Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject
Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functi...
Saved in:
Published in | Journal of neural engineering Vol. 13; no. 2; p. 26017 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.04.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 |
DOI | 10.1088/1741-2560/13/2/026017 |
Cover
Loading…
Abstract | Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. |
---|---|
AbstractList | OBJECTIVEWe used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers.APPROACHUsing high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb.MAIN RESULTSThe balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control.SIGNIFICANCEOur results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. |
Author | Thakor, Nitish V Anderson, William S Johannes, Matthew S Para, Matthew P Armiger, Robert Hotson, Guy Fifer, Matthew S Wester, Brock A Crone, Nathan E McMullen, David P Katyal, Kapil D |
AuthorAffiliation | 2 Department of Neurosurgery, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA 5 Department of Neurology, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA 4 Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA 1 Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N Charles, Baltimore, MD 21218, USA 3 Department of Biomedical Engineering, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA |
AuthorAffiliation_xml | – name: 2 Department of Neurosurgery, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA – name: 5 Department of Neurology, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA – name: 1 Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N Charles, Baltimore, MD 21218, USA – name: 3 Department of Biomedical Engineering, Johns Hopkins University, 600 N Wolfe, Baltimore, MD 21205, USA – name: 4 Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA |
Author_xml | – sequence: 1 givenname: Guy surname: Hotson fullname: Hotson, Guy email: Hotson.Guy@gmail.com organization: Johns Hopkins University Department of Electrical and Computer Engineering, 3400 N Charles, Baltimore, MD 21218, USA – sequence: 2 givenname: David P orcidid: 0000-0003-0782-9068 surname: McMullen fullname: McMullen, David P organization: Johns Hopkins University Department of Neurosurgery, 600 N Wolfe, Baltimore, MD 21205, USA – sequence: 3 givenname: Matthew S surname: Fifer fullname: Fifer, Matthew S organization: Johns Hopkins University Department of Biomedical Engineering, 600 N Wolfe, Baltimore, MD 21205, USA – sequence: 4 givenname: Matthew S surname: Johannes fullname: Johannes, Matthew S organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA – sequence: 5 givenname: Kapil D surname: Katyal fullname: Katyal, Kapil D organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA – sequence: 6 givenname: Matthew P surname: Para fullname: Para, Matthew P organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA – sequence: 7 givenname: Robert surname: Armiger fullname: Armiger, Robert organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA – sequence: 8 givenname: William S surname: Anderson fullname: Anderson, William S organization: Johns Hopkins University Department of Neurosurgery, 600 N Wolfe, Baltimore, MD 21205, USA – sequence: 9 givenname: Nitish V surname: Thakor fullname: Thakor, Nitish V organization: Johns Hopkins University Department of Biomedical Engineering, 600 N Wolfe, Baltimore, MD 21205, USA – sequence: 10 givenname: Brock A surname: Wester fullname: Wester, Brock A organization: Applied Neuroscience, JHU Applied Physics Laboratory, 7701 Montpelier Rd, Laurel, MD 20723, USA – sequence: 11 givenname: Nathan E surname: Crone fullname: Crone, Nathan E organization: Johns Hopkins University Department of Neurology, 600 N Wolfe, Baltimore, MD 21205, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26863276$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtrHCEYhqUkNIf2J7R419xM18N4WAqFEpI2EOhNey2O4-y4ODrRmcD--zrsZklLSa4Ufd6XT58LcBJisAB8wOgzRlKusKhxRRhHK0xXZIUIR1i8AeeHc0ZOjnuOzsBFzluEKBZr9BacES45JYKfg4e70LpH187aw86FjU3QxDCl6GHsoIZDbGevExxTzFNvJ2egd0MD51xg2LtNX7U2ZDftoPXWlKCJqVBxk_TY76ALpaSfBx1gnpttId6B0077bN8f1kvw-_bm1_WP6v7n97vrb_eV4ayeKkG6xnDNjalNIzhrDCVyTRGVayk5MrTGxApitWnWjDSCSd50tagl71qGaUcvwdd97zg3g22NLa_SXo3JDTrtVNRO_X0TXK828VHVUrBSVwquDgUpPsw2T2pw2VjvdbBxzgpLwmqGEBOvo0JQiQTCvKAfn491nOdJSQHYHjDly3Oy3RHBSC3q1aJVLVoVpoqovfqS-_JPzrhJT26xqZ1_Nf1pn3ZxVNs4p1DcqG2wzyk1tsu_4v-QL7f_ASLS0RE |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1055_s_0044_1779028 crossref_primary_10_1109_TNSRE_2024_3421551 crossref_primary_10_1016_j_neuron_2021_08_009 crossref_primary_10_1523_ENEURO_0063_20_2020 crossref_primary_10_1557_s43577_023_00537_0 crossref_primary_10_1038_s44222_023_00054_4 crossref_primary_10_1109_TNSRE_2016_2647255 crossref_primary_10_1186_s12915_021_01073_6 crossref_primary_10_1038_s41563_020_0679_7 crossref_primary_10_3389_fneur_2017_00573 crossref_primary_10_1016_j_ijhcs_2019_05_008 crossref_primary_10_1371_journal_pone_0165146 crossref_primary_10_1038_nbt_4200 crossref_primary_10_3389_fneur_2018_00785 crossref_primary_10_3390_rs13030527 crossref_primary_10_1088_1741_2552_ad33b3 crossref_primary_10_1109_MSP_2021_3057042 crossref_primary_10_3389_fnins_2017_00408 crossref_primary_10_1088_1741_2552_ac1984 crossref_primary_10_3389_fncir_2017_00020 crossref_primary_10_1038_s41551_020_0591_0 crossref_primary_10_1109_TNSRE_2019_2891362 crossref_primary_10_1126_sciadv_adg8602 crossref_primary_10_1088_1741_2552_aa9bfb crossref_primary_10_3389_fnins_2019_01248 crossref_primary_10_1152_jn_00149_2017 crossref_primary_10_1088_1741_2552_aad872 crossref_primary_10_3389_fnins_2021_725384 crossref_primary_10_1109_TIM_2022_3157006 crossref_primary_10_3390_ma12121927 crossref_primary_10_3389_fnins_2022_818214 crossref_primary_10_3233_JCM_180880 crossref_primary_10_1186_s12984_024_01533_4 crossref_primary_10_1088_1741_2560_14_1_016005 crossref_primary_10_1038_s43856_024_00635_3 crossref_primary_10_1109_TBME_2020_3037934 crossref_primary_10_1088_1741_2552_ad9405 crossref_primary_10_1016_j_mtcomm_2021_102853 crossref_primary_10_1088_1361_6439_aab061 crossref_primary_10_3389_fnbot_2019_00094 crossref_primary_10_1088_1741_2552_aaab6f crossref_primary_10_1109_ACCESS_2020_2975149 crossref_primary_10_1088_1741_2552_aa7329 crossref_primary_10_3390_s21217088 crossref_primary_10_1088_1741_2552_ac4ed1 crossref_primary_10_3389_fnins_2018_00110 crossref_primary_10_1002_jdn_10166 crossref_primary_10_3390_electronics9010174 crossref_primary_10_1109_TCDS_2024_3409555 crossref_primary_10_1109_TBME_2022_3210286 crossref_primary_10_3171_2019_1_JNS181840 crossref_primary_10_1371_journal_pone_0234178 crossref_primary_10_1016_j_neuroimage_2022_118969 crossref_primary_10_1016_j_jneumeth_2017_10_022 crossref_primary_10_1088_1741_2552_abe20d crossref_primary_10_1088_1741_2552_ab2214 crossref_primary_10_1088_2516_1091_acac57 crossref_primary_10_1016_j_jphysparis_2017_03_002 crossref_primary_10_1007_s00221_018_5441_x crossref_primary_10_7554_eLife_74478 crossref_primary_10_1088_1741_2552_acd3b1 crossref_primary_10_1142_S0129065721500106 crossref_primary_10_1177_1729881419874962 crossref_primary_10_1038_s41598_020_77953_8 crossref_primary_10_1007_s40719_018_0142_2 crossref_primary_10_3389_fnins_2016_00584 crossref_primary_10_1088_2057_1976_aac3ac crossref_primary_10_1111_ejn_14342 crossref_primary_10_1063_1_5049191 crossref_primary_10_3389_fnhum_2020_00111 crossref_primary_10_1002_adma_202107902 crossref_primary_10_1021_acsnano_3c06781 crossref_primary_10_1080_2326263X_2016_1275488 crossref_primary_10_1038_srep45486 crossref_primary_10_1109_ACCESS_2020_2990881 crossref_primary_10_1088_1741_2552_ab9986 crossref_primary_10_1088_1741_2552_ab9987 crossref_primary_10_1088_1741_2552_aaeb1a crossref_primary_10_3389_fnins_2022_1009878 crossref_primary_10_1088_1741_2552_ad1053 crossref_primary_10_1186_s42490_019_0022_z crossref_primary_10_1007_s13311_018_00692_2 crossref_primary_10_3390_fi15010014 crossref_primary_10_1126_scitranslmed_aay4682 crossref_primary_10_3389_fnins_2019_00901 crossref_primary_10_1088_1741_2552_ac59a0 crossref_primary_10_1016_j_neuroimage_2016_12_074 crossref_primary_10_1176_appi_neuropsych_20100268 crossref_primary_10_1016_j_cobme_2019_09_002 crossref_primary_10_1088_1741_2552_ab848b crossref_primary_10_1002_mus_26860 crossref_primary_10_3389_fninf_2017_00041 crossref_primary_10_1126_sciadv_adf9524 crossref_primary_10_1152_jn_00070_2017 crossref_primary_10_1109_RBME_2021_3056455 crossref_primary_10_1002_admt_202100942 crossref_primary_10_1088_1741_2552_ab8343 crossref_primary_10_1016_j_futures_2021_102819 crossref_primary_10_1109_MSMC_2023_3238855 crossref_primary_10_1007_s42242_024_00278_2 crossref_primary_10_1088_1741_2560_13_4_046019 crossref_primary_10_1371_journal_pone_0221510 crossref_primary_10_1038_s41598_017_15767_x crossref_primary_10_1080_08990220_2024_2358522 crossref_primary_10_1088_1741_2552_aaf13f crossref_primary_10_1088_1741_2552_ab3189 crossref_primary_10_1088_1741_2552_adb88e crossref_primary_10_1152_physrev_00030_2023 crossref_primary_10_3389_fninf_2019_00074 crossref_primary_10_1159_000446698 crossref_primary_10_1093_neuros_nyaa026 crossref_primary_10_3389_fnins_2019_00804 crossref_primary_10_3389_fnins_2020_00100 crossref_primary_10_3390_s21010178 crossref_primary_10_3390_s21062096 crossref_primary_10_3389_fnins_2018_00540 crossref_primary_10_1038_s41598_022_04953_1 |
Cites_doi | 10.1523/JNEUROSCI.16-23-07688.1996 10.1126/science.7792606 10.1152/jn.2001.86.5.2125 10.1038/nn1873 10.1016/S0140-6736(12)61816-9 10.1016/j.clinph.2015.01.005 10.1523/JNEUROSCI.21-17-06820.2001 10.1163/156856897X00357 10.1088/1741-2560/6/6/066001 10.1109/TNSRE.2013.2286955 10.1523/JNEUROSCI.0271-12.2013 10.1088/1741-2560/7/4/046002 10.1523/JNEUROSCI.4088-04.2005 10.3171/jns.2007.106.3.495 10.1016/j.neures.2014.05.005 10.1371/journal.pbio.0000042 10.1097/00001756-199612200-00042 10.1016/j.neuroimage.2005.04.025 10.1002/ana.22613 10.1109/TNSRE.2013.2294685 10.1371/journal.pone.0055344 10.1038/nature06996 10.1038/nature11076 10.1152/jn.00760.2006 10.1089/neu.2008.0688 10.1088/1741-2560/10/2/026002 10.1093/cercor/bhh116 10.1371/journal.pbio.1000153 10.1073/pnas.0913697107 10.1016/j.conb.2008.09.017 10.1093/cercor/bhm257 10.1016/j.neuroimage.2004.07.027 10.3389/fnins.2012.00091 10.1109/TNSRE.2007.916269 10.1007/s00429-014-0902-x 10.1016/j.neuroimage.2011.06.084 10.1109/IEMBS.2009.5333704 10.3389/fnins.2012.00029 10.1109/EMBC.2014.6944715 10.1126/science.8332915 10.1016/j.neuroimage.2014.07.002 10.1093/brain/awh648 10.1109/TBME.2006.870235 10.1016/j.neuroimage.2007.07.065 10.1093/brain/awl180 10.1523/JNEUROSCI.5506-08.2009 10.1093/brain/awl154 10.1152/jn.00162.2007 10.3389/fneng.2010.00003 10.3171/2011.1.JNS101421 10.1093/biostatistics/kxj035 10.1109/TBME.2010.2047015 10.1088/1741-2560/12/1/016011 |
ContentType | Journal Article |
Copyright | 2016 IOP Publishing Ltd |
Copyright_xml | – notice: 2016 IOP Publishing Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D 5PM |
DOI | 10.1088/1741-2560/13/2/026017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | MEDLINE - Academic Computer and Information Systems Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject |
EISSN | 1741-2552 |
EndPage | 026017 |
ExternalDocumentID | PMC4875758 26863276 10_1088_1741_2560_13_2_026017 jneaa10ab |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: 1R01NS088606-01 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NINDS NIH HHS grantid: R01 NS088606 – fundername: NINDS NIH HHS grantid: 1R01NS088606-01 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX ADEQX CITATION 02O 1WK AERVB AHSEE ARNYC BBWZM CGR CUY CVF ECM EIF FEDTE HVGLF JCGBZ NPM Q02 RNS S3P 7X8 AEINN 7SC 8FD JQ2 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c654t-72fbc6a6cc4cb765bc3289303898860c3412e72eacb952b7586bf47486fd513f3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 |
IngestDate | Thu Aug 21 18:00:39 EDT 2025 Fri Sep 05 10:19:53 EDT 2025 Thu Sep 04 17:25:48 EDT 2025 Wed Feb 19 01:55:25 EST 2025 Tue Jul 01 01:58:36 EDT 2025 Thu Apr 24 22:59:42 EDT 2025 Wed Aug 21 03:33:55 EDT 2024 Fri Jan 08 09:41:22 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c654t-72fbc6a6cc4cb765bc3289303898860c3412e72eacb952b7586bf47486fd513f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0782-9068 |
OpenAccessLink | http://doi.org/10.1088/1741-2560/13/2/026017 |
PMID | 26863276 |
PQID | 1773807016 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_26863276 proquest_miscellaneous_1825450057 proquest_miscellaneous_1773807016 crossref_primary_10_1088_1741_2560_13_2_026017 crossref_citationtrail_10_1088_1741_2560_13_2_026017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875758 iop_journals_10_1088_1741_2560_13_2_026017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2016 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 Shoham D (37) 2001; 21 46 47 48 Johannes M S (28) 2011; 30 Powell T P (49) 1959; 105 50 51 52 53 10 54 11 55 12 13 14 Schieber M H (25) 2001; 86 15 16 Kubanek J (1) 2009; 6 17 18 2 3 4 5 6 8 20 21 22 23 24 26 27 29 McMullen D (41) 2014; 22 Muelling K (56) 2015 30 31 32 Chestek C A (9) 2013; 10 34 35 36 38 39 Wodlinger B (19) 2015; 12 Acharya S (7) 2010; 7 Porro C A (33) 1996; 16 40 42 43 15238440 - Cereb Cortex. 2005 Feb;15(2):131-40 17367076 - J Neurosurg. 2007 Mar;106(3):495-500 22596161 - Nature. 2012 May 17;485(7398):372-5 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60 25571083 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4872-5 20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84 20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5 8332915 - Science. 1993 Jul 23;261(5120):489-92 14624244 - PLoS Biol. 2003 Nov;1(2):E42 11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43 23345208 - J Neurosci. 2013 Jan 23;33(4):1326-30 16603682 - Biostatistics. 2007 Jan;8(1):86-100 18848626 - Curr Opin Neurobiol. 2008 Dec;18(6):552-7 17369825 - Nat Neurosci. 2007 Apr;10(4):417-9 9176952 - Spat Vis. 1997;10(4):433-6 19794237 - J Neural Eng. 2009 Dec;6(6):066001 18303801 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):15-23 25514320 - J Neural Eng. 2015 Feb;12(1):016011 18245039 - Cereb Cortex. 2008 Oct;18(10):2341-51 16799174 - Brain. 2006 Aug;129(Pt 8):2211-23 8922425 - J Neurosci. 1996 Dec 1;16(23):7688-98 24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96 19604097 - J Neurotrauma. 2009 Nov;26(11):2113-26 19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7 11517270 - J Neurosci. 2001 Sep 1;21(17):6820-35 17615137 - J Neurophysiol. 2007 Sep;98(3):1140-54 16761843 - IEEE Trans Biomed Eng. 2006 Jun;53(6):1164-73 14434571 - Bull Johns Hopkins Hosp. 1959 Sep;105:133-62 21314273 - J Neurosurg. 2011 Jun;114(6):1715-22 17428905 - J Neurophysiol. 2007 Jul;98(1):327-33 24235276 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):695-705 16046149 - Neuroimage. 2005 Sep;27(3):505-19 16246866 - Brain. 2005 Dec;128(Pt 12):2941-50 22754496 - Front Neurosci. 2012 Jun 28;6:91 19964229 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:586-9 25273279 - Brain Struct Funct. 2016 Jan;221(1):203-16 23369953 - J Neural Eng. 2013 Apr;10(2):026002 25026157 - Neuroimage. 2014 Nov 1;101:177-84 20489239 - J Neural Eng. 2010 Aug;7(4):046002 15888644 - J Neurosci. 2005 May 11;25(19):4681-93 16844715 - Brain. 2006 Aug;129(Pt 8):2202-10 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 7792606 - Science. 1995 Jun 23;268(5218):1775-7 22052728 - Ann Neurol. 2012 Mar;71(3):353-61 22408601 - Front Neurosci. 2012 Mar 06;6:29 15501099 - Neuroimage. 2004;23 Suppl 1:S34-45 19621062 - PLoS Biol. 2009 Jul;7(7):e1000153 20407639 - Front Neuroeng. 2010 Mar 30;3:3 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 23405137 - PLoS One. 2013;8(2):e55344 17919932 - Neuroimage. 2008 Jan 1;39(1):383-94 18164485 - Neurotherapeutics. 2008 Jan;5(1):68-74 9051782 - Neuroreport. 1996 Dec 20;8(1):207-10 24880133 - Neurosci Res. 2014 Aug;85:20-7 |
References_xml | – volume: 16 start-page: 7688 year: 1996 ident: 33 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-23-07688.1996 – ident: 22 doi: 10.1126/science.7792606 – volume: 86 start-page: 2125 year: 2001 ident: 25 publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.5.2125 – ident: 32 doi: 10.1038/nn1873 – ident: 18 doi: 10.1016/S0140-6736(12)61816-9 – ident: 52 doi: 10.1016/j.clinph.2015.01.005 – volume: 21 start-page: 6820 year: 2001 ident: 37 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-17-06820.2001 – ident: 36 doi: 10.1163/156856897X00357 – volume: 105 start-page: 133 year: 1959 ident: 49 publication-title: Bull. Johns Hopkins Hosp. – volume: 6 issn: 1741-2552 year: 2009 ident: 1 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/6/066001 – ident: 12 doi: 10.1109/TNSRE.2013.2286955 – ident: 55 doi: 10.1523/JNEUROSCI.0271-12.2013 – volume: 7 issn: 1741-2552 year: 2010 ident: 7 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/4/046002 – ident: 54 doi: 10.1523/JNEUROSCI.4088-04.2005 – ident: 35 doi: 10.3171/jns.2007.106.3.495 – ident: 6 doi: 10.1016/j.neures.2014.05.005 – ident: 13 doi: 10.1371/journal.pbio.0000042 – ident: 46 doi: 10.1097/00001756-199612200-00042 – ident: 34 doi: 10.1016/j.neuroimage.2005.04.025 – ident: 11 doi: 10.1002/ana.22613 – volume: 22 start-page: 784 issn: 1534-4320 year: 2014 ident: 41 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2294685 – ident: 43 doi: 10.1371/journal.pone.0055344 – ident: 15 doi: 10.1038/nature06996 – ident: 17 doi: 10.1038/nature11076 – ident: 20 doi: 10.1152/jn.00760.2006 – ident: 30 doi: 10.1089/neu.2008.0688 – volume: 10 issn: 1741-2552 year: 2013 ident: 9 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/2/026002 – year: 2015 ident: 56 – ident: 47 doi: 10.1093/cercor/bhh116 – ident: 53 doi: 10.1371/journal.pbio.1000153 – ident: 31 doi: 10.1073/pnas.0913697107 – ident: 50 doi: 10.1016/j.conb.2008.09.017 – ident: 48 doi: 10.1093/cercor/bhm257 – ident: 29 doi: 10.1016/j.neuroimage.2004.07.027 – ident: 5 doi: 10.3389/fnins.2012.00091 – ident: 2 doi: 10.1109/TNSRE.2007.916269 – ident: 10 doi: 10.1007/s00429-014-0902-x – ident: 8 doi: 10.1016/j.neuroimage.2011.06.084 – ident: 3 doi: 10.1109/IEMBS.2009.5333704 – ident: 4 doi: 10.3389/fnins.2012.00029 – ident: 21 doi: 10.1109/EMBC.2014.6944715 – ident: 23 doi: 10.1126/science.8332915 – ident: 26 doi: 10.1016/j.neuroimage.2014.07.002 – ident: 39 doi: 10.1093/brain/awh648 – ident: 14 doi: 10.1109/TBME.2006.870235 – ident: 38 doi: 10.1016/j.neuroimage.2007.07.065 – ident: 44 doi: 10.1093/brain/awl180 – ident: 27 doi: 10.1523/JNEUROSCI.5506-08.2009 – volume: 30 start-page: 207 issn: 0270-5214 year: 2011 ident: 28 publication-title: Johns Hopkins APL Tech. Dig. – ident: 45 doi: 10.1093/brain/awl154 – ident: 51 doi: 10.1152/jn.00162.2007 – ident: 24 doi: 10.3389/fneng.2010.00003 – ident: 42 doi: 10.3171/2011.1.JNS101421 – ident: 40 doi: 10.1093/biostatistics/kxj035 – ident: 16 doi: 10.1109/TBME.2010.2047015 – volume: 12 issn: 1741-2552 year: 2015 ident: 19 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/1/016011 – reference: 19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7 – reference: 11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43 – reference: 17367076 - J Neurosurg. 2007 Mar;106(3):495-500 – reference: 16603682 - Biostatistics. 2007 Jan;8(1):86-100 – reference: 16246866 - Brain. 2005 Dec;128(Pt 12):2941-50 – reference: 18848626 - Curr Opin Neurobiol. 2008 Dec;18(6):552-7 – reference: 22596161 - Nature. 2012 May 17;485(7398):372-5 – reference: 15238440 - Cereb Cortex. 2005 Feb;15(2):131-40 – reference: 19621062 - PLoS Biol. 2009 Jul;7(7):e1000153 – reference: 16046149 - Neuroimage. 2005 Sep;27(3):505-19 – reference: 17369825 - Nat Neurosci. 2007 Apr;10(4):417-9 – reference: 15888644 - J Neurosci. 2005 May 11;25(19):4681-93 – reference: 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60 – reference: 22052728 - Ann Neurol. 2012 Mar;71(3):353-61 – reference: 17428905 - J Neurophysiol. 2007 Jul;98(1):327-33 – reference: 19964229 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:586-9 – reference: 25514320 - J Neural Eng. 2015 Feb;12(1):016011 – reference: 16761843 - IEEE Trans Biomed Eng. 2006 Jun;53(6):1164-73 – reference: 8922425 - J Neurosci. 1996 Dec 1;16(23):7688-98 – reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001 – reference: 14434571 - Bull Johns Hopkins Hosp. 1959 Sep;105:133-62 – reference: 9051782 - Neuroreport. 1996 Dec 20;8(1):207-10 – reference: 20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5 – reference: 18303801 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):15-23 – reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 – reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 – reference: 20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84 – reference: 17615137 - J Neurophysiol. 2007 Sep;98(3):1140-54 – reference: 23405137 - PLoS One. 2013;8(2):e55344 – reference: 17919932 - Neuroimage. 2008 Jan 1;39(1):383-94 – reference: 20489239 - J Neural Eng. 2010 Aug;7(4):046002 – reference: 25026157 - Neuroimage. 2014 Nov 1;101:177-84 – reference: 14624244 - PLoS Biol. 2003 Nov;1(2):E42 – reference: 7792606 - Science. 1995 Jun 23;268(5218):1775-7 – reference: 23345208 - J Neurosci. 2013 Jan 23;33(4):1326-30 – reference: 22754496 - Front Neurosci. 2012 Jun 28;6:91 – reference: 24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96 – reference: 11517270 - J Neurosci. 2001 Sep 1;21(17):6820-35 – reference: 9176952 - Spat Vis. 1997;10(4):433-6 – reference: 21314273 - J Neurosurg. 2011 Jun;114(6):1715-22 – reference: 18164485 - Neurotherapeutics. 2008 Jan;5(1):68-74 – reference: 22408601 - Front Neurosci. 2012 Mar 06;6:29 – reference: 25571083 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4872-5 – reference: 18245039 - Cereb Cortex. 2008 Oct;18(10):2341-51 – reference: 20407639 - Front Neuroeng. 2010 Mar 30;3:3 – reference: 19604097 - J Neurotrauma. 2009 Nov;26(11):2113-26 – reference: 24235276 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):695-705 – reference: 24880133 - Neurosci Res. 2014 Aug;85:20-7 – reference: 16799174 - Brain. 2006 Aug;129(Pt 8):2211-23 – reference: 23369953 - J Neural Eng. 2013 Apr;10(2):026002 – reference: 16844715 - Brain. 2006 Aug;129(Pt 8):2202-10 – reference: 15501099 - Neuroimage. 2004;23 Suppl 1:S34-45 – reference: 8332915 - Science. 1993 Jul 23;261(5120):489-92 – reference: 25273279 - Brain Struct Funct. 2016 Jan;221(1):203-16 |
SSID | ssj0031790 |
Score | 2.5063527 |
Snippet | Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual... We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers.... OBJECTIVEWe used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic... |
SourceID | pubmedcentral proquest pubmed crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26017 |
SubjectTerms | Activation Artificial Limbs BMI brain-computer interface Brain-Computer Interfaces brain-machine interface Classification ECoG electrocorticography Electrocorticography - methods Electrodes Electrodes, Implanted finger Fingers Fingers - physiology Humans Male Modular Movement - physiology Movements neural control Online Prosthetics Sensorimotor Cortex - physiology User-Computer Interface Vibration Young Adult |
Title | Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject |
URI | https://iopscience.iop.org/article/10.1088/1741-2560/13/2/026017 https://www.ncbi.nlm.nih.gov/pubmed/26863276 https://www.proquest.com/docview/1773807016 https://www.proquest.com/docview/1825450057 https://pubmed.ncbi.nlm.nih.gov/PMC4875758 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4XHrpA_pY-pAroR4qZXdjx473iKoi4EB7KBI3y3bssi2bbEv2AL--M7Gz2kWlqOIWyWMrfs6M_c03hOx7q8a8MCwzgePVTWHgHBxPsgn3FvZlZfIIkD2VR2fFybk4X4ninzbzdPQP4TMSBcchTIA4NQIbOs9QU49yPmKjjhSr3CTbXEmJyRuOv3ztz2KO_FMxJDJW6WN47mpmTTttwh_8zfC8jZ9cUUiHT4jpuxJxKD-Hi9YO3c0tlseH9PUpeZysVXoQ5Z-RDV_vkN2DGjz12TX9QDv8aHcxv0t-HS9ju2joLgtpwsHTJlBDZ02FkFc6xziTC4ydpJfTmaWIvP9OkTY5qxBN317TlJsHHGOQSpzadFpDI11KQXq1sHh99JycHX7-9ukoSwkdMidF0WYlC9ZJI50rnC2lsI6Dv8eR408pOXagUZkvGegCOxHMgisjbYD1o2SoRM4Df0G26qb2rwgFr4hXVSHGVuVF7oU1XvAKyf6NYXlgA1L0E6ldYjvHpBuXunt1V0rj0GocWp1zzXQc2gEZLqvNI93HfRU-wtzptPGv7hOma8I_ar9arOdVGJD3_XrTsNHx9cbUvllAy2WJyQHARP-HDPr7AgOMB-RlXKPLbjCpJGcl1C7XVu9SAInG10vq6UVHOI5OLUzG3v_09TV5BLaljCCnN2Sr_b3wb8F-a-27bov-AVzpN0Y |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RUJcyqNQFigYCXFAymZjx072WLWsuoBKD1TqzbITp93STbY0eyi_npk4iboVUCFukTJjxc-Zcb75BuCds-lIxIYHphB0dRMbPAdH42AsnMV9mZvIA2QP1cFx_OlEnqzBfp8LUy3ao3-Ij54o2A9hC4hLQ_Sho4AsdRiJkIcNKVYSLvJiHe5JoQTVMZh-PerOY0EcVD4t0qt1eTx_amrFQq3jV_zO-byNobxhlCYPwXXd8ViU78NlbYfZz1tMj__b30ew2XqtbNfrPIY1Vz6Brd0SI_b5NXvPGhxpc0G_BZfTPseLFc2lIWvx8KwqmGHzKifoK1tQvskZ5VCyi9ncMkLgnzKiTw5yQtXX16yt0YMBMkq13NpsVmIjTWlBdrW0dI30FI4nH7_tHQRtYYcgUzKug4QXNlNGZVmc2URJmwmM-wRx_aWpGmVoWblLONoEO5bcYkijbIHrKFVFLiNRiGewUValew4MoyOR57Ec2TSKIyetcVLkRPpvDI8KPoC4m0ydtaznVHzjQjd_39NU0_BqGl4dCc21H94BDHu1haf9uEvhA86fbg-Aq7uE2YrweeluvtY4twN42605jRue_uKY0lVLbDlJqEgAuup_kaG4X1Ki8QC2_Trtu8FVinskQe1kZQX3AkQ4vvqmnJ01xOMU3OJkvPiXvr6B-0f7E_1levj5JTxAd1N53NMr2Kh_LN0OunS1fd3s2F8Yzjyq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+finger+control+of+a+modular+prosthetic+limb+using+high-density+electrocorticography+in+a+human+subject&rft.jtitle=Journal+of+neural+engineering&rft.au=Hotson%2C+Guy&rft.au=McMullen%2C+David+P&rft.au=Fifer%2C+Matthew+S&rft.au=Johannes%2C+Matthew+S&rft.date=2016-04-01&rft.eissn=1741-2552&rft.volume=13&rft.issue=2&rft.spage=026017&rft.epage=026017&rft_id=info:doi/10.1088%2F1741-2560%2F13%2F2%2F026017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |