Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject

Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functi...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 13; no. 2; p. 26017
Main Authors Hotson, Guy, McMullen, David P, Fifer, Matthew S, Johannes, Matthew S, Katyal, Kapil D, Para, Matthew P, Armiger, Robert, Anderson, William S, Thakor, Nitish V, Wester, Brock A, Crone, Nathan E
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2016
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
DOI10.1088/1741-2560/13/2/026017

Cover

Loading…
Abstract Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
AbstractList OBJECTIVEWe used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers.APPROACHUsing high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb.MAIN RESULTSThe balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control.SIGNIFICANCEOur results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
Author Thakor, Nitish V
Anderson, William S
Johannes, Matthew S
Para, Matthew P
Armiger, Robert
Hotson, Guy
Fifer, Matthew S
Wester, Brock A
Crone, Nathan E
McMullen, David P
Katyal, Kapil D
AuthorAffiliation 2 Department of Neurosurgery, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA
5 Department of Neurology, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA
4 Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA
1 Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N Charles, Baltimore, MD 21218, USA
3 Department of Biomedical Engineering, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA
AuthorAffiliation_xml – name: 2 Department of Neurosurgery, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA
– name: 5 Department of Neurology, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA
– name: 1 Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N Charles, Baltimore, MD 21218, USA
– name: 3 Department of Biomedical Engineering, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA
– name: 4 Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA
Author_xml – sequence: 1
  givenname: Guy
  surname: Hotson
  fullname: Hotson, Guy
  email: Hotson.Guy@gmail.com
  organization: Johns Hopkins University Department of Electrical and Computer Engineering, 3400 N Charles, Baltimore, MD 21218, USA
– sequence: 2
  givenname: David P
  orcidid: 0000-0003-0782-9068
  surname: McMullen
  fullname: McMullen, David P
  organization: Johns Hopkins University Department of Neurosurgery, 600 N Wolfe, Baltimore, MD 21205, USA
– sequence: 3
  givenname: Matthew S
  surname: Fifer
  fullname: Fifer, Matthew S
  organization: Johns Hopkins University Department of Biomedical Engineering, 600 N Wolfe, Baltimore, MD 21205, USA
– sequence: 4
  givenname: Matthew S
  surname: Johannes
  fullname: Johannes, Matthew S
  organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA
– sequence: 5
  givenname: Kapil D
  surname: Katyal
  fullname: Katyal, Kapil D
  organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA
– sequence: 6
  givenname: Matthew P
  surname: Para
  fullname: Para, Matthew P
  organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA
– sequence: 7
  givenname: Robert
  surname: Armiger
  fullname: Armiger, Robert
  organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA
– sequence: 8
  givenname: William S
  surname: Anderson
  fullname: Anderson, William S
  organization: Johns Hopkins University Department of Neurosurgery, 600 N Wolfe, Baltimore, MD 21205, USA
– sequence: 9
  givenname: Nitish V
  surname: Thakor
  fullname: Thakor, Nitish V
  organization: Johns Hopkins University Department of Biomedical Engineering, 600 N Wolfe, Baltimore, MD 21205, USA
– sequence: 10
  givenname: Brock A
  surname: Wester
  fullname: Wester, Brock A
  organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA
– sequence: 11
  givenname: Nathan E
  surname: Crone
  fullname: Crone, Nathan E
  organization: Johns Hopkins University Department of Neurology, 600 N Wolfe, Baltimore, MD 21205, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26863276$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtrHCEYhqUkNIf2J7R419xM18N4WAqFEpI2EOhNey2O4-y4ODrRmcD--zrsZklLSa4Ufd6XT58LcBJisAB8wOgzRlKusKhxRRhHK0xXZIUIR1i8AeeHc0ZOjnuOzsBFzluEKBZr9BacES45JYKfg4e70LpH187aw86FjU3QxDCl6GHsoIZDbGevExxTzFNvJ2egd0MD51xg2LtNX7U2ZDftoPXWlKCJqVBxk_TY76ALpaSfBx1gnpttId6B0077bN8f1kvw-_bm1_WP6v7n97vrb_eV4ayeKkG6xnDNjalNIzhrDCVyTRGVayk5MrTGxApitWnWjDSCSd50tagl71qGaUcvwdd97zg3g22NLa_SXo3JDTrtVNRO_X0TXK828VHVUrBSVwquDgUpPsw2T2pw2VjvdbBxzgpLwmqGEBOvo0JQiQTCvKAfn491nOdJSQHYHjDly3Oy3RHBSC3q1aJVLVoVpoqovfqS-_JPzrhJT26xqZ1_Nf1pn3ZxVNs4p1DcqG2wzyk1tsu_4v-QL7f_ASLS0RE
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1055_s_0044_1779028
crossref_primary_10_1109_TNSRE_2024_3421551
crossref_primary_10_1016_j_neuron_2021_08_009
crossref_primary_10_1523_ENEURO_0063_20_2020
crossref_primary_10_1557_s43577_023_00537_0
crossref_primary_10_1038_s44222_023_00054_4
crossref_primary_10_1109_TNSRE_2016_2647255
crossref_primary_10_1186_s12915_021_01073_6
crossref_primary_10_1038_s41563_020_0679_7
crossref_primary_10_3389_fneur_2017_00573
crossref_primary_10_1016_j_ijhcs_2019_05_008
crossref_primary_10_1371_journal_pone_0165146
crossref_primary_10_1038_nbt_4200
crossref_primary_10_3389_fneur_2018_00785
crossref_primary_10_3390_rs13030527
crossref_primary_10_1088_1741_2552_ad33b3
crossref_primary_10_1109_MSP_2021_3057042
crossref_primary_10_3389_fnins_2017_00408
crossref_primary_10_1088_1741_2552_ac1984
crossref_primary_10_3389_fncir_2017_00020
crossref_primary_10_1038_s41551_020_0591_0
crossref_primary_10_1109_TNSRE_2019_2891362
crossref_primary_10_1126_sciadv_adg8602
crossref_primary_10_1088_1741_2552_aa9bfb
crossref_primary_10_3389_fnins_2019_01248
crossref_primary_10_1152_jn_00149_2017
crossref_primary_10_1088_1741_2552_aad872
crossref_primary_10_3389_fnins_2021_725384
crossref_primary_10_1109_TIM_2022_3157006
crossref_primary_10_3390_ma12121927
crossref_primary_10_3389_fnins_2022_818214
crossref_primary_10_3233_JCM_180880
crossref_primary_10_1186_s12984_024_01533_4
crossref_primary_10_1088_1741_2560_14_1_016005
crossref_primary_10_1038_s43856_024_00635_3
crossref_primary_10_1109_TBME_2020_3037934
crossref_primary_10_1088_1741_2552_ad9405
crossref_primary_10_1016_j_mtcomm_2021_102853
crossref_primary_10_1088_1361_6439_aab061
crossref_primary_10_3389_fnbot_2019_00094
crossref_primary_10_1088_1741_2552_aaab6f
crossref_primary_10_1109_ACCESS_2020_2975149
crossref_primary_10_1088_1741_2552_aa7329
crossref_primary_10_3390_s21217088
crossref_primary_10_1088_1741_2552_ac4ed1
crossref_primary_10_3389_fnins_2018_00110
crossref_primary_10_1002_jdn_10166
crossref_primary_10_3390_electronics9010174
crossref_primary_10_1109_TCDS_2024_3409555
crossref_primary_10_1109_TBME_2022_3210286
crossref_primary_10_3171_2019_1_JNS181840
crossref_primary_10_1371_journal_pone_0234178
crossref_primary_10_1016_j_neuroimage_2022_118969
crossref_primary_10_1016_j_jneumeth_2017_10_022
crossref_primary_10_1088_1741_2552_abe20d
crossref_primary_10_1088_1741_2552_ab2214
crossref_primary_10_1088_2516_1091_acac57
crossref_primary_10_1016_j_jphysparis_2017_03_002
crossref_primary_10_1007_s00221_018_5441_x
crossref_primary_10_7554_eLife_74478
crossref_primary_10_1088_1741_2552_acd3b1
crossref_primary_10_1142_S0129065721500106
crossref_primary_10_1177_1729881419874962
crossref_primary_10_1038_s41598_020_77953_8
crossref_primary_10_1007_s40719_018_0142_2
crossref_primary_10_3389_fnins_2016_00584
crossref_primary_10_1088_2057_1976_aac3ac
crossref_primary_10_1111_ejn_14342
crossref_primary_10_1063_1_5049191
crossref_primary_10_3389_fnhum_2020_00111
crossref_primary_10_1002_adma_202107902
crossref_primary_10_1021_acsnano_3c06781
crossref_primary_10_1080_2326263X_2016_1275488
crossref_primary_10_1038_srep45486
crossref_primary_10_1109_ACCESS_2020_2990881
crossref_primary_10_1088_1741_2552_ab9986
crossref_primary_10_1088_1741_2552_ab9987
crossref_primary_10_1088_1741_2552_aaeb1a
crossref_primary_10_3389_fnins_2022_1009878
crossref_primary_10_1088_1741_2552_ad1053
crossref_primary_10_1186_s42490_019_0022_z
crossref_primary_10_1007_s13311_018_00692_2
crossref_primary_10_3390_fi15010014
crossref_primary_10_1126_scitranslmed_aay4682
crossref_primary_10_3389_fnins_2019_00901
crossref_primary_10_1088_1741_2552_ac59a0
crossref_primary_10_1016_j_neuroimage_2016_12_074
crossref_primary_10_1176_appi_neuropsych_20100268
crossref_primary_10_1016_j_cobme_2019_09_002
crossref_primary_10_1088_1741_2552_ab848b
crossref_primary_10_1002_mus_26860
crossref_primary_10_3389_fninf_2017_00041
crossref_primary_10_1126_sciadv_adf9524
crossref_primary_10_1152_jn_00070_2017
crossref_primary_10_1109_RBME_2021_3056455
crossref_primary_10_1002_admt_202100942
crossref_primary_10_1088_1741_2552_ab8343
crossref_primary_10_1016_j_futures_2021_102819
crossref_primary_10_1109_MSMC_2023_3238855
crossref_primary_10_1007_s42242_024_00278_2
crossref_primary_10_1088_1741_2560_13_4_046019
crossref_primary_10_1371_journal_pone_0221510
crossref_primary_10_1038_s41598_017_15767_x
crossref_primary_10_1080_08990220_2024_2358522
crossref_primary_10_1088_1741_2552_aaf13f
crossref_primary_10_1088_1741_2552_ab3189
crossref_primary_10_1088_1741_2552_adb88e
crossref_primary_10_1152_physrev_00030_2023
crossref_primary_10_3389_fninf_2019_00074
crossref_primary_10_1159_000446698
crossref_primary_10_1093_neuros_nyaa026
crossref_primary_10_3389_fnins_2019_00804
crossref_primary_10_3389_fnins_2020_00100
crossref_primary_10_3390_s21010178
crossref_primary_10_3390_s21062096
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1038_s41598_022_04953_1
Cites_doi 10.1523/JNEUROSCI.16-23-07688.1996
10.1126/science.7792606
10.1152/jn.2001.86.5.2125
10.1038/nn1873
10.1016/S0140-6736(12)61816-9
10.1016/j.clinph.2015.01.005
10.1523/JNEUROSCI.21-17-06820.2001
10.1163/156856897X00357
10.1088/1741-2560/6/6/066001
10.1109/TNSRE.2013.2286955
10.1523/JNEUROSCI.0271-12.2013
10.1088/1741-2560/7/4/046002
10.1523/JNEUROSCI.4088-04.2005
10.3171/jns.2007.106.3.495
10.1016/j.neures.2014.05.005
10.1371/journal.pbio.0000042
10.1097/00001756-199612200-00042
10.1016/j.neuroimage.2005.04.025
10.1002/ana.22613
10.1109/TNSRE.2013.2294685
10.1371/journal.pone.0055344
10.1038/nature06996
10.1038/nature11076
10.1152/jn.00760.2006
10.1089/neu.2008.0688
10.1088/1741-2560/10/2/026002
10.1093/cercor/bhh116
10.1371/journal.pbio.1000153
10.1073/pnas.0913697107
10.1016/j.conb.2008.09.017
10.1093/cercor/bhm257
10.1016/j.neuroimage.2004.07.027
10.3389/fnins.2012.00091
10.1109/TNSRE.2007.916269
10.1007/s00429-014-0902-x
10.1016/j.neuroimage.2011.06.084
10.1109/IEMBS.2009.5333704
10.3389/fnins.2012.00029
10.1109/EMBC.2014.6944715
10.1126/science.8332915
10.1016/j.neuroimage.2014.07.002
10.1093/brain/awh648
10.1109/TBME.2006.870235
10.1016/j.neuroimage.2007.07.065
10.1093/brain/awl180
10.1523/JNEUROSCI.5506-08.2009
10.1093/brain/awl154
10.1152/jn.00162.2007
10.3389/fneng.2010.00003
10.3171/2011.1.JNS101421
10.1093/biostatistics/kxj035
10.1109/TBME.2010.2047015
10.1088/1741-2560/12/1/016011
ContentType Journal Article
Copyright 2016 IOP Publishing Ltd
Copyright_xml – notice: 2016 IOP Publishing Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
DOI 10.1088/1741-2560/13/2/026017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic
Computer and Information Systems Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject
EISSN 1741-2552
EndPage 026017
ExternalDocumentID PMC4875758
26863276
10_1088_1741_2560_13_2_026017
jneaa10ab
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 1R01NS088606-01
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NINDS NIH HHS
  grantid: R01 NS088606
– fundername: NINDS NIH HHS
  grantid: 1R01NS088606-01
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
CITATION
02O
1WK
AERVB
AHSEE
ARNYC
BBWZM
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
JCGBZ
NPM
Q02
RNS
S3P
7X8
AEINN
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c654t-72fbc6a6cc4cb765bc3289303898860c3412e72eacb952b7586bf47486fd513f3
IEDL.DBID IOP
ISSN 1741-2560
IngestDate Thu Aug 21 18:00:39 EDT 2025
Fri Sep 05 10:19:53 EDT 2025
Thu Sep 04 17:25:48 EDT 2025
Wed Feb 19 01:55:25 EST 2025
Tue Jul 01 01:58:36 EDT 2025
Thu Apr 24 22:59:42 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
Fri Jan 08 09:41:22 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c654t-72fbc6a6cc4cb765bc3289303898860c3412e72eacb952b7586bf47486fd513f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0782-9068
OpenAccessLink http://doi.org/10.1088/1741-2560/13/2/026017
PMID 26863276
PQID 1773807016
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_26863276
proquest_miscellaneous_1825450057
proquest_miscellaneous_1773807016
crossref_primary_10_1088_1741_2560_13_2_026017
crossref_citationtrail_10_1088_1741_2560_13_2_026017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875758
iop_journals_10_1088_1741_2560_13_2_026017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
Shoham D (37) 2001; 21
46
47
48
Johannes M S (28) 2011; 30
Powell T P (49) 1959; 105
50
51
52
53
10
54
11
55
12
13
14
Schieber M H (25) 2001; 86
15
16
Kubanek J (1) 2009; 6
17
18
2
3
4
5
6
8
20
21
22
23
24
26
27
29
McMullen D (41) 2014; 22
Muelling K (56) 2015
30
31
32
Chestek C A (9) 2013; 10
34
35
36
38
39
Wodlinger B (19) 2015; 12
Acharya S (7) 2010; 7
Porro C A (33) 1996; 16
40
42
43
15238440 - Cereb Cortex. 2005 Feb;15(2):131-40
17367076 - J Neurosurg. 2007 Mar;106(3):495-500
22596161 - Nature. 2012 May 17;485(7398):372-5
21763434 - Neuroimage. 2012 Jan 2;59(1):248-60
25571083 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4872-5
20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84
20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5
8332915 - Science. 1993 Jul 23;261(5120):489-92
14624244 - PLoS Biol. 2003 Nov;1(2):E42
11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43
23345208 - J Neurosci. 2013 Jan 23;33(4):1326-30
16603682 - Biostatistics. 2007 Jan;8(1):86-100
18848626 - Curr Opin Neurobiol. 2008 Dec;18(6):552-7
17369825 - Nat Neurosci. 2007 Apr;10(4):417-9
9176952 - Spat Vis. 1997;10(4):433-6
19794237 - J Neural Eng. 2009 Dec;6(6):066001
18303801 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):15-23
25514320 - J Neural Eng. 2015 Feb;12(1):016011
18245039 - Cereb Cortex. 2008 Oct;18(10):2341-51
16799174 - Brain. 2006 Aug;129(Pt 8):2211-23
8922425 - J Neurosci. 1996 Dec 1;16(23):7688-98
24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96
19604097 - J Neurotrauma. 2009 Nov;26(11):2113-26
19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7
11517270 - J Neurosci. 2001 Sep 1;21(17):6820-35
17615137 - J Neurophysiol. 2007 Sep;98(3):1140-54
16761843 - IEEE Trans Biomed Eng. 2006 Jun;53(6):1164-73
14434571 - Bull Johns Hopkins Hosp. 1959 Sep;105:133-62
21314273 - J Neurosurg. 2011 Jun;114(6):1715-22
17428905 - J Neurophysiol. 2007 Jul;98(1):327-33
24235276 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):695-705
16046149 - Neuroimage. 2005 Sep;27(3):505-19
16246866 - Brain. 2005 Dec;128(Pt 12):2941-50
22754496 - Front Neurosci. 2012 Jun 28;6:91
19964229 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:586-9
25273279 - Brain Struct Funct. 2016 Jan;221(1):203-16
23369953 - J Neural Eng. 2013 Apr;10(2):026002
25026157 - Neuroimage. 2014 Nov 1;101:177-84
20489239 - J Neural Eng. 2010 Aug;7(4):046002
15888644 - J Neurosci. 2005 May 11;25(19):4681-93
16844715 - Brain. 2006 Aug;129(Pt 8):2202-10
23253623 - Lancet. 2013 Feb 16;381(9866):557-64
7792606 - Science. 1995 Jun 23;268(5218):1775-7
22052728 - Ann Neurol. 2012 Mar;71(3):353-61
22408601 - Front Neurosci. 2012 Mar 06;6:29
15501099 - Neuroimage. 2004;23 Suppl 1:S34-45
19621062 - PLoS Biol. 2009 Jul;7(7):e1000153
20407639 - Front Neuroeng. 2010 Mar 30;3:3
18509337 - Nature. 2008 Jun 19;453(7198):1098-101
23405137 - PLoS One. 2013;8(2):e55344
17919932 - Neuroimage. 2008 Jan 1;39(1):383-94
18164485 - Neurotherapeutics. 2008 Jan;5(1):68-74
9051782 - Neuroreport. 1996 Dec 20;8(1):207-10
24880133 - Neurosci Res. 2014 Aug;85:20-7
References_xml – volume: 16
  start-page: 7688
  year: 1996
  ident: 33
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-23-07688.1996
– ident: 22
  doi: 10.1126/science.7792606
– volume: 86
  start-page: 2125
  year: 2001
  ident: 25
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.5.2125
– ident: 32
  doi: 10.1038/nn1873
– ident: 18
  doi: 10.1016/S0140-6736(12)61816-9
– ident: 52
  doi: 10.1016/j.clinph.2015.01.005
– volume: 21
  start-page: 6820
  year: 2001
  ident: 37
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-17-06820.2001
– ident: 36
  doi: 10.1163/156856897X00357
– volume: 105
  start-page: 133
  year: 1959
  ident: 49
  publication-title: Bull. Johns Hopkins Hosp.
– volume: 6
  issn: 1741-2552
  year: 2009
  ident: 1
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/6/066001
– ident: 12
  doi: 10.1109/TNSRE.2013.2286955
– ident: 55
  doi: 10.1523/JNEUROSCI.0271-12.2013
– volume: 7
  issn: 1741-2552
  year: 2010
  ident: 7
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/4/046002
– ident: 54
  doi: 10.1523/JNEUROSCI.4088-04.2005
– ident: 35
  doi: 10.3171/jns.2007.106.3.495
– ident: 6
  doi: 10.1016/j.neures.2014.05.005
– ident: 13
  doi: 10.1371/journal.pbio.0000042
– ident: 46
  doi: 10.1097/00001756-199612200-00042
– ident: 34
  doi: 10.1016/j.neuroimage.2005.04.025
– ident: 11
  doi: 10.1002/ana.22613
– volume: 22
  start-page: 784
  issn: 1534-4320
  year: 2014
  ident: 41
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2294685
– ident: 43
  doi: 10.1371/journal.pone.0055344
– ident: 15
  doi: 10.1038/nature06996
– ident: 17
  doi: 10.1038/nature11076
– ident: 20
  doi: 10.1152/jn.00760.2006
– ident: 30
  doi: 10.1089/neu.2008.0688
– volume: 10
  issn: 1741-2552
  year: 2013
  ident: 9
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/2/026002
– year: 2015
  ident: 56
– ident: 47
  doi: 10.1093/cercor/bhh116
– ident: 53
  doi: 10.1371/journal.pbio.1000153
– ident: 31
  doi: 10.1073/pnas.0913697107
– ident: 50
  doi: 10.1016/j.conb.2008.09.017
– ident: 48
  doi: 10.1093/cercor/bhm257
– ident: 29
  doi: 10.1016/j.neuroimage.2004.07.027
– ident: 5
  doi: 10.3389/fnins.2012.00091
– ident: 2
  doi: 10.1109/TNSRE.2007.916269
– ident: 10
  doi: 10.1007/s00429-014-0902-x
– ident: 8
  doi: 10.1016/j.neuroimage.2011.06.084
– ident: 3
  doi: 10.1109/IEMBS.2009.5333704
– ident: 4
  doi: 10.3389/fnins.2012.00029
– ident: 21
  doi: 10.1109/EMBC.2014.6944715
– ident: 23
  doi: 10.1126/science.8332915
– ident: 26
  doi: 10.1016/j.neuroimage.2014.07.002
– ident: 39
  doi: 10.1093/brain/awh648
– ident: 14
  doi: 10.1109/TBME.2006.870235
– ident: 38
  doi: 10.1016/j.neuroimage.2007.07.065
– ident: 44
  doi: 10.1093/brain/awl180
– ident: 27
  doi: 10.1523/JNEUROSCI.5506-08.2009
– volume: 30
  start-page: 207
  issn: 0270-5214
  year: 2011
  ident: 28
  publication-title: Johns Hopkins APL Tech. Dig.
– ident: 45
  doi: 10.1093/brain/awl154
– ident: 51
  doi: 10.1152/jn.00162.2007
– ident: 24
  doi: 10.3389/fneng.2010.00003
– ident: 42
  doi: 10.3171/2011.1.JNS101421
– ident: 40
  doi: 10.1093/biostatistics/kxj035
– ident: 16
  doi: 10.1109/TBME.2010.2047015
– volume: 12
  issn: 1741-2552
  year: 2015
  ident: 19
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/1/016011
– reference: 19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7
– reference: 11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43
– reference: 17367076 - J Neurosurg. 2007 Mar;106(3):495-500
– reference: 16603682 - Biostatistics. 2007 Jan;8(1):86-100
– reference: 16246866 - Brain. 2005 Dec;128(Pt 12):2941-50
– reference: 18848626 - Curr Opin Neurobiol. 2008 Dec;18(6):552-7
– reference: 22596161 - Nature. 2012 May 17;485(7398):372-5
– reference: 15238440 - Cereb Cortex. 2005 Feb;15(2):131-40
– reference: 19621062 - PLoS Biol. 2009 Jul;7(7):e1000153
– reference: 16046149 - Neuroimage. 2005 Sep;27(3):505-19
– reference: 17369825 - Nat Neurosci. 2007 Apr;10(4):417-9
– reference: 15888644 - J Neurosci. 2005 May 11;25(19):4681-93
– reference: 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60
– reference: 22052728 - Ann Neurol. 2012 Mar;71(3):353-61
– reference: 17428905 - J Neurophysiol. 2007 Jul;98(1):327-33
– reference: 19964229 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:586-9
– reference: 25514320 - J Neural Eng. 2015 Feb;12(1):016011
– reference: 16761843 - IEEE Trans Biomed Eng. 2006 Jun;53(6):1164-73
– reference: 8922425 - J Neurosci. 1996 Dec 1;16(23):7688-98
– reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001
– reference: 14434571 - Bull Johns Hopkins Hosp. 1959 Sep;105:133-62
– reference: 9051782 - Neuroreport. 1996 Dec 20;8(1):207-10
– reference: 20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5
– reference: 18303801 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):15-23
– reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64
– reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101
– reference: 20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84
– reference: 17615137 - J Neurophysiol. 2007 Sep;98(3):1140-54
– reference: 23405137 - PLoS One. 2013;8(2):e55344
– reference: 17919932 - Neuroimage. 2008 Jan 1;39(1):383-94
– reference: 20489239 - J Neural Eng. 2010 Aug;7(4):046002
– reference: 25026157 - Neuroimage. 2014 Nov 1;101:177-84
– reference: 14624244 - PLoS Biol. 2003 Nov;1(2):E42
– reference: 7792606 - Science. 1995 Jun 23;268(5218):1775-7
– reference: 23345208 - J Neurosci. 2013 Jan 23;33(4):1326-30
– reference: 22754496 - Front Neurosci. 2012 Jun 28;6:91
– reference: 24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96
– reference: 11517270 - J Neurosci. 2001 Sep 1;21(17):6820-35
– reference: 9176952 - Spat Vis. 1997;10(4):433-6
– reference: 21314273 - J Neurosurg. 2011 Jun;114(6):1715-22
– reference: 18164485 - Neurotherapeutics. 2008 Jan;5(1):68-74
– reference: 22408601 - Front Neurosci. 2012 Mar 06;6:29
– reference: 25571083 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4872-5
– reference: 18245039 - Cereb Cortex. 2008 Oct;18(10):2341-51
– reference: 20407639 - Front Neuroeng. 2010 Mar 30;3:3
– reference: 19604097 - J Neurotrauma. 2009 Nov;26(11):2113-26
– reference: 24235276 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):695-705
– reference: 24880133 - Neurosci Res. 2014 Aug;85:20-7
– reference: 16799174 - Brain. 2006 Aug;129(Pt 8):2211-23
– reference: 23369953 - J Neural Eng. 2013 Apr;10(2):026002
– reference: 16844715 - Brain. 2006 Aug;129(Pt 8):2202-10
– reference: 15501099 - Neuroimage. 2004;23 Suppl 1:S34-45
– reference: 8332915 - Science. 1993 Jul 23;261(5120):489-92
– reference: 25273279 - Brain Struct Funct. 2016 Jan;221(1):203-16
SSID ssj0031790
Score 2.5063527
Snippet Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual...
We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers....
OBJECTIVEWe used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic...
SourceID pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26017
SubjectTerms Activation
Artificial Limbs
BMI
brain-computer interface
Brain-Computer Interfaces
brain-machine interface
Classification
ECoG
electrocorticography
Electrocorticography - methods
Electrodes
Electrodes, Implanted
finger
Fingers
Fingers - physiology
Humans
Male
Modular
Movement - physiology
Movements
neural control
Online
Prosthetics
Sensorimotor Cortex - physiology
User-Computer Interface
Vibration
Young Adult
Title Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject
URI https://iopscience.iop.org/article/10.1088/1741-2560/13/2/026017
https://www.ncbi.nlm.nih.gov/pubmed/26863276
https://www.proquest.com/docview/1773807016
https://www.proquest.com/docview/1825450057
https://pubmed.ncbi.nlm.nih.gov/PMC4875758
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4XHrpA_pY-pAroR4qZXdjx473iKoi4EB7KBI3y3bssi2bbEv2AL--M7Gz2kWlqOIWyWMrfs6M_c03hOx7q8a8MCwzgePVTWHgHBxPsgn3FvZlZfIIkD2VR2fFybk4X4ninzbzdPQP4TMSBcchTIA4NQIbOs9QU49yPmKjjhSr3CTbXEmJyRuOv3ztz2KO_FMxJDJW6WN47mpmTTttwh_8zfC8jZ9cUUiHT4jpuxJxKD-Hi9YO3c0tlseH9PUpeZysVXoQ5Z-RDV_vkN2DGjz12TX9QDv8aHcxv0t-HS9ju2joLgtpwsHTJlBDZ02FkFc6xziTC4ydpJfTmaWIvP9OkTY5qxBN317TlJsHHGOQSpzadFpDI11KQXq1sHh99JycHX7-9ukoSwkdMidF0WYlC9ZJI50rnC2lsI6Dv8eR408pOXagUZkvGegCOxHMgisjbYD1o2SoRM4Df0G26qb2rwgFr4hXVSHGVuVF7oU1XvAKyf6NYXlgA1L0E6ldYjvHpBuXunt1V0rj0GocWp1zzXQc2gEZLqvNI93HfRU-wtzptPGv7hOma8I_ar9arOdVGJD3_XrTsNHx9cbUvllAy2WJyQHARP-HDPr7AgOMB-RlXKPLbjCpJGcl1C7XVu9SAInG10vq6UVHOI5OLUzG3v_09TV5BLaljCCnN2Sr_b3wb8F-a-27bov-AVzpN0Y
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RUJcyqNQFigYCXFAymZjx072WLWsuoBKD1TqzbITp93STbY0eyi_npk4iboVUCFukTJjxc-Zcb75BuCds-lIxIYHphB0dRMbPAdH42AsnMV9mZvIA2QP1cFx_OlEnqzBfp8LUy3ao3-Ij54o2A9hC4hLQ_Sho4AsdRiJkIcNKVYSLvJiHe5JoQTVMZh-PerOY0EcVD4t0qt1eTx_amrFQq3jV_zO-byNobxhlCYPwXXd8ViU78NlbYfZz1tMj__b30ew2XqtbNfrPIY1Vz6Brd0SI_b5NXvPGhxpc0G_BZfTPseLFc2lIWvx8KwqmGHzKifoK1tQvskZ5VCyi9ncMkLgnzKiTw5yQtXX16yt0YMBMkq13NpsVmIjTWlBdrW0dI30FI4nH7_tHQRtYYcgUzKug4QXNlNGZVmc2URJmwmM-wRx_aWpGmVoWblLONoEO5bcYkijbIHrKFVFLiNRiGewUValew4MoyOR57Ec2TSKIyetcVLkRPpvDI8KPoC4m0ydtaznVHzjQjd_39NU0_BqGl4dCc21H94BDHu1haf9uEvhA86fbg-Aq7uE2YrweeluvtY4twN42605jRue_uKY0lVLbDlJqEgAuup_kaG4X1Ki8QC2_Trtu8FVinskQe1kZQX3AkQ4vvqmnJ01xOMU3OJkvPiXvr6B-0f7E_1levj5JTxAd1N53NMr2Kh_LN0OunS1fd3s2F8Yzjyq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+finger+control+of+a+modular+prosthetic+limb+using+high-density+electrocorticography+in+a+human+subject&rft.jtitle=Journal+of+neural+engineering&rft.au=Hotson%2C+Guy&rft.au=McMullen%2C+David+P&rft.au=Fifer%2C+Matthew+S&rft.au=Johannes%2C+Matthew+S&rft.date=2016-04-01&rft.eissn=1741-2552&rft.volume=13&rft.issue=2&rft.spage=026017&rft.epage=026017&rft_id=info:doi/10.1088%2F1741-2560%2F13%2F2%2F026017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon