Big Data Investment, Skills, and Firm Value
This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source-the LinkedIn skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 t...
Saved in:
Published in | Management science Vol. 60; no. 6; pp. 1452 - 1469 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Linthicum
INFORMS
01.06.2014
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source-the LinkedIn skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 to 2011, Hadoop investments were associated with 3% faster productivity growth, but only for firms (a) with significant data assets and (b) in labor markets where similar investments by other firms helped to facilitate the development of a cadre of workers with complementary technical skills. The benefits of labor market concentration decline for investments in mature data technologies, such as Structured Query Language-based databases, for which the complementary skills can be acquired by workers through universities or other channels. These findings underscore the importance of geography, corporate investment, and skill acquisition channels for explaining productivity growth differences during the spread of new information technology innovations.
This paper was accepted by Alok Gupta, special issue on business analytics
. |
---|---|
AbstractList | This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source—the LinkedIn skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 to 2011, Hadoop investments were associated with 3% faster productivity growth, but only for firms (a) with significant data assets and (b) in labor markets where similar investments by other firms helped to facilitate the development of a cadre of workers with complementary technical skills. The benefits of labor market concentration decline for investments in mature data technologies, such as Structured Query Language-based databases, for which the complementary skills can be acquired by workers through universities or other channels. These findings underscore the importance of geography, corporate investment, and skill acquisition channels for explaining productivity growth differences during the spread of new information technology innovations.
This paper was accepted by Alok Gupta, special issue on business analytics. This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source-the LinkedIn skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 to 2011, Hadoop investments were associated with 3% faster productivity growth, but only for firms (a) with significant data assets and (b) in labor markets where similar investments by other firms helped to facilitate the development of a cadre of workers with complementary technical skills. The benefits of labor market concentration decline for investments in mature data technologies, such as Structured Query Language-based databases, for which the complementary skills can be acquired by workers through universities or other channels. These findings underscore the importance of geography, corporate investment, and skill acquisition channels for explaining productivity growth differences during the spread of new information technology innovations. Reprinted by permission of the Institute for Operations Research and Management Science (INFORMS) This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source-the LinkedIn skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 to 2011, Hadoop investments were associated with 3% faster productivity growth, but only for firms (a) with significant data assets and (b) in labor markets where similar investments by other firms helped to facilitate the development of a cadre of workers with complementary technical skills. The benefits of labor market concentration decline for investments in mature data technologies, such as Structured Query Language-based databases, for which the complementary skills can be acquired by workers through universities or other channels. These findings underscore the importance of geography, corporate investment, and skill acquisition channels for explaining productivity growth differences during the spread of new information technology innovations. This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source--the LinkedIn skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 to 2011, Hadoop investments were associated with 3% faster productivity growth, but only for firms (a) with significant data assets and (b) in labor markets where similar investments by other firms helped to facilitate the development of a cadre of workers with complementary technical skills. The benefits of labor market concentration decline for investments in mature data technologies, such as Structured Query Language- based databases, for which the complementary skills can be acquired by workers through universities or other channels. These findings underscore the importance of geography, corporate investment, and skill acquisition channels for explaining productivity growth differences during the spread of new information technology innovations. Keywords: information systems; IT policy and management; economics of IS; strategic management of IT; management of IT human resources; Hadoop; big data; business analytics; technical skills; IT value; IT productivity; IT workforce History: Received September 16, 2012; accepted August 16, 2013, by Alok Gupta, special issue on business analytics. This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source—the Linkedln skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 to 2011, Hadoop investments were associated with 3% faster productivity growth, but only for firms (a) with significant data assets and (b) in labor markets where similar investments by other firms helped to facilitate the development of a cadre of workers with complementary technical skills. The benefits of labor market concentration decline for investments in mature data technologies, such as Structured Query Language-based databases, for which the complementary skills can be acquired by workers through universities or other channels. These findings underscore the importance of geography, corporate investment, and skill acquisition channels for explaining productivity growth differences during the spread of new information technology innovations. This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source-the LinkedIn skills database. The data source enables firm-level measurement of the employment of workers with technical skills such as Hadoop, MapReduce, and Apache Pig. From 2006 to 2011, Hadoop investments were associated with 3% faster productivity growth, but only for firms (a) with significant data assets and (b) in labor markets where similar investments by other firms helped to facilitate the development of a cadre of workers with complementary technical skills. The benefits of labor market concentration decline for investments in mature data technologies, such as Structured Query Language-based databases, for which the complementary skills can be acquired by workers through universities or other channels. These findings underscore the importance of geography, corporate investment, and skill acquisition channels for explaining productivity growth differences during the spread of new information technology innovations. This paper was accepted by Alok Gupta, special issue on business analytics . |
Audience | Trade Academic |
Author | Tambe, Prasanna |
Author_xml | – sequence: 1 givenname: Prasanna surname: Tambe fullname: Tambe, Prasanna |
BookMark | eNqFkctrFTEUxoO04G3r1p0w4EbwzjWPSeZm2acWCi58bEMmczLmmsnUJCP0v2-GitVyRRISCL_vnC_nO0IHYQqA0EuCN4Ru23djSGZDMWk2ZCvlM7QinIqac0wO0ApjymsisXyOjlLaYYzbbStW6O2ZG6oLnXV1HX5CyiOEvK4-fXfep3WlQ19duThWX7Wf4QQdWu0TvPh1H6MvV5efzz_UNx_fX5-f3tRGcJ5r0XFOdNsxIzpLMHSAacdBgNU9CCY7YotLW3ZjWWdMz3WjGbHWUN20vWHH6M1D3ds4_ZiLKTW6ZMB7HWCakyKcUy6ZEKygr5-gu2mOobgrVEMxZduWPlKD9qBcsFOO2ixF1SmTkreUUl6oeg81QICofRm1deX5L36zhy-rh9GZvYL1H4JuTi5AKkdyw7ecBj2ntLe-iVNKEay6jW7U8U4RrJbE1ZK4WhJXS-JF0DwRGJd1dlMoxpz_t-zVg2yX8hR_N2moJFKQ5nEuyxfjmP5n4x4BKsbB |
CODEN | MNSCDI |
CitedBy_id | crossref_primary_10_1108_JKM_06_2015_0238 crossref_primary_10_1016_j_procs_2022_12_248 crossref_primary_10_3917_sim_163_0063 crossref_primary_10_1002_smj_3595 crossref_primary_10_2478_amns_2023_1_00468 crossref_primary_10_1108_IJOA_04_2020_2128 crossref_primary_10_1002_smj_2940 crossref_primary_10_1051_matecconf_201710002019 crossref_primary_10_1016_j_ribaf_2024_102371 crossref_primary_10_1016_j_techfore_2021_120794 crossref_primary_10_1080_00207543_2019_1660822 crossref_primary_10_1111_deci_12357 crossref_primary_10_47836_ijeam_17_2_06 crossref_primary_10_1080_09537287_2020_1831643 crossref_primary_10_1089_big_2015_0017 crossref_primary_10_1145_3433148_3433153 crossref_primary_10_1016_j_intfin_2023_101915 crossref_primary_10_1016_j_technovation_2023_102836 crossref_primary_10_2478_jaiscr_2019_0010 crossref_primary_10_2139_ssrn_3553470 crossref_primary_10_1108_IMDS_01_2020_0037 crossref_primary_10_1016_j_ijinfomgt_2021_102389 crossref_primary_10_1109_TEM_2021_3066153 crossref_primary_10_1057_s11369_021_00224_5 crossref_primary_10_4000_rei_6550 crossref_primary_10_1080_10696679_2024_2322600 crossref_primary_10_1111_1467_8551_12228 crossref_primary_10_2139_ssrn_2531477 crossref_primary_10_1111_jems_12576 crossref_primary_10_2139_ssrn_5001580 crossref_primary_10_1177_00018392251313737 crossref_primary_10_1057_s41599_025_04625_1 crossref_primary_10_3390_su11030684 crossref_primary_10_1016_j_im_2018_10_007 crossref_primary_10_1016_j_ejor_2018_06_021 crossref_primary_10_1057_s41265_018_0055_0 crossref_primary_10_1016_j_ijpe_2020_107758 crossref_primary_10_1287_isre_2020_0946 crossref_primary_10_1186_s41039_018_0071_2 crossref_primary_10_1016_j_technovation_2018_07_004 crossref_primary_10_2139_ssrn_3195527 crossref_primary_10_1080_23311975_2021_1923360 crossref_primary_10_4018_JGIM_321176 crossref_primary_10_1142_S0217595917400024 crossref_primary_10_1108_CFRI_10_2024_0619 crossref_primary_10_1016_j_bir_2024_07_008 crossref_primary_10_1016_j_ijpe_2023_109070 crossref_primary_10_1080_17421772_2020_1825783 crossref_primary_10_1007_s13132_025_02631_x crossref_primary_10_1016_j_strueco_2024_09_011 crossref_primary_10_1371_journal_pone_0309659 crossref_primary_10_2139_ssrn_4177947 crossref_primary_10_1111_joes_12570 crossref_primary_10_1111_1467_8551_12333 crossref_primary_10_2139_ssrn_3130661 crossref_primary_10_1080_17512786_2018_1497454 crossref_primary_10_1016_j_infoandorg_2023_100466 crossref_primary_10_1080_10580530_2021_1894515 crossref_primary_10_1111_jpim_12545 crossref_primary_10_1016_j_ijpe_2017_06_006 crossref_primary_10_1016_j_ejor_2020_09_034 crossref_primary_10_1080_1540496X_2024_2349655 crossref_primary_10_2139_ssrn_5121385 crossref_primary_10_1002_smj_2460 crossref_primary_10_1080_00330124_2024_2378724 crossref_primary_10_1007_s11846_022_00613_w crossref_primary_10_1057_s41265_018_0054_1 crossref_primary_10_1016_j_jsinno_2025_200535 crossref_primary_10_2139_ssrn_3027057 crossref_primary_10_1002_ijfe_2931 crossref_primary_10_1007_s10796_016_9686_2 crossref_primary_10_1016_j_jsis_2017_08_002 crossref_primary_10_1016_j_iref_2025_103906 crossref_primary_10_1142_S2424862223500112 crossref_primary_10_1287_isre_2018_0803 crossref_primary_10_1080_13675567_2024_2308153 crossref_primary_10_1108_K_11_2023_2512 crossref_primary_10_1016_j_ins_2019_05_027 crossref_primary_10_2139_ssrn_4365176 crossref_primary_10_1016_j_techfore_2023_122824 crossref_primary_10_1016_j_jsis_2019_101578 crossref_primary_10_1287_stsc_2022_0170 crossref_primary_10_1108_K_02_2023_0302 crossref_primary_10_1016_j_lrp_2024_102427 crossref_primary_10_1186_s40537_015_0014_3 crossref_primary_10_1016_j_im_2021_103468 crossref_primary_10_1016_j_respol_2022_104653 crossref_primary_10_1080_19186444_2020_1871257 crossref_primary_10_1287_mnsc_2021_4237 crossref_primary_10_1057_s41599_023_02122_x crossref_primary_10_1016_j_iref_2024_103738 crossref_primary_10_2139_ssrn_3669348 crossref_primary_10_2139_ssrn_2243886 crossref_primary_10_4018_IRMJ_2018010102 crossref_primary_10_1108_JKM_12_2016_0522 crossref_primary_10_1155_2017_9024712 crossref_primary_10_1080_00207543_2018_1427900 crossref_primary_10_3390_su15097703 crossref_primary_10_1016_j_im_2018_11_001 crossref_primary_10_1016_j_techfore_2022_122196 crossref_primary_10_1108_IJM_11_2023_0649 crossref_primary_10_1111_jems_12586 crossref_primary_10_1080_19761597_2024_2312897 crossref_primary_10_1002_jcaf_22674 crossref_primary_10_1016_j_ipm_2017_10_005 crossref_primary_10_1108_IJPPM_01_2020_0023 crossref_primary_10_1007_s10257_017_0344_0 crossref_primary_10_1080_10580530_2020_1833386 crossref_primary_10_1016_j_cie_2021_107550 crossref_primary_10_4236_tel_2018_813176 crossref_primary_10_1016_j_ribaf_2024_102549 crossref_primary_10_1177_10946705221120218 crossref_primary_10_1016_j_techfore_2021_121119 crossref_primary_10_1287_isre_2020_0975 crossref_primary_10_1145_3379984 crossref_primary_10_1007_s40745_021_00323_2 crossref_primary_10_1108_MD_05_2018_0572 crossref_primary_10_1016_j_technovation_2023_102945 crossref_primary_10_2139_ssrn_3743648 crossref_primary_10_1108_MD_07_2018_0821 crossref_primary_10_1287_isre_2018_0817 crossref_primary_10_1080_2573234X_2020_1740616 crossref_primary_10_1016_j_emj_2022_07_001 crossref_primary_10_2139_ssrn_3759664 crossref_primary_10_1016_j_pacfin_2025_102723 crossref_primary_10_1016_j_ejor_2018_09_018 crossref_primary_10_2139_ssrn_3315946 crossref_primary_10_1080_07421222_2022_2096542 crossref_primary_10_1108_ARJ_07_2022_0178 crossref_primary_10_1287_mnsc_2018_3281 crossref_primary_10_1007_s10479_018_2783_5 crossref_primary_10_1016_j_jsis_2017_07_003 crossref_primary_10_1016_j_telpol_2023_102569 crossref_primary_10_1287_isre_2022_0227 crossref_primary_10_1016_j_jik_2023_100415 crossref_primary_10_1016_j_jclepro_2024_141371 crossref_primary_10_1080_10438599_2018_1493075 crossref_primary_10_1007_s44265_025_00054_9 crossref_primary_10_1007_s13132_024_02216_0 crossref_primary_10_1016_j_ijinfomgt_2017_07_008 crossref_primary_10_1287_mnsc_2019_03116 crossref_primary_10_1016_j_irfa_2025_104023 crossref_primary_10_1108_IJLM_05_2017_0132 crossref_primary_10_12677_orf_2024_143333 crossref_primary_10_1145_2959086 crossref_primary_10_2478_jos_2021_0001 crossref_primary_10_1016_j_tre_2020_101928 crossref_primary_10_4018_JGIM_2018100106 crossref_primary_10_1016_j_im_2021_103432 crossref_primary_10_1016_j_tre_2017_08_013 crossref_primary_10_1016_j_jik_2023_100403 crossref_primary_10_3390_healthcare10071232 crossref_primary_10_1016_j_ijinfomgt_2019_07_017 crossref_primary_10_1016_j_techsoc_2024_102756 crossref_primary_10_1080_10438599_2024_2413940 crossref_primary_10_1287_mnsc_2019_3344 crossref_primary_10_1007_s10479_017_2424_4 crossref_primary_10_1287_stsc_2022_0007 crossref_primary_10_1109_ACCESS_2019_2949905 crossref_primary_10_1287_isre_2022_0440 crossref_primary_10_1016_j_ijinfomgt_2020_102231 crossref_primary_10_1186_s40172_016_0042_z crossref_primary_10_2139_ssrn_5095227 crossref_primary_10_1016_j_jsis_2022_101734 crossref_primary_10_1080_12460125_2022_2059172 crossref_primary_10_1007_s10644_024_09729_3 crossref_primary_10_3724_SP_J_1383_202005 crossref_primary_10_1080_09537325_2021_2013463 crossref_primary_10_1007_s10257_017_0362_y crossref_primary_10_1080_21670811_2021_1903959 crossref_primary_10_1007_s40171_017_0159_3 crossref_primary_10_1016_j_accinf_2021_100547 crossref_primary_10_1007_s11356_021_17038_9 crossref_primary_10_1016_j_eswa_2016_04_027 crossref_primary_10_1016_j_im_2018_12_003 crossref_primary_10_1080_07421222_2018_1451955 crossref_primary_10_1108_EJIM_02_2023_0106 crossref_primary_10_1080_13504851_2021_1899115 crossref_primary_10_1080_00330124_2023_2169175 crossref_primary_10_1287_mnsc_2020_3674 crossref_primary_10_1007_s11747_020_00739_x crossref_primary_10_1016_j_ijinfomgt_2018_10_023 crossref_primary_10_1108_IMR_07_2022_0156 crossref_primary_10_2139_ssrn_4669795 crossref_primary_10_1007_s11142_023_09753_0 crossref_primary_10_2139_ssrn_4200675 crossref_primary_10_1016_j_im_2024_104036 crossref_primary_10_2139_ssrn_2537089 crossref_primary_10_47097_piar_913441 crossref_primary_10_1142_S0219649218500454 crossref_primary_10_2139_ssrn_3110105 crossref_primary_10_1007_s40593_020_00231_1 crossref_primary_10_1016_j_tre_2020_101837 crossref_primary_10_1016_j_ijpe_2019_09_019 crossref_primary_10_1016_j_im_2016_07_003 crossref_primary_10_25287_ohuiibf_996540 crossref_primary_10_1016_j_im_2016_07_004 crossref_primary_10_1016_j_jcorpfin_2025_102775 crossref_primary_10_3389_fpsyg_2023_1276812 crossref_primary_10_2139_ssrn_1958038 crossref_primary_10_1016_j_infoecopol_2022_100991 crossref_primary_10_1002_smj_3150 crossref_primary_10_1016_j_elerap_2017_02_002 crossref_primary_10_2139_ssrn_4173562 crossref_primary_10_1287_isre_2022_1185 crossref_primary_10_1016_j_eap_2025_02_043 crossref_primary_10_1108_JSTPM_02_2019_0023 crossref_primary_10_2139_ssrn_4690434 crossref_primary_10_1080_10438599_2024_2328538 crossref_primary_10_1186_s40537_016_0048_1 crossref_primary_10_1016_j_techfore_2022_121951 crossref_primary_10_1016_j_techfore_2017_06_029 crossref_primary_10_1016_j_econmod_2024_106688 crossref_primary_10_1080_23311975_2023_2178290 crossref_primary_10_2139_ssrn_2779328 crossref_primary_10_3389_fenvs_2022_943843 crossref_primary_10_1177_21582440221094600 crossref_primary_10_3917_pouv_164_0075 crossref_primary_10_1287_isre_2021_1091 crossref_primary_10_2139_ssrn_4602744 crossref_primary_10_2139_ssrn_3078590 crossref_primary_10_1002_jsc_2650 crossref_primary_10_1016_j_digbus_2021_100010 crossref_primary_10_1016_j_frl_2023_104537 crossref_primary_10_1287_isre_2019_0879 crossref_primary_10_2139_ssrn_3776492 crossref_primary_10_1016_j_irfa_2024_103079 crossref_primary_10_1080_02529203_2024_2326744 crossref_primary_10_1016_j_ijinfomgt_2019_102055 crossref_primary_10_1108_JEIM_04_2016_0080 crossref_primary_10_1016_j_scaman_2017_12_002 crossref_primary_10_2139_ssrn_2410765 crossref_primary_10_1080_07421222_2019_1598692 crossref_primary_10_1080_0267257X_2020_1739446 crossref_primary_10_1016_j_jik_2022_100201 crossref_primary_10_1287_isre_2022_0634 crossref_primary_10_1108_TQM_06_2022_0187 crossref_primary_10_1177_2394901517696606 crossref_primary_10_1007_s11356_022_21680_2 crossref_primary_10_1177_2340944421996343 crossref_primary_10_2139_ssrn_2826115 crossref_primary_10_1016_j_dss_2021_113543 crossref_primary_10_1080_23311916_2023_2261236 crossref_primary_10_1080_13678868_2024_2334982 crossref_primary_10_1016_j_pacfin_2023_102088 crossref_primary_10_1371_journal_pone_0317189 crossref_primary_10_2139_ssrn_3875827 |
Cites_doi | 10.1257/jep.14.4.23 10.2307/20062066 10.1287/mnsc.43.12.1660 10.1257/aer.102.1.556 10.1287/isre.1110.0381 10.2307/2523702 10.1287/isre.1080.0219 10.1515/9781400845354-003 10.1089/big.2013.1508 10.2307/256741 10.1287/mnsc.1110.1446 10.2307/2098345 10.1287/mnsc.42.4.541 10.1287/mnsc.48.11.1427.264 10.1080/10438599500000002 10.1016/j.respol.2014.01.003 10.1287/isre.1070.0121 10.1145/379300.379314 10.1287/orsc.3.1.1 10.1287/mnsc.1120.1586 10.2139/ssrn.1819486 10.1287/isre.1110.0398 10.1287/mnsc.46.4.548.12057 10.1287/mnsc.1040.0343 10.1287/mnsc.1050.0470 10.1080/10438599500000003 10.1016/j.jet.2008.11.001 10.1287/mnsc.46.4.513.12060 10.1162/003355302753399526 10.1287/isre.1100.0345 10.2307/j.ctvjnrsqh 10.1093/cje/27.2.243 10.1023/A:1009876119989 10.1287/mnsc.1060.0657 10.2307/25148636 10.2307/3440244 10.1287/mnsc.43.10.1345 10.1257/aer.102.1.167 10.1162/003465303772815736 10.1016/j.euroecorev.2003.12.003 10.1080/07421222.2002.11045716 10.1287/mnsc.2013.1764 |
ContentType | Journal Article |
Copyright | 2014 INFORMS COPYRIGHT 2014 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Jun 2014 |
Copyright_xml | – notice: 2014 INFORMS – notice: COPYRIGHT 2014 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Jun 2014 |
DBID | AAYXX CITATION N95 8BJ FQK JBE |
DOI | 10.1287/mnsc.2014.1899 |
DatabaseName | CrossRef Gale Business: Insights International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1526-5501 |
EndPage | 1469 |
ExternalDocumentID | 3358604431 A399572225 10_1287_mnsc_2014_1899 42919614 mnsc.2014.1899 |
Genre | Research Article |
GeographicLocations | United States United States--US |
GeographicLocations_xml | – name: United States – name: United States--US |
GroupedDBID | 08R 0R1 1AW 1OL 29M 2AX 3EH 3R3 3V. 4 4.4 41 5GY 6XO 7WY 7X5 85S 8AO 8FI 8FJ 8FL 8VB AABCJ AAIKC AAPBV AAYJJ ABBHK ABEFU ABIVO ABNOP ABPPZ ABSIS ABTRL ABUFD ABUWG ABZEH ACDCL ACHQT ACNCT ACTDY ACVYA ACYGS ADBBV ADDCT ADGDI ADNFJ AEILP AENEX AETEA AEUPB AFDAS AFFDN AFFNX AFKRA AJPNJ AKVCP ALMA_UNASSIGNED_HOLDINGS AQNXB AQSKT AQUVI AZQEC B-7 BBAFP BENPR BEZIV BPHCQ BVXVI CBXGM CCKSF CS3 CWXUR CYVLN DU5 DWQXO EBA EBE EBO EBR EBS EBU ECR EHE EJD EMK EPL F20 F5P FH7 FRNLG FYUFA G8K GENNL GNUQQ GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUPYA HGD HVGLF H~9 IAO IEA IGG IOF IPO ISM ITC JAV JBC JPL JSODD JST K6 K60 L8O LI M0C M0T M2M MV1 N95 NEJ NIEAY P-O P2P PQEST PQQKQ PQUKI PRINS PROAC QWB REX RNS RPU SA0 SJN TH9 TN5 U5U UKR VOH VQA WH7 X XFK XHC XI7 XXP XZL Y99 YCJ YNT YZZ ZCG ZL0 -~X 18M AAAZS AAMNW AAWTO AAXLS ABAWQ ABDNZ ABKVW ABLWH ABXSQ ABYYQ ACGFO ACHJO ACXJH ADEPB ADMHG ADNWM ADULT AEGXH AEMOZ AFAIT AFTQD AGKTX AHAJD AHQJS AIAGR ALIPV APTMU ASMEE BAAKF IPC IPSME IPY ISL JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ OFU XSW .-4 41~ AAYOK AAYXX ABDPE CCPQU CITATION LPU PHGZM PHGZT PQBIZ PQBZA PSYQQ UKHRP YYP 8BJ FQK JBE |
ID | FETCH-LOGICAL-c655t-6b551a7b3c6bf10ebe02b5e6efade639b1f201f01f4f3bccd5a4a31ffc2a47dc3 |
ISSN | 0025-1909 |
IngestDate | Fri Jul 11 13:22:30 EDT 2025 Sat Aug 16 00:51:22 EDT 2025 Tue Jun 17 21:42:59 EDT 2025 Thu Jun 12 23:20:47 EDT 2025 Tue Jun 10 20:18:42 EDT 2025 Fri May 23 01:08:54 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Tue Jul 01 02:55:01 EDT 2025 Fri May 30 11:48:39 EDT 2025 Tue Jan 05 23:28:18 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c655t-6b551a7b3c6bf10ebe02b5e6efade639b1f201f01f4f3bccd5a4a31ffc2a47dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1542023872 |
PQPubID | 40737 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1552593663 proquest_journals_1542023872 crossref_primary_10_1287_mnsc_2014_1899 gale_infotracgeneralonefile_A399572225 gale_businessinsightsgauss_A399572225 jstor_primary_42919614 gale_infotracacademiconefile_A399572225 informs_primary_10_1287_mnsc_2014_1899 crossref_citationtrail_10_1287_mnsc_2014_1899 gale_infotracmisc_A399572225 |
ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Linthicum |
PublicationPlace_xml | – name: Linthicum |
PublicationTitle | Management science |
PublicationYear | 2014 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B64 B21 B65 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 Milgrom P (B52) 1990; 80 Henschen D (B41) 2012 Harris D (B40) 2013 Schaal D (B60) 2011 Bertolucci J (B10) 2012 Aral S (B4) 2006 Thibodeau P (B64) 2012 Rooney B (B58) 2012 Freeland C (B34) 2012 Thier D (B65) 2012 Dumbill E (B30) 2012 Glanz J (B35) 2013 Jaffe A (B45) 1986; 76 Borjas G (B12) 1996; 86 Milgrom P (B53) 1994; 9 Groenfeldt T (B38) 2012 Harris D (B39) 2012 Porter M (B55) 2001; 42 Ichniowski C (B44) 1997; 87 Brynjolfsson E (B18) 2011 |
References_xml | – ident: B12 – ident: B35 – ident: B60 – ident: B3 – ident: B41 – ident: B45 – ident: B7 – ident: B29 – ident: B64 – ident: B25 – ident: B50 – ident: B21 – ident: B16 – ident: B31 – ident: B58 – ident: B39 – ident: B54 – ident: B61 – ident: B59 – ident: B13 – ident: B2 – ident: B40 – ident: B28 – ident: B44 – ident: B49 – ident: B65 – ident: B6 – ident: B24 – ident: B48 – ident: B17 – ident: B30 – ident: B34 – ident: B51 – ident: B38 – ident: B55 – ident: B9 – ident: B14 – ident: B10 – ident: B43 – ident: B20 – ident: B1 – ident: B27 – ident: B62 – ident: B5 – ident: B47 – ident: B23 – ident: B18 – ident: B33 – ident: B52 – ident: B37 – ident: B56 – ident: B8 – ident: B36 – ident: B11 – ident: B42 – ident: B26 – ident: B4 – ident: B46 – ident: B63 – ident: B22 – ident: B32 – ident: B15 – ident: B57 – ident: B19 – ident: B53 – issue: 29 year: 2012 ident: B58 publication-title: Wall Street Journal – issue: 2 year: 2012 ident: B65 publication-title: Forbes – ident: B16 doi: 10.1257/jep.14.4.23 – ident: B2 doi: 10.2307/20062066 – ident: B28 doi: 10.1287/mnsc.43.12.1660 – ident: B33 doi: 10.1257/aer.102.1.556 – ident: B23 doi: 10.1287/isre.1110.0381 – volume: 80 start-page: 511 issue: 3 year: 1990 ident: B52 publication-title: Amer. Econom. Rev. – issue: 4 year: 2012 ident: B10 publication-title: InformationWeek – ident: B21 doi: 10.2307/2523702 – volume: 9 start-page: 3 issue: 1 year: 1994 ident: B53 publication-title: Estudios Economicos – ident: B29 doi: 10.1287/isre.1080.0219 – ident: B19 doi: 10.1515/9781400845354-003 – ident: B56 doi: 10.1089/big.2013.1508 – ident: B43 doi: 10.2307/256741 – ident: B63 doi: 10.1287/mnsc.1110.1446 – issue: 2 year: 2012 ident: B30 publication-title: O'Reilly – ident: B5 doi: 10.2307/2098345 – volume: 86 start-page: 246 issue: 2 year: 1996 ident: B12 publication-title: Amer. Econom. Rev. – ident: B15 doi: 10.1287/mnsc.42.4.541 – issue: 18 year: 2011 ident: B60 publication-title: Tnooz – issue: 17 year: 2013 ident: B35 publication-title: New York Times – issue: 8 year: 2012 ident: B64 publication-title: Computerworld – ident: B3 doi: 10.1287/mnsc.48.11.1427.264 – issue: 21 year: 2011 ident: B18 publication-title: The Atlantic – volume: 76 start-page: 984 issue: 5 year: 1986 ident: B45 publication-title: Amer. Econom. Rev. – ident: B14 doi: 10.1080/10438599500000002 – volume: 87 start-page: 291 issue: 3 year: 1997 ident: B44 publication-title: Amer. Econom. Rev. – ident: B36 doi: 10.1016/j.respol.2014.01.003 – ident: B47 doi: 10.1287/isre.1070.0121 – ident: B1 doi: 10.1145/379300.379314 – ident: B7 doi: 10.1287/orsc.3.1.1 – ident: B8 doi: 10.1287/mnsc.1120.1586 – issue: 14 year: 2012 ident: B39 publication-title: Gigaom – ident: B20 doi: 10.2139/ssrn.1819486 – ident: B61 doi: 10.1287/isre.1110.0398 – ident: B27 doi: 10.1287/mnsc.46.4.548.12057 – ident: B32 doi: 10.1287/mnsc.1040.0343 – ident: B22 doi: 10.1287/mnsc.1050.0470 – ident: B48 doi: 10.1080/10438599500000003 – volume-title: Twenty-Seventh Internat. Conf. Inform. Systems year: 2006 ident: B4 – ident: B26 doi: 10.1016/j.jet.2008.11.001 – ident: B51 doi: 10.1287/mnsc.46.4.513.12060 – ident: B13 doi: 10.1162/003355302753399526 – ident: B25 doi: 10.1287/isre.1100.0345 – issue: 28 year: 2013 ident: B40 publication-title: GigaOm – ident: B59 doi: 10.2307/j.ctvjnrsqh – ident: B46 doi: 10.1093/cje/27.2.243 – ident: B57 doi: 10.1023/A:1009876119989 – ident: B24 doi: 10.1287/mnsc.1060.0657 – ident: B50 doi: 10.2307/25148636 – issue: 30 year: 2012 ident: B38 publication-title: Forbes – issue: 24 year: 2012 ident: B41 publication-title: InformationWeek – ident: B37 doi: 10.2307/3440244 – volume: 42 start-page: 28 issue: 4 year: 2001 ident: B55 publication-title: Sloan Management Rev. – ident: B31 doi: 10.1287/mnsc.43.10.1345 – ident: B11 doi: 10.1257/aer.102.1.167 – ident: B17 doi: 10.1162/003465303772815736 – issue: 12 year: 2012 ident: B34 publication-title: New York Times – ident: B54 doi: 10.1016/j.euroecorev.2003.12.003 – ident: B42 doi: 10.1080/07421222.2002.11045716 – ident: B62 doi: 10.1287/mnsc.2013.1764 |
SSID | ssj0007876 |
Score | 2.5519352 |
Snippet | This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source-the LinkedIn skills database. The data... This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source—the Linkedln skills database. The data... This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source—the LinkedIn skills database. The data... This paper analyzes how labor market factors have shaped early returns on big data investment using a new data source--the LinkedIn skills database. The data... |
SourceID | proquest gale crossref jstor informs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1452 |
SubjectTerms | Analysis Big Data Business analytics Business enterprises Data analysis Debt management economics of IS Employment Firm value Hadoop Human capital Hypotheses Impact analysis Information management Information systems Information technology Innovation Innovations Investment pools Investment value Investments IT policy and management IT productivity IT value IT workforce Labor market Labor markets Labor productivity Labour market management of IT human resources Management science Productivity Productivity growth Professionals R&D Research & development Return on investment Skills Strategic management strategic management of IT Structured Query Language-SQL Studies technical skills Technological change Technological innovation Technology application U.S.A Workforce |
Title | Big Data Investment, Skills, and Firm Value |
URI | https://www.jstor.org/stable/42919614 https://www.proquest.com/docview/1542023872 https://www.proquest.com/docview/1552593663 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4gXxG2iMFCQuDx02RondtLHDa2akFYh2NDeItuNq4ouQ0v6wq_nO4mTNKKIgVRZVXJkO_7sc9M5x4y91QpWRyIszJIw9qPETvxEjK0fY_doy2MuM3Lon83k6UX06VJcdtUsquySUh-Yn1vzSv4HVTwDrpQl-w_Itp3iAf4DX7RAGO2tMD5eLgBbqVy1jMrRR97M78vVqmjiMqfLm6vRN7Va94J-urCXkROCm_Z_EHVxSrVNOIO1ePZ1k8dx4UPM14woc2yNSx-2SLDJ9-o6_g7fTSYWRHVRWScQwUsnW5ktJ3fF9CovqBRkEB0EyWTSiZU22K9PcJftcGj0fMB2jk9mn7-0YhOcQzb369L0XYVNDHLY76GnQTg5eq8uM1s0UaW_SdZKXTh_xB46Pd87qkF7zO5k-RN2v0kzeMpGwM4j7LwOu32vRm7fA24e4eZVuD1jF9OT84-nvru4wjdSiNKXGnqoinVopLbBGOdkzLXIZGbVPINKqAOLr7H4RTbUxsyFilQYWGu4iuK5CXfZIL_Os-fMs1ooWMVmHIoqSTqRBirtREPzU3NlgiHzm8VIjavqTpeLrFKy7rB4KS1eSouX0uIN2YeW_kddz-SPlO9obVN3GSqagtxFxUKtiyI9opTomJwF6LGiIwQwslEurwPzp9JiPcr3PcpFXVh9G-FejxAcz_T7cXD_9RN2q93QkkH5gsQJIgzQbI_UnecihTHBSYON-ZC9aV_T2BSHmGfXa6IRnO7AlOGL207iJXvQHds9Nihv1tkrKLKlfu2OwC9Eypb4 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data+Investment%2C+Skills%2C+and+Firm+Value&rft.jtitle=Management+science&rft.date=2014-06-01&rft.pub=INFORMS&rft.issn=0025-1909&rft.eissn=1526-5501&rft.volume=60&rft.issue=6&rft.spage=1452&rft.epage=1469&rft_id=info:doi/10.1287%2Fmnsc.2014.1899&rft.externalDocID=mnsc.2014.1899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon |