Large nucleotide-dependent conformational change in Rab28
Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3′P-bound) forms at 1.5 and 1.1 Å resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GT...
Saved in:
Published in | FEBS letters Vol. 582; no. 29; pp. 4107 - 4111 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
10.12.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3′P-bound) forms at 1.5 and 1.1
Å resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GTPases, it undergoes a larger nucleotide-dependent conformational change than other members of this family. Added flexibility resulting from a double-glycine motif at the beginning of switch 2 might partially account for this observation. The double-glycine motif, which is conserved in the Arf family, only occurs in Rab28 and Rab7B of the Rab family, and may have a profound effect on their catalytic activities. |
---|---|
AbstractList | Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3'P-bound) forms at 1.5 and 1.1A resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GTPases, it undergoes a larger nucleotide-dependent conformational change than other members of this family. Added flexibility resulting from a double-glycine motif at the beginning of switch 2 might partially account for this observation. The double-glycine motif, which is conserved in the Arf family, only occurs in Rab28 and Rab7B of the Rab family, and may have a profound effect on their catalytic activities. Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3′P-bound) forms at 1.5 and 1.1 Å resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GTPases, it undergoes a larger nucleotide-dependent conformational change than other members of this family. Added flexibility resulting from a double-glycine motif at the beginning of switch 2 might partially account for this observation. The double-glycine motif, which is conserved in the Arf family, only occurs in Rab28 and Rab7B of the Rab family, and may have a profound effect on their catalytic activities. Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3'P-bound) forms at 1.5 and 1.1 {angstrom} resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GTPases, it undergoes a larger nucleotide-dependent conformational change than other members of this family. Added flexibility resulting from a double-glycine motif at the beginning of switch 2 might partially account for this observation. The double-glycine motif, which is conserved in the Arf family, only occurs in Rab28 and Rab7B of the Rab family, and may have a profound effect on their catalytic activities. Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3′P-bound) forms at 1.5Å and 1.1Å resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GTPases, it undergoes a larger nucleotide-dependent conformational change than other members of this family. Added flexibility resulting from a double-glycine motif at the beginning of switch 2 might partially account for this observation. The double-glycine motif, which is conserved in the Arf family, only occurs in Rab28 and Rab7B of the Rab family, and may have a profound effect on their catalytic activities. Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp‐bound) and inactive (GDP‐3′P‐bound) forms at 1.5 and 1.1 Å resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GTPases, it undergoes a larger nucleotide‐dependent conformational change than other members of this family. Added flexibility resulting from a double‐glycine motif at the beginning of switch 2 might partially account for this observation. The double‐glycine motif, which is conserved in the Arf family, only occurs in Rab28 and Rab7B of the Rab family, and may have a profound effect on their catalytic activities. |
Author | Dominguez, Roberto Lee, Sung Haeng Baek, Kyuwon |
AuthorAffiliation | a Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA |
AuthorAffiliation_xml | – name: a Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA |
Author_xml | – sequence: 1 givenname: Sung Haeng surname: Lee fullname: Lee, Sung Haeng organization: Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA – sequence: 2 givenname: Kyuwon surname: Baek fullname: Baek, Kyuwon organization: Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA – sequence: 3 givenname: Roberto surname: Dominguez fullname: Dominguez, Roberto email: droberto@mail.med.upenn.edu organization: Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19026641$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1006977$$D View this record in Osti.gov |
BookMark | eNqNkk1v1DAQhi1URLeFnwBaceCW4Ikdx76AStUPpJWQ-Dhbjj3pepW1Fztb1H-Po10VOJXTyPIz73y8c0ZOQgxIyGugNVAQ7zf1gH0ecaobSmUNUJfwjCxAdqxiXMgTsqAUeNV2ip2Ss5w3tLwlqBfkFBRthOCwIGpl0h0uw96OGCfvsHK4w-AwTEsbwxDT1kw-BjMu7dqEgvqw_Gr6Rr4kzwczZnx1jOfkx_XV98vbavXl5vPlxaqyouWswqFBx4e2B6V67mhrB9p3aLi1aIdGWsccoHIda_qOiV5JyYRUyBrrwKmWnZMPB93dvt-is6WzZEa9S35r0oOOxut_f4Jf67t4r5uOQ5m3CLw9CMQ8eZ2tn9Cuy2wB7aSBUqG6rkDvjlVS_LnHPOmtzxbH0QSM-6yFkpyDeBoEJQS0ghWwPYA2xZwTDo8tA9WzhXqjjxbq2UINoEsoeW_-nvdP1tGzAtwegF9-xIf_U9XXV5-ab_M9zOdAJaWqlCpSHw9SWAy895jm9WCw6Hyat-Oif6Lb3xCtx2Q |
CitedBy_id | crossref_primary_10_1080_21541248_2017_1353847 crossref_primary_10_1002_1873_3468_12509 crossref_primary_10_1136_jmedgenet_2013_102138 crossref_primary_10_1242_jcs_079178 crossref_primary_10_1107_S0907444912017325 crossref_primary_10_3390_ijms22010381 crossref_primary_10_1074_jbc_R110_217067 crossref_primary_10_1371_journal_pone_0049387 crossref_primary_10_1007_s11010_023_04727_x crossref_primary_10_1074_jbc_RA118_005484 crossref_primary_10_1093_bib_bbz161 crossref_primary_10_1271_bbb_110212 crossref_primary_10_1016_j_ajhg_2013_05_005 crossref_primary_10_1080_21541248_2017_1336191 crossref_primary_10_1371_journal_pone_0056076 crossref_primary_10_3390_genes14071458 crossref_primary_10_1016_j_jmb_2009_07_020 crossref_primary_10_1167_iovs_61_2_29 crossref_primary_10_1080_13816810_2017_1301965 |
Cites_doi | 10.1107/S090744499801405X 10.1038/nsmb832 10.1074/jbc.R500003200 10.1016/j.jsb.2005.10.001 10.1038/nature02197 10.1074/jbc.M106660200 10.1126/stke.2502004re13 10.1101/gad.1003302 10.1242/jcs.015909 10.1126/science.1062023 10.1016/j.tcb.2004.05.003 10.1038/nprot.2008.91 10.1016/S0021-9258(17)34124-8 10.1006/jmbi.2000.4010 10.1016/S0021-9258(17)37860-2 10.1016/j.ab.2008.06.039 10.1093/embo-reports/kvf221 10.1006/jmbi.2001.5072 10.1038/35052055 10.1111/j.1432-1033.1996.0833p.x 10.1016/S0092-8674(00)80549-8 10.1016/j.bbrc.2005.04.168 10.1107/S0907444901012422 10.1038/sj.emboj.7601044 10.1110/ps.073098107 10.1021/bi048755w 10.1242/jcs.01660 10.1038/nature03798 10.1107/S0907444904019158 10.1038/nsmb1232 10.1073/pnas.0701550104 10.1007/978-1-60327-058-8_28 |
ContentType | Journal Article |
Copyright | 2008 Federation of European Biochemical Societies FEBS Letters 582 (2008) 1873-3468 © 2015 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2008 Federation of European Biochemical Societies – notice: FEBS Letters 582 (2008) 1873-3468 © 2015 Federation of European Biochemical Societies |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 7X8 OTOTI 5PM |
DOI | 10.1016/j.febslet.2008.11.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nucleic Acids Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 4111 |
ExternalDocumentID | 1006977 10_1016_j_febslet_2008_11_008 19026641 FEB2S0014579308009083 S0014579308009083 |
Genre | shortCommunication Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: RR007707 – fundername: NIGMS NIH HHS grantid: GM073791 – fundername: NIGMS NIH HHS grantid: R01 GM073791 – fundername: NCRR NIH HHS grantid: P41 RR007707 – fundername: NIGMS NIH HHS grantid: R01 GM073791-04 |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHHS AAIKJ AAJUZ AALRI AANLZ AAQFI AAQXK AASGY AAXRX AAXUO AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABHUG ABJNI ABLJU ABMAC ABQWH ABVKL ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACXBN ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADOZA ADQTV ADUVX ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUQT AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFVGU AFZJQ AGHFR AGJLS AGYEJ AHBTC AHPSJ AI. AIACR AIAGR AITUG AIURR AIWBW AJBDE AJRQY ALMA_UNASSIGNED_HOLDINGS AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CBWCG CS3 DCZOG DIK DOVZS DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LCYCR LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M XFK Y6R YK3 ZA5 ZGI ZZTAW ~02 AAHBH ADVLN AITYG AKRWK ALUQN HGLYW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 7X8 ABCVL ABPTK ABQIS AEIGN OTOTI 5PM |
ID | FETCH-LOGICAL-c6543-ef2ed4f5b199b4d05cf0b7ea4ccecf28cd3d1e9d732b736b9883689e32cd1d953 |
IEDL.DBID | ABVKL |
ISSN | 0014-5793 |
IngestDate | Tue Sep 17 21:08:23 EDT 2024 Thu May 18 22:38:20 EDT 2023 Fri Aug 16 11:51:02 EDT 2024 Fri Aug 16 20:38:44 EDT 2024 Fri Aug 23 02:56:59 EDT 2024 Sat Sep 28 07:54:30 EDT 2024 Sat Aug 24 01:02:20 EDT 2024 Fri Feb 23 02:31:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | Rab GTPase family GDP-3′P GTP analog GppNHp Crystal structure |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6543-ef2ed4f5b199b4d05cf0b7ea4ccecf28cd3d1e9d732b736b9883689e32cd1d953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Current address: Chosun University School of Medicine, Department of Cellular and Molecular Medicine, Gwangju, Korea. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0014579308009083 |
PMID | 19026641 |
PQID | 19661563 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2741181 osti_scitechconnect_1006977 proquest_miscellaneous_69844167 proquest_miscellaneous_19661563 crossref_primary_10_1016_j_febslet_2008_11_008 pubmed_primary_19026641 wiley_primary_10_1016_j_febslet_2008_11_008_FEB2S0014579308009083 elsevier_sciencedirect_doi_10_1016_j_febslet_2008_11_008 |
PublicationCentury | 2000 |
PublicationDate | December 10, 2008 |
PublicationDateYYYYMMDD | 2008-12-10 |
PublicationDate_xml | – month: 12 year: 2008 text: December 10, 2008 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2008 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Brauers, Schurmann, Massmann, Muhl-Zurbes, Becker, Kainulainen, Lie, Joost (bib12) 1996; 237 Zhu, Zhai, Liu, Terzyan, Li, Zhang (bib32) 2004; 11 Schwartz, Cao, Pylypenko, Rak, Wandinger-Ness (bib8) 2007; 120 Zwart (bib17) 2008; 426 Ostermeier, Brunger (bib31) 1999; 96 Langer, Cohen, Lamzin, Perrakis (bib14) 2008; 3 Wennerberg, Rossman, Der (bib2) 2005; 118 Pasqualato, Renault, Cherfils (bib28) 2002; 3 Emsley, Cowtan (bib16) 2004; 60 Bergbrede, Pylypenko, Rak, Alexandrov (bib22) 2005; 152 Pereira-Leal, Seabra (bib9) 2001; 313 Schwartz (bib21) 2008; 381 Sato, Fukai, Ishitani, Nureki (bib27) 2007; 104 Delprato, Lambright (bib20) 2007; 14 Eathiraj, Pan, Ritacco, Lambright (bib11) 2005; 436 Pao, Gallant (bib26) 1979; 254 Zhang, Zhang, Shacter, Zheng (bib18) 2005; 44 Schmidt, Hall (bib5) 2002; 16 Itzen, Pylypenko, Goody, Alexandrov, Rak (bib19) 2006; 25 Murshudov, Vagin, Lebedev, Wilson, Dodson (bib15) 1999; 55 Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci. STKE 2004, RE13. Renault, Guibert, Cherfils (bib23) 2003; 426 Randazzo, Kahn (bib30) 1994; 269 Pfeffer (bib7) 2005; 280 Zerial, McBride (bib10) 2001; 2 Wang, Shi, Liu, An, Chang, Liang (bib25) 2005; 332 Neuwald (bib29) 2007; 16 Pereira-Leal, Seabra (bib6) 2000; 301 Navaza (bib13) 2001; 57 Vetter, Wittinghofer (bib3) 2001; 294 Bernards, Settleman (bib4) 2004; 14 Amor, Horton, Zhu, Wang, Sullards, Ringe, Cheng, Kahn (bib24) 2001; 276 2002; 16 2007; 104 2005; 152 2004; 60 2005; 332 2007; 120 2005; 436 2005; 118 2008; 426 2002; 3 2008; 3 2005; 44 2007; 14 2008; 381 2007; 16 2001; 276 2004; 11 2005; 280 2001; 294 2003; 426 1979; 254 1994; 269 2000; 301 2004; 14 2006; 25 1999; 55 2001; 2 1999; 96 2001; 57 2001; 313 1996; 237 11567147 - Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1367-72 17488829 - Proc Natl Acad Sci U S A. 2007 May 15;104(20):8305-10 14654833 - Nature. 2003 Dec 4;426(6966):525-30 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 16332443 - J Struct Biol. 2005 Dec;152(3):235-8 15709769 - Biochemistry. 2005 Feb 22;44(7):2566-76 10089417 - Acta Crystallogr D Biol Crystallogr. 1999 Jan;55(Pt 1):247-55 16034420 - Nature. 2005 Jul 21;436(7049):415-9 15731001 - J Cell Sci. 2005 Mar 1;118(Pt 5):843-6 18638444 - Anal Biochem. 2008 Oct 15;381(2):258-66 17450153 - Nat Struct Mol Biol. 2007 May;14(5):406-12 8647132 - Eur J Biochem. 1996 May 1;237(3):833-40 18600222 - Nat Protoc. 2008;3(7):1171-9 15746102 - J Biol Chem. 2005 Apr 22;280(16):15485-8 11701921 - Science. 2001 Nov 9;294(5545):1299-304 15378032 - Nat Struct Mol Biol. 2004 Oct;11(10):975-83 11535602 - J Biol Chem. 2001 Nov 9;276(45):42477-84 17962409 - Protein Sci. 2007 Nov;16(11):2570-7 17989088 - J Cell Sci. 2007 Nov 15;120(Pt 22):3905-10 15246431 - Trends Cell Biol. 2004 Jul;14(7):377-85 15367757 - Sci STKE. 2004 Sep 14;2004(250):RE13 8144664 - J Biol Chem. 1994 Apr 8;269(14):10758-63 15896705 - Biochem Biophys Res Commun. 2005 Jul 8;332(3):640-5 10025402 - Cell. 1999 Feb 5;96(3):363-74 16541104 - EMBO J. 2006 Apr 5;25(7):1445-55 12429613 - EMBO Rep. 2002 Nov;3(11):1035-41 12101119 - Genes Dev. 2002 Jul 1;16(13):1587-609 368059 - J Biol Chem. 1979 Feb 10;254(3):688-92 18542881 - Methods Mol Biol. 2008;426:419-35 10966806 - J Mol Biol. 2000 Aug 25;301(4):1077-87 11697911 - J Mol Biol. 2001 Nov 2;313(4):889-901 11252952 - Nat Rev Mol Cell Biol. 2001 Feb;2(2):107-17 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 301 start-page: 1077 year: 2000 end-page: 1087 ident: bib6 article-title: The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily publication-title: J. Mol. Biol. contributor: fullname: Seabra – volume: 152 start-page: 235 year: 2005 end-page: 238 ident: bib22 article-title: Structure of the extremely slow GTPase Rab6A in the GTP bound form at 1.8 publication-title: J. Struct. Biol. contributor: fullname: Alexandrov – volume: 2 start-page: 107 year: 2001 end-page: 117 ident: bib10 article-title: Rab proteins as membrane organizers publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: McBride – volume: 294 start-page: 1299 year: 2001 end-page: 1304 ident: bib3 article-title: The guanine nucleotide-binding switch in three dimensions publication-title: Science contributor: fullname: Wittinghofer – volume: 3 start-page: 1171 year: 2008 end-page: 1179 ident: bib14 article-title: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 publication-title: Nat. Protoc. contributor: fullname: Perrakis – volume: 426 start-page: 525 year: 2003 end-page: 530 ident: bib23 article-title: Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor publication-title: Nature contributor: fullname: Cherfils – volume: 16 start-page: 2570 year: 2007 end-page: 2577 ident: bib29 article-title: Galpha Gbetagamma dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair publication-title: Protein Sci. contributor: fullname: Neuwald – volume: 11 start-page: 975 year: 2004 end-page: 983 ident: bib32 article-title: Structural basis of Rab5–Rabaptin5 interaction in endocytosis publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Zhang – volume: 16 start-page: 1587 year: 2002 end-page: 1609 ident: bib5 article-title: Guanine nucleotide exchange factors for Rho GTPases: turning on the switch publication-title: Genes Dev. contributor: fullname: Hall – volume: 3 start-page: 1035 year: 2002 end-page: 1041 ident: bib28 article-title: Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication publication-title: EMBO Rep. contributor: fullname: Cherfils – volume: 14 start-page: 377 year: 2004 end-page: 385 ident: bib4 article-title: GAP control: regulating the regulators of small GTPases publication-title: Trends Cell Biol. contributor: fullname: Settleman – volume: 104 start-page: 8305 year: 2007 end-page: 8310 ident: bib27 article-title: Crystal structure of the Sec4p.Sec2p complex in the nucleotide exchanging intermediate state publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Nureki – volume: 44 start-page: 2566 year: 2005 end-page: 2576 ident: bib18 article-title: Mechanism of the guanine nucleotide exchange reaction of Ras GTPase – evidence for a GTP/GDP displacement model publication-title: Biochemistry contributor: fullname: Zheng – volume: 96 start-page: 363 year: 1999 end-page: 374 ident: bib31 article-title: Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A publication-title: Cell contributor: fullname: Brunger – volume: 57 start-page: 1367 year: 2001 end-page: 1372 ident: bib13 article-title: Implementation of molecular replacement in AMoRe publication-title: Acta Crystallogr. D Biol. Crystallogr. contributor: fullname: Navaza – volume: 120 start-page: 3905 year: 2007 end-page: 3910 ident: bib8 article-title: Rab GTPases at a glance publication-title: J. Cell. Sci. contributor: fullname: Wandinger-Ness – volume: 237 start-page: 833 year: 1996 end-page: 840 ident: bib12 article-title: Alternative mRNA splicing of the novel GTPase Rab28 generates isoforms with different C-termini publication-title: Eur. J. Biochem. contributor: fullname: Joost – volume: 55 start-page: 247 year: 1999 end-page: 255 ident: bib15 article-title: Efficient anisotropic refinement of macromolecular structures using FFT publication-title: Acta Crystallogr. D Biol. Crystallogr. contributor: fullname: Dodson – volume: 436 start-page: 415 year: 2005 end-page: 419 ident: bib11 article-title: Structural basis of family-wide Rab GTPase recognition by rabenosyn-5 publication-title: Nature contributor: fullname: Lambright – volume: 118 start-page: 843 year: 2005 end-page: 846 ident: bib2 article-title: The Ras superfamily at a glance publication-title: J. Cell Sci. contributor: fullname: Der – volume: 280 start-page: 15485 year: 2005 end-page: 15488 ident: bib7 article-title: Structural clues to Rab GTPase functional diversity publication-title: J. Biol. Chem. contributor: fullname: Pfeffer – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib16 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. contributor: fullname: Cowtan – volume: 426 start-page: 419 year: 2008 end-page: 435 ident: bib17 article-title: Automated structure solution with the PHENIX suite publication-title: Methods Mol. Biol. contributor: fullname: Zwart – volume: 332 start-page: 640 year: 2005 end-page: 645 ident: bib25 article-title: 2.0 publication-title: Biochem. Biophys. Res. Commun. contributor: fullname: Liang – volume: 14 start-page: 406 year: 2007 end-page: 412 ident: bib20 article-title: Structural basis for Rab GTPase activation by VPS9 domain exchange factors publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Lambright – volume: 25 start-page: 1445 year: 2006 end-page: 1455 ident: bib19 article-title: Nucleotide exchange via local protein unfolding–structure of Rab8 in complex with MSS4 publication-title: EMBO J. contributor: fullname: Rak – volume: 276 start-page: 42477 year: 2001 end-page: 42484 ident: bib24 article-title: Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases publication-title: J. Biol. Chem. contributor: fullname: Kahn – volume: 269 start-page: 10758 year: 1994 end-page: 10763 ident: bib30 article-title: GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids publication-title: J. Biol. Chem. contributor: fullname: Kahn – volume: 313 start-page: 889 year: 2001 end-page: 901 ident: bib9 article-title: Evolution of the Rab family of small GTP-binding proteins publication-title: J. Mol. Biol. contributor: fullname: Seabra – volume: 381 start-page: 258 year: 2008 end-page: 266 ident: bib21 article-title: Flow cytometry for real-time measurement of guanine nucleotide binding and exchange by Ras-like GTPases publication-title: Anal. Biochem. contributor: fullname: Schwartz – volume: 254 start-page: 688 year: 1979 end-page: 692 ident: bib26 article-title: A new nucleotide involved in the stringent response in publication-title: J. Biol. Chem. contributor: fullname: Gallant – volume: 301 start-page: 1077 year: 2000 end-page: 1087 article-title: The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily publication-title: J. Mol. Biol. – volume: 294 start-page: 1299 year: 2001 end-page: 1304 article-title: The guanine nucleotide-binding switch in three dimensions publication-title: Science – volume: 14 start-page: 406 year: 2007 end-page: 412 article-title: Structural basis for Rab GTPase activation by VPS9 domain exchange factors publication-title: Nat. Struct. Mol. Biol. – volume: 16 start-page: 1587 year: 2002 end-page: 1609 article-title: Guanine nucleotide exchange factors for Rho GTPases: turning on the switch publication-title: Genes Dev. – volume: 426 start-page: 525 year: 2003 end-page: 530 article-title: Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor publication-title: Nature – volume: 11 start-page: 975 year: 2004 end-page: 983 article-title: Structural basis of Rab5-Rabaptin5 interaction in endocytosis publication-title: Nat. Struct. Mol. Biol. – volume: 2 start-page: 107 year: 2001 end-page: 117 article-title: Rab proteins as membrane organizers publication-title: Nat. Rev. Mol. Cell Biol. – volume: 120 start-page: 3905 year: 2007 end-page: 3910 article-title: Rab GTPases at a glance publication-title: J. Cell. Sci. – volume: 96 start-page: 363 year: 1999 end-page: 374 article-title: Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A publication-title: Cell – volume: 3 start-page: 1171 year: 2008 end-page: 1179 article-title: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 publication-title: Nat. Protoc. – volume: 55 start-page: 247 year: 1999 end-page: 255 article-title: Efficient anisotropic refinement of macromolecular structures using FFT publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 269 start-page: 10758 year: 1994 end-page: 10763 article-title: GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids publication-title: J. Biol. Chem. – volume: 44 start-page: 2566 year: 2005 end-page: 2576 article-title: Mechanism of the guanine nucleotide exchange reaction of Ras GTPase - evidence for a GTP/GDP displacement model publication-title: Biochemistry – volume: 237 start-page: 833 year: 1996 end-page: 840 article-title: Alternative mRNA splicing of the novel GTPase Rab28 generates isoforms with different C-termini publication-title: Eur. J. Biochem. – volume: 332 start-page: 640 year: 2005 end-page: 645 article-title: 2.0 Å crystal structure of human ARL5-GDP3′P, a novel member of the small GTP-binding proteins publication-title: Biochem. Biophys. Res. Commun. – volume: 57 start-page: 1367 year: 2001 end-page: 1372 article-title: Implementation of molecular replacement in AMoRe publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 118 start-page: 843 year: 2005 end-page: 846 article-title: The Ras superfamily at a glance publication-title: J. Cell Sci. – volume: 426 start-page: 419 year: 2008 end-page: 435 article-title: Automated structure solution with the PHENIX suite publication-title: Methods Mol. Biol. – volume: 14 start-page: 377 year: 2004 end-page: 385 article-title: GAP control: regulating the regulators of small GTPases publication-title: Trends Cell Biol. – volume: 16 start-page: 2570 year: 2007 end-page: 2577 article-title: Galpha Gbetagamma dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair publication-title: Protein Sci. – volume: 313 start-page: 889 year: 2001 end-page: 901 article-title: Evolution of the Rab family of small GTP-binding proteins publication-title: J. Mol. Biol. – volume: 436 start-page: 415 year: 2005 end-page: 419 article-title: Structural basis of family-wide Rab GTPase recognition by rabenosyn-5 publication-title: Nature – volume: 60 start-page: 2126 year: 2004 end-page: 2132 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 381 start-page: 258 year: 2008 end-page: 266 article-title: Flow cytometry for real-time measurement of guanine nucleotide binding and exchange by Ras-like GTPases publication-title: Anal. Biochem. – volume: 276 start-page: 42477 year: 2001 end-page: 42484 article-title: Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases publication-title: J. Biol. Chem. – volume: 280 start-page: 15485 year: 2005 end-page: 15488 article-title: Structural clues to Rab GTPase functional diversity publication-title: J. Biol. Chem. – volume: 104 start-page: 8305 year: 2007 end-page: 8310 article-title: Crystal structure of the Sec4p.Sec2p complex in the nucleotide exchanging intermediate state publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 1035 year: 2002 end-page: 1041 article-title: Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication publication-title: EMBO Rep. – volume: 254 start-page: 688 year: 1979 end-page: 692 article-title: A new nucleotide involved in the stringent response in . Guanosine 5′-diphosphate-3′-monophosphate publication-title: J. Biol. Chem. – volume: 152 start-page: 235 year: 2005 end-page: 238 article-title: Structure of the extremely slow GTPase Rab6A in the GTP bound form at 1.8 Å resolution publication-title: J. Struct. Biol. – volume: 25 start-page: 1445 year: 2006 end-page: 1455 article-title: Nucleotide exchange via local protein unfolding-structure of Rab8 in complex with MSS4 publication-title: EMBO J. – ident: e_1_2_6_16_1 doi: 10.1107/S090744499801405X – ident: e_1_2_6_33_1 doi: 10.1038/nsmb832 – ident: e_1_2_6_8_1 doi: 10.1074/jbc.R500003200 – ident: e_1_2_6_23_1 doi: 10.1016/j.jsb.2005.10.001 – ident: e_1_2_6_24_1 doi: 10.1038/nature02197 – ident: e_1_2_6_25_1 doi: 10.1074/jbc.M106660200 – ident: e_1_2_6_2_1 doi: 10.1126/stke.2502004re13 – ident: e_1_2_6_6_1 doi: 10.1101/gad.1003302 – ident: e_1_2_6_9_1 doi: 10.1242/jcs.015909 – ident: e_1_2_6_4_1 doi: 10.1126/science.1062023 – ident: e_1_2_6_5_1 doi: 10.1016/j.tcb.2004.05.003 – ident: e_1_2_6_15_1 doi: 10.1038/nprot.2008.91 – ident: e_1_2_6_31_1 doi: 10.1016/S0021-9258(17)34124-8 – ident: e_1_2_6_7_1 doi: 10.1006/jmbi.2000.4010 – ident: e_1_2_6_27_1 doi: 10.1016/S0021-9258(17)37860-2 – ident: e_1_2_6_22_1 doi: 10.1016/j.ab.2008.06.039 – ident: e_1_2_6_29_1 doi: 10.1093/embo-reports/kvf221 – ident: e_1_2_6_10_1 doi: 10.1006/jmbi.2001.5072 – ident: e_1_2_6_11_1 doi: 10.1038/35052055 – ident: e_1_2_6_13_1 doi: 10.1111/j.1432-1033.1996.0833p.x – ident: e_1_2_6_32_1 doi: 10.1016/S0092-8674(00)80549-8 – ident: e_1_2_6_26_1 doi: 10.1016/j.bbrc.2005.04.168 – ident: e_1_2_6_14_1 doi: 10.1107/S0907444901012422 – ident: e_1_2_6_20_1 doi: 10.1038/sj.emboj.7601044 – ident: e_1_2_6_30_1 doi: 10.1110/ps.073098107 – ident: e_1_2_6_19_1 doi: 10.1021/bi048755w – ident: e_1_2_6_3_1 doi: 10.1242/jcs.01660 – ident: e_1_2_6_12_1 doi: 10.1038/nature03798 – ident: e_1_2_6_17_1 doi: 10.1107/S0907444904019158 – ident: e_1_2_6_21_1 doi: 10.1038/nsmb1232 – ident: e_1_2_6_28_1 doi: 10.1073/pnas.0701550104 – ident: e_1_2_6_18_1 doi: 10.1007/978-1-60327-058-8_28 |
SSID | ssj0001819 |
Score | 2.0811481 |
Snippet | Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3′P-bound)... Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp‐bound) and inactive (GDP‐3′P‐bound)... Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3'P-bound)... |
SourceID | pubmedcentral osti proquest crossref pubmed wiley elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4107 |
SubjectTerms | Amino Acid Sequence CONFORMATIONAL CHANGES CRYSTAL STRUCTURE Crystallography, X-Ray FLEXIBILITY GDP-3′P GTP analog GppNHp GTP-ASES Guanosine Diphosphate - chemistry Guanylyl Imidodiphosphate - chemistry Humans MATERIALS SCIENCE MEMBRANES Protein Conformation rab GTP-Binding Proteins - chemistry Rab GTPase family RESOLUTION |
Title | Large nucleotide-dependent conformational change in Rab28 |
URI | https://dx.doi.org/10.1016/j.febslet.2008.11.008 https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2008.11.008 https://www.ncbi.nlm.nih.gov/pubmed/19026641 https://search.proquest.com/docview/19661563 https://search.proquest.com/docview/69844167 https://www.osti.gov/biblio/1006977 https://pubmed.ncbi.nlm.nih.gov/PMC2741181 |
Volume | 582 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyG4IGh5hELJAXHL7voROz7urroqbOFQUdhbFDu2SCWyFd0euPDbmcljy6pFIE6OnDhRxuPxN8nMNwBvUAXSsQosUZbZRAZZJFbIMglee8F4IUPD3fnhozo5l--X6XIHZn0uDIVVdra_temNte56Rp00R5dVRTm-TKaoXoR5DCKJXdjjiH5xde5Npp8XpxuDjJtYi4KZTGjATSLP6GIYvL1CCbVRlcTnSYUm796iBitcdXch0dsBlb8D3Wanmj-Chx3EjCftWzyGHV_vw8GkRvf624_4bdwEfTZf0_fh3rQ_uj_rS78dgDml-PC4Jq7j1boqfdLXyl3H6D9vEh7xKW3icFzV8VlhefYEzufHn2YnSVdjIXGUVZr4wH0pQ2qZMVaW49SFsdW-kM55F3jmSlEyb0otuNVCWZNlQmXGC-5KVppUPIVBvar9c4gleo9OauFtINI5l-nCW5N6gxAiFJpHMOzFml-2VBp5H2N2kXfz0JbFRKcEmwiyXvj5lk7kaO7_NvSQJouGEReuo6AhHMeImFnrCF73c5ijZOkXSVH71fVVjvYIIZ4Sf75CmQwRpMJ7PGvn_OZdDPqzSrII9JY2bC4gJu_tM3X1tWH0Jg4h1NIIJo3e_Jt48vnxlN9aBS_-X2iH8KCJhmEcN-eXMFh_v_avEHKt7RHsDn-yo25hUbs4-7LA3nfL6S9qXCsc |
link.rule.ids | 230,315,783,787,888,3513,4509,27581,27936,27937,45597,45675,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB2VIFQuqLRQlha6B8TNSbz22utjGjUKkPaAWqm31dpri63EpmrTAxd-OzP70RC1CMQpq8TeaMfj8ZvkzRuAD-gC6VgFzpTllskgC2aFLFnw2gueFDI02p2nZ2p-IT9fppdbMO1rYYhW2cX-NqY30bp7Z9RZc3RdVVTjy2WK7kWYxyCSeAJPJeFjdOrhzzXPA4-wFgNzyWj4uoxndDUM3t6ifVpOJal5UpvJxw-owRL33GM49CGd8neY25xTsx140QHMeNI-w0vY8vUu7E1qTK6__4g_xg3ls_ktfReeHfdX29O-8dsemAWxw-OalI6Xq6r0rO-Uu4oxe74vd8RvacuG46qOvxY2yV7BxezkfDpnXYcF5qimlPmQ-FKG1HJjrCzHqQtjq30hnfMuJJkrRcm9KbVIrBbKmiwTKjNeJK7kpUnFaxjUy9q_gVhi7uikFt4GkpxzmS68Nak3CCBCoZMIhr1Z8-tWSCPvGWZXebcObVNMTEnwJYKsN36-4RE5Bvu_TT2gxaJppITriDKE8zjJMmsdwVG_hjlalv4gKWq_vLvNMRohwFPizyOUyRA_KrzHfrvm62cxmM0qySPQG95wP4B0vDc_qatvjZ43KQihl0Ywafzm38yTz06Okwd74O3_G-0Itufnp4t88ensywE8b3gxPMFj-hAGq5s7_w7B18q-bzbXL7DWKT4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+nucleotide-dependent+conformational+change+in+Rab28&rft.jtitle=FEBS+letters&rft.au=Lee%2C+Sung+Haeng&rft.au=Baek%2C+Kyuwon&rft.au=Dominguez%2C+Roberto&rft.date=2008-12-10&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=582&rft.issue=%2829%29+%3B+12%2C+2008&rft_id=info:doi/10.1016%2Fj.febslet.2008.11.008&rft.externalDocID=1006977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |