Native myocardial longitudinal (T1) relaxation time: Regional, age, and sex associations in the healthy adult heart

Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers und...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 44; no. 3; pp. 541 - 548
Main Authors Rauhalammi, Samuli M.O., Mangion, Kenneth, Barrientos, Pauline Hall, Carrick, David J.A., Clerfond, Guillaume, McClure, John, McComb, Christie, Radjenovic, Aleksandra, Berry, Colin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look–Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions‐of‐interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541–548.
AbstractList To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups.PURPOSETo use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups.In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model.MATERIALS AND METHODSIn all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model.In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size.RESULTSIn total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size.In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548.CONCLUSIONIn healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548.
Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3±44.4 vs. 939.2±54.2 msec; P < 0.001; 3.0T: 1158.2±45.9 vs. 1148.9±56.9 msec; P=0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0±20.3 vs. 931.5±22.2 msec, respectively; P=0.003) and 3.0T (1166.5±19.7 vs. 1130.2±20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7±25.4 vs. 934.7±22.3 msec; P=0.762) or 3.0T (1153.0±30.0 vs. 1132.3±23.5 msec; P=0.056). Association of global native T1 to age (P=0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548.
To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size. In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548.
Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T sub(1) relaxation time distribution, and global myocardial native T sub(1) between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T sub(1) maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T sub(1) measurements in msec were calculated from 16 regions-of-interest, and a global T sub(1) value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T sub(1) was higher in septal than lateral myocardium (1.5T: 956.3 plus or minus 44.4 vs. 939.2 plus or minus 54.2 msec; P < 0.001; 3.0T: 1158.2 plus or minus 45.9 vs. 1148.9 plus or minus 56.9 msec; P=0.012). Native T sub(1) decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T sub(1) was higher in females than in males at 1.5T (960.0 plus or minus 20.3 vs. 931.5 plus or minus 22.2 msec, respectively; P=0.003) and 3.0T (1166.5 plus or minus 19.7 vs. 1130.2 plus or minus 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile ( greater than or equal to 55 years) at 1.5T (937.7 plus or minus 25.4 vs. 934.7 plus or minus 22.3 msec; P=0.762) or 3.0T (1153.0 plus or minus 30.0 vs. 1132.3 plus or minus 23.5 msec; P=0.056). Association of global native T sub(1) to age (P=0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T sub(1) values are highest in the ventricular septum. Global native T sub(1) was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016; 44:541-548.
Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look–Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions‐of‐interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541–548.
Author Clerfond, Guillaume
Mangion, Kenneth
Carrick, David J.A.
Rauhalammi, Samuli M.O.
Barrientos, Pauline Hall
McClure, John
McComb, Christie
Radjenovic, Aleksandra
Berry, Colin
AuthorAffiliation 2 West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital Glasgow UK
1 BHF Glasgow Cardiovascular Research Centre University of Glasgow Glasgow UK
3 Department of Clinical Physics Queen Elizabeth University Hospital Glasgow Glasgow UK
AuthorAffiliation_xml – name: 1 BHF Glasgow Cardiovascular Research Centre University of Glasgow Glasgow UK
– name: 3 Department of Clinical Physics Queen Elizabeth University Hospital Glasgow Glasgow UK
– name: 2 West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital Glasgow UK
Author_xml – sequence: 1
  givenname: Samuli M.O.
  surname: Rauhalammi
  fullname: Rauhalammi, Samuli M.O.
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
– sequence: 2
  givenname: Kenneth
  surname: Mangion
  fullname: Mangion, Kenneth
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
– sequence: 3
  givenname: Pauline Hall
  surname: Barrientos
  fullname: Barrientos, Pauline Hall
  organization: Department of Clinical Physics, Queen Elizabeth University Hospital, Glasgow, Glasgow, UK
– sequence: 4
  givenname: David J.A.
  surname: Carrick
  fullname: Carrick, David J.A.
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
– sequence: 5
  givenname: Guillaume
  surname: Clerfond
  fullname: Clerfond, Guillaume
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
– sequence: 6
  givenname: John
  surname: McClure
  fullname: McClure, John
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
– sequence: 7
  givenname: Christie
  surname: McComb
  fullname: McComb, Christie
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
– sequence: 8
  givenname: Aleksandra
  surname: Radjenovic
  fullname: Radjenovic, Aleksandra
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
– sequence: 9
  givenname: Colin
  surname: Berry
  fullname: Berry, Colin
  email: colin.berry@glasgow.ac.uk
  organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26946323$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xD7ghh-ALHEzENn8GSdcILEKxtA2pDE07iw3OWldnHjYzmj_PW67VTBNiBvbx37e18c-Zzfb6l0PWfac4AOCMT2cdd4cUEGJfJTtEEFpTkVZbKU1FiwnJZbb2W4IM4xxVXHxJNumRcULRtlOFs51NDeAuoWrtW-Mtsi6fmLi0Jg-BfuX5BXyYPU8ca5H0XTwFl3AJAXavkF6AmnoGxRgjnQIrjYrMCCT4CmgKWgbpwukm8HGZeTj0-xxq22AZ7fzXvbt44fL0af89Mvxyej9aV4XQsicCCGKouRAAaCqKz6WRLakElrIMaOc67KWNSZN0baJEZwwqmVbUN7ytDNme9m7te_1MO6gqaGPXlt17U2n_UI5bdTfJ72Zqom7UQJTIalIBvu3Bt79HCBE1ZlQg7W6BzcERUoiiopUrPwflNCqYgwn9OU9dOYGn35zTWGeLueJevFn8pus70qXgNdroPYuBA_tBiFYLftCLftCrfoiwfgeXJu4KlR6uLEPS8ha8stYWPzDXH0-uzi50-RrjQkR5huN9j9UIZkU6ur8WNGr0Zk4-nqkvrPffWbZ2Q
CitedBy_id crossref_primary_10_22468_cvia_2016_00129
crossref_primary_10_1002_jmri_26866
crossref_primary_10_1007_s00508_018_1411_3
crossref_primary_10_1016_j_ejrad_2021_109748
crossref_primary_10_1016_j_yacr_2019_03_001
crossref_primary_10_1007_s10554_024_03241_5
crossref_primary_10_1002_jmri_27639
crossref_primary_10_1017_S0033291723003021
crossref_primary_10_7759_cureus_67797
crossref_primary_10_1016_j_jjcc_2022_02_006
crossref_primary_10_29001_2073_8552_2022_37_1_17_26
crossref_primary_10_1002_jmri_27155
crossref_primary_10_1007_s00330_022_08839_8
crossref_primary_10_1016_j_diii_2025_01_005
crossref_primary_10_1017_S1047951121003292
crossref_primary_10_1136_openhrt_2019_001070
crossref_primary_10_1186_s12968_020_00683_3
crossref_primary_10_1093_ehjci_jead247
crossref_primary_10_1007_s00247_021_05169_7
crossref_primary_10_1016_j_jcmg_2019_10_016
crossref_primary_10_2139_ssrn_4175100
crossref_primary_10_1007_s12194_020_00601_3
crossref_primary_10_1111_odi_14391
crossref_primary_10_1016_j_jocmr_2025_101853
crossref_primary_10_1016_j_ijcha_2023_101181
crossref_primary_10_1186_s12968_017_0419_6
crossref_primary_10_1080_0886022X_2024_2310078
crossref_primary_10_1371_journal_pone_0303969
crossref_primary_10_2463_mrms_mp_2017_0136
crossref_primary_10_1007_s00330_019_06364_9
crossref_primary_10_1038_s41598_023_29591_z
crossref_primary_10_3390_jcdd10060252
crossref_primary_10_1080_14779072_2023_2273896
crossref_primary_10_1002_jmri_26886
crossref_primary_10_1007_s11604_017_0611_5
crossref_primary_10_1007_s10334_017_0631_2
crossref_primary_10_1186_s12968_017_0337_7
crossref_primary_10_6009_jjrt_2021_JSRT_77_2_172
crossref_primary_10_1007_s10554_022_02648_2
crossref_primary_10_1016_j_crad_2020_01_006
crossref_primary_10_4264_numa_81_1_29
crossref_primary_10_1016_j_jcmg_2022_06_011
crossref_primary_10_1016_j_kint_2016_06_014
crossref_primary_10_1002_jmri_26160
crossref_primary_10_1038_s41598_022_16696_0
crossref_primary_10_1002_jmri_25863
crossref_primary_10_2463_mrms_mp_2016_0092
crossref_primary_10_1007_s00380_019_01401_5
crossref_primary_10_18786_20720505_2020_48_065
crossref_primary_10_3389_fphys_2018_00140
crossref_primary_10_1186_s12968_023_00974_5
crossref_primary_10_1016_j_bj_2020_08_013
crossref_primary_10_1038_s41598_020_74717_2
crossref_primary_10_6009_jjrt_2018_JSRT_74_11_1329
crossref_primary_10_1016_j_ejrad_2018_10_011
crossref_primary_10_1007_s10554_020_02031_z
crossref_primary_10_1177_02841851211006311
crossref_primary_10_1016_j_repc_2021_04_005
crossref_primary_10_1093_ehjci_jeae070
crossref_primary_10_1016_j_heliyon_2023_e17336
Cites_doi 10.1186/1532-429X-14-42
10.1002/jmri.21119
10.1186/1532-429X-14-26
10.1186/1532-429X-15-13
10.1126/science.1112062
10.1161/hc3601.095577
10.1186/1532-429X-10-35
10.1186/1532-429X-15-78
10.1093/ehjci/jeu050
10.1186/s12968-014-0069-x
10.1093/ehjci/jes102
10.1002/mrm.10051
10.1080/13697130601114917
10.1016/j.jcmg.2012.11.013
10.1016/j.jacc.2013.05.078
10.1038/nrd2032
10.1016/j.ejrad.2007.10.022
10.1161/hc0402.102975
10.1186/1532-429X-15-41
10.1002/jmri.22753
10.1002/mrm.1910230110
10.1136/heartjnl-2015-307845.29
10.1136/heartjnl-2012-302346
10.1186/1532-429X-14-S1-P221
10.1001/archinte.1995.00430010063008
10.1001/archinte.1916.00080130010002
10.1002/jmri.24239
10.1186/1532-429X-15-53
10.1186/1532-429X-12-55
10.1186/1532-429X-15-92
10.1002/mrm.20110
10.1186/1532-429X-16-36
10.1016/0895-6111(90)90040-I
10.1186/1532-429X-16-2
10.1161/CIRCIMAGING.112.000070
10.2214/ajr.183.2.1830343
10.1007/978-3-540-85990-1_5
ContentType Journal Article
Copyright 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jmri.25217
DatabaseName Istex
Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Native Myocardial T1 in Healthy Adults
EISSN 1522-2586
EndPage 548
ExternalDocumentID PMC5025725
4145746841
26946323
10_1002_jmri_25217
JMRI25217
ark_67375_WNG_2WCM5BSB_X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/11/2/28474
– fundername: British Heart Foundation
  grantid: PG/14/64/31043
– fundername: Chief Scientist Office
  grantid: SC01
– fundername: Medical Research Council
  grantid: MR/N003403/1
– fundername: British Heart Foundation
  grantid: FS/15/54/31639
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c6557-15556684e2eee9c94b717f195a57b3244a8c7c01d6ffe2e54132a7f624f4ffeb3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 14:09:30 EDT 2025
Fri Jul 11 04:36:23 EDT 2025
Fri Jul 11 11:21:02 EDT 2025
Sun Jul 13 05:00:41 EDT 2025
Mon Jul 21 05:51:06 EDT 2025
Tue Jul 01 03:56:34 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Wed Aug 20 07:26:16 EDT 2025
Wed Oct 30 09:51:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords native T1
longitudinal relaxation time
healthy volunteer
myocardium
T1 mapping
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6557-15556684e2eee9c94b717f195a57b3244a8c7c01d6ffe2e54132a7f624f4ffeb3
Notes ark:/67375/WNG-2WCM5BSB-X
ArticleID:JMRI25217
istex:751E23F5A85D11DA621C6037091EC13B84B4EEF8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25217
PMID 26946323
PQID 1811042574
PQPubID 1006400
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5025725
proquest_miscellaneous_1815691938
proquest_miscellaneous_1811299330
proquest_journals_1811042574
pubmed_primary_26946323
crossref_primary_10_1002_jmri_25217
crossref_citationtrail_10_1002_jmri_25217
wiley_primary_10_1002_jmri_25217_JMRI25217
istex_primary_ark_67375_WNG_2WCM5BSB_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
– name: Hoboken
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References Scholz T, Martins J, Skorton D. NMR relaxation times in acute myocardial infarction: relative influence of changes in tissue water and fat content. Magn Reson Med 1992;23:89-95.
Sado D, White S, Piechnik S, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6:392-398.
Flett A, Sado D, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2012;13:819-826.
Sado D, Flett A, Banypersad S, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436-1441.
van Eickels M, Grohe C, Cleutjens J, Janssen B, Wellens H, Doevendans P. 17 beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001;104:1419-1423.
Kellman P, Hansen M. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014;16:2.
Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14:26.
Kannel W, Wilson P. Risk-factors that attenuate the female coronary disease advantage. Arch Intern Med 1995;155:57-61.
Piechnik S, Ferreira V, Lewandowski A, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13.
McDiarmid AK, Broadbent DA, Higgins DM, et al. The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 2015;5:503-510.
Moon J, Messroghli D, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92.
Messroghli D, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26:1081-1086.
Chuang M, Gona P, Hautvast G, et al. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis: the Framingham Heart Study. J Magn Reson Imaging 2014;39:895-900.
Oshinski J, Delfino J, Sharma P, Gharib A, Pettigrew R. Cardiovascular magnetic resonance at 3.0T: current state of the art. J Cardiovasc Magn Reson 2010;12:55.
Kellman P, Arai A, McVeigh E, Aletras A. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002;47:372-383.
Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB. Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 1990;14:409-413.
de Ravenstein C, Bouzin C, Lazam S, et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 2015;17.
Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16:69.
Ferreira V, Piechnik S, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:42.
Messroghli D, Radjenovic A, Kozerke S, Higgins D, Sivananthan M, Ridgway J. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141-146.
Karamitsos T, Piechnik S, Banypersad S, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-497.
Xue H, Guehring J, Srinivasan L, et al. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Intervent 2008, Pt Ii, Proc 2008;5242:35-43.
Mendelsohn M, Karas R. Molecular and cellular basis of cardiovascular gender differences. Science 2005;308:1583-1587.
Wieben O, Francois C, Reeder S. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 2008;65:15-28.
Cerqueira M, Weissman N, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-542.
Rosano G, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. Climacteric 2007;10:19-24.
Treibel T, Fontana M, Maestrini V, et al. Synthetic ECV: simplifying ECV quantification by deriving haematocrit from T1 blood. Heart 2015;101:A16-A17.
Piechnik S, Ferreira V, Lewandowski A, et al. Age and gender dependence of pre-contrast T1-relaxation times in normal human myocardium at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 2012;14:P221.
Florian A, Ludwig A, Rosch S, Yildiz H, Sechtem U, Yilmaz A. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 2014;15:1004-1012.
Ferreira P, Gatehouse P, Mohiaddin R, Firmin D. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 2013;15:14.
Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov 2006;5:425-438.
Kellman P, Wilson J, Xue H, Ugander M, Arai A. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012;14.
Gold GE, Han E, Stainsby J, et al. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol 2004;183;343-351.
Nacif M, Turkbey E, Gai N, et al. Myocardial T1 mapping with MRI: comparison of Look-Locker and MOLLI sequences. J Magn Reson Imaging 2011;34:1367-1373.
Kramer C, Barkhausen J, Flamm S, Kim R, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 2008;10:35.
Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863-871.
Rogers T, Dabir D, Mahmoud I, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease: the ConSept study. J Cardiovasc Magn Reson 2013;15:78.
Ferreira V, Piechnik S, Dall'Armellina E, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16:36.
Liu C, Liu Y, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2013;62:1280-1287.
von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer M, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013;15:53.
2010; 12
2015; 5
1990; 14
2012
2013; 62
2015; 101
2004; 183
2006; 5
2008; 10
2011; 34
1995; 155
2012; 14
2012; 13
2007; 10
2013; 6
2001; 104
2012; 98
2004; 52
2002; 47
2013; 15
2008; 5242
2014; 16
2014; 15
2002; 105
2005; 308
2008; 65
2015
1916; 17
2014; 39
1992; 23
2007; 26
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Ravenstein C (e_1_2_7_18_1) 2015
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Kellman P (e_1_2_7_25_1) 2012
e_1_2_7_29_1
McDiarmid AK (e_1_2_7_41_1) 2015; 5
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – reference: Kellman P, Hansen M. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014;16:2.
– reference: Ferreira V, Piechnik S, Dall'Armellina E, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16:36.
– reference: Kellman P, Wilson J, Xue H, Ugander M, Arai A. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012;14.
– reference: Rosano G, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. Climacteric 2007;10:19-24.
– reference: Liu C, Liu Y, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2013;62:1280-1287.
– reference: de Ravenstein C, Bouzin C, Lazam S, et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 2015;17.
– reference: Florian A, Ludwig A, Rosch S, Yildiz H, Sechtem U, Yilmaz A. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 2014;15:1004-1012.
– reference: Nacif M, Turkbey E, Gai N, et al. Myocardial T1 mapping with MRI: comparison of Look-Locker and MOLLI sequences. J Magn Reson Imaging 2011;34:1367-1373.
– reference: Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16:69.
– reference: van Eickels M, Grohe C, Cleutjens J, Janssen B, Wellens H, Doevendans P. 17 beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001;104:1419-1423.
– reference: von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer M, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013;15:53.
– reference: Sado D, White S, Piechnik S, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6:392-398.
– reference: Flett A, Sado D, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2012;13:819-826.
– reference: Cerqueira M, Weissman N, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-542.
– reference: Xue H, Guehring J, Srinivasan L, et al. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Intervent 2008, Pt Ii, Proc 2008;5242:35-43.
– reference: Messroghli D, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26:1081-1086.
– reference: Treibel T, Fontana M, Maestrini V, et al. Synthetic ECV: simplifying ECV quantification by deriving haematocrit from T1 blood. Heart 2015;101:A16-A17.
– reference: Moon J, Messroghli D, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92.
– reference: Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863-871.
– reference: Sado D, Flett A, Banypersad S, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436-1441.
– reference: Piechnik S, Ferreira V, Lewandowski A, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13.
– reference: Kannel W, Wilson P. Risk-factors that attenuate the female coronary disease advantage. Arch Intern Med 1995;155:57-61.
– reference: Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB. Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 1990;14:409-413.
– reference: Oshinski J, Delfino J, Sharma P, Gharib A, Pettigrew R. Cardiovascular magnetic resonance at 3.0T: current state of the art. J Cardiovasc Magn Reson 2010;12:55.
– reference: Mendelsohn M, Karas R. Molecular and cellular basis of cardiovascular gender differences. Science 2005;308:1583-1587.
– reference: Karamitsos T, Piechnik S, Banypersad S, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-497.
– reference: Rogers T, Dabir D, Mahmoud I, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease: the ConSept study. J Cardiovasc Magn Reson 2013;15:78.
– reference: Ferreira V, Piechnik S, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:42.
– reference: Kramer C, Barkhausen J, Flamm S, Kim R, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 2008;10:35.
– reference: Chuang M, Gona P, Hautvast G, et al. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis: the Framingham Heart Study. J Magn Reson Imaging 2014;39:895-900.
– reference: Messroghli D, Radjenovic A, Kozerke S, Higgins D, Sivananthan M, Ridgway J. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141-146.
– reference: Gold GE, Han E, Stainsby J, et al. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol 2004;183;343-351.
– reference: Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14:26.
– reference: Piechnik S, Ferreira V, Lewandowski A, et al. Age and gender dependence of pre-contrast T1-relaxation times in normal human myocardium at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 2012;14:P221.
– reference: McDiarmid AK, Broadbent DA, Higgins DM, et al. The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 2015;5:503-510.
– reference: Scholz T, Martins J, Skorton D. NMR relaxation times in acute myocardial infarction: relative influence of changes in tissue water and fat content. Magn Reson Med 1992;23:89-95.
– reference: Kellman P, Arai A, McVeigh E, Aletras A. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002;47:372-383.
– reference: Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov 2006;5:425-438.
– reference: Ferreira P, Gatehouse P, Mohiaddin R, Firmin D. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 2013;15:14.
– reference: Wieben O, Francois C, Reeder S. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 2008;65:15-28.
– volume: 47
  start-page: 372
  year: 2002
  end-page: 383
  article-title: Phase‐sensitive inversion recovery for detecting myocardial infarction using gadolinium‐delayed hyperenhancement
  publication-title: Magn Reson Med
– volume: 6
  start-page: 488
  year: 2013
  end-page: 497
  article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis
  publication-title: JACC Cardiovasc Imaging
– volume: 23
  start-page: 89
  year: 1992
  end-page: 95
  article-title: NMR relaxation times in acute myocardial infarction: relative influence of changes in tissue water and fat content
  publication-title: Magn Reson Med
– volume: 26
  start-page: 1081
  year: 2007
  end-page: 1086
  article-title: Optimization and validation of a fully‐integrated pulse sequence for modified Look–Locker inversion‐recovery (MOLLI) T1 mapping of the heart
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 78
  year: 2013
  article-title: Standardization of T1 measurements with MOLLI in differentiation between health and disease: the ConSept study
  publication-title: J Cardiovasc Magn Reson
– volume: 14
  start-page: 409
  year: 1990
  end-page: 413
  article-title: Effect of field strength on susceptibility artifacts in magnetic resonance imaging
  publication-title: Comput Med Imaging Graph
– volume: 65
  start-page: 15
  year: 2008
  end-page: 28
  article-title: Cardiac MRI of ischemic heart disease at 3 T: potential and challenges
  publication-title: Eur J Radiol
– volume: 16
  start-page: 36
  year: 2014
  article-title: Native T1‐mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents
  publication-title: J Cardiovasc Magn Reson
– volume: 13
  start-page: 819
  year: 2012
  end-page: 826
  article-title: Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  article-title: Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart
  publication-title: Magn Reson Med
– volume: 14
  start-page: 26
  year: 2012
  article-title: T1 mapping of the myocardium: intra‐individual assessment of post‐contrast T1 time evolution and extracellular volume fraction at 3T for Gd‐DTPA and Gd‐BOPTA
  publication-title: J Cardiovasc Magn Reson
– volume: 16
  start-page: 2
  year: 2014
  article-title: T1‐mapping in the heart: accuracy and precision
  publication-title: J Cardiovasc Magn Reson
– start-page: 14
  year: 2012
  article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method
  publication-title: J Cardiovasc Magn Reson
– volume: 17
  start-page: 863
  year: 1916
  end-page: 871
  article-title: A formula to estimate the approximate surface area if height and weight be known
  publication-title: Arch Intern Med
– volume: 15
  start-page: 92
  year: 2013
  article-title: Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement
  publication-title: J Cardiovasc Magn Reson
– volume: 15
  start-page: 1004
  year: 2014
  end-page: 1012
  article-title: Myocardial fibrosis imaging based on T1‐mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 39
  start-page: 895
  year: 2014
  end-page: 900
  article-title: CMR reference values for left ventricular volumes, mass, and ejection fraction using computer‐aided analysis: the Framingham Heart Study
  publication-title: J Magn Reson Imaging
– volume: 14
  start-page: P221
  year: 2012
  article-title: Age and gender dependence of pre‐contrast T1‐relaxation times in normal human myocardium at 1.5T using ShMOLLI
  publication-title: J Cardiovasc Magn Reson
– volume: 10
  start-page: 35
  year: 2008
  article-title: Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols
  publication-title: J Cardiovasc Magn Reson
– volume: 16
  start-page: 69
  year: 2014
  article-title: Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study
  publication-title: J Cardiovasc Magn Reson
– volume: 10
  start-page: 19
  year: 2007
  end-page: 24
  article-title: Menopause and cardiovascular disease: the evidence
  publication-title: Climacteric
– volume: 5
  start-page: 425
  year: 2006
  end-page: 438
  article-title: Therapeutic implications of the gender‐specific aspects of cardiovascular disease
  publication-title: Nat Rev Drug Discov
– volume: 98
  start-page: 1436
  year: 2012
  end-page: 1441
  article-title: Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease
  publication-title: Heart
– volume: 6
  start-page: 392
  year: 2013
  end-page: 398
  article-title: Identification and assessment of Anderson‐Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping
  publication-title: Circ Cardiovasc Imaging
– volume: 15
  start-page: 13
  year: 2013
  article-title: Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI
  publication-title: J Cardiovasc Magn Reson
– volume: 5242
  start-page: 35
  year: 2008
  end-page: 43
  article-title: Evaluation of rigid and non‐rigid motion compensation of cardiac perfusion MRI
  publication-title: Med Image Comput Comput Assist Intervent 2008, Pt Ii, Proc
– volume: 15
  start-page: 14
  year: 2013
  article-title: Cardiovascular magnetic resonance artefacts
  publication-title: J Cardiovasc Magn Reson
– volume: 12
  start-page: 55
  year: 2010
  article-title: Cardiovascular magnetic resonance at 3.0T: current state of the art
  publication-title: J Cardiovasc Magn Reson
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
  publication-title: Circulation
– volume: 5
  start-page: 503
  year: 2015
  end-page: 510
  article-title: The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging
  publication-title: Quant Imaging Med Surg
– volume: 62
  start-page: 1280
  year: 2013
  end-page: 1287
  article-title: Evaluation of age‐related interstitial myocardial fibrosis with cardiac magnetic resonance contrast‐enhanced T1 mapping: MESA (Multi‐Ethnic Study of Atherosclerosis)
  publication-title: J Am Coll Cardiol
– volume: 183
  start-page: 343
  year: 2004
  end-page: 351
  article-title: Musculoskeletal MRI at 3.0 T: relaxation times and image contrast
  publication-title: Am J Roentgenol
– volume: 15
  start-page: 53
  year: 2013
  article-title: Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications
  publication-title: J Cardiovasc Magn Reson
– volume: 14
  start-page: 42
  year: 2012
  article-title: Non‐contrast T1‐mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2‐weighted cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 308
  start-page: 1583
  year: 2005
  end-page: 1587
  article-title: Molecular and cellular basis of cardiovascular gender differences
  publication-title: Science
– volume: 34
  start-page: 1367
  year: 2011
  end-page: 1373
  article-title: Myocardial T1 mapping with MRI: comparison of Look‐Locker and MOLLI sequences
  publication-title: J Magn Reson Imaging
– volume: 104
  start-page: 1419
  year: 2001
  end-page: 1423
  article-title: 17 beta‐estradiol attenuates the development of pressure‐overload hypertrophy
  publication-title: Circulation
– volume: 155
  start-page: 57
  year: 1995
  end-page: 61
  article-title: Risk‐factors that attenuate the female coronary disease advantage
  publication-title: Arch Intern Med
– volume: 101
  start-page: A16
  year: 2015
  end-page: A17
  article-title: Synthetic ECV: simplifying ECV quantification by deriving haematocrit from T1 blood
  publication-title: Heart
– start-page: 17
  year: 2015
  article-title: Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look‐Locker imaging (MOLLI) T1 mapping at 3 T
  publication-title: J Cardiovasc Magn Reson
– start-page: 17
  year: 2015
  ident: e_1_2_7_18_1
  article-title: Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look‐Locker imaging (MOLLI) T1 mapping at 3 T
  publication-title: J Cardiovasc Magn Reson
– volume: 5
  start-page: 503
  year: 2015
  ident: e_1_2_7_41_1
  article-title: The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging
  publication-title: Quant Imaging Med Surg
– ident: e_1_2_7_2_1
  doi: 10.1186/1532-429X-14-42
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.21119
– ident: e_1_2_7_40_1
  doi: 10.1186/1532-429X-14-26
– ident: e_1_2_7_10_1
  doi: 10.1186/1532-429X-15-13
– ident: e_1_2_7_29_1
  doi: 10.1126/science.1112062
– ident: e_1_2_7_31_1
  doi: 10.1161/hc3601.095577
– ident: e_1_2_7_16_1
  doi: 10.1186/1532-429X-10-35
– ident: e_1_2_7_32_1
  doi: 10.1186/1532-429X-15-78
– ident: e_1_2_7_26_1
  doi: 10.1093/ehjci/jeu050
– ident: e_1_2_7_22_1
  doi: 10.1186/s12968-014-0069-x
– ident: e_1_2_7_6_1
  doi: 10.1093/ehjci/jes102
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.10051
– ident: e_1_2_7_28_1
  doi: 10.1080/13697130601114917
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jcmg.2012.11.013
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jacc.2013.05.078
– ident: e_1_2_7_30_1
  doi: 10.1038/nrd2032
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ejrad.2007.10.022
– ident: e_1_2_7_17_1
  doi: 10.1161/hc0402.102975
– ident: e_1_2_7_33_1
  doi: 10.1186/1532-429X-15-41
– ident: e_1_2_7_39_1
  doi: 10.1002/jmri.22753
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.1910230110
– ident: e_1_2_7_19_1
  doi: 10.1136/heartjnl-2015-307845.29
– ident: e_1_2_7_36_1
  doi: 10.1136/heartjnl-2012-302346
– ident: e_1_2_7_24_1
  doi: 10.1186/1532-429X-14-S1-P221
– ident: e_1_2_7_27_1
  doi: 10.1001/archinte.1995.00430010063008
– ident: e_1_2_7_20_1
  doi: 10.1001/archinte.1916.00080130010002
– ident: e_1_2_7_15_1
  doi: 10.1002/jmri.24239
– ident: e_1_2_7_38_1
  doi: 10.1186/1532-429X-15-53
– ident: e_1_2_7_8_1
  doi: 10.1186/1532-429X-12-55
– ident: e_1_2_7_9_1
  doi: 10.1186/1532-429X-15-92
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.20110
– ident: e_1_2_7_3_1
  doi: 10.1186/1532-429X-16-36
– start-page: 14
  year: 2012
  ident: e_1_2_7_25_1
  article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method
  publication-title: J Cardiovasc Magn Reson
– ident: e_1_2_7_37_1
  doi: 10.1016/0895-6111(90)90040-I
– ident: e_1_2_7_34_1
  doi: 10.1186/1532-429X-16-2
– ident: e_1_2_7_5_1
  doi: 10.1161/CIRCIMAGING.112.000070
– ident: e_1_2_7_21_1
  doi: 10.2214/ajr.183.2.1830343
– ident: e_1_2_7_12_1
  doi: 10.1007/978-3-540-85990-1_5
SSID ssj0009945
Score 2.4127235
Snippet Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time...
To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time...
Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time...
Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T sub(1) relaxation...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 541
SubjectTerms Age
Aging - pathology
Aging - physiology
Cardiac Imaging Techniques - methods
Female
Gender differences
healthy volunteer
Heart Ventricles - anatomy & histology
Heart Ventricles - diagnostic imaging
Humans
longitudinal relaxation time
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Middle Aged
myocardium
native T1
NMR
Nuclear magnetic resonance
Original Research
Reference Values
Regression analysis
Reproducibility of Results
Sensitivity and Specificity
Sex Characteristics
T1 mapping
Ventricular Function, Left - physiology
Title Native myocardial longitudinal (T1) relaxation time: Regional, age, and sex associations in the healthy adult heart
URI https://api.istex.fr/ark:/67375/WNG-2WCM5BSB-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25217
https://www.ncbi.nlm.nih.gov/pubmed/26946323
https://www.proquest.com/docview/1811042574
https://www.proquest.com/docview/1811299330
https://www.proquest.com/docview/1815691938
https://pubmed.ncbi.nlm.nih.gov/PMC5025725
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb5RAEJ7Umhi_-P6C1maNxlhTrrDsLmD8YhtrbXIXc7bpfTGEhcWevXLmuEuu_npnFo7ztGmiXwgvQwLLMzsPMPMMwEsvyPDVWKZuHHHjCl0oN6WuqbHSYZERi0httkVPHRyLw4EcrMG7RS1MrQ_RfnAjz7DzNTl4qqudpWjo9_PJsMMx-lApOSVrESPqL7Wj4th2KEb-ELh-5IWtNinfWZ66Eo2u08DOL6Oaf2dM_s5kbSjavw1fFzdRZ6CcdWZT3cl-_qHv-L93eQduNRyVva9BdRfWTHkPbnSbv_D3oepZtXB2foGBkAA2YqMx9T2a5dRji70-8rcYFcnM7WNn1L_-Leubb_az4zbDKQwXZc4qM2fpEh8VG6LxqWF1ceYFs-IgtDWZPoDj_Q9Hewdu07zBzZSUoYs8BZliJAw3xsRZLDS-OBZ-LFMZamRxIo2yMPP8XBUF2kgMpjwNC8VFIXCPDh7CejkuzWNgGoEm86AwKiN9wlybWMvY08JoZUSQObC1eIhJ1iibU4ONUVJrMvOERjGxo-jAi9b2R63ncanVK4uF1iSdnFEGXCiTk97HhJ_sdeXul91k4MDGAixJ4_xVgqTJt3OhcOB5exjdlv7FpKUZz2obZAJB4F1pI1WMDDty4FGNv_aCqABZBTxwIFxBZmtAsuGrR8rhqZUPl-iLIZcOvLHAu2IYksNu_5Nde_Ivxk_hJtJKVWfibcD6dDIzz5C6TfUmXOPi86Z11F_2PkHi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pfAACMQYhPpEseXhDc2Mbqx9qF0Wt-sOHFYWZeiXqSOX885TpZSmCbBS5TLFylxzvH57Bx_h5A3QZTB0FikfhIz63NTSD_FqqmJNKrIkEWkLtuiK9tH_GAgBnVuDq6FqfQhmgk39AzXX6OD44T09lI19PvZZNhiEH7UdbKOJb3diKq3VI9KElejGBhE5IdxoBp1Ura9vHclHq1j0y4uI5t_50z-zmVdMNq7U1VcnToNQ8xBOW3NZ6aV_fxD4fG_3_MuuV3TVPqxsqt75Jot75MbnfpH_AMy7TrBcHp2DrEQbWxER2MsfTTPscwWfdcPNymuk1m4L0-xhP0H2rPf3Mzjewq9GGzKnE7tgqZLE5nSIYBPLK3WZ55Tpw-CR5PZQ3K096m_2_br-g1-JoVQPlAVIIsxt8xam2QJNzB2LMJEpEIZIHI8jTOVBWEuiwIwAuIpS1UhGS84nDHRI7JWjkv7hFADtibyqLAyQ4nC3NjEiCQw3BppeZR5ZPPiK-qsFjfHGhsjXckyM42tqF0reuR1g_1RSXpcinrrjKGBpJNTTIJTQh93P2t2vNsRO1939MAjGxfWomv_n2rgTaHrDrlHXjWXwXPxd0xa2vG8wgAZiKLgSoyQCZDs2COPKwNsHgjXIMuIRR5RK6bZAFA5fPVKOTxxCuIC3FEx4ZEtZ3lXNIM-6PT23d7TfwG_JDfb_c6hPtzvfnlGbgHLlFVi3gZZm03m9jkwuZl54fz1F0wIRSY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0amzTxMr5ZYIARCDFEunzYTox4YRtlG7RC3ab1BVlx4rCyLp36IXX8eq6dNKUwTYKXKm1OpMY51_ckuT4X4KUXpnhrzBJXxIF2qcq5m5iuqYKrKE-NikhstUWb7x3Tgy7rLsH72VqY0h-ifuBmIsPO1ybAL7J8a24a-uN82GsEmH2iG7BCuRcbTu925uZRQtgWxSggQtePvag2Jw225scupKMVM7LTq7Tm3yWTv0tZm4uat-Db7CzKEpSzxmSsGunPPwwe__c0b8NaJVLJh5JVd2BJF3dhtVW9hr8Ho7a1Cyfnl5gJDcP6pD8wjY8mmWmyRV4f-ZvErJKZ2utOTAP7d6Sjv9vnjm8JzmH4UWRkpKckmRNkRHoIPtWkXJ15Saw7iPk2HN-H4-bHo509t-re4KacschFoYJSMaY60FqLVFCFd465L1jCIoUyjiZxGqWen_E8RwzDbBokUc4DmlP8RYUPYLkYFHodiEKmsSzMNU-NQWGmtFBMeIpqxTUNUwc2ZxdRppW1uemw0ZelKXMgzShKO4oOvKixF6Whx5WoV5YLNSQZnpkSuIjJk_YnGZzstNj24bbsOrAxI4uson8kUTX5djKkDjyvd2PcmpcxSaEHkxKDUiAMvWsxjAuU2LEDD0v-1X_IrEDmYRA6EC0wswYY3_DFPUXv1PqHMwzGKGAOvLHEu2YY5EGrs2-3Hv0L-Bmsft1tyi_77c-P4SZKTF5W5W3A8ng40U9Qxo3VUxutvwBxgkPe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Native+myocardial+longitudinal+%28T+sub%281%29%29+relaxation+time%3A+Regional%2C+age%2C+and+sex+associations+in+the+healthy+adult+heart&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Rauhalammi%2C+Samuli+MO&rft.au=Mangion%2C+Kenneth&rft.au=Barrientos%2C+Pauline+Hall&rft.au=Carrick%2C+David+JA&rft.date=2016-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=44&rft.issue=3&rft.spage=541&rft.epage=548&rft_id=info:doi/10.1002%2Fjmri.25217&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon