Native myocardial longitudinal (T1) relaxation time: Regional, age, and sex associations in the healthy adult heart
Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers und...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 44; no. 3; pp. 541 - 548 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.09.2016
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups.
Materials and Methods
In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look–Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions‐of‐interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model.
Results
In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size.
Conclusion
In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541–548. |
---|---|
AbstractList | To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups.PURPOSETo use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups.In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model.MATERIALS AND METHODSIn all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model.In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size.RESULTSIn total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size.In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548.CONCLUSIONIn healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548. Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3±44.4 vs. 939.2±54.2 msec; P < 0.001; 3.0T: 1158.2±45.9 vs. 1148.9±56.9 msec; P=0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0±20.3 vs. 931.5±22.2 msec, respectively; P=0.003) and 3.0T (1166.5±19.7 vs. 1130.2±20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7±25.4 vs. 934.7±22.3 msec; P=0.762) or 3.0T (1153.0±30.0 vs. 1132.3±23.5 msec; P=0.056). Association of global native T1 to age (P=0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548. To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions-of-interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size. In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541-548. Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T sub(1) relaxation time distribution, and global myocardial native T sub(1) between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T sub(1) maps were acquired in three left ventricular short axis slices using an optimized modified Look-Locker inversion recovery investigational prototype sequence. T sub(1) measurements in msec were calculated from 16 regions-of-interest, and a global T sub(1) value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T sub(1) was higher in septal than lateral myocardium (1.5T: 956.3 plus or minus 44.4 vs. 939.2 plus or minus 54.2 msec; P < 0.001; 3.0T: 1158.2 plus or minus 45.9 vs. 1148.9 plus or minus 56.9 msec; P=0.012). Native T sub(1) decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T sub(1) was higher in females than in males at 1.5T (960.0 plus or minus 20.3 vs. 931.5 plus or minus 22.2 msec, respectively; P=0.003) and 3.0T (1166.5 plus or minus 19.7 vs. 1130.2 plus or minus 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile ( greater than or equal to 55 years) at 1.5T (937.7 plus or minus 25.4 vs. 934.7 plus or minus 22.3 msec; P=0.762) or 3.0T (1153.0 plus or minus 30.0 vs. 1132.3 plus or minus 23.5 msec; P=0.056). Association of global native T sub(1) to age (P=0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T sub(1) values are highest in the ventricular septum. Global native T sub(1) was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016; 44:541-548. Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time distribution, and global myocardial native T1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T1 maps were acquired in three left ventricular short axis slices using an optimized modified Look–Locker inversion recovery investigational prototype sequence. T1 measurements in msec were calculated from 16 regions‐of‐interest, and a global T1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T1 values are highest in the ventricular septum. Global native T1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541–548. |
Author | Clerfond, Guillaume Mangion, Kenneth Carrick, David J.A. Rauhalammi, Samuli M.O. Barrientos, Pauline Hall McClure, John McComb, Christie Radjenovic, Aleksandra Berry, Colin |
AuthorAffiliation | 2 West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital Glasgow UK 1 BHF Glasgow Cardiovascular Research Centre University of Glasgow Glasgow UK 3 Department of Clinical Physics Queen Elizabeth University Hospital Glasgow Glasgow UK |
AuthorAffiliation_xml | – name: 1 BHF Glasgow Cardiovascular Research Centre University of Glasgow Glasgow UK – name: 3 Department of Clinical Physics Queen Elizabeth University Hospital Glasgow Glasgow UK – name: 2 West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital Glasgow UK |
Author_xml | – sequence: 1 givenname: Samuli M.O. surname: Rauhalammi fullname: Rauhalammi, Samuli M.O. organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK – sequence: 2 givenname: Kenneth surname: Mangion fullname: Mangion, Kenneth organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK – sequence: 3 givenname: Pauline Hall surname: Barrientos fullname: Barrientos, Pauline Hall organization: Department of Clinical Physics, Queen Elizabeth University Hospital, Glasgow, Glasgow, UK – sequence: 4 givenname: David J.A. surname: Carrick fullname: Carrick, David J.A. organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK – sequence: 5 givenname: Guillaume surname: Clerfond fullname: Clerfond, Guillaume organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK – sequence: 6 givenname: John surname: McClure fullname: McClure, John organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK – sequence: 7 givenname: Christie surname: McComb fullname: McComb, Christie organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK – sequence: 8 givenname: Aleksandra surname: Radjenovic fullname: Radjenovic, Aleksandra organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK – sequence: 9 givenname: Colin surname: Berry fullname: Berry, Colin email: colin.berry@glasgow.ac.uk organization: BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26946323$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1v0zAUhiM0xD7ghh-ALHEzENn8GSdcILEKxtA2pDE07iw3OWldnHjYzmj_PW67VTBNiBvbx37e18c-Zzfb6l0PWfac4AOCMT2cdd4cUEGJfJTtEEFpTkVZbKU1FiwnJZbb2W4IM4xxVXHxJNumRcULRtlOFs51NDeAuoWrtW-Mtsi6fmLi0Jg-BfuX5BXyYPU8ca5H0XTwFl3AJAXavkF6AmnoGxRgjnQIrjYrMCCT4CmgKWgbpwukm8HGZeTj0-xxq22AZ7fzXvbt44fL0af89Mvxyej9aV4XQsicCCGKouRAAaCqKz6WRLakElrIMaOc67KWNSZN0baJEZwwqmVbUN7ytDNme9m7te_1MO6gqaGPXlt17U2n_UI5bdTfJ72Zqom7UQJTIalIBvu3Bt79HCBE1ZlQg7W6BzcERUoiiopUrPwflNCqYgwn9OU9dOYGn35zTWGeLueJevFn8pus70qXgNdroPYuBA_tBiFYLftCLftCrfoiwfgeXJu4KlR6uLEPS8ha8stYWPzDXH0-uzi50-RrjQkR5huN9j9UIZkU6ur8WNGr0Zk4-nqkvrPffWbZ2Q |
CitedBy_id | crossref_primary_10_22468_cvia_2016_00129 crossref_primary_10_1002_jmri_26866 crossref_primary_10_1007_s00508_018_1411_3 crossref_primary_10_1016_j_ejrad_2021_109748 crossref_primary_10_1016_j_yacr_2019_03_001 crossref_primary_10_1007_s10554_024_03241_5 crossref_primary_10_1002_jmri_27639 crossref_primary_10_1017_S0033291723003021 crossref_primary_10_7759_cureus_67797 crossref_primary_10_1016_j_jjcc_2022_02_006 crossref_primary_10_29001_2073_8552_2022_37_1_17_26 crossref_primary_10_1002_jmri_27155 crossref_primary_10_1007_s00330_022_08839_8 crossref_primary_10_1016_j_diii_2025_01_005 crossref_primary_10_1017_S1047951121003292 crossref_primary_10_1136_openhrt_2019_001070 crossref_primary_10_1186_s12968_020_00683_3 crossref_primary_10_1093_ehjci_jead247 crossref_primary_10_1007_s00247_021_05169_7 crossref_primary_10_1016_j_jcmg_2019_10_016 crossref_primary_10_2139_ssrn_4175100 crossref_primary_10_1007_s12194_020_00601_3 crossref_primary_10_1111_odi_14391 crossref_primary_10_1016_j_jocmr_2025_101853 crossref_primary_10_1016_j_ijcha_2023_101181 crossref_primary_10_1186_s12968_017_0419_6 crossref_primary_10_1080_0886022X_2024_2310078 crossref_primary_10_1371_journal_pone_0303969 crossref_primary_10_2463_mrms_mp_2017_0136 crossref_primary_10_1007_s00330_019_06364_9 crossref_primary_10_1038_s41598_023_29591_z crossref_primary_10_3390_jcdd10060252 crossref_primary_10_1080_14779072_2023_2273896 crossref_primary_10_1002_jmri_26886 crossref_primary_10_1007_s11604_017_0611_5 crossref_primary_10_1007_s10334_017_0631_2 crossref_primary_10_1186_s12968_017_0337_7 crossref_primary_10_6009_jjrt_2021_JSRT_77_2_172 crossref_primary_10_1007_s10554_022_02648_2 crossref_primary_10_1016_j_crad_2020_01_006 crossref_primary_10_4264_numa_81_1_29 crossref_primary_10_1016_j_jcmg_2022_06_011 crossref_primary_10_1016_j_kint_2016_06_014 crossref_primary_10_1002_jmri_26160 crossref_primary_10_1038_s41598_022_16696_0 crossref_primary_10_1002_jmri_25863 crossref_primary_10_2463_mrms_mp_2016_0092 crossref_primary_10_1007_s00380_019_01401_5 crossref_primary_10_18786_20720505_2020_48_065 crossref_primary_10_3389_fphys_2018_00140 crossref_primary_10_1186_s12968_023_00974_5 crossref_primary_10_1016_j_bj_2020_08_013 crossref_primary_10_1038_s41598_020_74717_2 crossref_primary_10_6009_jjrt_2018_JSRT_74_11_1329 crossref_primary_10_1016_j_ejrad_2018_10_011 crossref_primary_10_1007_s10554_020_02031_z crossref_primary_10_1177_02841851211006311 crossref_primary_10_1016_j_repc_2021_04_005 crossref_primary_10_1093_ehjci_jeae070 crossref_primary_10_1016_j_heliyon_2023_e17336 |
Cites_doi | 10.1186/1532-429X-14-42 10.1002/jmri.21119 10.1186/1532-429X-14-26 10.1186/1532-429X-15-13 10.1126/science.1112062 10.1161/hc3601.095577 10.1186/1532-429X-10-35 10.1186/1532-429X-15-78 10.1093/ehjci/jeu050 10.1186/s12968-014-0069-x 10.1093/ehjci/jes102 10.1002/mrm.10051 10.1080/13697130601114917 10.1016/j.jcmg.2012.11.013 10.1016/j.jacc.2013.05.078 10.1038/nrd2032 10.1016/j.ejrad.2007.10.022 10.1161/hc0402.102975 10.1186/1532-429X-15-41 10.1002/jmri.22753 10.1002/mrm.1910230110 10.1136/heartjnl-2015-307845.29 10.1136/heartjnl-2012-302346 10.1186/1532-429X-14-S1-P221 10.1001/archinte.1995.00430010063008 10.1001/archinte.1916.00080130010002 10.1002/jmri.24239 10.1186/1532-429X-15-53 10.1186/1532-429X-12-55 10.1186/1532-429X-15-92 10.1002/mrm.20110 10.1186/1532-429X-16-36 10.1016/0895-6111(90)90040-I 10.1186/1532-429X-16-2 10.1161/CIRCIMAGING.112.000070 10.2214/ajr.183.2.1830343 10.1007/978-3-540-85990-1_5 |
ContentType | Journal Article |
Copyright | 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine – notice: 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/jmri.25217 |
DatabaseName | Istex Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Native Myocardial T1 in Healthy Adults |
EISSN | 1522-2586 |
EndPage | 548 |
ExternalDocumentID | PMC5025725 4145746841 26946323 10_1002_jmri_25217 JMRI25217 ark_67375_WNG_2WCM5BSB_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/11/2/28474 – fundername: British Heart Foundation grantid: PG/14/64/31043 – fundername: Chief Scientist Office grantid: SC01 – fundername: Medical Research Council grantid: MR/N003403/1 – fundername: British Heart Foundation grantid: FS/15/54/31639 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c6557-15556684e2eee9c94b717f195a57b3244a8c7c01d6ffe2e54132a7f624f4ffeb3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Aug 21 14:09:30 EDT 2025 Fri Jul 11 04:36:23 EDT 2025 Fri Jul 11 11:21:02 EDT 2025 Sun Jul 13 05:00:41 EDT 2025 Mon Jul 21 05:51:06 EDT 2025 Tue Jul 01 03:56:34 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Wed Aug 20 07:26:16 EDT 2025 Wed Oct 30 09:51:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | native T1 longitudinal relaxation time healthy volunteer myocardium T1 mapping |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6557-15556684e2eee9c94b717f195a57b3244a8c7c01d6ffe2e54132a7f624f4ffeb3 |
Notes | ark:/67375/WNG-2WCM5BSB-X ArticleID:JMRI25217 istex:751E23F5A85D11DA621C6037091EC13B84B4EEF8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25217 |
PMID | 26946323 |
PQID | 1811042574 |
PQPubID | 1006400 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5025725 proquest_miscellaneous_1815691938 proquest_miscellaneous_1811299330 proquest_journals_1811042574 pubmed_primary_26946323 crossref_primary_10_1002_jmri_25217 crossref_citationtrail_10_1002_jmri_25217 wiley_primary_10_1002_jmri_25217_JMRI25217 istex_primary_ark_67375_WNG_2WCM5BSB_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville – name: Hoboken |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | Scholz T, Martins J, Skorton D. NMR relaxation times in acute myocardial infarction: relative influence of changes in tissue water and fat content. Magn Reson Med 1992;23:89-95. Sado D, White S, Piechnik S, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6:392-398. Flett A, Sado D, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2012;13:819-826. Sado D, Flett A, Banypersad S, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436-1441. van Eickels M, Grohe C, Cleutjens J, Janssen B, Wellens H, Doevendans P. 17 beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001;104:1419-1423. Kellman P, Hansen M. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014;16:2. Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14:26. Kannel W, Wilson P. Risk-factors that attenuate the female coronary disease advantage. Arch Intern Med 1995;155:57-61. Piechnik S, Ferreira V, Lewandowski A, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13. McDiarmid AK, Broadbent DA, Higgins DM, et al. The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 2015;5:503-510. Moon J, Messroghli D, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92. Messroghli D, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26:1081-1086. Chuang M, Gona P, Hautvast G, et al. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis: the Framingham Heart Study. J Magn Reson Imaging 2014;39:895-900. Oshinski J, Delfino J, Sharma P, Gharib A, Pettigrew R. Cardiovascular magnetic resonance at 3.0T: current state of the art. J Cardiovasc Magn Reson 2010;12:55. Kellman P, Arai A, McVeigh E, Aletras A. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002;47:372-383. Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB. Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 1990;14:409-413. de Ravenstein C, Bouzin C, Lazam S, et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 2015;17. Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16:69. Ferreira V, Piechnik S, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:42. Messroghli D, Radjenovic A, Kozerke S, Higgins D, Sivananthan M, Ridgway J. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141-146. Karamitsos T, Piechnik S, Banypersad S, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-497. Xue H, Guehring J, Srinivasan L, et al. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Intervent 2008, Pt Ii, Proc 2008;5242:35-43. Mendelsohn M, Karas R. Molecular and cellular basis of cardiovascular gender differences. Science 2005;308:1583-1587. Wieben O, Francois C, Reeder S. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 2008;65:15-28. Cerqueira M, Weissman N, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-542. Rosano G, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. Climacteric 2007;10:19-24. Treibel T, Fontana M, Maestrini V, et al. Synthetic ECV: simplifying ECV quantification by deriving haematocrit from T1 blood. Heart 2015;101:A16-A17. Piechnik S, Ferreira V, Lewandowski A, et al. Age and gender dependence of pre-contrast T1-relaxation times in normal human myocardium at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 2012;14:P221. Florian A, Ludwig A, Rosch S, Yildiz H, Sechtem U, Yilmaz A. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 2014;15:1004-1012. Ferreira P, Gatehouse P, Mohiaddin R, Firmin D. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 2013;15:14. Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov 2006;5:425-438. Kellman P, Wilson J, Xue H, Ugander M, Arai A. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012;14. Gold GE, Han E, Stainsby J, et al. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol 2004;183;343-351. Nacif M, Turkbey E, Gai N, et al. Myocardial T1 mapping with MRI: comparison of Look-Locker and MOLLI sequences. J Magn Reson Imaging 2011;34:1367-1373. Kramer C, Barkhausen J, Flamm S, Kim R, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 2008;10:35. Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863-871. Rogers T, Dabir D, Mahmoud I, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease: the ConSept study. J Cardiovasc Magn Reson 2013;15:78. Ferreira V, Piechnik S, Dall'Armellina E, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16:36. Liu C, Liu Y, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2013;62:1280-1287. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer M, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013;15:53. 2010; 12 2015; 5 1990; 14 2012 2013; 62 2015; 101 2004; 183 2006; 5 2008; 10 2011; 34 1995; 155 2012; 14 2012; 13 2007; 10 2013; 6 2001; 104 2012; 98 2004; 52 2002; 47 2013; 15 2008; 5242 2014; 16 2014; 15 2002; 105 2005; 308 2008; 65 2015 1916; 17 2014; 39 1992; 23 2007; 26 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Ravenstein C (e_1_2_7_18_1) 2015 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Kellman P (e_1_2_7_25_1) 2012 e_1_2_7_29_1 McDiarmid AK (e_1_2_7_41_1) 2015; 5 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – reference: Kellman P, Hansen M. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014;16:2. – reference: Ferreira V, Piechnik S, Dall'Armellina E, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16:36. – reference: Kellman P, Wilson J, Xue H, Ugander M, Arai A. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012;14. – reference: Rosano G, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. Climacteric 2007;10:19-24. – reference: Liu C, Liu Y, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2013;62:1280-1287. – reference: de Ravenstein C, Bouzin C, Lazam S, et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 2015;17. – reference: Florian A, Ludwig A, Rosch S, Yildiz H, Sechtem U, Yilmaz A. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 2014;15:1004-1012. – reference: Nacif M, Turkbey E, Gai N, et al. Myocardial T1 mapping with MRI: comparison of Look-Locker and MOLLI sequences. J Magn Reson Imaging 2011;34:1367-1373. – reference: Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16:69. – reference: van Eickels M, Grohe C, Cleutjens J, Janssen B, Wellens H, Doevendans P. 17 beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001;104:1419-1423. – reference: von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer M, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013;15:53. – reference: Sado D, White S, Piechnik S, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6:392-398. – reference: Flett A, Sado D, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2012;13:819-826. – reference: Cerqueira M, Weissman N, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-542. – reference: Xue H, Guehring J, Srinivasan L, et al. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Intervent 2008, Pt Ii, Proc 2008;5242:35-43. – reference: Messroghli D, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26:1081-1086. – reference: Treibel T, Fontana M, Maestrini V, et al. Synthetic ECV: simplifying ECV quantification by deriving haematocrit from T1 blood. Heart 2015;101:A16-A17. – reference: Moon J, Messroghli D, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92. – reference: Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863-871. – reference: Sado D, Flett A, Banypersad S, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436-1441. – reference: Piechnik S, Ferreira V, Lewandowski A, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13. – reference: Kannel W, Wilson P. Risk-factors that attenuate the female coronary disease advantage. Arch Intern Med 1995;155:57-61. – reference: Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB. Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 1990;14:409-413. – reference: Oshinski J, Delfino J, Sharma P, Gharib A, Pettigrew R. Cardiovascular magnetic resonance at 3.0T: current state of the art. J Cardiovasc Magn Reson 2010;12:55. – reference: Mendelsohn M, Karas R. Molecular and cellular basis of cardiovascular gender differences. Science 2005;308:1583-1587. – reference: Karamitsos T, Piechnik S, Banypersad S, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-497. – reference: Rogers T, Dabir D, Mahmoud I, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease: the ConSept study. J Cardiovasc Magn Reson 2013;15:78. – reference: Ferreira V, Piechnik S, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:42. – reference: Kramer C, Barkhausen J, Flamm S, Kim R, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 2008;10:35. – reference: Chuang M, Gona P, Hautvast G, et al. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis: the Framingham Heart Study. J Magn Reson Imaging 2014;39:895-900. – reference: Messroghli D, Radjenovic A, Kozerke S, Higgins D, Sivananthan M, Ridgway J. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141-146. – reference: Gold GE, Han E, Stainsby J, et al. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol 2004;183;343-351. – reference: Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14:26. – reference: Piechnik S, Ferreira V, Lewandowski A, et al. Age and gender dependence of pre-contrast T1-relaxation times in normal human myocardium at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 2012;14:P221. – reference: McDiarmid AK, Broadbent DA, Higgins DM, et al. The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 2015;5:503-510. – reference: Scholz T, Martins J, Skorton D. NMR relaxation times in acute myocardial infarction: relative influence of changes in tissue water and fat content. Magn Reson Med 1992;23:89-95. – reference: Kellman P, Arai A, McVeigh E, Aletras A. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002;47:372-383. – reference: Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov 2006;5:425-438. – reference: Ferreira P, Gatehouse P, Mohiaddin R, Firmin D. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 2013;15:14. – reference: Wieben O, Francois C, Reeder S. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 2008;65:15-28. – volume: 47 start-page: 372 year: 2002 end-page: 383 article-title: Phase‐sensitive inversion recovery for detecting myocardial infarction using gadolinium‐delayed hyperenhancement publication-title: Magn Reson Med – volume: 6 start-page: 488 year: 2013 end-page: 497 article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis publication-title: JACC Cardiovasc Imaging – volume: 23 start-page: 89 year: 1992 end-page: 95 article-title: NMR relaxation times in acute myocardial infarction: relative influence of changes in tissue water and fat content publication-title: Magn Reson Med – volume: 26 start-page: 1081 year: 2007 end-page: 1086 article-title: Optimization and validation of a fully‐integrated pulse sequence for modified Look–Locker inversion‐recovery (MOLLI) T1 mapping of the heart publication-title: J Magn Reson Imaging – volume: 15 start-page: 78 year: 2013 article-title: Standardization of T1 measurements with MOLLI in differentiation between health and disease: the ConSept study publication-title: J Cardiovasc Magn Reson – volume: 14 start-page: 409 year: 1990 end-page: 413 article-title: Effect of field strength on susceptibility artifacts in magnetic resonance imaging publication-title: Comput Med Imaging Graph – volume: 65 start-page: 15 year: 2008 end-page: 28 article-title: Cardiac MRI of ischemic heart disease at 3 T: potential and challenges publication-title: Eur J Radiol – volume: 16 start-page: 36 year: 2014 article-title: Native T1‐mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents publication-title: J Cardiovasc Magn Reson – volume: 13 start-page: 819 year: 2012 end-page: 826 article-title: Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study publication-title: Eur Heart J Cardiovasc Imaging – volume: 52 start-page: 141 year: 2004 end-page: 146 article-title: Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart publication-title: Magn Reson Med – volume: 14 start-page: 26 year: 2012 article-title: T1 mapping of the myocardium: intra‐individual assessment of post‐contrast T1 time evolution and extracellular volume fraction at 3T for Gd‐DTPA and Gd‐BOPTA publication-title: J Cardiovasc Magn Reson – volume: 16 start-page: 2 year: 2014 article-title: T1‐mapping in the heart: accuracy and precision publication-title: J Cardiovasc Magn Reson – start-page: 14 year: 2012 article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method publication-title: J Cardiovasc Magn Reson – volume: 17 start-page: 863 year: 1916 end-page: 871 article-title: A formula to estimate the approximate surface area if height and weight be known publication-title: Arch Intern Med – volume: 15 start-page: 92 year: 2013 article-title: Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement publication-title: J Cardiovasc Magn Reson – volume: 15 start-page: 1004 year: 2014 end-page: 1012 article-title: Myocardial fibrosis imaging based on T1‐mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging publication-title: Eur Heart J Cardiovasc Imaging – volume: 39 start-page: 895 year: 2014 end-page: 900 article-title: CMR reference values for left ventricular volumes, mass, and ejection fraction using computer‐aided analysis: the Framingham Heart Study publication-title: J Magn Reson Imaging – volume: 14 start-page: P221 year: 2012 article-title: Age and gender dependence of pre‐contrast T1‐relaxation times in normal human myocardium at 1.5T using ShMOLLI publication-title: J Cardiovasc Magn Reson – volume: 10 start-page: 35 year: 2008 article-title: Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols publication-title: J Cardiovasc Magn Reson – volume: 16 start-page: 69 year: 2014 article-title: Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study publication-title: J Cardiovasc Magn Reson – volume: 10 start-page: 19 year: 2007 end-page: 24 article-title: Menopause and cardiovascular disease: the evidence publication-title: Climacteric – volume: 5 start-page: 425 year: 2006 end-page: 438 article-title: Therapeutic implications of the gender‐specific aspects of cardiovascular disease publication-title: Nat Rev Drug Discov – volume: 98 start-page: 1436 year: 2012 end-page: 1441 article-title: Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease publication-title: Heart – volume: 6 start-page: 392 year: 2013 end-page: 398 article-title: Identification and assessment of Anderson‐Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping publication-title: Circ Cardiovasc Imaging – volume: 15 start-page: 13 year: 2013 article-title: Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI publication-title: J Cardiovasc Magn Reson – volume: 5242 start-page: 35 year: 2008 end-page: 43 article-title: Evaluation of rigid and non‐rigid motion compensation of cardiac perfusion MRI publication-title: Med Image Comput Comput Assist Intervent 2008, Pt Ii, Proc – volume: 15 start-page: 14 year: 2013 article-title: Cardiovascular magnetic resonance artefacts publication-title: J Cardiovasc Magn Reson – volume: 12 start-page: 55 year: 2010 article-title: Cardiovascular magnetic resonance at 3.0T: current state of the art publication-title: J Cardiovasc Magn Reson – volume: 105 start-page: 539 year: 2002 end-page: 542 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association publication-title: Circulation – volume: 5 start-page: 503 year: 2015 end-page: 510 article-title: The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging publication-title: Quant Imaging Med Surg – volume: 62 start-page: 1280 year: 2013 end-page: 1287 article-title: Evaluation of age‐related interstitial myocardial fibrosis with cardiac magnetic resonance contrast‐enhanced T1 mapping: MESA (Multi‐Ethnic Study of Atherosclerosis) publication-title: J Am Coll Cardiol – volume: 183 start-page: 343 year: 2004 end-page: 351 article-title: Musculoskeletal MRI at 3.0 T: relaxation times and image contrast publication-title: Am J Roentgenol – volume: 15 start-page: 53 year: 2013 article-title: Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications publication-title: J Cardiovasc Magn Reson – volume: 14 start-page: 42 year: 2012 article-title: Non‐contrast T1‐mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2‐weighted cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson – volume: 308 start-page: 1583 year: 2005 end-page: 1587 article-title: Molecular and cellular basis of cardiovascular gender differences publication-title: Science – volume: 34 start-page: 1367 year: 2011 end-page: 1373 article-title: Myocardial T1 mapping with MRI: comparison of Look‐Locker and MOLLI sequences publication-title: J Magn Reson Imaging – volume: 104 start-page: 1419 year: 2001 end-page: 1423 article-title: 17 beta‐estradiol attenuates the development of pressure‐overload hypertrophy publication-title: Circulation – volume: 155 start-page: 57 year: 1995 end-page: 61 article-title: Risk‐factors that attenuate the female coronary disease advantage publication-title: Arch Intern Med – volume: 101 start-page: A16 year: 2015 end-page: A17 article-title: Synthetic ECV: simplifying ECV quantification by deriving haematocrit from T1 blood publication-title: Heart – start-page: 17 year: 2015 article-title: Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look‐Locker imaging (MOLLI) T1 mapping at 3 T publication-title: J Cardiovasc Magn Reson – start-page: 17 year: 2015 ident: e_1_2_7_18_1 article-title: Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look‐Locker imaging (MOLLI) T1 mapping at 3 T publication-title: J Cardiovasc Magn Reson – volume: 5 start-page: 503 year: 2015 ident: e_1_2_7_41_1 article-title: The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 Tesla cardiovascular magnetic resonance imaging publication-title: Quant Imaging Med Surg – ident: e_1_2_7_2_1 doi: 10.1186/1532-429X-14-42 – ident: e_1_2_7_13_1 doi: 10.1002/jmri.21119 – ident: e_1_2_7_40_1 doi: 10.1186/1532-429X-14-26 – ident: e_1_2_7_10_1 doi: 10.1186/1532-429X-15-13 – ident: e_1_2_7_29_1 doi: 10.1126/science.1112062 – ident: e_1_2_7_31_1 doi: 10.1161/hc3601.095577 – ident: e_1_2_7_16_1 doi: 10.1186/1532-429X-10-35 – ident: e_1_2_7_32_1 doi: 10.1186/1532-429X-15-78 – ident: e_1_2_7_26_1 doi: 10.1093/ehjci/jeu050 – ident: e_1_2_7_22_1 doi: 10.1186/s12968-014-0069-x – ident: e_1_2_7_6_1 doi: 10.1093/ehjci/jes102 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.10051 – ident: e_1_2_7_28_1 doi: 10.1080/13697130601114917 – ident: e_1_2_7_4_1 doi: 10.1016/j.jcmg.2012.11.013 – ident: e_1_2_7_23_1 doi: 10.1016/j.jacc.2013.05.078 – ident: e_1_2_7_30_1 doi: 10.1038/nrd2032 – ident: e_1_2_7_35_1 doi: 10.1016/j.ejrad.2007.10.022 – ident: e_1_2_7_17_1 doi: 10.1161/hc0402.102975 – ident: e_1_2_7_33_1 doi: 10.1186/1532-429X-15-41 – ident: e_1_2_7_39_1 doi: 10.1002/jmri.22753 – ident: e_1_2_7_7_1 doi: 10.1002/mrm.1910230110 – ident: e_1_2_7_19_1 doi: 10.1136/heartjnl-2015-307845.29 – ident: e_1_2_7_36_1 doi: 10.1136/heartjnl-2012-302346 – ident: e_1_2_7_24_1 doi: 10.1186/1532-429X-14-S1-P221 – ident: e_1_2_7_27_1 doi: 10.1001/archinte.1995.00430010063008 – ident: e_1_2_7_20_1 doi: 10.1001/archinte.1916.00080130010002 – ident: e_1_2_7_15_1 doi: 10.1002/jmri.24239 – ident: e_1_2_7_38_1 doi: 10.1186/1532-429X-15-53 – ident: e_1_2_7_8_1 doi: 10.1186/1532-429X-12-55 – ident: e_1_2_7_9_1 doi: 10.1186/1532-429X-15-92 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.20110 – ident: e_1_2_7_3_1 doi: 10.1186/1532-429X-16-36 – start-page: 14 year: 2012 ident: e_1_2_7_25_1 article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method publication-title: J Cardiovasc Magn Reson – ident: e_1_2_7_37_1 doi: 10.1016/0895-6111(90)90040-I – ident: e_1_2_7_34_1 doi: 10.1186/1532-429X-16-2 – ident: e_1_2_7_5_1 doi: 10.1161/CIRCIMAGING.112.000070 – ident: e_1_2_7_21_1 doi: 10.2214/ajr.183.2.1830343 – ident: e_1_2_7_12_1 doi: 10.1007/978-3-540-85990-1_5 |
SSID | ssj0009945 |
Score | 2.4127235 |
Snippet | Purpose
To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time... To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time... Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T1 relaxation time... Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T sub(1) relaxation... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 541 |
SubjectTerms | Age Aging - pathology Aging - physiology Cardiac Imaging Techniques - methods Female Gender differences healthy volunteer Heart Ventricles - anatomy & histology Heart Ventricles - diagnostic imaging Humans longitudinal relaxation time Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Middle Aged myocardium native T1 NMR Nuclear magnetic resonance Original Research Reference Values Regression analysis Reproducibility of Results Sensitivity and Specificity Sex Characteristics T1 mapping Ventricular Function, Left - physiology |
Title | Native myocardial longitudinal (T1) relaxation time: Regional, age, and sex associations in the healthy adult heart |
URI | https://api.istex.fr/ark:/67375/WNG-2WCM5BSB-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25217 https://www.ncbi.nlm.nih.gov/pubmed/26946323 https://www.proquest.com/docview/1811042574 https://www.proquest.com/docview/1811299330 https://www.proquest.com/docview/1815691938 https://pubmed.ncbi.nlm.nih.gov/PMC5025725 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb5RAEJ7Umhi_-P6C1maNxlhTrrDsLmD8YhtrbXIXc7bpfTGEhcWevXLmuEuu_npnFo7ztGmiXwgvQwLLMzsPMPMMwEsvyPDVWKZuHHHjCl0oN6WuqbHSYZERi0httkVPHRyLw4EcrMG7RS1MrQ_RfnAjz7DzNTl4qqudpWjo9_PJsMMx-lApOSVrESPqL7Wj4th2KEb-ELh-5IWtNinfWZ66Eo2u08DOL6Oaf2dM_s5kbSjavw1fFzdRZ6CcdWZT3cl-_qHv-L93eQduNRyVva9BdRfWTHkPbnSbv_D3oepZtXB2foGBkAA2YqMx9T2a5dRji70-8rcYFcnM7WNn1L_-Leubb_az4zbDKQwXZc4qM2fpEh8VG6LxqWF1ceYFs-IgtDWZPoDj_Q9Hewdu07zBzZSUoYs8BZliJAw3xsRZLDS-OBZ-LFMZamRxIo2yMPP8XBUF2kgMpjwNC8VFIXCPDh7CejkuzWNgGoEm86AwKiN9wlybWMvY08JoZUSQObC1eIhJ1iibU4ONUVJrMvOERjGxo-jAi9b2R63ncanVK4uF1iSdnFEGXCiTk97HhJ_sdeXul91k4MDGAixJ4_xVgqTJt3OhcOB5exjdlv7FpKUZz2obZAJB4F1pI1WMDDty4FGNv_aCqABZBTxwIFxBZmtAsuGrR8rhqZUPl-iLIZcOvLHAu2IYksNu_5Nde_Ivxk_hJtJKVWfibcD6dDIzz5C6TfUmXOPi86Z11F_2PkHi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pfAACMQYhPpEseXhDc2Mbqx9qF0Wt-sOHFYWZeiXqSOX885TpZSmCbBS5TLFylxzvH57Bx_h5A3QZTB0FikfhIz63NTSD_FqqmJNKrIkEWkLtuiK9tH_GAgBnVuDq6FqfQhmgk39AzXX6OD44T09lI19PvZZNhiEH7UdbKOJb3diKq3VI9KElejGBhE5IdxoBp1Ura9vHclHq1j0y4uI5t_50z-zmVdMNq7U1VcnToNQ8xBOW3NZ6aV_fxD4fG_3_MuuV3TVPqxsqt75Jot75MbnfpH_AMy7TrBcHp2DrEQbWxER2MsfTTPscwWfdcPNymuk1m4L0-xhP0H2rPf3Mzjewq9GGzKnE7tgqZLE5nSIYBPLK3WZ55Tpw-CR5PZQ3K096m_2_br-g1-JoVQPlAVIIsxt8xam2QJNzB2LMJEpEIZIHI8jTOVBWEuiwIwAuIpS1UhGS84nDHRI7JWjkv7hFADtibyqLAyQ4nC3NjEiCQw3BppeZR5ZPPiK-qsFjfHGhsjXckyM42tqF0reuR1g_1RSXpcinrrjKGBpJNTTIJTQh93P2t2vNsRO1939MAjGxfWomv_n2rgTaHrDrlHXjWXwXPxd0xa2vG8wgAZiKLgSoyQCZDs2COPKwNsHgjXIMuIRR5RK6bZAFA5fPVKOTxxCuIC3FEx4ZEtZ3lXNIM-6PT23d7TfwG_JDfb_c6hPtzvfnlGbgHLlFVi3gZZm03m9jkwuZl54fz1F0wIRSY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0amzTxMr5ZYIARCDFEunzYTox4YRtlG7RC3ab1BVlx4rCyLp36IXX8eq6dNKUwTYKXKm1OpMY51_ckuT4X4KUXpnhrzBJXxIF2qcq5m5iuqYKrKE-NikhstUWb7x3Tgy7rLsH72VqY0h-ifuBmIsPO1ybAL7J8a24a-uN82GsEmH2iG7BCuRcbTu925uZRQtgWxSggQtePvag2Jw225scupKMVM7LTq7Tm3yWTv0tZm4uat-Db7CzKEpSzxmSsGunPPwwe__c0b8NaJVLJh5JVd2BJF3dhtVW9hr8Ho7a1Cyfnl5gJDcP6pD8wjY8mmWmyRV4f-ZvErJKZ2utOTAP7d6Sjv9vnjm8JzmH4UWRkpKckmRNkRHoIPtWkXJ15Saw7iPk2HN-H4-bHo509t-re4KacschFoYJSMaY60FqLVFCFd465L1jCIoUyjiZxGqWen_E8RwzDbBokUc4DmlP8RYUPYLkYFHodiEKmsSzMNU-NQWGmtFBMeIpqxTUNUwc2ZxdRppW1uemw0ZelKXMgzShKO4oOvKixF6Whx5WoV5YLNSQZnpkSuIjJk_YnGZzstNj24bbsOrAxI4uson8kUTX5djKkDjyvd2PcmpcxSaEHkxKDUiAMvWsxjAuU2LEDD0v-1X_IrEDmYRA6EC0wswYY3_DFPUXv1PqHMwzGKGAOvLHEu2YY5EGrs2-3Hv0L-Bmsft1tyi_77c-P4SZKTF5W5W3A8ng40U9Qxo3VUxutvwBxgkPe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Native+myocardial+longitudinal+%28T+sub%281%29%29+relaxation+time%3A+Regional%2C+age%2C+and+sex+associations+in+the+healthy+adult+heart&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Rauhalammi%2C+Samuli+MO&rft.au=Mangion%2C+Kenneth&rft.au=Barrientos%2C+Pauline+Hall&rft.au=Carrick%2C+David+JA&rft.date=2016-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=44&rft.issue=3&rft.spage=541&rft.epage=548&rft_id=info:doi/10.1002%2Fjmri.25217&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |