Simulation of epiretinal prostheses - Evaluation of geometrical factors affecting stimulation thresholds

Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 8; no. 1; p. 44
Main Authors Kasi, Harsha, Hasenkamp, Willyan, Cosendai, Gregoire, Bertsch, Arnaud, Renaud, Philippe
Format Journal Article
LanguageEnglish
Published London BioMed Central 19.08.2011
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1743-0003
1743-0003
DOI10.1186/1743-0003-8-44

Cover

Abstract Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. Methods In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al . in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. Results Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. Conclusions The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
AbstractList An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids.BACKGROUNDAn accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids.In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina.METHODSIn this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina.Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation.RESULTSThreshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation.The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.CONCLUSIONSThe validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. Methods In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al . in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. Results Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. Conclusions The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
Abstract Background: An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. Methods: In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al . in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. Results: Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. Conclusions: The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. Methods In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. Results Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. Conclusions The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
Audience Academic
Author Hasenkamp, Willyan
Bertsch, Arnaud
Kasi, Harsha
Renaud, Philippe
Cosendai, Gregoire
AuthorAffiliation 2 Second Sight® Medical Products, Inc., Sylmar, CA 91342, USA
1 Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
AuthorAffiliation_xml – name: 2 Second Sight® Medical Products, Inc., Sylmar, CA 91342, USA
– name: 1 Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Author_xml – sequence: 1
  givenname: Harsha
  surname: Kasi
  fullname: Kasi, Harsha
  email: harsha.kasi@epfl.ch
  organization: Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 2
  givenname: Willyan
  surname: Hasenkamp
  fullname: Hasenkamp, Willyan
  organization: Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Gregoire
  surname: Cosendai
  fullname: Cosendai, Gregoire
  organization: Second Sight Medical Products, Inc
– sequence: 4
  givenname: Arnaud
  surname: Bertsch
  fullname: Bertsch, Arnaud
  organization: Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Philippe
  surname: Renaud
  fullname: Renaud, Philippe
  organization: Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne (EPFL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21854602$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1v1DAQxSNURD_gyhFFcOCU1o7tOLkgVVWBSpU4AGfLccaJV0m82E6l_vfMdtvdLqLyIdbk955n7HeaHc1-hix7T8k5pXV1QSVnBSGEFXXB-avsZFc4erY_zk5jXOGGE8HfZMclrQWvSHmSDT_dtIw6OT_n3uawdgGSm_WYr4OPaYAIMS_y6zs9LjuqBz9BCs4gZrVJPsRcWwsGlX0e094yDQHi4Mcuvs1eWz1GePf4Pct-f73-dfW9uP3x7ebq8rYwlRCpqGxDoGWc1jXpyqZqmaayERXRlDQts8YyKRilpUWEIQMdL4002raiETjvWXaz9e28Xql1cJMO98prpx4KPvRKh-TMCIoJAS1vJGje8I6UumMUm6CUM2CMSfT6svVaL-0EnYE5BT0emB7-md2gen-nGJWybigafH40CP7PAjGpyUUD46hn8EtUdcMaiVyF5Md_yJVfAr5DVA0pWS05ZQh92kK9xvbdbD2eajaW6rKspBCkoiVS5_-hcHUwOYPxsQ7rB4IPz8fczfeUEgT4FjCYiRjAKuPSwwOjsxsVJWoTRrXJm9rkTdWK830jO9mT84uCi60gIjj3EPaX8ILiL9KN7Rc
CitedBy_id crossref_primary_10_1007_s10544_013_9770_z
crossref_primary_10_1088_1741_2560_9_6_065005
crossref_primary_10_1186_s12984_015_0065_x
crossref_primary_10_1097_WCO_0b013e32834f02c3
crossref_primary_10_1109_TNSRE_2018_2832055
crossref_primary_10_1159_000513585
crossref_primary_10_1088_1741_2552_ac8e32
crossref_primary_10_1088_1741_2560_11_2_025002
crossref_primary_10_1049_iet_smt_2016_0315
crossref_primary_10_17341_gazimmfd_322183
crossref_primary_10_1088_1741_2560_11_6_065004
crossref_primary_10_1088_1741_2552_aba0d2
crossref_primary_10_1167_tvst_9_5_19
crossref_primary_10_3389_fnins_2018_00277
crossref_primary_10_1109_TNSRE_2021_3138297
crossref_primary_10_1167_tvst_11_6_12
crossref_primary_10_1038_s41598_017_06762_3
crossref_primary_10_1088_1741_2560_13_4_046013
crossref_primary_10_1016_j_neuroscience_2014_01_067
crossref_primary_10_1016_j_visres_2014_12_002
crossref_primary_10_3390_jimaging10110294
crossref_primary_10_5301_ijao_5000412
crossref_primary_10_1088_1741_2560_10_3_036013
crossref_primary_10_1109_TBME_2018_2791860
crossref_primary_10_1088_1741_2552_abf892
crossref_primary_10_1159_000453606
crossref_primary_10_1088_1741_2552_abecf1
crossref_primary_10_1039_D4NH00282B
crossref_primary_10_1088_1741_2552_ac6f82
crossref_primary_10_1007_s10544_012_9661_8
crossref_primary_10_1080_03772063_2017_1417750
crossref_primary_10_1364_OME_9_003878
crossref_primary_10_1109_TBCAS_2021_3128418
crossref_primary_10_1002_adfm_201402934
crossref_primary_10_1016_j_jneumeth_2012_05_006
crossref_primary_10_1109_TBME_2014_2366514
crossref_primary_10_1109_TNSRE_2021_3123754
crossref_primary_10_1142_S0129065720500069
Cites_doi 10.1109/10.759051
10.1016/j.jneumeth.2004.10.020
10.1109/TNSRE.2006.870488
10.1016/0042-6989(85)90214-7
10.1152/jn.00545.2009
10.1167/iovs.02-1041
10.1167/iovs.10-5282
10.1016/j.jneumeth.2009.01.019
10.1167/iovs.04-1018
10.1088/1741-2560/2/1/012
10.1088/1741-2560/2/1/010
10.1109/7333.918281
10.1590/S0004-27492006000400015
10.1007/BF02476917
10.1088/1741-2560/4/1/S03
10.1007/BF02667796
10.1109/TNSRE.2005.848687
10.1016/0006-8993(90)91388-W
10.1097/00003446-200112000-00004
10.1088/1741-2560/4/1/S09
10.1016/S0042-6989(03)00457-7
10.1152/jn.91081.2008
10.1109/10.61038
10.1152/jn.00343.2010
10.1068/p6100
10.1152/jn.01168.2005
10.1167/iovs.07-0696
10.1016/j.biomaterials.2003.09.107
ContentType Journal Article
Copyright Kasi et al; licensee BioMed Central Ltd. 2011
COPYRIGHT 2011 BioMed Central Ltd.
2011 Kasi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2011 Kasi et al; licensee BioMed Central Ltd. 2011 Kasi et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Kasi et al; licensee BioMed Central Ltd. 2011
– notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: 2011 Kasi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2011 Kasi et al; licensee BioMed Central Ltd. 2011 Kasi et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/1743-0003-8-44
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
Healthcare Administration Database
Medical Database
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 44
ExternalDocumentID oai_doaj_org_article_355eb497ea494d02ad316551143e3337
PMC3177891
2504412131
A267550612
21854602
10_1186_1743_0003_8_44
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
Switzerland
GeographicLocations_xml – name: Switzerland
– name: United States
GroupedDBID ---
0R~
29L
2QV
2VQ
2WC
4.4
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c655t-6f90eb341880d296b3a179560a109b3fcf3753112f418380ded42c7cafb595743
IEDL.DBID M48
ISSN 1743-0003
IngestDate Wed Aug 27 00:59:44 EDT 2025
Thu Aug 21 18:08:18 EDT 2025
Fri Sep 05 09:17:24 EDT 2025
Fri Jul 25 19:03:31 EDT 2025
Tue Jun 17 21:30:27 EDT 2025
Tue Jun 10 20:18:52 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Tue Jul 01 02:19:53 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Sat Sep 06 07:18:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Retinal Ganglion Cell
Simulation Framework
Threshold Current
Electrode Geometry
Electrode Size
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c655t-6f90eb341880d296b3a179560a109b3fcf3753112f418380ded42c7cafb595743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/902387413?pq-origsite=%requestingapplication%
PMID 21854602
PQID 902387413
PQPubID 55356
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_355eb497ea494d02ad316551143e3337
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3177891
proquest_miscellaneous_893979136
proquest_journals_902387413
gale_infotracmisc_A267550612
gale_infotracacademiconefile_A267550612
pubmed_primary_21854602
crossref_citationtrail_10_1186_1743_0003_8_44
crossref_primary_10_1186_1743_0003_8_44
springer_journals_10_1186_1743_0003_8_44
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-19
PublicationDateYYYYMMDD 2011-08-19
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2011
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References 10.1186/1743-0003-8-44-B13
10.1186/1743-0003-8-44-B35
10.1186/1743-0003-8-44-B14
10.1186/1743-0003-8-44-B36
10.1186/1743-0003-8-44-B15
10.1186/1743-0003-8-44-B16
10.1186/1743-0003-8-44-B38
10.1186/1743-0003-8-44-B17
10.1186/1743-0003-8-44-B39
10.1186/1743-0003-8-44-B18
10.1186/1743-0003-8-44-B31
10.1186/1743-0003-8-44-B32
10.1186/1743-0003-8-44-B11
10.1186/1743-0003-8-44-B33
10.1186/1743-0003-8-44-B34
10.1186/1743-0003-8-44-B26
10.1186/1743-0003-8-44-B27
10.1186/1743-0003-8-44-B28
-
10.1186/1743-0003-8-44-B29
10.1186/1743-0003-8-44-B40
10.1186/1743-0003-8-44-B20
10.1186/1743-0003-8-44-B22
10.1186/1743-0003-8-44-B7
10.1186/1743-0003-8-44-B5
10.1186/1743-0003-8-44-B1
19428523 - J Neurosci Methods. 2009 May 15;179(2):166-72
15876658 - J Neural Eng. 2005 Mar;2(1):S74-90
18714839 - IEEE Trans Biomed Eng. 2008 Jun;55(6):1744-53
19741103 - J Neurophysiol. 2009 Nov;102(5):2982-93
4090272 - Vision Res. 1985;25(10):1365-73
21095947 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2077-80
11482368 - IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):86-95
18515576 - Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2303-14
19065857 - Perception. 2008;37(10):1529-59
851475 - IEEE Trans Biomed Eng. 1977 Jan;24(1):59-63
2276759 - IEEE Trans Biomed Eng. 1990 Nov;37(11):1118-20
17325412 - J Neural Eng. 2007 Mar;4(1):S17-23
15790920 - Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1486-96
15020157 - Biomaterials. 2004 Aug;25(17):3813-28
19193771 - J Neurophysiol. 2009 Apr;101(4):1972-87
20720224 - Invest Ophthalmol Vis Sci. 2011 Jan;52(1):549-57
2331606 - Brain Res. 1990 Mar 5;510(2):343-5
13129543 - Vision Res. 2003 Nov;43(24):2573-81
12882804 - Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3533-43
21354850 - Med Eng Phys. 2011 Jul;33(6):755-63
16003900 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):201-6
16436479 - J Neurophysiol. 2006 Jun;95(6):3311-27
16562626 - IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):5-13
19660665 - Prog Brain Res. 2009;175:317-32
11770670 - Ear Hear. 2001 Dec;22(6):471-86
15078664 - Arch Ophthalmol. 2004 Apr;122(4):477-85
17119727 - Arq Bras Oftalmol. 2006 Jul-Aug;69(4):539-44
10230129 - IEEE Trans Biomed Eng. 1999 May;46(5):505-14
15876646 - J Neural Eng. 2005 Mar;2(1):S105-20
19098313 - Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1483-91
15661300 - J Neurosci Methods. 2005 Feb 15;141(2):171-98
16236780 - J Neurophysiol. 2006 Feb;95(2):970-8
5582145 - Bull Math Biophys. 1967 Dec;29(4):657-64
17325419 - J Neural Eng. 2007 Mar;4(1):S72-84
20702740 - J Neurophysiol. 2010 Oct;104(4):2236-48
References_xml – ident: 10.1186/1743-0003-8-44-B33
  doi: 10.1109/10.759051
– ident: 10.1186/1743-0003-8-44-B38
  doi: 10.1016/j.jneumeth.2004.10.020
– ident: 10.1186/1743-0003-8-44-B29
  doi: 10.1109/TNSRE.2006.870488
– ident: 10.1186/1743-0003-8-44-B22
  doi: 10.1016/0042-6989(85)90214-7
– ident: 10.1186/1743-0003-8-44-B34
  doi: 10.1152/jn.00545.2009
– ident: 10.1186/1743-0003-8-44-B14
  doi: 10.1167/iovs.02-1041
– ident: 10.1186/1743-0003-8-44-B11
  doi: 10.1167/iovs.10-5282
– ident: 10.1186/1743-0003-8-44-B27
  doi: 10.1016/j.jneumeth.2009.01.019
– ident: 10.1186/1743-0003-8-44-B32
  doi: 10.1167/iovs.04-1018
– ident: 10.1186/1743-0003-8-44-B15
  doi: 10.1088/1741-2560/2/1/012
– ident: 10.1186/1743-0003-8-44-B7
  doi: 10.1088/1741-2560/2/1/010
– ident: -
  doi: 10.1109/7333.918281
– ident: 10.1186/1743-0003-8-44-B26
  doi: 10.1590/S0004-27492006000400015
– ident: 10.1186/1743-0003-8-44-B35
  doi: 10.1007/BF02476917
– ident: 10.1186/1743-0003-8-44-B18
  doi: 10.1088/1741-2560/4/1/S03
– ident: -
  doi: 10.1007/BF02667796
– ident: -
  doi: 10.1109/TNSRE.2005.848687
– ident: 10.1186/1743-0003-8-44-B31
  doi: 10.1016/0006-8993(90)91388-W
– ident: 10.1186/1743-0003-8-44-B40
  doi: 10.1097/00003446-200112000-00004
– ident: 10.1186/1743-0003-8-44-B5
  doi: 10.1088/1741-2560/4/1/S09
– ident: 10.1186/1743-0003-8-44-B17
  doi: 10.1016/S0042-6989(03)00457-7
– ident: 10.1186/1743-0003-8-44-B28
  doi: 10.1152/jn.91081.2008
– ident: 10.1186/1743-0003-8-44-B36
  doi: 10.1109/10.61038
– ident: 10.1186/1743-0003-8-44-B20
  doi: 10.1152/jn.00343.2010
– ident: 10.1186/1743-0003-8-44-B1
  doi: 10.1068/p6100
– ident: 10.1186/1743-0003-8-44-B16
  doi: 10.1152/jn.01168.2005
– ident: 10.1186/1743-0003-8-44-B13
  doi: 10.1167/iovs.07-0696
– ident: 10.1186/1743-0003-8-44-B39
  doi: 10.1016/j.biomaterials.2003.09.107
– reference: 15078664 - Arch Ophthalmol. 2004 Apr;122(4):477-85
– reference: 17325419 - J Neural Eng. 2007 Mar;4(1):S72-84
– reference: 15661300 - J Neurosci Methods. 2005 Feb 15;141(2):171-98
– reference: 19193771 - J Neurophysiol. 2009 Apr;101(4):1972-87
– reference: 16436479 - J Neurophysiol. 2006 Jun;95(6):3311-27
– reference: 18714839 - IEEE Trans Biomed Eng. 2008 Jun;55(6):1744-53
– reference: 2276759 - IEEE Trans Biomed Eng. 1990 Nov;37(11):1118-20
– reference: 17119727 - Arq Bras Oftalmol. 2006 Jul-Aug;69(4):539-44
– reference: 5582145 - Bull Math Biophys. 1967 Dec;29(4):657-64
– reference: 11482368 - IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):86-95
– reference: 15876646 - J Neural Eng. 2005 Mar;2(1):S105-20
– reference: 17325412 - J Neural Eng. 2007 Mar;4(1):S17-23
– reference: 15876658 - J Neural Eng. 2005 Mar;2(1):S74-90
– reference: 21354850 - Med Eng Phys. 2011 Jul;33(6):755-63
– reference: 20702740 - J Neurophysiol. 2010 Oct;104(4):2236-48
– reference: 19098313 - Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1483-91
– reference: 19660665 - Prog Brain Res. 2009;175:317-32
– reference: 2331606 - Brain Res. 1990 Mar 5;510(2):343-5
– reference: 15790920 - Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1486-96
– reference: 851475 - IEEE Trans Biomed Eng. 1977 Jan;24(1):59-63
– reference: 20720224 - Invest Ophthalmol Vis Sci. 2011 Jan;52(1):549-57
– reference: 19065857 - Perception. 2008;37(10):1529-59
– reference: 16003900 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):201-6
– reference: 11770670 - Ear Hear. 2001 Dec;22(6):471-86
– reference: 15020157 - Biomaterials. 2004 Aug;25(17):3813-28
– reference: 19428523 - J Neurosci Methods. 2009 May 15;179(2):166-72
– reference: 4090272 - Vision Res. 1985;25(10):1365-73
– reference: 18515576 - Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2303-14
– reference: 16236780 - J Neurophysiol. 2006 Feb;95(2):970-8
– reference: 12882804 - Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3533-43
– reference: 10230129 - IEEE Trans Biomed Eng. 1999 May;46(5):505-14
– reference: 16562626 - IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):5-13
– reference: 21095947 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2077-80
– reference: 13129543 - Vision Res. 2003 Nov;43(24):2573-81
– reference: 19741103 - J Neurophysiol. 2009 Nov;102(5):2982-93
SSID ssj0034054
Score 2.1599164
Snippet Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices....
An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous...
Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices....
Abstract Background: An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective...
Abstract Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Design
Efficiency
Electrodes
Electrodes, Implanted
Finite Element Analysis
Geometry
Human subjects
Humans
Implants, Artificial
Microelectrodes
Models, Neurological
Neurology
Neurosciences
Physiological aspects
Prostheses
Prosthesis
Prosthesis Design - instrumentation
Prosthesis Design - methods
Rehabilitation Medicine
Retinal ganglion cells
Retinal Ganglion Cells - physiology
Simulation
Studies
Visual Prosthesis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHhAceCyv0IJ84HWxmsSOEx8LalUhFSFopd4sx3HYlWh2Rbb_nxnHCZsC4sI1nvXGM2PPN7HnM8CrXPnCS2G5KETBEVJbrr13PG8xGovUattQofDZJ3V6IT9eFpc7V33RmbCBHnhQ3CHGQ19LXXortWzS3DYiUxjmMc57IUSoI091OiZTwxosEIbIoRRSUN20iHSNWaUOp2e84lLOwlFg7f99bd4JTjcPTt7YPQ1B6eQB3Itokh0No3gIt3y3gLs7HIMLuH0Wd88X8HqXUpidD3wC7A37MmPrXsD9z9F4o8wjWH5dXcWLvti6ZX6zoupH6mZDZSNL3_uecXY8cYeT1De_vqILu6ineK8Ps-H8CL4Zw7Vl6nKLHtXTRlj_GC5Ojs8_nPJ4SQN3aIYtV61OMSGXxOvW5FrVwuIcRxxls1TXonWtwIwIUV2LIgJlfCNzVzrb1oUu0BZPYK9bd_4ZMC097aKGFBJxhdOtQwDlaqe0aNHsCfDRVsZFndBFGt9NyGQqZci2tJ0uTGWkTODtJL8ZuDv-KvmeTD9JEed2eICeaKInmn95Iv4dOY6hlQFfy9lY4ICDI44tc5RjclYQpEzgYCaJM9rNmvdH1zNxRemNJnCFahEJsKmVfkiH5Dq_vu4NQk9d6kyoBJ4OfjoNCIFcIVWKXZczD56NeN7SrZaBbRwBZllpVP670dd_vdSftfn8f2hzH-6Mn-8zfQB72x_X_gXiv239Mkz1n-5NUlg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAceCyv0IJ84HWxmsSOE59QQV0qpCIErdSb5ThOdyWaLM32_zOTdcKmPK6bidf2jGc-Z-xvAF6lymdeCstFJjKOkNpy7b3jaY3RWMRW24ouCh9_UUen8vNZdhbO5nThWOXgE3tHXbWOvpHvawouGP7E-9VPTkWjKLkaKmjchFsJBhoy82L-aXDEArGIDDyNSaH2CXvTJWrBCy7lJA71dP1_OuWtqHT9xOS1tGkfjeYP4F6Akexgo_eHcMM3M7i7RS44g9vHIW0-g9fbXMLsZEMkwN6wbxOa7hnc_xq0Nsg8gsX35UWo8MXamvnVkq49UjMrui-y8J3vGGeHI2k4SZ379oIqdVFLoaAPs_3BEewZQ6cyNrlGU-ooA9Y9htP54cnHIx6qM3CnsmzNVa1j3IlLInSrUq1KYXFxI4CySaxLUbta4FYI4VyNIgJlfCVTlztbl5nOUBdPYKdpG_8MmJae0qf93hEBhdO1Q-TkSqe0qCuRRMAHXRkX5oQqaPww_RamUIZ0S3l0YQojZQRvR_nVhrTjn5IfSPWjFJFt9z-0l-cmrF2DkMyXUufeSi2rOLXYJZwC3EkKL4TI8e_IcAy5BOyWs-FmAw6OyLXMQYq7soywZAR7E0lcym7yeHcwPRNcSWdGw4-AjU_pRTod1_j2qjOIOXWuE6EieLqx03FAiOAyqWJsOp9Y8GTE0yfNctHTjCOyzAuNk_9usPXfnfr7bD7_b_934c7wQT7Re7CzvrzyLxDRrcuX_br9BS6ISQ4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAceCyPhhbkA6-LRRI_Eh9L1apCKkLQSr1ZjuOwK9Hsqtn-f2ayTti0IHHdTLy2Z8b-JuP5DPA210EFKRwXSiiOkNpxE4LneYO7sUidcTUVCp9-1Sfn8suFuogHZKkWZjt_n5X6EwFmqnwWvORS3oV7KhO6T8rqw2HFFQg6ZCRkvP3OZMPpeflvr75b28_No5E38qP9tnP8BB5FvMgONgp-CndCO4OHWyyCM7h_GvPjM3i3TRrMzjaMAew9-z7h457B429RPYPMM5j_WFzGq7zYsmFhtaD6RmpmRYUh89CFjnF2NLKDk9TPsLykK7mopXhzD3P9CRHsGcPVY2xyjTbTUaqrew7nx0dnhyc8XsPAvVZqzXVjUgy5JTG31bnRlXDoxYiUXJaaSjS-ERjzIG5rUESgTKhl7gvvmkoZhbp4ATvtsg27wIwMlCftg0REDt40HiGSr7w2oqlFlgAfdGV9nBO6KuOX7WOVUlvSLSXMhS2tlAl8GOVXG3aOf0p-JtWPUsSq3f-Axmajk1rEXqGSpghOGlmnucMu4RRgyCiCEKLAvyPDseT72C3vYgkDDo5YtOxBjuGXItCYwP5EEn3WTx7vDaZn45rRWUPwCadFJMDGp_QiHYNrw_K6swguTWHQAxJ4ubHTcUAI1ZTUKTZdTCx4MuLpk3Yx7_nEEUIWpcHJ_zjY-p9O_X02X_2_6B48GD7DZ2YfdtZX1-E14rh19aZ34t-KuUA0
  priority: 102
  providerName: Springer Nature
Title Simulation of epiretinal prostheses - Evaluation of geometrical factors affecting stimulation thresholds
URI https://link.springer.com/article/10.1186/1743-0003-8-44
https://www.ncbi.nlm.nih.gov/pubmed/21854602
https://www.proquest.com/docview/902387413
https://www.proquest.com/docview/893979136
https://pubmed.ncbi.nlm.nih.gov/PMC3177891
https://doaj.org/article/355eb497ea494d02ad316551143e3337
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9owELfWVpq2h32wL9YO-WFfL-4gdpz4YZooKquQqKq2SLxZjnEKUguMUGn773eXOIG0nfYCUnxx7PNd_Luc746Qj4F0oRPcMB7ykAGkNkw5Z1mQwm7M20aZCQYKD0_lyUgMxuF4c_7JMzB70LTDelKj1fXh719_foDCf88VPpbfEFRjdDRnMRNih-zBriTREBuKyqPAAZiIIjiyoPUJHO_fX9ug8jz-99_WW9vV3aOUd_yp-TbVf0GeeXxJu4VAvCSP3LxBnm5lHWyQx0PvT2-QT9tJhullkWGAfqbntfzdDfL8zC9nSfOKTC9mN770F12k1C1nGA-J3SwxkGTqMpdRRjfZxJHqyi1usIQX9uQr_VCTnyiBkVF421RdrkHGMnSNZa_JqH982TthvmwDszIM10ymqg0musBMb5NAyYQb0HpAVqbTVglPbcrBRgKclwIJBxo3EYGNrEmTUIWwFm_I7nwxd-8IVcKhXzU3KgFpWJVagFQ2sVLxdMI7TcLKtdLW8wRLa1zr3LaJpca1RQc717EWokm-VPTLIpvHPymPcOkrKszCnV9YrK60V2oNWM0lQkXOCCUm7cDAkIAFYGJyxzmP4HEoOBqlF4ZljQ95gMlh1i3dDcBcCxFkNslBjRJ03Naa90vR06WKaIVwC9jCm4RWrXgjHpubu8VtpgGMqkh1uGySt4WcVhMCaBcK2Yauo5oE12Zcb5nPpnn-cYCcUayA-V9LWd8M6mFuvv__CPfJk_JzfUcdkN316tZ9ALy3TlpkJxpH8Bv3f7bIXrc7uBjA_9Hx6dk5XO3JXiv_ktLKFf4v0BpWNg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48FheSwv4QIGL1d3YefiAUIFWW9qtEGylvRnHcbor0c3SbIX4UfxHZrJO2JTHrdd44vgxnvkm45kBeB5ELnRSGC5CEXKE1IYr5ywPctTGomeUyShQeHgUDY7lh3E4XoOfdSwMXausZWIlqLPC0j_ybUXKBdWfeDP_xqloFDlX6woaS644cD--o8VWvt5_j9u7FQR7u6N3A-6LCnAbheGCR7nqoQEpKQ9ZFqgoFQZ5EvW-6fdUKnKbC0TwiEJyJBFI4zIZ2NiaPA1ViPoW-70CVyX9GMfjE48b-04g9pE-L2Q_ibYJ61PQtuAJl7Kl96ryAH8qgRUtePGG5gU3baX99u7ALQ9b2c6Sz-7Cmpt14OZKMsMOXBt6N30HtlZzF7PRMnEBe8E-tdKCd-D2R88lNc09mHyenvqKYqzImZtPKcySuplTfMrEla5knO02ScqJ6sQVp1QZjHryBYSYqS6q4MgYCrGmywWybkket_I-HF_Kxj2A9Vkxc4-AKenIXVvZqghgrMotIjWb2kiJPBP9LvB6r7T1a0IVO77qymRKIk17S357oRMtZRdeNvTzZZKQf1K-pa1vqCi5d_WgODvRXlZohIAulSp2RiqZ9QKDQ8IlQMtVOCFEjJ8jxtEkgnBY1vhICpwcJfPSOwFagSFh1y5stihRdNhW80bNetqLrlI3B60LrGmlF-k23swV56VGjKti1RdRFx4u-bSZECLGUEY97DpucXBrxu2W2XRSpTVHJBsnChf_Vc3rvwf199V8_N_xP4Prg9HwUB_uHx1swI3aGdBXm7C-ODt3TxBNLtKn1Rlm8OWyhcYvxHGENw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlVwKLBQWFrAB14Xq9nYcdYSl1K6Ko9WFbRSb5bjON2VaHbVbP9_ZxInbFqQuMYTx_aM7W8yns8Ab2PlEy-F5SIRCUdIbbn23vG4wN1YRFbbnBKFj47V4Zn8dp6cr8GnNhemPu3ehiSbnAZiaSqXu4u8aKb4WO0SjKZ8aMHHXMp7cF_StkehWrXfrsMCoYgMNI133-ltQzVb_901eWVTun1g8lbUtN6MJo9hM6BItteo_Qms-XIAD1e4BQewcRSi5gN4t0olzE4bHgH2nv3ssXQP4NFJUFor8xSmv2aX4YIvNi-YX8wo65GqWVC6yNRXvmKcHXSc4SR14eeXdFEX1RTu82G2PjeCLWO4pnRVLtGSKgqAVc_gbHJwun_Iw-UM3KkkWXJV6AgdcUl8bnmsVSYszm3ET3YU6UwUrhDoCSGaK1BEoIzPZexSZ4ss0QnqYgvWy3npXwDT0lP0tHYdEU84XTgETi5zSosiF6Mh8FZXxoUxoQs0fpvagxkrQ7qlMLowYyPlED508ouGs-Ofkp9J9Z0UcW3XD-ZXFyZMXYOIzGdSp95KLfMottgkHAJ0JIUXQqT4OTIcQysCNsvZkNiAnSNuLbMXo1OWEJQcwk5PEmey6xVvt6ZnwkpSGU2gCodFDIF1pfQiHY4r_fy6Mgg5dapHQg3heWOnXYcQwCVSRVh12rPgXo_7JeVsWrOMI7BMxxoH_2Nr638a9ffRfPn_om9g4-TLxPz4evx9Gx60_-lHegfWl1fX_hUCvWX2up7PN5koS2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+epiretinal+prostheses+-+evaluation+of+geometrical+factors+affecting+stimulation+thresholds&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Kasi%2C+Harsha&rft.au=Hasenkamp%2C+Willyan&rft.au=Cosendai%2C+Gregoire&rft.au=Bertsch%2C+Arnaud&rft.date=2011-08-19&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=8&rft.spage=44&rft_id=info:doi/10.1186%2F1743-0003-8-44&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon