Non‐small cell lung cancer is characterized by dramatic changes in phospholipid profiles
Non‐small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome...
Saved in:
Published in | International journal of cancer Vol. 137; no. 7; pp. 1539 - 1548 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2015
John Wiley & Sons, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7136 1097-0215 1097-0215 |
DOI | 10.1002/ijc.29517 |
Cover
Abstract | Non‐small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)‐based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non‐malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non‐malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D‐imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D‐imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development.
What's new?
Cellular membranes are subject to extensive modification in cancer, often with marked alterations in phospholipid metabolism. The extent and nature of those changes are not fully known, however, particularly for non‐small cell lung cancer (NSCLC). In this study, lipidomics analysis of phospholipid profiles uncovered dramatic differences between NSCLC and normal lung tissue. The differences were confirmed via 2D‐imaging lipidomics in tissue sections. Lipid markers capable of discriminating between tumor and normal tissue and between different NSCLC subtypes were identified. The observed alterations in NSCLC phospholipid profiles may be biologically significant. |
---|---|
AbstractList | Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development. What's new? Cellular membranes are subject to extensive modification in cancer, often with marked alterations in phospholipid metabolism. The extent and nature of those changes are not fully known, however, particularly for non-small cell lung cancer (NSCLC). In this study, lipidomics analysis of phospholipid profiles uncovered dramatic differences between NSCLC and normal lung tissue. The differences were confirmed via 2D-imaging lipidomics in tissue sections. Lipid markers capable of discriminating between tumor and normal tissue and between different NSCLC subtypes were identified. The observed alterations in NSCLC phospholipid profiles may be biologically significant. Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development. Non‐small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)‐based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non‐malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non‐malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D‐imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D‐imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development. What's new? Cellular membranes are subject to extensive modification in cancer, often with marked alterations in phospholipid metabolism. The extent and nature of those changes are not fully known, however, particularly for non‐small cell lung cancer (NSCLC). In this study, lipidomics analysis of phospholipid profiles uncovered dramatic differences between NSCLC and normal lung tissue. The differences were confirmed via 2D‐imaging lipidomics in tissue sections. Lipid markers capable of discriminating between tumor and normal tissue and between different NSCLC subtypes were identified. The observed alterations in NSCLC phospholipid profiles may be biologically significant. Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development.Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development. |
Author | Derua, Rita Thomas, Michael Van de Plas, Raf Waelkens, Etienne Wouters, Jens Bordel, Sergio Fieuws, Steffen Dienemann, Hendrik Spraggins, Jeffrey Marien, Eyra Caprioli, Richard M. Dehairs, Jonas Muley, Thomas Swinnen, Johannes V. Bagadi, Muralidhararao Meister, Michael Schnabel, Philipp A. |
Author_xml | – sequence: 1 givenname: Eyra surname: Marien fullname: Marien, Eyra organization: Laboratory of Lipid Metabolism and Cancer, KU Leuven—University of Leuven – sequence: 2 givenname: Michael surname: Meister fullname: Meister, Michael organization: TLRC‐H – Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research – sequence: 3 givenname: Thomas surname: Muley fullname: Muley, Thomas organization: TLRC‐H – Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research – sequence: 4 givenname: Steffen surname: Fieuws fullname: Fieuws, Steffen organization: I‐Biostat KU Leuven—University of Leuven and Universiteit Hasselt – sequence: 5 givenname: Sergio surname: Bordel fullname: Bordel, Sergio organization: Systems Biology Group, Chalmers University of Technology – sequence: 6 givenname: Rita surname: Derua fullname: Derua, Rita organization: Laboratory of Protein Phosphorylation and Proteomics, KU Leuven – University of Leuven – sequence: 7 givenname: Jeffrey surname: Spraggins fullname: Spraggins, Jeffrey organization: Vanderbilt University Medical Center – sequence: 8 givenname: Raf surname: Van de Plas fullname: Van de Plas, Raf organization: Delft University of Technology, Delft Center for Systems and Control – sequence: 9 givenname: Jonas surname: Dehairs fullname: Dehairs, Jonas organization: Laboratory of Lipid Metabolism and Cancer, KU Leuven—University of Leuven – sequence: 10 givenname: Jens surname: Wouters fullname: Wouters, Jens organization: Laboratory of Lipid Metabolism and Cancer, KU Leuven—University of Leuven – sequence: 11 givenname: Muralidhararao surname: Bagadi fullname: Bagadi, Muralidhararao organization: Laboratory of Lipid Metabolism and Cancer, KU Leuven—University of Leuven – sequence: 12 givenname: Hendrik surname: Dienemann fullname: Dienemann, Hendrik organization: Thoraxklinik at University Hospital Heidelberg – sequence: 13 givenname: Michael surname: Thomas fullname: Thomas, Michael organization: Thoraxklinik at University Hospital Heidelberg – sequence: 14 givenname: Philipp A. surname: Schnabel fullname: Schnabel, Philipp A. organization: University Hospital Heidelberg, Institute of Pathology – sequence: 15 givenname: Richard M. surname: Caprioli fullname: Caprioli, Richard M. organization: Vanderbilt University Medical Center – sequence: 16 givenname: Etienne surname: Waelkens fullname: Waelkens, Etienne organization: Laboratory of Protein Phosphorylation and Proteomics, KU Leuven – University of Leuven – sequence: 17 givenname: Johannes V. surname: Swinnen fullname: Swinnen, Johannes V. organization: Laboratory of Lipid Metabolism and Cancer, KU Leuven—University of Leuven |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25784292$$D View this record in MEDLINE/PubMed https://research.chalmers.se/publication/220354$$DView record from Swedish Publication Index |
BookMark | eNp9ks1u1DAUhS3Uik4LC14ARWIDi7T-ie1kg4RG_BRVsAA2bCzHvpnxKLEHO6EaVjwCz8iT4HTailaCha8X9_jT8T33GB344AGhJwSfEozpmduYU9pwIh-gBcGNLDEl_AAtcg-XkjBxhI5T2mBMCMfVQ3REuawr2tAF-voh-N8_f6VB931hIJd-8qvCaG8gFi4VZq2jNiNE9wNs0e4KG_WgR2fmjl9BKpwvtuuQ8und1tliG0PnekiP0GGn-wSPr-8T9OXN68_Ld-XFx7fny1cXpRGcyxKssNDxhnW1rCiRNTU1zUW0xlaNpo3ohDRSUMnaWtq6Zrbi3LSsFh00lLMT9GnPTZewnVq1jW7QcaeCdipCAh3NWmWz_QAxqQSqYy0xIKwyhEhVcWNVU0GrpK5qBqwVtGoy9eWempEDWAN-jLq_A7_b8W6tVuF75mHGKc2A59eAGL5NkEY1uDRPWHsIU1JENJKSHJvI0mf3pJswRZ-HNqsEzlFdOXr6t6NbKzdhZsGLvcDEkFKE7lZCsJoXReVFUVeLkrVn97TGjTnWMH_G9f97cZnD3f0brc7fL_cv_gC1M9BJ |
CitedBy_id | crossref_primary_10_1007_s00216_016_9627_4 crossref_primary_10_1155_2018_5276240 crossref_primary_10_18632_aging_102670 crossref_primary_10_3390_ijms241814264 crossref_primary_10_1186_s40169_017_0152_7 crossref_primary_10_1186_s12885_021_08948_5 crossref_primary_10_1016_j_advms_2022_12_002 crossref_primary_10_3390_ijerph17031110 crossref_primary_10_1016_j_chemphyslip_2019_01_001 crossref_primary_10_1007_s00432_021_03834_w crossref_primary_10_1016_j_addr_2020_06_009 crossref_primary_10_1002_cti2_1098 crossref_primary_10_1038_s41467_024_49067_6 crossref_primary_10_1038_s41598_019_52667_8 crossref_primary_10_1007_s11306_016_1093_7 crossref_primary_10_1016_j_cca_2024_117823 crossref_primary_10_1038_s41598_019_45506_3 crossref_primary_10_1039_D0AN01080D crossref_primary_10_1016_j_aca_2020_09_060 crossref_primary_10_1002_jat_3758 crossref_primary_10_1186_s12964_016_0136_z crossref_primary_10_3390_cells11030413 crossref_primary_10_1016_j_scitotenv_2021_150630 crossref_primary_10_1194_jlr_P072090 crossref_primary_10_1021_acsnano_2c02616 crossref_primary_10_1039_D1SC03597E crossref_primary_10_1186_s12890_017_0513_4 crossref_primary_10_1111_jcmm_13984 crossref_primary_10_3390_molecules28052357 crossref_primary_10_18632_oncotarget_23494 crossref_primary_10_1016_j_bbalip_2021_159082 crossref_primary_10_1038_s41586_019_0904_1 crossref_primary_10_1016_j_ddtec_2015_03_002 crossref_primary_10_1016_j_envpol_2018_11_049 crossref_primary_10_3390_ijms20061348 crossref_primary_10_2217_fon_2021_0025 crossref_primary_10_1007_s10238_019_00566_7 crossref_primary_10_1586_14789450_2016_1121813 crossref_primary_10_1177_15330338211041472 crossref_primary_10_1093_toxres_tfab053 crossref_primary_10_3389_fmolb_2024_1379631 crossref_primary_10_1021_acs_analchem_1c00061 crossref_primary_10_1021_acs_jproteome_6b00566 crossref_primary_10_1016_j_jpba_2019_112956 crossref_primary_10_1021_acs_jproteome_4c00344 crossref_primary_10_1016_j_ebiom_2021_103332 crossref_primary_10_1371_journal_pone_0261491 crossref_primary_10_1186_s12944_020_01390_9 crossref_primary_10_1016_j_ebiom_2021_103578 crossref_primary_10_1038_srep24666 crossref_primary_10_3389_fonc_2022_986367 crossref_primary_10_1016_j_kint_2017_03_052 crossref_primary_10_1177_15330338211049903 crossref_primary_10_1016_j_jpba_2020_113220 crossref_primary_10_1038_s41598_017_11339_1 crossref_primary_10_3390_cancers12051293 crossref_primary_10_1088_1752_7163_ab0bee crossref_primary_10_1371_journal_pone_0232272 crossref_primary_10_2174_0113816128330427241017110325 crossref_primary_10_1039_C7RA11839B crossref_primary_10_1007_s10565_024_09861_w crossref_primary_10_1016_j_ebiom_2016_12_012 crossref_primary_10_1038_s41467_022_30490_6 crossref_primary_10_1016_j_addr_2020_07_013 crossref_primary_10_1016_j_scitotenv_2022_155796 crossref_primary_10_3390_ijms22136650 crossref_primary_10_1016_j_jgg_2019_11_009 crossref_primary_10_3390_metabo12100906 crossref_primary_10_1038_s41598_023_37848_w crossref_primary_10_12659_MSM_896799 crossref_primary_10_3389_fmolb_2020_583587 crossref_primary_10_1016_j_jpba_2020_113520 crossref_primary_10_1186_s40170_020_00237_2 crossref_primary_10_3390_metabo14060312 crossref_primary_10_3390_ijms23105602 crossref_primary_10_1016_j_trac_2019_04_012 crossref_primary_10_1158_0008_5472_CAN_20_3863 crossref_primary_10_1016_j_foodres_2018_06_038 crossref_primary_10_1194_jlr_M093955 crossref_primary_10_1186_s12885_020_07306_1 crossref_primary_10_1371_journal_pone_0205727 crossref_primary_10_1186_s12944_023_01778_3 crossref_primary_10_3390_ijms23095266 crossref_primary_10_3390_cancers13164179 crossref_primary_10_3390_metabo12121280 crossref_primary_10_1111_jcmm_13782 crossref_primary_10_1016_j_bbrc_2019_08_137 crossref_primary_10_1039_D0RA07368G crossref_primary_10_1016_j_talanta_2020_121926 crossref_primary_10_3389_fgene_2024_1449881 crossref_primary_10_1002_jev2_12260 crossref_primary_10_1016_j_biochi_2022_07_011 crossref_primary_10_1016_j_apsb_2019_12_012 crossref_primary_10_1186_s12944_023_01830_2 crossref_primary_10_3389_fmolb_2023_1279645 crossref_primary_10_3390_ijms17121992 crossref_primary_10_17650_2313_805X_2024_11_3_114_125 crossref_primary_10_1002_jssc_201900736 crossref_primary_10_1016_j_canlet_2019_08_014 crossref_primary_10_1038_srep28932 crossref_primary_10_3233_CBM_160602 crossref_primary_10_1158_0008_5472_CAN_19_4035 crossref_primary_10_1038_s42003_019_0666_1 crossref_primary_10_3390_metabo12060503 crossref_primary_10_1038_s41598_019_39452_3 crossref_primary_10_1007_s11306_016_1114_6 crossref_primary_10_1016_j_abb_2022_109470 crossref_primary_10_1038_s41588_021_00879_y crossref_primary_10_3390_cancers12051262 crossref_primary_10_3389_fonc_2021_678008 crossref_primary_10_1155_2018_1454316 crossref_primary_10_1016_j_cca_2022_02_018 crossref_primary_10_1158_0008_5472_CAN_15_3403 crossref_primary_10_1016_j_critrevonc_2017_02_001 crossref_primary_10_1016_j_drup_2019_100670 crossref_primary_10_1093_clinchem_hvaa207 crossref_primary_10_1186_s13046_024_02952_w crossref_primary_10_1002_ctm2_151 crossref_primary_10_1007_s10552_020_01312_1 crossref_primary_10_18632_oncotarget_7179 crossref_primary_10_1038_srep35110 crossref_primary_10_1371_journal_pone_0228010 crossref_primary_10_1007_s11306_016_1138_y crossref_primary_10_1158_1055_9965_EPI_15_1191 crossref_primary_10_1016_j_aca_2019_02_021 crossref_primary_10_1038_s41598_017_09169_2 crossref_primary_10_1002_mas_21510 crossref_primary_10_1038_srep28398 crossref_primary_10_1371_journal_pone_0168781 |
Cites_doi | 10.1038/nature11404 10.1007/s10238-001-8020-5 10.1016/j.jpba.2014.07.038 10.1016/0885-4505(92)90041-V 10.1126/scitranslmed.3005623 10.1089/omi.2010.0088 10.1016/S0006-291X(03)00265-1 10.1177/153303461000900201 10.1038/nature13419 10.1186/1755-8794-6-53 10.1016/j.abb.2003.08.023 10.1016/j.bcp.2014.05.011 10.1006/bbrc.2000.2178 10.1016/j.lungcan.2011.10.016 10.1038/cddis.2013.444 10.1371/journal.pone.0048889 10.1186/1755-8794-7-15 10.1073/pnas.1115484108 10.1093/jn/124.5.615 10.1016/j.jasms.2007.06.010 10.1096/fj.14-249672 10.1002/ijc.28750 10.1093/carcin/bgq131 10.1021/ac970888i 10.1158/0008-5472.CAN-10-3894 10.1073/pnas.1409778111 10.1038/nrc2222 10.1089/omi.2013.0175 10.1158/0008-5472.CAN-09-3871 10.1177/0272989X09360067 10.1016/j.biochi.2010.03.019 10.1111/j.2517-6161.1995.tb02031.x |
ContentType | Journal Article |
Copyright | 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC. 2015 UICC 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC. 2015 |
Copyright_xml | – notice: 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC. – notice: 2015 UICC – notice: 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC. 2015 |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TO 7U9 H94 K9. 7X8 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1002/ijc.29517 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0215 |
EndPage | 1548 |
ExternalDocumentID | oai_research_chalmers_se_f3b1ce6d_c117_45cd_94eb_7a483e3b6249 PMC4503522 3742570361 25784292 10_1002_ijc_29517 IJC29517 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Stichting tegen Kanker funderid: F/2014/324 – fundername: Olle Engkvist foundation (Sweden) – fundername: National Institutes of Health funderid: NIH/NIGMS R01 GM058008‐14 and; NIH/NIGMS P41 GM103391‐03 – fundername: Agency for Innovation by Science and Technology IWT‐Flanders (Recipients of a fellowship) – fundername: EU FP7 funderid: Canceralia EU‐259737 – fundername: Research Foundation‐Flanders (FWO) funderid: G.0691.12 – fundername: KU Leuven funderid: GOA/11/2009 – fundername: Foundation Fournier Majoie (FFM) – fundername: NIGMS NIH HHS grantid: R01 GM058008-14 – fundername: NIGMS NIH HHS grantid: P41 GM103391-03 – fundername: NIGMS NIH HHS grantid: R01 GM058008 – fundername: NIGMS NIH HHS grantid: P41 GM103391 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P FUBAC G-S G.N GNP GODZA H.X HBH HGLYW HHY HHZ HZ~ IH2 IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SUPJJ TEORI UB1 UDS V2E V8K V9Y W2D W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT .55 .GJ .Y3 31~ 3O- 53G 8WZ A6W AAHHS AANHP AAYXX ABEFU ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AGHNM AGQPQ AHEFC AI. AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CITATION EX3 FEDTE GLUZI HF~ HVGLF M6P PALCI SAMSI VH1 WOW X7M Y6R ZGI ZXP CGR CUY CVF ECM EIF NPM 7T5 7TO 7U9 H94 K9. 7X8 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC |
ID | FETCH-LOGICAL-c6557-ed6def593f87421782c8282c6bcd49a296f67c76273b87d883d455cb386fe9253 |
IEDL.DBID | DR2 |
ISSN | 0020-7136 1097-0215 |
IngestDate | Wed Aug 27 04:01:09 EDT 2025 Thu Aug 21 14:36:00 EDT 2025 Fri Jul 11 02:21:35 EDT 2025 Fri Jul 25 10:08:47 EDT 2025 Thu Apr 03 06:59:04 EDT 2025 Tue Jul 01 02:28:15 EDT 2025 Thu Apr 24 23:07:26 EDT 2025 Fri Jul 18 18:35:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | non-small cell lung cancer mass spectrometry 2D-imaging MS phospholipids lipidomics |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6557-ed6def593f87421782c8282c6bcd49a296f67c76273b87d883d455cb386fe9253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.29517 |
PMID | 25784292 |
PQID | 1696042949 |
PQPubID | 105430 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_f3b1ce6d_c117_45cd_94eb_7a483e3b6249 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4503522 proquest_miscellaneous_1697212956 proquest_journals_1696042949 pubmed_primary_25784292 crossref_primary_10_1002_ijc_29517 crossref_citationtrail_10_1002_ijc_29517 wiley_primary_10_1002_ijc_29517_IJC29517 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 October 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 1 October 2015 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken – name: Chichester, UK |
PublicationTitle | International journal of cancer |
PublicationTitleAlternate | Int J Cancer |
PublicationYear | 2015 |
Publisher | Wiley Subscription Services, Inc John Wiley & Sons, Ltd |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley & Sons, Ltd |
References | 2007; 18 2003; 419 2010; 31 2013; 4 2014; 90 1995; 57 1997; 69 2004; 24 2011; 15 2014; 28 2014; 111 2012; 489 2013; 5 2013; 6 2014; 510 2012; 76 2014; 135 1994; 124 2011; 108 2000; 268 2011; 71 2007; 7 2014; 18 2001; 1 1992; 48 2010; 70 2003; 302 2010; 92 2012; 7 2014; 7 2010; 30 2010; 9 2014; 101 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 Visca P (e_1_2_6_15_1) 2004; 24 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 23863833 - Sci Transl Med. 2013 Jul 17;5(194):194ra93 17882277 - Nat Rev Cancer. 2007 Oct;7(10):763-77 24905741 - OMICS. 2014 Aug;18(8):487-98 24970396 - FASEB J. 2014 Oct;28(10):4247-64 20362028 - Biochimie. 2010 Jun;92(6):601-10 20218734 - Technol Cancer Res Treat. 2010 Apr;9(2):107-21 21415164 - Cancer Res. 2011 May 1;71(9):3236-45 24482041 - Int J Cancer. 2014 Sep 1;135(5):1092-100 25175018 - J Pharm Biomed Anal. 2014 Dec;101:40-9 14592456 - Arch Biochem Biophys. 2003 Nov 15;419(2):129-38 23152813 - PLoS One. 2012;7(11):e48889 24309934 - Cell Death Dis. 2013;4:e947 24899312 - Nature. 2014 Jun 5;510(7503):172-5 20354227 - Med Decis Making. 2010 Jul-Aug;30(4):509-17 21329461 - OMICS. 2011 Mar;15(3):173-82 20876798 - Cancer Res. 2010 Oct 15;70(20):8117-26 15736468 - Anticancer Res. 2004 Nov-Dec;24(6):4169-73 11699727 - Clin Exp Med. 2001 Jun;1(2):105-11 22960745 - Nature. 2012 Sep 27;489(7417):519-25 8169652 - J Nutr. 1994 May;124(5):615-20 12646257 - Biochem Biophys Res Commun. 2003 Mar 21;302(4):898-903 24646369 - BMC Med Genomics. 2014;7:15 22099218 - Lung Cancer. 2012 May;76(2):197-203 24994904 - Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10450-5 17659880 - J Am Soc Mass Spectrom. 2007 Sep;18(9):1646-52 10679250 - Biochem Biophys Res Commun. 2000 Feb 16;268(2):603-6 20595235 - Carcinogenesis. 2010 Sep;31(9):1509-15 1524866 - Biochem Med Metab Biol. 1992 Aug;48(1):1-7 9406525 - Anal Chem. 1997 Dec 1;69(23):4751-60 22106271 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19569-74 24299561 - BMC Med Genomics. 2013;6:53 24863259 - Biochem Pharmacol. 2014 Aug 1;90(3):197-207 |
References_xml | – volume: 71 start-page: 3236 year: 2011 end-page: 45 article-title: Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression publication-title: Cancer Res – volume: 76 start-page: 197 year: 2012 end-page: 203 article-title: Lipid MALDI profile classifies non‐small cell lung cancers according to the histologic type publication-title: Lung Cancer – volume: 48 start-page: 1 year: 1992 end-page: 7 article-title: Interchange of amino acids between tumor and host publication-title: Biochem Med Metab Biol – volume: 419 start-page: 129 year: 2003 end-page: 38 article-title: Sphingomyelin in the suppression of colon tumors: prevention versus intervention publication-title: Arch Biochem Biophys – volume: 18 start-page: 1646 year: 2007 end-page: 52 article-title: Sublimation as a method of matrix application for mass spectrometric imaging publication-title: J Am Soc Mass Spectrom – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B (Methodological) – volume: 489 start-page: 519 year: 2012 end-page: 25 article-title: Comprehensive genomic characterization of squamous cell lung cancers publication-title: Nature – volume: 30 start-page: 509 year: 2010 end-page: 17 article-title: Lehmann family of ROC curves publication-title: Med Decis Making – volume: 90 start-page: 197 year: 2014 end-page: 207 article-title: Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer publication-title: Biochem Pharmacol – volume: 9 start-page: 107 year: 2010 end-page: 21 article-title: Search for cancer risk factors with microarray‐based genome‐wide association studies publication-title: Technol Cancer Res Treat – volume: 92 start-page: 601 year: 2010 end-page: 10 article-title: Emerging roles for phospholipase a2 enzymes in cancer publication-title: Biochimie – volume: 5 start-page: 194ra9 year: 2013 article-title: Intraoperative tissue identification using rapid evaporative ionization mass spectrometry publication-title: Sci Transl Med – volume: 24 start-page: 4169 year: 2004 end-page: 73 article-title: Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma publication-title: Anticancer Res – volume: 15 start-page: 173 year: 2011 end-page: 82 article-title: Stable isotope‐resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer publication-title: Omics – volume: 18 start-page: 487 year: 2014 end-page: 98 article-title: Lipidomics for clinical diagnosis: Dye‐assisted laser desorption/ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging publication-title: Omics – volume: 124 start-page: 615 year: 1994 end-page: 20 article-title: Dietary sphingomyelin inhibits 1,2‐dimethylhydrazine‐induced colon cancer in cf1 mice publication-title: J Nutr – volume: 28 start-page: 4247 year: 2014 end-page: 64 article-title: Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival – volume: 111 start-page: 10450 year: 2014 end-page: 55 article-title: Alteration of the lipid profile in lymphomas induced by MYC overexpression – volume: 4 start-page: e947 year: 2013 article-title: Stearoyl‐CoA desaturase‐1 is a key factor for lung cancer‐initiating cells publication-title: Cell Death Dis – volume: 7 start-page: 15 year: 2014 article-title: The global landscape of intron retentions in lung adenocarcinoma publication-title: BMC Med Genomics – volume: 69 start-page: 4751 year: 1997 end-page: 60 article-title: Molecular imaging of biological samples: localization of peptides and proteins using MALDI‐TOF MS publication-title: Anal Chem – volume: 510 start-page: 172 year: 2014 end-page: 5 article-title: Membrane proteins bind lipids selectively to modulate their structure and function publication-title: Nature – volume: 7 start-page: 763 year: 2007 end-page: 77 article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis publication-title: Nat Rev Cancer – volume: 6 start-page: 53 year: 2013 article-title: Integrated molecular portrait of non‐small cell lung cancers publication-title: BMC Med Genomics – volume: 135 start-page: 1092 year: 2014 end-page: 100 article-title: Intertumor heterogeneity of non‐small‐cell lung carcinomas revealed by multiplexed mutation profiling and integrative genomics – volume: 70 start-page: 8117 year: 2010 end-page: 26 article-title: De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation publication-title: Cancer Res – volume: 7 start-page: e48889 year: 2012 article-title: Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics publication-title: PLoS One – volume: 268 start-page: 603 year: 2000 end-page: 6 article-title: Sphingomyelin potentiates chemotherapy of human cancer xenografts publication-title: Biochem Biophys Res Commun – volume: 31 start-page: 1509 year: 2010 end-page: 15 article-title: Stearoyl‐CoA desaturase‐1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer publication-title: Carcinogenesis – volume: 302 start-page: 898 year: 2003 end-page: 903 article-title: Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent‐resistant membrane microdomains publication-title: Biochem Biophys Res Commun – volume: 108 start-page: 19569 year: 2011 end-page: 74 article-title: Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2‐hydroxyoleic acid therapy publication-title: Proc Natl Acad Sci USA – volume: 101 start-page: 40 year: 2014 end-page: 9 article-title: Proteomics biomarkers for non‐small cell lung cancer – volume: 1 start-page: 105 year: 2001 end-page: 11 article-title: Analysis of c‐myc DNA amplification in non‐small cell lung carcinoma in comparison with small cell lung carcinoma using polymerase chain reaction publication-title: Clin Exp Med – ident: e_1_2_6_27_1 doi: 10.1038/nature11404 – ident: e_1_2_6_26_1 doi: 10.1007/s10238-001-8020-5 – ident: e_1_2_6_8_1 doi: 10.1016/j.jpba.2014.07.038 – ident: e_1_2_6_28_1 doi: 10.1016/0885-4505(92)90041-V – ident: e_1_2_6_35_1 doi: 10.1126/scitranslmed.3005623 – ident: e_1_2_6_7_1 doi: 10.1089/omi.2010.0088 – ident: e_1_2_6_11_1 doi: 10.1016/S0006-291X(03)00265-1 – ident: e_1_2_6_6_1 doi: 10.1177/153303461000900201 – ident: e_1_2_6_9_1 doi: 10.1038/nature13419 – ident: e_1_2_6_5_1 doi: 10.1186/1755-8794-6-53 – ident: e_1_2_6_31_1 doi: 10.1016/j.abb.2003.08.023 – ident: e_1_2_6_24_1 doi: 10.1016/j.bcp.2014.05.011 – ident: e_1_2_6_32_1 doi: 10.1006/bbrc.2000.2178 – ident: e_1_2_6_34_1 doi: 10.1016/j.lungcan.2011.10.016 – ident: e_1_2_6_16_1 doi: 10.1038/cddis.2013.444 – ident: e_1_2_6_22_1 doi: 10.1371/journal.pone.0048889 – ident: e_1_2_6_3_1 doi: 10.1186/1755-8794-7-15 – ident: e_1_2_6_29_1 doi: 10.1073/pnas.1115484108 – ident: e_1_2_6_30_1 doi: 10.1093/jn/124.5.615 – ident: e_1_2_6_18_1 doi: 10.1016/j.jasms.2007.06.010 – ident: e_1_2_6_33_1 doi: 10.1096/fj.14-249672 – ident: e_1_2_6_2_1 – ident: e_1_2_6_4_1 doi: 10.1002/ijc.28750 – ident: e_1_2_6_14_1 doi: 10.1093/carcin/bgq131 – ident: e_1_2_6_17_1 doi: 10.1021/ac970888i – ident: e_1_2_6_23_1 doi: 10.1158/0008-5472.CAN-10-3894 – volume: 24 start-page: 4169 year: 2004 ident: e_1_2_6_15_1 article-title: Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma publication-title: Anticancer Res – ident: e_1_2_6_25_1 doi: 10.1073/pnas.1409778111 – ident: e_1_2_6_12_1 doi: 10.1038/nrc2222 – ident: e_1_2_6_21_1 doi: 10.1089/omi.2013.0175 – ident: e_1_2_6_10_1 doi: 10.1158/0008-5472.CAN-09-3871 – ident: e_1_2_6_20_1 doi: 10.1177/0272989X09360067 – ident: e_1_2_6_13_1 doi: 10.1016/j.biochi.2010.03.019 – ident: e_1_2_6_19_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – reference: 14592456 - Arch Biochem Biophys. 2003 Nov 15;419(2):129-38 – reference: 21415164 - Cancer Res. 2011 May 1;71(9):3236-45 – reference: 20354227 - Med Decis Making. 2010 Jul-Aug;30(4):509-17 – reference: 22106271 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19569-74 – reference: 24299561 - BMC Med Genomics. 2013;6:53 – reference: 21329461 - OMICS. 2011 Mar;15(3):173-82 – reference: 11699727 - Clin Exp Med. 2001 Jun;1(2):105-11 – reference: 17882277 - Nat Rev Cancer. 2007 Oct;7(10):763-77 – reference: 1524866 - Biochem Med Metab Biol. 1992 Aug;48(1):1-7 – reference: 22960745 - Nature. 2012 Sep 27;489(7417):519-25 – reference: 8169652 - J Nutr. 1994 May;124(5):615-20 – reference: 20595235 - Carcinogenesis. 2010 Sep;31(9):1509-15 – reference: 24309934 - Cell Death Dis. 2013;4:e947 – reference: 22099218 - Lung Cancer. 2012 May;76(2):197-203 – reference: 24970396 - FASEB J. 2014 Oct;28(10):4247-64 – reference: 23863833 - Sci Transl Med. 2013 Jul 17;5(194):194ra93 – reference: 9406525 - Anal Chem. 1997 Dec 1;69(23):4751-60 – reference: 15736468 - Anticancer Res. 2004 Nov-Dec;24(6):4169-73 – reference: 24863259 - Biochem Pharmacol. 2014 Aug 1;90(3):197-207 – reference: 24905741 - OMICS. 2014 Aug;18(8):487-98 – reference: 24899312 - Nature. 2014 Jun 5;510(7503):172-5 – reference: 25175018 - J Pharm Biomed Anal. 2014 Dec;101:40-9 – reference: 17659880 - J Am Soc Mass Spectrom. 2007 Sep;18(9):1646-52 – reference: 20218734 - Technol Cancer Res Treat. 2010 Apr;9(2):107-21 – reference: 10679250 - Biochem Biophys Res Commun. 2000 Feb 16;268(2):603-6 – reference: 24482041 - Int J Cancer. 2014 Sep 1;135(5):1092-100 – reference: 20876798 - Cancer Res. 2010 Oct 15;70(20):8117-26 – reference: 20362028 - Biochimie. 2010 Jun;92(6):601-10 – reference: 23152813 - PLoS One. 2012;7(11):e48889 – reference: 24994904 - Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10450-5 – reference: 24646369 - BMC Med Genomics. 2014;7:15 – reference: 12646257 - Biochem Biophys Res Commun. 2003 Mar 21;302(4):898-903 |
SSID | ssj0011504 |
Score | 2.5344064 |
Snippet | Non‐small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the... Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the... |
SourceID | swepub pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1539 |
SubjectTerms | 2D-imaging MS Cancer Cancer Cell Biology Carcinoma, Non-Small-Cell Lung - chemistry Carcinoma, Non-Small-Cell Lung - metabolism Humans lipidomics Lung cancer Lung Neoplasms - chemistry Lung Neoplasms - metabolism mass spectrometry Medical research non-small cell lung cancer Phosphatidylinositols - metabolism phospholipids Phospholipids - chemistry Phospholipids - metabolism Spectrometry, Mass, Electrospray Ionization - methods Sphingomyelins - metabolism Tandem Mass Spectrometry - methods |
Title | Non‐small cell lung cancer is characterized by dramatic changes in phospholipid profiles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.29517 https://www.ncbi.nlm.nih.gov/pubmed/25784292 https://www.proquest.com/docview/1696042949 https://www.proquest.com/docview/1697212956 https://pubmed.ncbi.nlm.nih.gov/PMC4503522 https://research.chalmers.se/publication/220354 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEICt0gPiwvuRUiqDOPSSbeNXbHFChapUtEKIShVCsvyKNpBmV5vdAz3xE_iN_BLGSTYoFCTEIVIkjxPZnrHHr28Qem5VwaSycU9dipTBiJ4q6WhqvbJOwXghfLzgfHIqjs7Y8Tk_30Av1ndhOj7EsOAWLaPtr6OBG9vs_YKGlp_dhIB_EG-SZ1REbv6r9wM6Kjo6PYF5P4WJmFhThfbJ3pBzPBZdcTCvnpPsaaJjR7YdiQ5voU_rMnQHUL5MVks7cZe_4R3_s5C30c3eQ8UvO5W6gzZCfRddP-n34O-hj6ez-se3782FqSoc1_1xBR0GdlF9FrhssBsY0JfBY_sV-4VpwbC4u2Xc4LLG8-msgacq56XHfeDw5j46O3z94eAo7SM0pE5wnqfBCx8KrmghYYqdgbfhYAZHnLDOM2WIEoXIHfS3ObUy91JSzzh3lkpRBEU4fYA261kdHiHsSBEK7wy1gbMgjPIF49QHaazlipgE7a7bSrseXx6jaFS6Ay8TDXWl27pK0LNBdN4xO_4ktL1ucN2bbaMzEVk1RDGVoKdDMhhcrE1Th9mqlYFZM3xDJOhhpx_DX2L_F-N_JSgfac4gEGHe45S6nLZQb8YjmRZyvu10bJSlBz9NNbRTjKrT6CbogtrMBeG1y7Ic8juvFQtW54ZJGqgVJBZjt1Wvv9eDfnN80L5s_bvoY3QD_EbenWncRpvLxSo8Ad9saXfQNcLe7bSm-BNDcTlA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkaAXxLMNFDCIQy-hjV-xJS6ootqW3RWHVqq4WH5FGxSyq017gBM_gd_IL2GcZIOigsQhUqTMJMqMx_7Gj28QemNVwaSycU1dipTBiJ4q6WhqvbJOwXghfDzgPJuLyQU7u-SXW-jd5ixMxw8xTLjFyGj76xjgcUL68A9raPnFvSUAEPJb6DYDXB439BH2aVhDAKjTczAfpZCKiQ2v0BE5HFTHo9ENiHlzp2TPJzqGsu1YdHIf3etBJH7fef0B2gr1Q3Rn1i-TP0Kf58v614-fzVdTVThOzeMKYhq76OE1LhvsBprm78Fj-w37tWm5W3F3ELjBZY1Xi2UDV1WuSo_72t7NY3Rx8uH8eJL2RRRSJzjP0-CFDwVXtJCQBWcACBwkWcQJ6zxThihRiNxBl5hTK3MvJfWMc2epFEVQhNMnaLte1mEPYUeKUHhnqA2cBWGULxinPkhjLVfEJOhgY0zteobxWOii0h03MtFgd93aPUGvB9FVR6vxN6H9jUd0H1mNzkSkkyGKqQS9Gh5DTERrmjosr1sZSGzhHSJBu50Dh6_ELiqW6EpQPnLtIBD5tsdP6nLR8m4zHsljQXPaNYKRSs_NtNDgp1j4ptFN0AW1mQvCa5dlOeg7rxULVueGSRqoFST-xkHblP5tB316dtzePP1_0Zfo7uR8NtXT0_nHZ2gHYB7vtiDuo-2r9XV4DlDqyr5oI-Y3JdUb1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1baxQxFMdDrVB88W4drRrFh77MtpPbJPgk1aWt7SJioYgQJpdhR8fZZWf3wT75EfyMfhJP5iZrFcSHgYU52SHJOck_M8nvIPTcqJxJZcI3dSliBjN6rKSlsXHKWAXzhXDhgPPpRByeseNzfr6BXvRnYVo-xPDCLURGM16HAJ-7fO8XNLT4ZEcE9EF6BV1lApREUETvBnZUUDodgnk_hpWY6LFC-2RvKLo-GV1SmJc3SnY40XUl20xF4xvoY1-JdgfK59FqaUb24je-43_W8ia63klU_LL1qVtow1e30dZp9xH-DvowmVU_vn2vv2RlicOLf1zCiIFt8J8FLmpsBwj0hXfYfMVukTVkWNweM65xUeH5dFbDVRbzwuEuc3h9F52NX78_OIy7FA2xFZynsXfC-ZwrmktYYycgNyws4YgVxjqmMqJELlILA25KjUydlNQxzq2hUuReEU7voc1qVvn7CFuS-9zZjBrPmReZcjnj1HmZGcMVySK02_eVth2_PKTRKHVLXiYa2ko3bRWhZ4PpvIV2_Mlop-9w3cVtrRMRYDVEMRWhp8NtiLjQmlnlZ6vGBpbN8B8iQtutfwxPCQNgSAAWoXTNcwaDQPNev1MV04bqzXhA00LJk9bH1op05Kephn4KaXVqXXudU5NYL5y2SZJCeeu0Yt7oNGOSemoECdXYbdzr7-2gj44Pmh8P_t30Cdp6-2qsT44mbx6ia6Ahebu_cQdtLhcr_wh02tI8buLxJ3mAOzc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90small+cell+lung+cancer+is+characterized+by+dramatic+changes+in+phospholipid+profiles&rft.jtitle=International+journal+of+cancer&rft.au=Marien%2C+Eyra&rft.au=Meister%2C+Michael&rft.au=Muley%2C+Thomas&rft.au=Fieuws%2C+Steffen&rft.date=2015-10-01&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=137&rft.issue=7&rft.spage=1539&rft.epage=1548&rft_id=info:doi/10.1002%2Fijc.29517&rft.externalDBID=10.1002%252Fijc.29517&rft.externalDocID=IJC29517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon |