data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810267
– ident: pone.0313708.ref037
– volume: 54
  start-page: 187
  year: 2015
  ident: pone.0313708.ref039
  article-title: Long short-term memory neural networks for traffic speeds predictions using remote microwave sensor data
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2015.03.014
– volume: 13
  start-page: 4706
  issue: 22
  year: 2021
  ident: pone.0313708.ref007
  article-title: Lightweight underwater objects detections based on YOLO v4 and multi-scaled attentional features fusion
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13224706
– ident: pone.0313708.ref010
  doi: 10.1109/CVPR.2016.90
– volume: 187
  start-page: 52
  year: 2021
  ident: pone.0313708.ref014
  article-title: Optimization of underwater markers detections based on YOLOv3
  publication-title: Procedia Comput. Sci
  doi: 10.1016/j.procs.2021.04.106
– volume: 2020
  year: 2020
  ident: pone.0313708.ref015
  article-title: Underwater image processing and object detection based on deep CNN method
  publication-title: Journal of Sensors
– volume: 7
  start-page: 128837
  year: 2019
  ident: pone.0313708.ref003
  article-title: A survey of deep learning-based objects detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
– volume: 2299
  year: 2022
  ident: pone.0313708.ref020
  article-title: Underwater Object Detection Algorithm Based On Attention Mechanism And Cross-Stage Partial Fast Spatial Pyramidal Pooling
  publication-title: Frontiers in Marine Science
– volume: 51
  start-page: 6400
  issue: 9
  year: 2021
  ident: pone.0313708.ref002
  article-title: Deep learning in multi-objects detections and tracking: state of the art
  publication-title: Appl. Intell
  doi: 10.1007/s10489-021-02293-7
– volume: 66
  start-page: 101469
  year: 2021
  ident: pone.0313708.ref021
  article-title: Underwater objects detections based on bi-dimension empirical modes decompositions and Gaussian Mixtures Model approach
  publication-title: Ecol. Inform
  doi: 10.1016/j.ecoinf.2021.101469
– volume: 102
  start-page: 108159
  year: 2022
  ident: pone.0313708.ref011
  article-title: Underwater object detection using collaborative weakly supervision
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2022.108159
– volume: 22
  start-page: 1203
  issue: 5
  year: 2018
  ident: pone.0313708.ref034
  article-title: Hybrid Gaussian-cubic radial basis function for scattered data interpolations
  publication-title: Comput. Geosci
  doi: 10.1007/s10596-018-9747-3
– ident: pone.0313708.ref017
  doi: 10.1109/ICIPMC55686.2022.00012
– volume: 32
  start-page: 16533
  issue: 21
  year: 2020
  ident: pone.0313708.ref004
  article-title: Granulated deep learning and z-number in motion detections and objects recognition
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04200-1
– volume: 80
  start-page: 33747
  issue: 25
  year: 2021
  ident: pone.0313708.ref042
  article-title: Underwater target detection with an attention mechanism and improved scale
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11230-2
– volume: 6
  start-page: 8852
  year: 2018
  ident: pone.0313708.ref030
  article-title: Bacterial foraging optimizations based radial basis functions neural networks (BRBFNN) for identifications and classifications of plant leaf disease: An automatic approach toward plant pathology
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2800685
– ident: pone.0313708.ref038
– volume: 17
  issue: 3
  year: 2020
  ident: pone.0313708.ref009
  article-title: Design and development of autonomous robotic fish for object detection and tracking
  publication-title: Int. J. Adv. Rob. Syst
– volume: 94
  start-page: 104628
  year: 2022
  ident: pone.0313708.ref013
  article-title: Hybridization of Deep Convolutional Neural Network for Underwater Object Detection and Tracking Model
  publication-title: Microprocessors and Microsystems
  doi: 10.1016/j.micpro.2022.104628
– volume: 7
  start-page: 77268
  year: 2019
  ident: pone.0313708.ref031
  article-title: Two-stages shot boundary detections via features fusion and spatial-temporal convolution neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922038
– volume: 7
  start-page: 78954
  year: 2019
  ident: pone.0313708.ref032
  article-title: Boosting discriminations information-based documents clustering using consensus and classifications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923462
– ident: pone.0313708.ref024
  doi: 10.1109/CVPRW.2018.00187
– volume: 13
  start-page: 2746
  issue: 4
  year: 2023
  ident: pone.0313708.ref025
  article-title: Underwater Object Detection Method Based on Improved Faster RCNN
  publication-title: Appl. Sci
  doi: 10.3390/app13042746
– volume: 141
  start-page: 104440
  year: 2022
  ident: pone.0313708.ref005
  article-title: Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications
  publication-title: Autom. Constr
  doi: 10.1016/j.autcon.2022.104440
– volume: 5
  start-page: 18271
  year: 2017
  ident: pone.0313708.ref029
  article-title: Analog networks-coded modulations with maximum Euclidean distances: Mapping criterion and constellation designs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2747901
– volume: 170
  start-page: 539
  issue: 2019
  year: 2020
  ident: pone.0313708.ref018
  article-title: MSR-YOLO: method to enhance fish detections and tracking in fish farm
  publication-title: Procedia Comput. Sci
  doi: 10.1016/j.procs.2020.03.123
– volume: 2020
  year: 2020
  ident: pone.0313708.ref012
  article-title: Underwater images processing and objects detections based on deep CNN methods
  publication-title: J. Sensors
– volume: 7
  start-page: 12177
  year: 2019
  ident: pone.0313708.ref027
  article-title: MPED: A multi-modal physiological emotions databases for discrete emotions recognitions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– volume: 117
  start-page: 56
  year: 2017
  ident: pone.0313708.ref033
  article-title: An efficient approximations to the K-means clustering for massive data
  publication-title: Knowl.-Based Syst
  doi: 10.1016/j.knosys.2016.06.031
– volume: 57
  start-page: 101088
  year: 2020
  ident: pone.0313708.ref023
  article-title: Fish detection and species classification in underwater environments using deep learning with temporal information
  publication-title: Ecol. Inform
  doi: 10.1016/j.ecoinf.2020.101088
– volume: 21
  start-page: 1807
  issue: 5
  year: 2021
  ident: pone.0313708.ref008
  article-title: Underwater objects recognitions using points-feature, bayesian estimations and semantics information
  publication-title: Sensors
  doi: 10.3390/s21051807
– ident: pone.0313708.ref016
  doi: 10.1109/IJCNN48605.2020.9207506
– volume: 79
  start-page: 102401
  year: 2024
  ident: pone.0313708.ref026
  article-title: YWnet: A convolutional block attention-based fusion deep learning method for complex underwater small target detection
  publication-title: Ecol. Inform
  doi: 10.1016/j.ecoinf.2023.102401
SSID ssj0053866
Score 2.473013
Snippet This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0313708
SubjectTerms Accuracy
Animals
Artificial intelligence
Classification
Computer vision
Datasets
Deep sea
Design and construction
Detectors
Equipment and supplies
Fish
Fourier transforms
Long short-term memory
Machine vision
Marine resources
Neural networks
Neural Networks, Computer
Resource development
Underwater
Underwater exploration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQn_aC2AYssDGDkICHbEntOO5jOzGNiYG0H2hvln8OJJRUTSrEf89d4kSrBIIHHtpK9TVqv_Plvqt9nwl5LZiAaeFDCo8y5TbwVGp4MoZDgilNMBIbhS8-ibMbfn5b3N476gv3hPXywD1wx04wbjKmCwfM1yJjEIUtc82d5KH0XbUOOW8opvp7MESxELFRjpX5cfTL0bKu_BGqFZZ4nOS9RNTp9Y935cnye938mXJ2qef0EXkYOSOd9991mzzw1Q7ZjlHZ0LdROvrdLjmf068_sQeLLr6lH6-uL6iuHL1cwGvUDqdAUumw8E-xg2z1A-jmitYG_5Ghzrfd5qzqMbk5fX99cpbG0xJSC5ysTT1zpbEOMPIC0pI1InPSFp57Y5gOWbAekrkUmclD8LxwLg8z4QtrMhO8ztkTMqkAnz1CjQjMTP1MSu048AepAfLMZDMbWAkFYULSATq17EUxVLcyVkIx0WOiEGoVoU7IAvEdbVHSunsDHK2io9XfHJ2QQ_SO6vtDx8BUc4lVLNBAkZBXnQXKWlS4b-ZOr5tGffj85R-Mri43jN5Eo1C3K2117FWA34RyWRuW-xuWEJx2Y3gP59KASqNQKRMqahiGTw7z6_fDL8dhvCjuhat8ve5t8m75NSFP-3k5IourrkJm4tn_QPw52ZoChcPOy-l0n0za1dofAAVrzYsu2n4BjogrOg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXLggltcGFjAICThk12kcxz2hFlGWFQvSPtDeLD8XJJSUpBXi3zOTOIFKgDg0lepJoo5nPN94HibkmcgFiIUPKXzKlNvAU6nhYgwHA1OaYCQWCh9_EIfn_OiiuIgbbm1MqxzWxG6hdrXFPfIDbDEIrgg4LK9W31I8NQqjq_EIjavkWgaWBlO65PLtsBKDLgsRy-XyMjuIs7O_qiu_jz0LSzxU8jdz1HXtH9fmyepr3f4deHYGaHmT3IjIkc77qd4hV3x1i-xE3Wzpi9hA-uVtcjSnn39gJRZdfEnfn54dU105erKA79hBnAJUpUP4n2IdWfMdQGdDa4P7MtT5dZeiVd0h58s3Z68P03hmQmoBma1Tn7vSWMct8wKMkzWCOWkLz70xuQ4sWA8mXQpmshA8L5zLwkz4whpmgtdZfpdMKuDPLqFGhNxM_UxK7TigCKkLWzLDZjbkJbiFCUkH1qlV3xpDdfGxElyKnicKWa0iqxOyQP6OtNjYuvuhbi5V1BPlRM4Ny3XhwNGxCBAFvDXT3EkeSs8S8hhnR_VVoqN6qrlEXxbAoEjI044Cm1tUmD1zqTdtq959_PQfRKcnW0TPI1Go1422OlYswH_CpllblHtblKCidmt4F2Vp4Eqrfgkz3DnI15-Hn4zD-FDMiKt8velpsi4Im5B7vVyOnMXYq5BM3P_3wx-Q61OAaFhZOZ3ukcm62fiHALHW5lGnRz8BZ6cjVA
  priority: 102
  providerName: ProQuest
Title A hybrid Bi-LSTM and RBM approach for advanced underwater object detection
URI https://www.ncbi.nlm.nih.gov/pubmed/39576806
https://www.proquest.com/docview/3132094721
https://www.proquest.com/docview/3132140783
https://doaj.org/article/d634b03a5d974c008365c71a4d84f7e0
http://dx.doi.org/10.1371/journal.pone.0313708
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytYxSDkICHVEnj2O4DQu20MiY6ULeivUW2Yw-kKSlJK9h_z53zIVXapD3EkeJLolzucr_L-e4IecdjDmJhXQCbCJhxLJAKBq0ZGBihnZaYKDw_4ydLdnqZXO6Qtmdrw8DqVtcO-0kty-vhvz83n0HhP_muDSJqTxquitwOsRahwOzfXbBNAnsazFkXVwDt9tFLRC0BH4Vxk0x311W2jJWv6d99uXur66K6G5Z68zR7TB41uJJOakHYIzs2f0L2Gs2t6IemvPTHp-R0Qn_dYJ4Wnf4Ovp1fzKnKM7qYwr6pL04ByNJ2cQDFLLPyL0DSkhYa_9rQzK79Aq78GVnOji-OToKmo0JgALetAxtnQpuMmdByMF1G8zCTJrHMah0rFzpjweBLHurIOcuSLIvcmNvE6FA7q6L4OenlwJ99QjV3sR7ZsZQqY4AxpEqMCHU4Ni4W4DT2SdCyLl3VhTNSHz0T4HDUPEmR1WnD6j6ZIn87Wix77Q8U5VXaaFGa8ZjpMFZJBm6QQfjI4a6RYplkTtiwT17j20nrHNJOedOJRE8XoCLvk7eeAktf5Li25kptqir9-v3nPYjOF1tE7xsiV6xLZVSTzwDPhCW1tigPtyhBgc3W9D7KUsuVKsVqmuB1wzSc2crX7dNvumm8KK6Xy22xqWkiH6Ltkxe1XHacxcgslyE_uM9TviQPRwDjMPtyNDokvXW5sa8Ahq31gDwQlwJGeRThOPsyILvT47Mfi4H_sTHwmvcfSB0yPg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcIALorwaKHRBIODg1o_12jkglAAhaZMitWnV27LPgoTsYCeq-qf4jcz4EYgEiEsPjqXsZK2MZ2e-2Z0HIc95xEEsrPPgSjymHfNSCR9KMTAwiXIqxUTh6SEfnbD9s_hsg_xoc2EwrLLViZWiNrnGPfI9LDEIrgg4LG_n3z3sGoWnq20LjVosDuzlBbhs5Zvxe3i_L8Jw-GH2buQ1XQU8Ddhl4dnIJEobpn3LQX1rxX2T6tgyq1Qkne-0BaOXcl8FzlkWGxO4HrexVr5yVgYRzHuNXGcRWHLMTB9-bDU_6A7Om_S8KAn2GmnYneeZ3cUaiQk2sfzN_FVdAla2oDP_lpd_B7qVwRveJrcapEr7tWhtkg2b3SGbjS4o6aumYPXru2S_T79cYuYXHXz1JsezKZWZoUcDuDcVyylAY9qGG1DMWysuAOQWNFe4D0SNXVQhYdk9cnIl3LxPOhnwZ4tQxV2kQttLU2kYoJZUxjrxld_TLkrADe0Sr2WdmNelOER1HpeAC1PzRCCrRcPqLhkgf1e0WEi7-iIvzkWzLoXhEVN-JGMDjpVGQMrhqYFkJmUusX6X7ODbEXVW6kodiH6KvjOAT94lzyoKLKaRYbTOuVyWpRh_Ov0PouOjNaKXDZHLF4XUssmQgP-ERbrWKLfXKEEl6LXhLZSlliul-LV44JetfP15-OlqGCfFCLzM5suaJqgOfbvkQS2XK87iWS9Pff7w35PvkBuj2XQiJuPDg0fkZgjwELM6w3CbdBbF0j4GeLdQT6o1Rcnnq17EPwHQxmOk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VICFeEOWqodAFgYAHNz7XmweEkpao6QXqpb4t3qsgITvEiar-NX4dM_baEAkQL31IImUna2U8xzfeOQh5yWIGYmGsD6_MT5RNfJ7Dm5QJOJhMWsmxUPjgkO2cJrvn6fkK-dHWwmBaZWsTa0OtS4XPyPvYYhBCEQhY-talRXzaHr-ffvdxghSetLbjNBoR2TNXlxC-Ve8m23CvX0XR-MPJ1o7vJgz4CnDM3DexzqTSiQoMA1OuJAs0V6lJjJRxbgOrDDhAzgIZWmuSVOvQDphJlQykNXkYw743yM0szjjqGN_q0kvAjjDmSvXiLOw7ydicloXZxH6JGQ60_M0V1hMDOr_Qm34rq7-D3tr5je-SOw610mEjZqtkxRT3yKqzCxV945pXv71Pdof0yxVWgdHRV3__-OSA5oWmRyP4dN3LKcBk2qYeUKxhm10C4J3RUuIzIarNvE4PKx6Q02vh5kPSK4A_a4RKZmMZmQHnuU4AwfA8VVkgg4GycQYhqUf8lnVi2rTlEPXZXAbhTMMTgawWjtUeGSF_O1psql1_Uc4uhNNRoVmcyCDOUw1BlkJwyuCqYZ5ontjMBB7ZwLsjmgrVzjSIIcc4GoAo88iLmgIbaxQoohf5oqrE5OPZfxAdHy0RvXZEtpzPcpW7agn4T9iwa4lyfYkSzINaWl5DWWq5UolfigS_bOXrz8vPu2XcFLPxClMuGpqwPgD2yKNGLjvO4rkv4wF7_O_NN8gtUF-xPznce0JuR4AUscAzitZJbz5bmKeA9ObyWa1SlHy-bh3-Cev6Z6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Bi-LSTM+and+RBM+approach+for+advanced+underwater+object+detection&rft.jtitle=PloS+one&rft.au=S.%2C+Manimurugan&rft.au=P.%2C+Karthikeyan&rft.au=C.%2C+Narmatha&rft.au=Aborokbah%2C+Majed+M&rft.date=2024-11-22&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=11&rft.spage=e0313708&rft_id=info:doi/10.1371%2Fjournal.pone.0313708&rft.externalDBID=ISR&rft.externalDocID=A817215616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon