Data-driven analysis of simultaneous EEG/fMRI reveals neurophysiological phenotypes of impulse control
Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlyi...
Saved in:
Published in | Human brain mapping Vol. 37; no. 9; pp. 3114 - 3136 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.09.2016
John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single‐trial EEG/fMRI analysis allows to increase sensitivity for inter‐individual differences by incorporating intra‐individual variability. Thirty‐eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo‐related ICs (Nogo‐IC‐positive) while 17 subjects (Nogo‐IC‐negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo‐IC‐negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra‐individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo‐IC‐negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data‐driven approach for IC classification and the resulting presence or absence of early Nogo‐specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter‐individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter‐individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo‐IC‐positive phenotype possibly providing protection against impulsivity‐related dysfunction. Hum Brain Mapp 37:3114–3136, 2016. © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing protection against impulsivity-related dysfunction. Hum Brain Mapp 37:3114-3136, 2016. copyright 2016 Wiley Periodicals, Inc. Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single‐trial EEG/fMRI analysis allows to increase sensitivity for inter‐individual differences by incorporating intra‐individual variability. Thirty‐eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo‐related ICs (Nogo‐IC‐positive) while 17 subjects (Nogo‐IC‐negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo‐IC‐negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra‐individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo‐IC‐negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data‐driven approach for IC classification and the resulting presence or absence of early Nogo‐specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter‐individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter‐individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo‐IC‐positive phenotype possibly providing protection against impulsivity‐related dysfunction. Hum Brain Mapp 37:3114–3136, 2016 . © 2016 Wiley Periodicals, Inc . Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single‐trial EEG/fMRI analysis allows to increase sensitivity for inter‐individual differences by incorporating intra‐individual variability. Thirty‐eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo‐related ICs (Nogo‐IC‐positive) while 17 subjects (Nogo‐IC‐negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo‐IC‐negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra‐individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo‐IC‐negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data‐driven approach for IC classification and the resulting presence or absence of early Nogo‐specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter‐individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter‐individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo‐IC‐positive phenotype possibly providing protection against impulsivity‐related dysfunction. Hum Brain Mapp 37:3114–3136, 2016. © 2016 Wiley Periodicals, Inc. Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing protection against impulsivity-related dysfunction. Hum Brain Mapp 37:3114-3136, 2016. © 2016 Wiley Periodicals, Inc.Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing protection against impulsivity-related dysfunction. Hum Brain Mapp 37:3114-3136, 2016. © 2016 Wiley Periodicals, Inc. |
Author | Schmüser, Lena Lieb, Klaus Tüscher, Oliver Feige, Bernd Sebastian, Alexandra Mobascher, Arian |
AuthorAffiliation | 3 Department of Psychiatry and Psychotherapy Albert Ludwigs University of Freiburg Medical Center Freiburg Germany 4 Department of Neurology Albert Ludwigs University of Freiburg Medical Center Freiburg Germany 2 Department of Psychiatry and Psychotherapy St. Elisabeth Krankenhaus Lahnstein Lahnstein Germany 1 Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz Mainz Germany |
AuthorAffiliation_xml | – name: 3 Department of Psychiatry and Psychotherapy Albert Ludwigs University of Freiburg Medical Center Freiburg Germany – name: 1 Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz Mainz Germany – name: 2 Department of Psychiatry and Psychotherapy St. Elisabeth Krankenhaus Lahnstein Lahnstein Germany – name: 4 Department of Neurology Albert Ludwigs University of Freiburg Medical Center Freiburg Germany |
Author_xml | – sequence: 1 givenname: Lena surname: Schmüser fullname: Schmüser, Lena email: lena.schmueser@unimedizin-mainz.de organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany – sequence: 2 givenname: Alexandra surname: Sebastian fullname: Sebastian, Alexandra organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany – sequence: 3 givenname: Arian surname: Mobascher fullname: Mobascher, Arian organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany – sequence: 4 givenname: Klaus surname: Lieb fullname: Lieb, Klaus organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany – sequence: 5 givenname: Bernd surname: Feige fullname: Feige, Bernd organization: Department of Psychiatry and Psychotherapy, Albert Ludwigs University of Freiburg Medical Center, Freiburg, Germany – sequence: 6 givenname: Oliver surname: Tüscher fullname: Tüscher, Oliver organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27133468$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB-w4A-gSGxgkY4dx3ayQaJlOq1oQeIhEBvLSa47bp042MnA_Hs8rwoqkFjZkr9zfHx8D9Fe5zpA6CnBxwTjbDKv2uOMZhQ_QAcElyLFpKR7qz1naZkLso8OQ7jBmBCGySO0nwlCac6LA6TfqEGljTcL6BLVKbsMJiROJ8G0ox1UB24MyXQ6m-irDxeJhwUoG5IORu_6eYSdddemVjbp59C5YdnDWm7afrQBktp1g3f2MXqoow6ebNcj9Pls-un0PL18P7s4fX2Z1pzlOCVNJSiuVE7KMhM6L5VgWtGmBMII41lGRAFMVQWjFY1Yrauccsy5bljVCKBH6NXGtx-rFpoa4u3Kyt6bVvmldMrIP086M5fXbiF5wUXORTR4sTXw7vsIYZCtCTVYu2lCkiLmKHHB2P-gmDEmOI3o83vojRt9bHtNEZbHN-BIPfs9_F3q3W9FYLIBau9C8KBlbQY1mFXHylhJsFzNg4zzINfzEBUv7yl2pn9jt-4_jIXlv0F5fnK1U6QbhQkD_LxTKH8rY5WCyS_vZhKffPv4dobP5Ff6C2sI1DI |
CitedBy_id | crossref_primary_10_1007_s11920_017_0768_8 crossref_primary_10_1007_s40473_018_0145_x crossref_primary_10_1016_j_euroneuro_2020_03_013 crossref_primary_10_1016_j_neuroscience_2017_06_011 crossref_primary_10_1016_j_neuroscience_2017_10_016 crossref_primary_10_1038_s41598_020_79475_9 crossref_primary_10_15407_fz65_02_052 crossref_primary_10_1016_j_dcn_2018_03_012 crossref_primary_10_1109_ACCESS_2018_2872765 crossref_primary_10_1111_acer_15025 crossref_primary_10_1002_hbm_24699 crossref_primary_10_1002_hbm_23835 crossref_primary_10_3389_fnhum_2022_884251 |
Cites_doi | 10.1523/JNEUROSCI.4682-05.2006 10.1016/j.pscychresns.2012.02.010 10.1016/j.ijpsycho.2012.08.001 10.1093/brain/awg237 10.1371/journal.pone.0069674 10.1002/hbm.460010306 10.1046/j.1469-8986.2003.00128.x 10.1002/mrm.20261 10.1093/brain/awg067 10.1016/j.neuroimage.2008.04.236 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1 10.1016/j.neuropsychologia.2007.07.015 10.1167/3.7.4 10.3389/fnsys.2015.00024 10.1016/j.neuroimage.2013.12.058 10.1016/0921-884X(96)95617-9 10.1016/j.clinph.2011.05.010 10.1016/j.neuropsychologia.2009.09.023 10.1016/j.neuropsychologia.2009.01.022 10.1177/1073858407299288 10.1017/S1092852900013754 10.1016/S0006-3223(03)00703-0 10.1016/j.neuroimage.2014.01.023 10.1073/pnas.1000175107 10.1016/j.neubiorev.2008.08.016 10.1016/j.ijpsycho.2012.05.006 10.1038/nn1003 10.1016/S0191-8869(00)00064-7 10.1037/a0033981 10.1006/cogp.1999.0734 10.1016/0028-3932(71)90067-4 10.1159/000304174 10.1016/j.neuroimage.2011.03.039 10.1016/j.biopsych.2010.07.024 10.1016/S0001-6918(99)00008-6 10.1016/j.ijpsycho.2014.01.008 10.1016/j.paid.2005.03.024 10.1523/JNEUROSCI.5253-10.2011 10.1016/j.ijpsycho.2013.11.004 10.1016/S0010-9452(08)70274-0 10.1521/pedi.17.1.45.24053 10.1016/j.bandc.2004.04.005 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R 10.1007/s00115-002-1447-4 10.1007/s00406-004-0488-z 10.1016/j.neuropsychologia.2007.01.013 10.1016/S1388-2457(01)00691-5 10.1016/j.neuroimage.2014.02.034 10.1016/j.neurobiolaging.2013.03.013 10.1192/bjp.134.4.382 10.1016/j.neuropsychologia.2005.06.005 10.1017/S003329171200270X 10.1016/j.ijpsycho.2008.03.008 10.1016/j.neuroimage.2012.09.020 10.1371/journal.pone.0096159 10.1046/j.1460-9568.1998.00167.x 10.1016/j.eurpsy.2010.12.010 10.1016/j.ijpsycho.2008.01.010 10.1002/jmri.21277 10.1016/0013-4694(92)90054-L 10.1016/j.neulet.2007.04.011 10.1111/psyp.12374 10.1111/j.1460-9568.2004.03683.x 10.1006/nimg.2000.0599 10.1016/j.eurpsy.2009.12.024 10.1162/089976699300016719 10.1037/a0022155 10.1026//0012-1924.49.2.61 10.1162/jocn.2008.20500 10.1093/cercor/bhn065 10.1016/S0028-3932(03)00077-0 10.1016/j.neubiorev.2012.11.003 10.1016/S1364-6613(00)01483-2 10.1016/j.brainres.2009.06.032 10.1002/hbm.21368 10.1007/s00702-008-0042-7 10.1016/S0149-7634(01)00019-7 10.1037/0033-2909.121.1.65 10.1016/j.neuropsychologia.2011.03.014 10.1007/s00429-015-0994-y 10.1016/j.biopsych.2006.04.003 10.1016/j.neuroimage.2014.07.054 10.1016/j.cpr.2011.06.001 10.1080/13803390500212896 10.1016/j.neuropsychologia.2013.06.023 10.1016/j.brainres.2012.08.004 10.1016/0926-6410(94)90010-8 10.1016/j.neuroimage.2011.02.070 10.1007/s13311-012-0138-5 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23230 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | EEG/fMRI Reveal Phenotypes of Impulse Control |
EISSN | 1097-0193 |
EndPage | 3136 |
ExternalDocumentID | PMC6867467 4148135051 27133468 10_1002_hbm_23230 HBM23230 ark_67375_WNG_0BZSKG0F_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Focus Program Translational Neuroscience of the Johannes‐Gutenberg‐University Mainz (PhD fellowship) – fundername: Federal Ministry of Education and Research funderid: 01GW0730 – fundername: Federal Ministry of Education and Research grantid: 01GW0730 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c6540-1db730ba419927f49a75fa3d9e1515622178e5ab853b3ba4cfb436066fd5bd7e3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:26:49 EDT 2025 Tue Aug 05 10:59:09 EDT 2025 Fri Jul 11 15:19:36 EDT 2025 Sat Jul 26 02:18:10 EDT 2025 Wed Feb 19 02:42:35 EST 2025 Tue Jul 01 04:26:05 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:57:32 EST 2025 Wed Oct 30 09:56:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | inter-individual differences electrophysiological phenotypes simultaneous EEG/fMRI independent component analysis (ICA) response inhibition Go/Nogo |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6540-1db730ba419927f49a75fa3d9e1515622178e5ab853b3ba4cfb436066fd5bd7e3 |
Notes | istex:F07084079205C6AF9EC5853DC3BB1FFE9FE8BA51 ark:/67375/WNG-0BZSKG0F-X Focus Program Translational Neuroscience of the Johannes-Gutenberg-University Mainz (PhD fellowship) ArticleID:HBM23230 Federal Ministry of Education and Research - No. 01GW0730 Bernd Feige and Oliver Tüscher contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6867467 |
PMID | 27133468 |
PQID | 1811546060 |
PQPubID | 996345 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867467 proquest_miscellaneous_1815690855 proquest_miscellaneous_1810555763 proquest_journals_1811546060 pubmed_primary_27133468 crossref_citationtrail_10_1002_hbm_23230 crossref_primary_10_1002_hbm_23230 wiley_primary_10_1002_hbm_23230_HBM23230 istex_primary_ark_67375_WNG_0BZSKG0F_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Donkers FCL, van Boxtel GJM (2004): The N2 in Go/No-Go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165-176. Drevets WC, Savitz J, Trimble M (2008): The subgenual anterior cingulate cortex in mood disorders. CNS Spectrosc 13:663-681. Wessel JR, Aron AR (2015): It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm: Onset latency indexes response inhibition. Psychophysiology 52:472-480. Mostofsky SH, Simmonds DJ (2008): Response inhibition and response selection: Two sides of the same coin. J Cogn Neurosci 20:751-761. Reynolds B, Ortengren A, Richards JB, de Wit H (2006): Dimensions of impulsive behavior: Personality and behavioral measures. Pers Individ Differ 40:305-315. Barkley RA (1997): Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol Bull 121:65-94. Wiersema R, van der Meere J, Antrop I, Roeyers H (2006): State regulation in adult ADHD: An event-related potential study. J Clin Exp Neuropsychol 28:1113-1126. Simmonds DJ, Fotedar SG, Suskauer SJ, Pekar JJ, Denckla MB, Mostofsky SH (2007): Functional brain correlates of response time variability in children. Neuropsychologia 45:2147-2157. Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S, Miyashita Y, Konishi S (2009): Functional dissociation in right inferior frontal cortex during performance of Go/No-Go task. Cereb Cortex 19:146-152. Sebastian A, Pohl MF, Klöppel S, Feige B, Lange T, Stahl C, Voss A, Klauer KC, Lieb K, Tüscher O (2013b): Disentangling common and specific neural subprocesses of response inhibition. NeuroImage 64:601-615. Karch S, Voelker J, Thalmeier T, Ertl M, Leicht G, Pogarell O, Mulert C (2014): Deficits during voluntary selection in adult patients with ADHD: New insights from single-trial coupling of simultaneous EEG/fMRI. Neuropsychiatr Imaging Stimul 5:41. Christiansen H, Kis B, Hirsch O, Matthies S, Hebebrand J, Uekermann J, Abdel-Hamid M, Kraemer M, Wiltfang J, Graf E, Colla M, Sobanski E, Alm B, Rösler M, Jacob C, Jans T, Huss M, Schimmelmann BG, Philipsen A (2012): German validation of the Conners Adult ADHD Rating Scales (CAARS) II: Reliability, validity, diagnostic sensitivity and specificity. Eur Psychiatry 27:321-328. Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210-220. R Core Team (2014): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org/. Montgomery SA, Asberg M (1979): A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci 134:382-389. Swick D, Ashley V, Turken U (2011): Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage 56:1655-1665. Klein C, Wendling K, Huettner P, Ruder H, Peper M (2006): Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry 60:1088-1097. First M, Spitzer R, Gibbon M, Williams J (1997): Structured Clinical Interview for DSM-IV® Axis I Disorders (SCID-I), Clinician Version, User's Guide. Washington (DC): American Psychiatric Press. Kopp B, Mattler U, Goertz R, Rist F (1996): N2, P3 and the lateralized readiness potential in a No-Go task involving selective response priming. Electroencephalogr Clin Neurophysiol 99:19-27. Carmona S, Hoekzema E, Ramos-Quiroga JA, Richarte V, Canals C, Bosch R, Rovira M, Carlos Soliva J, Bulbena A, Tobeña A, Casas M, Vilarroya O (2012): Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: A within-subject case-control neuroimaging study. Hum Brain Mapp 33:2350-2361. Retz-Junginger P, Retz W, Blocher D, Stieglitz R-D, Georg T, Supprian T, Wender PH, Rösler M (2003): Reliabilität und validität der wender-utah-rating-scale-kurzform. Nervenarzt 74:987-993. Criaud M, Boulinguez P (2013): Have we been asking the right questions when assessing response inhibition in Go/No-Go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev 37:11-23. Arntz A, van den Hoorn M, Cornelis J, Verheul R, van den Bosch WM, de Bie AJ (2003): Reliability and validity of the borderline personality disorder severity index. J Pers Disord 17:45-59. Chambers CD, Garavan H, Bellgrove MA (2009): Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33:631-646. Collins HR, Corbly CR, Liu X, Kelly TH, Lynam D, Joseph JE (2012): Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers. Brain Res 1481:1-12. Hautzinger M, Bailer, M, Worall H, Keller F (1995): Beck-Depressions-Inventar (BDI). Bern: Hans Huber. Baumeister S, Hohmann S, Wolf I, Plichta MM, Rechtsteiner S, Zangl M, Ruf M, Holz N, Boecker R, Meyer-Lindenberg A, Holtmann M, Laucht M, Banaschewski T, Brandeis D (2014): Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage 94:349-359. Wu Y, Zhou X (2009): The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Res 1286:114-122. Jodo E, Kayama Y (1992): Relation of a negative ERP component to response inhibition in a Go/No-Go task. Electroencephalogr Clin Neurophysiol 82:477-482. Miyake A (2000): The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognit Psychol 41:49-100. Lehrl S (1995): Manual zum MWT-B. Balingen: Spitta-Verl. Horn NR, Dolan M, Elliott R, Deakin JFW, Woodruff PWR (2003): Response inhibition and impulsivity: An fMRI study. Neuropsychologia 41:1959-1966. Epstein JN, Langberg JM, Rosen PJ, Graham A, Narad ME, Antonini TN, Brinkman WB, Froehlich T, Simon JO, Altaye M (2011): Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations. Neuropsychology 25:427-441. Sharp DJ, Bonnelle V, Boissezon XD, Beckmann CF, James SG, Patel MC, Mehta MA (2010): Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci 107:6106-6111. Allen PJ, Josephs O, Turner R (2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12:230-239. Chester DS, DeWall CN (2014): Prefrontal recruitment during social rejection predicts greater subsequent self-regulatory imbalance and impairment: Neural and longitudinal evidence. NeuroImage 101:485-493. Lavallee CF, Herrmann CS, Weerda R, Huster RJ (2014): Stimulus-response mappings shape inhibition processes: A combined EEG-fMRI study of contextual stopping. PLoS One 9:e96159. Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998): No-Go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10:1209-1213. Klem GH, Lüders HO, Jasper HH, Elger C (1999): The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3-6. Mullinger KJ, Morgan PS, Bowtell RW (2008): Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings. J Magn Reson Imaging 27:607-616. Bokura H, Yamaguchi S, Kobayashi S (2001): Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112:2224-2232. Nieuwenhuis S, Yeung N, Cohen JD (2004): Stimulus modality, perceptual overlap, and the Go/No-go N2. Psychophysiology 41:157-160. Woltering S, Liu Z, Rokeach A, Tannock R (2013): Neurophysiological differences in inhibitory control between adults with ADHD and their peers. Neuropsychologia 51:1888-1895. Lee T-W, Girolami M, Sejnowski TJ (1999): Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources. Neural Comput 11:417-441. Zaitsev M, Hennig J, Speck O (2004): Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156-1166. First M, Spitzer R, Gibbon M, Williams J (1996): User's Guide for the Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II). Washington (DC): American Psychiatric Press. Sebastian A, Jung P, Neuhoff J, Wibral M, Fox PT, Lieb K, Fries P, Eickhoff SB, Tüscher O, Mobascher A (2016): Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: A combined task-specific and coordinate-based meta-analytic fMRI study. Brain Struct Funct 221:1635-1651. Brown MRG, Benoit JRA, Juhás M, Lebel RM, MacKay M, Dametto E, Silverstone PH, Dolcos F, Dursun SM, Greenshaw AJ (2015): Neural correlates of high-risk behavior tendencies and impulsivity in an emotional Go/NoGo fMRI task. Front Syst Neurosci 9:24. http://www.frontiersin.org/Systems_Neuroscience/10.3389/fnsys.2015.00024/abstract. Oldfield RC (1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97-113. Friedman D, Cycowicz YM, Gaeta H (2001): The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neurosci Biobehav Rev 25:355-373. Tamm L, Narad ME, Antonini TN, O'Brien KM, Hawk LW, Epstein JN (2012): Reaction Time Variability in ADHD: A review. Neurotherapeutics 9:500-508. Schmajuk M, Liotti M, Busse L, Woldorff MG (2006): Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia 44:384-395. Dimoska A, Johnstone SJ, Barry RJ, Clarke AR (2003): Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-rel 2009; 47 2004; 20 2012; 1481 2010; 107 2000; 4 2000; 44 2000; 41 2016; 221 2003; 17 2011; 56 2012; 202 2013; 8 2009; 1286 2003; 54 2008b; 115 2004; 254 2006; 60 1971; 9 2014; 5 2000; 12 2003; 6 2013; 51 2006; 28 2008; 27 2006; 26 2008; 69 2003; 3 1999; 11 2003; 49 1999; 52 2011; 26 2012; 27 2011; 69 2011; 25 2008; 20 2003; 126 2014; 9 2007; 419 2009; 19 2014; 8 2014; 94 1998; 10 2003; 41 1992; 82 2011; 122 1988 2004; 41 1995; 51 2014; 92 2014; 91 2013a; 34 2013; 43 2013; 87 2015; 52 2011; 31 1997 2005; 41 1996 2008; 13 1995 1999; 101 2015; 9 2012; 33 2001; 25 2003; 74 2007; 13 1999 1996; 99 2008a; 68 2009; 33 2010; 43 2004; 52 2001; 112 2013; 37 2010; 48 1979; 134 2006; 40 2006; 44 2013b; 64 1997; 121 2004; 56 2008; 46 2015 2014 2008; 42 1994; 1 2014; 143 2011; 49 1994; 2 2007; 45 2001; 30 2014; 101 2012; 85 2012; 9 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 Liotti M (e_1_2_6_63_1) 2005; 41 e_1_2_6_11_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_31_1 Karch S (e_1_2_6_52_1) 2014; 5 e_1_2_6_92_1 Hautzinger M (e_1_2_6_41_1) 1995 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_101_1 First M (e_1_2_6_34_1) 1996 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 Johnson JS (e_1_2_6_50_1) 2003; 3 e_1_2_6_70_1 e_1_2_6_93_1 Klem GH (e_1_2_6_54_1) 1999; 52 Lehrl S (e_1_2_6_62_1) 1995 R Core Team (e_1_2_6_75_1) 2014 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 First M (e_1_2_6_35_1) 1997 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 Wittchen H‐U (e_1_2_6_100_1) 1997 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_98_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_79_1 e_1_2_6_103_1 Fydrich T (e_1_2_6_40_1) 1997 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_8_1 Feige B (e_1_2_6_32_1) 1999 e_1_2_6_4_1 Freese S (e_1_2_6_37_1) 1999 Schmüser L (e_1_2_6_82_1) 2014; 8 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: Criaud M, Boulinguez P (2013): Have we been asking the right questions when assessing response inhibition in Go/No-Go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev 37:11-23. – reference: Falkenstein M, Hoormann J, Hohnsbein J (1999): ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol (Amst) 101:267-291. – reference: Bush G, Luu P, Posner MI (2000): Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215-222. – reference: Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003): Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115-116. – reference: Swick D, Ashley V, Turken U (2011): Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage 56:1655-1665. – reference: Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005): Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex J Devoted Study Nerv Syst Behav 41:377-388. – reference: Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S, Miyashita Y, Konishi S (2009): Functional dissociation in right inferior frontal cortex during performance of Go/No-Go task. Cereb Cortex 19:146-152. – reference: Sebastian A, Jung P, Neuhoff J, Wibral M, Fox PT, Lieb K, Fries P, Eickhoff SB, Tüscher O, Mobascher A (2016): Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: A combined task-specific and coordinate-based meta-analytic fMRI study. Brain Struct Funct 221:1635-1651. – reference: Retz-Junginger P, Retz W, Blocher D, Stieglitz R-D, Georg T, Supprian T, Wender PH, Rösler M (2003): Reliabilität und validität der wender-utah-rating-scale-kurzform. Nervenarzt 74:987-993. – reference: Naito E, Matsumura M (1994): Movement-related potentials associated with motor inhibition as determined by use of a stop signal paradigm in humans. Cogn Brain Res 2:139-146. – reference: Allen PJ, Josephs O, Turner R (2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12:230-239. – reference: Horn NR, Dolan M, Elliott R, Deakin JFW, Woodruff PWR (2003): Response inhibition and impulsivity: An fMRI study. Neuropsychologia 41:1959-1966. – reference: Beste C, Willemssen R, Saft C, Falkenstein M (2010): Response inhibition subprocesses and dopaminergic pathways: Basal ganglia disease effects. Neuropsychologia 48:366-373. – reference: Ruchsow M, Groen G, Kiefer M, Hermle L, Spitzer M, Falkenstein M (2008b): Impulsiveness and ERP components in a Go/Nogo task. J Neural Transm 115:909-915. – reference: Feige B (1999): Oscillatory Brain Activity and its Analysis on the Basis for MEG and EEG. Münster: Waxmann. – reference: Christiansen H, Kis B, Hirsch O, Philipsen A, Henneck M, Panczuk A, Pietrowsky R, Hebebrand J, Schimmelmann BG (2011): German validation of the Conners Adult ADHD Rating Scales-Self-report (CAARS-S) I: Factor structure and normative data. Eur Psychiatry 26:100-107. – reference: Zaitsev M, Hennig J, Speck O (2004): Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156-1166. – reference: Schmajuk M, Liotti M, Busse L, Woldorff MG (2006): Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia 44:384-395. – reference: Asahi S, Okamoto Y, Okada G, Yamawaki S, Yokota N (2004): Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. Eur Arch Psychiatry Clin Neurosci 254:245-251. http://link.springer.com/10.1007/s00406-004-0488-z. – reference: Prox V, Dietrich DE, Zhang Y, Emrich HM, Ohlmeier MD (2007): Attentional processing in adults with ADHD as reflected by event-related potentials. Neurosci Lett 419:236-241. – reference: Karch S, Voelker J, Thalmeier T, Ertl M, Leicht G, Pogarell O, Mulert C (2014): Deficits during voluntary selection in adult patients with ADHD: New insights from single-trial coupling of simultaneous EEG/fMRI. Neuropsychiatr Imaging Stimul 5:41. – reference: Albrecht B, Brandeis D, Uebel H, Valko L, Heinrich H, Drechsler R, Heise A, Müller UC, Steinhausen H-C, Rothenberger A, Banaschewski T (2013): Familiality of neural preparation and response control in childhood attention deficit-hyperactivity disorder. Psychol Med 43:1997-2011. – reference: Aron AR (2011): From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biol Psychiatry 69:e55-e68. – reference: Helenius P, Laasonen M, Hokkanen L, Paetau R, Niemivirta M (2011): Impaired engagement of the ventral attentional pathway in ADHD. Neuropsychologia 49:1889-1896. – reference: Lavallee CF, Herrmann CS, Weerda R, Huster RJ (2014): Stimulus-response mappings shape inhibition processes: A combined EEG-fMRI study of contextual stopping. PLoS One 9:e96159. – reference: Arntz A, van den Hoorn M, Cornelis J, Verheul R, van den Bosch WM, de Bie AJ (2003): Reliability and validity of the borderline personality disorder severity index. J Pers Disord 17:45-59. – reference: Fisher T, Aharon-Peretz J, Pratt H (2011): Dis-regulation of response inhibition in adult attention deficit hyperactivity disorder (ADHD): An ERP study. Clin Neurophysiol 122:2390-2399. – reference: Huster RJ, Plis SM, Lavallee CF, Calhoun VD, Herrmann CS (2014): Functional and effective connectivity of stopping. NeuroImage 94:120-128. – reference: Lee T-W, Girolami M, Sejnowski TJ (1999): Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources. Neural Comput 11:417-441. – reference: Sharp DJ, Bonnelle V, Boissezon XD, Beckmann CF, James SG, Patel MC, Mehta MA (2010): Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci 107:6106-6111. – reference: Thesen S, Heid O, Mueller E, Schad LR (2000): Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457-465. – reference: Sebastian A, Gerdes B, Feige B, Klöppel S, Lange T, Philipsen A, Tebartz van Elst L, Lieb K, Tüscher O (2012): Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD. Psychiatry Res Neuroimaging 202:132-141. – reference: Stahl C, Voss A, Schmitz F, Nuszbaum M, Tüscher O, Lieb K, Klauer KC (2014): Behavioral components of impulsivity. J Exp Psychol Gen 143:850-886. – reference: Jacob GA, Gutz L, Bader K, Lieb K, Tüscher O, Stahl C (2010): Impulsivity in borderline personality disorder: Impairment in self-report measures, but not behavioral inhibition. Psychopathology 43:180-188. – reference: Chambers CD, Garavan H, Bellgrove MA (2009): Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33:631-646. – reference: Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210-220. – reference: First M, Spitzer R, Gibbon M, Williams J (1996): User's Guide for the Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II). Washington (DC): American Psychiatric Press. – reference: Klem GH, Lüders HO, Jasper HH, Elger C (1999): The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3-6. – reference: Christiansen H, Kis B, Hirsch O, Matthies S, Hebebrand J, Uekermann J, Abdel-Hamid M, Kraemer M, Wiltfang J, Graf E, Colla M, Sobanski E, Alm B, Rösler M, Jacob C, Jans T, Huss M, Schimmelmann BG, Philipsen A (2012): German validation of the Conners Adult ADHD Rating Scales (CAARS) II: Reliability, validity, diagnostic sensitivity and specificity. Eur Psychiatry 27:321-328. – reference: Brown MRG, Benoit JRA, Juhás M, Lebel RM, MacKay M, Dametto E, Silverstone PH, Dolcos F, Dursun SM, Greenshaw AJ (2015): Neural correlates of high-risk behavior tendencies and impulsivity in an emotional Go/NoGo fMRI task. Front Syst Neurosci 9:24. http://www.frontiersin.org/Systems_Neuroscience/10.3389/fnsys.2015.00024/abstract. – reference: Patton JH, Stanford MS, Barratt ES (1995): Factor structure of the barratt impulsiveness scale. J Clin Psychol 51:768-774. – reference: Aron AR (2007): The neural basis of inhibition in cognitive control. Neuroscientist 13:214-228. – reference: Sebastian A, Pohl MF, Klöppel S, Feige B, Lange T, Stahl C, Voss A, Klauer KC, Lieb K, Tüscher O (2013b): Disentangling common and specific neural subprocesses of response inhibition. NeuroImage 64:601-615. – reference: Fydrich T, Renneberg B, Schmitz B, Wittchen H-U (1997): Strukturiertes Klinisches Interview für DSM-IV, Achse II: Persönlichkeitsstörungen. Göttingen (Germany): Hogrefe. – reference: Lavric A, Pizzagalli DA, Forstmeier S (2004): When "Go" and "Nogo" are equally frequent: ERP components and cortical tomography. Eur J Neurosci 20:2483-2488. – reference: Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS (2013): Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int J Psychophysiol 87:217-233. – reference: Sebastian A, Baldermann C, Feige B, Katzev M, Scheller E, Hellwig B, Lieb K, Weiller C, Tüscher O, Klöppel S (2013a): Differential effects of age on subcomponents of response inhibition. Neurobiol Aging 34:2183-2193. – reference: Schmüser L, Sebastian A, Mobascher A, Lieb K, Tüscher O, Feige B (2014): Data-driven analysis of simultaneous EEG/fMRI using an ICA approach. Front Neurosci 8:175. – reference: Epstein JN, Langberg JM, Rosen PJ, Graham A, Narad ME, Antonini TN, Brinkman WB, Froehlich T, Simon JO, Altaye M (2011): Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations. Neuropsychology 25:427-441. – reference: Wu Y, Zhou X (2009): The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Res 1286:114-122. – reference: Lehrl S (1995): Manual zum MWT-B. Balingen: Spitta-Verl. – reference: Oldfield RC (1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97-113. – reference: Feige B, Biscaldi M, Saville CWN, Kluckert C, Bender S, Ebner-Priemer U, Hennighausen K, Rauh R, Fleischhaker C, Klein C (2013): On the temporal characteristics of performance variability in attention deficit hyperactivity disorder (ADHD). PLoS One 8:e69674. – reference: Whiteside SP, Lynam DR (2001): The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Pers Individ Differ 30:669-689. – reference: Tamm L, Narad ME, Antonini TN, O'Brien KM, Hawk LW, Epstein JN (2012): Reaction Time Variability in ADHD: A review. Neurotherapeutics 9:500-508. – reference: Drevets WC, Savitz J, Trimble M (2008): The subgenual anterior cingulate cortex in mood disorders. CNS Spectrosc 13:663-681. – reference: Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998): No-Go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10:1209-1213. – reference: Bokura H, Yamaguchi S, Kobayashi S (2001): Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112:2224-2232. – reference: First M, Spitzer R, Gibbon M, Williams J (1997): Structured Clinical Interview for DSM-IV® Axis I Disorders (SCID-I), Clinician Version, User's Guide. Washington (DC): American Psychiatric Press. – reference: Kam JWY, Dominelli R, Carlson SR (2012). Differential relationships between sub-traits of BIS-11 impulsivity and executive processes: An ERP study. Int J Psychophysiol 85:174-187. – reference: Klein C, Wendling K, Huettner P, Ruder H, Peper M (2006): Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry 60:1088-1097. – reference: Cyders MA, Coskunpinar A (2011): Measurement of constructs using self-report and behavioral lab tasks: Is there overlap in nomothetic span and construct representation for impulsivity? Clin Psychol Rev 31:965-982. – reference: Stuss DT (2003): Staying on the job: The frontal lobes control individual performance variability. Brain 126:2363-2380. – reference: Jahfari S, Waldorp L, van den Wildenberg WPM, Scholte HS, Ridderinkhof KR, Forstmann BU (2011): Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci off J Soc Neurosci 31:6891-6899. – reference: Friedman D, Cycowicz YM, Gaeta H (2001): The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neurosci Biobehav Rev 25:355-373. – reference: Mostofsky SH, Simmonds DJ (2008): Response inhibition and response selection: Two sides of the same coin. J Cogn Neurosci 20:751-761. – reference: Wiersema R, van der Meere J, Antrop I, Roeyers H (2006): State regulation in adult ADHD: An event-related potential study. J Clin Exp Neuropsychol 28:1113-1126. – reference: Dimoska A, Johnstone SJ, Barry RJ, Clarke AR (2003): Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biol Psychiatry 54:1345-1354. – reference: Kóbor A, Takács Á, Honbolygó F, Csépe V (2014): Generalized lapse of responding in trait impulsivity indicated by ERPs: The role of energetic factors in inhibitory control. Int J Psychophysiol 92:16-25. – reference: Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller H-J, Hegerl U, Pogarell O, Jäger L (2008): Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42:158-168. – reference: Ruchsow M, Groen G, Kiefer M, Beschoner P, Hermle L, Ebert D, Falkenstein M (2008a): Electrophysiological evidence for reduced inhibitory control in depressed patients in partial remission: A Go/Nogo study. Int J Psychophysiol 68:209-218. – reference: Johnson JS, Olshausen BA (2003): Timecourse of neural signatures of object recognition. J Vis 3:499-512. – reference: R Core Team (2014): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org/. – reference: Simmonds DJ, Fotedar SG, Suskauer SJ, Pekar JJ, Denckla MB, Mostofsky SH (2007): Functional brain correlates of response time variability in children. Neuropsychologia 45:2147-2157. – reference: Aron AR (2003): Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington's disease. Brain 126:713-723. – reference: Jodo E, Kayama Y (1992): Relation of a negative ERP component to response inhibition in a Go/No-Go task. Electroencephalogr Clin Neurophysiol 82:477-482. – reference: Baumeister S, Hohmann S, Wolf I, Plichta MM, Rechtsteiner S, Zangl M, Ruf M, Holz N, Boecker R, Meyer-Lindenberg A, Holtmann M, Laucht M, Banaschewski T, Brandeis D (2014): Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage 94:349-359. – reference: Mullinger KJ, Morgan PS, Bowtell RW (2008): Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings. J Magn Reson Imaging 27:607-616. – reference: Freese S, Kröger C (1999): Borderline Personality Disorder Severity Index (BPDSI). Braunschweig (Germany): Christoph-Dornier-Stiftung, Institut für Psychologie. – reference: Russo PM, De Pascalis V, Varriale V, Barratt ES (2008): Impulsivity, intelligence and P300 wave: An empirical study. Int J Psychophysiol 69:112-118. – reference: Woltering S, Liu Z, Rokeach A, Tannock R (2013): Neurophysiological differences in inhibitory control between adults with ADHD and their peers. Neuropsychologia 51:1888-1895. – reference: Barkley RA (1997): Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol Bull 121:65-94. – reference: Kopp B, Mattler U, Goertz R, Rist F (1996): N2, P3 and the lateralized readiness potential in a No-Go task involving selective response priming. Electroencephalogr Clin Neurophysiol 99:19-27. – reference: Carmona S, Hoekzema E, Ramos-Quiroga JA, Richarte V, Canals C, Bosch R, Rovira M, Carlos Soliva J, Bulbena A, Tobeña A, Casas M, Vilarroya O (2012): Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: A within-subject case-control neuroimaging study. Hum Brain Mapp 33:2350-2361. – reference: Huster RJ, Eichele T, Enriquez-Geppert S, Wollbrink A, Kugel H, Konrad C, Pantev C (2011): Multimodal imaging of functional networks and event-related potentials in performance monitoring. NeuroImage 56:1588-1597. – reference: Montgomery SA, Asberg M (1979): A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci 134:382-389. – reference: Woo C-W, Krishnan A, Wager TD (2014): Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage 91:412-419. – reference: Wessel JR, Aron AR (2015): It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm: Onset latency indexes response inhibition. Psychophysiology 52:472-480. – reference: Miyake A (2000): The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognit Psychol 41:49-100. – reference: Beauducel A, Strobel A, Brocke B (2003): Psychometrische Eigenschaften und Normen einer deutschsprachigen Fassung der Sensation Seeking-Skalen, Form V. Diagnostica 49:61-72. – reference: Donkers FCL, van Boxtel GJM (2004): The N2 in Go/No-Go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165-176. – reference: Simmonds DJ, Pekar JJ, Mostofsky SH (2008): Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46:224-232. – reference: Shen I-H, Lee D-S, Chen C (2014): The role of trait impulsivity in response inhibition: Event-related potentials in a stop-signal task. Int J Psychophysiol 91:80-87. – reference: Chester DS, DeWall CN (2014): Prefrontal recruitment during social rejection predicts greater subsequent self-regulatory imbalance and impairment: Neural and longitudinal evidence. NeuroImage 101:485-493. – reference: Vaurio RG, Simmonds DJ, Mostofsky SH (2009): Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia 47:2389-2396. – reference: Collins HR, Corbly CR, Liu X, Kelly TH, Lynam D, Joseph JE (2012): Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers. Brain Res 1481:1-12. – reference: Hautzinger M, Bailer, M, Worall H, Keller F (1995): Beck-Depressions-Inventar (BDI). Bern: Hans Huber. – reference: Wittchen H-U, First MB, Zaudig M, Fydrich T (1997): SKID: Strukturiertes klinisches Interview für DSM-IV: Achse I und II. Göttingen (Germany): Hogrefe. – reference: Aron AR, Poldrack RA (2006): Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. J Neurosci 26:2424-2433. – reference: Reynolds B, Ortengren A, Richards JB, de Wit H (2006): Dimensions of impulsive behavior: Personality and behavioral measures. Pers Individ Differ 40:305-315. – reference: Nieuwenhuis S, Yeung N, Cohen JD (2004): Stimulus modality, perceptual overlap, and the Go/No-go N2. Psychophysiology 41:157-160. – volume: 101 start-page: 267 year: 1999 end-page: 291 article-title: ERP components in Go/Nogo tasks and their relation to inhibition publication-title: Acta Psychol (Amst) – volume: 99 start-page: 19 year: 1996 end-page: 27 article-title: N2, P3 and the lateralized readiness potential in a No‐Go task involving selective response priming publication-title: Electroencephalogr Clin Neurophysiol – volume: 64 start-page: 601 year: 2013b end-page: 615 article-title: Disentangling common and specific neural subprocesses of response inhibition publication-title: NeuroImage – volume: 52 start-page: 1156 year: 2004 end-page: 1166 article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo‐planar imaging distortion correction publication-title: Magn Reson Med – volume: 1 start-page: 210 year: 1994 end-page: 220 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum Brain Mapp – volume: 27 start-page: 321 year: 2012 end-page: 328 article-title: German validation of the Conners Adult ADHD Rating Scales (CAARS) II: Reliability, validity, diagnostic sensitivity and specificity publication-title: Eur Psychiatry – volume: 20 start-page: 2483 year: 2004 end-page: 2488 article-title: When “Go” and “Nogo” are equally frequent: ERP components and cortical tomography publication-title: Eur J Neurosci – year: 2014 – volume: 30 start-page: 669 year: 2001 end-page: 689 article-title: The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity publication-title: Pers Individ Differ – volume: 47 start-page: 2389 year: 2009 end-page: 2396 article-title: Increased intra‐individual reaction time variability in attention‐deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands publication-title: Neuropsychologia – volume: 33 start-page: 631 year: 2009 end-page: 646 article-title: Insights into the neural basis of response inhibition from cognitive and clinical neuroscience publication-title: Neurosci Biobehav Rev – volume: 41 start-page: 377 year: 2005 end-page: 388 article-title: Abnormal brain activity related to performance monitoring and error detection in children with ADHD publication-title: Cortex J Devoted Study Nerv Syst Behav – volume: 28 start-page: 1113 year: 2006 end-page: 1126 article-title: State regulation in adult ADHD: An event‐related potential study publication-title: J Clin Exp Neuropsychol – volume: 27 start-page: 607 year: 2008 end-page: 616 article-title: Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings publication-title: J Magn Reson Imaging – volume: 56 start-page: 1655 year: 2011 end-page: 1665 article-title: Are the neural correlates of stopping and not going identical? Quantitative meta‐analysis of two response inhibition tasks publication-title: NeuroImage – volume: 43 start-page: 1997 year: 2013 end-page: 2011 article-title: Familiality of neural preparation and response control in childhood attention deficit‐hyperactivity disorder publication-title: Psychol Med – volume: 43 start-page: 180 year: 2010 end-page: 188 article-title: Impulsivity in borderline personality disorder: Impairment in self‐report measures, but not behavioral inhibition publication-title: Psychopathology – volume: 5 start-page: 41 year: 2014 article-title: Deficits during voluntary selection in adult patients with ADHD: New insights from single‐trial coupling of simultaneous EEG/fMRI publication-title: Neuropsychiatr Imaging Stimul – volume: 34 start-page: 2183 year: 2013a end-page: 2193 article-title: Differential effects of age on subcomponents of response inhibition publication-title: Neurobiol Aging – volume: 92 start-page: 16 year: 2014 end-page: 25 article-title: Generalized lapse of responding in trait impulsivity indicated by ERPs: The role of energetic factors in inhibitory control publication-title: Int J Psychophysiol – volume: 41 start-page: 157 year: 2004 end-page: 160 article-title: Stimulus modality, perceptual overlap, and the Go/No‐go N2 publication-title: Psychophysiology – volume: 19 start-page: 146 year: 2009 end-page: 152 article-title: Functional dissociation in right inferior frontal cortex during performance of Go/No‐Go task publication-title: Cereb Cortex – volume: 25 start-page: 427 year: 2011 end-page: 441 article-title: Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations publication-title: Neuropsychology – volume: 126 start-page: 2363 year: 2003 end-page: 2380 article-title: Staying on the job: The frontal lobes control individual performance variability publication-title: Brain – volume: 49 start-page: 61 year: 2003 end-page: 72 article-title: Psychometrische Eigenschaften und Normen einer deutschsprachigen Fassung der Sensation Seeking‐Skalen, Form V publication-title: Diagnostica – volume: 60 start-page: 1088 year: 2006 end-page: 1097 article-title: Intra‐subject variability in attention‐deficit hyperactivity disorder publication-title: Biol Psychiatry – volume: 41 start-page: 1959 year: 2003 end-page: 1966 article-title: Response inhibition and impulsivity: An fMRI study publication-title: Neuropsychologia – volume: 42 start-page: 158 year: 2008 end-page: 168 article-title: Single‐trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making publication-title: NeuroImage – volume: 31 start-page: 6891 year: 2011 end-page: 6899 article-title: Effective connectivity reveals important roles for both the hyperdirect (fronto‐subthalamic) and the indirect (fronto‐striatal‐pallidal) fronto‐basal ganglia pathways during response inhibition publication-title: J Neurosci off J Soc Neurosci – volume: 8 start-page: 175 year: 2014 article-title: Data‐driven analysis of simultaneous EEG/fMRI using an ICA approach publication-title: Front Neurosci – volume: 31 start-page: 965 year: 2011 end-page: 982 article-title: Measurement of constructs using self‐report and behavioral lab tasks: Is there overlap in nomothetic span and construct representation for impulsivity? publication-title: Clin Psychol Rev – volume: 69 start-page: 112 year: 2008 end-page: 118 article-title: Impulsivity, intelligence and P300 wave: An empirical study publication-title: Int J Psychophysiol – volume: 87 start-page: 217 year: 2013 end-page: 233 article-title: Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions publication-title: Int J Psychophysiol – volume: 26 start-page: 100 year: 2011 end-page: 107 article-title: German validation of the Conners Adult ADHD Rating Scales—Self‐report (CAARS‐S) I: Factor structure and normative data publication-title: Eur Psychiatry – volume: 115 start-page: 909 year: 2008b end-page: 915 article-title: Impulsiveness and ERP components in a Go/Nogo task publication-title: J Neural Transm – volume: 3 start-page: 499 year: 2003 end-page: 512 article-title: Timecourse of neural signatures of object recognition publication-title: J Vis – volume: 143 start-page: 850 year: 2014 end-page: 886 article-title: Behavioral components of impulsivity publication-title: J Exp Psychol Gen – volume: 49 start-page: 1889 year: 2011 end-page: 1896 article-title: Impaired engagement of the ventral attentional pathway in ADHD publication-title: Neuropsychologia – volume: 419 start-page: 236 year: 2007 end-page: 241 article-title: Attentional processing in adults with ADHD as reflected by event‐related potentials publication-title: Neurosci Lett – volume: 13 start-page: 663 year: 2008 end-page: 681 article-title: The subgenual anterior cingulate cortex in mood disorders publication-title: CNS Spectrosc – volume: 107 start-page: 6106 year: 2010 end-page: 6111 article-title: Distinct frontal systems for response inhibition, attentional capture, and error processing publication-title: Proc Natl Acad Sci – volume: 11 start-page: 417 year: 1999 end-page: 441 article-title: Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources publication-title: Neural Comput – volume: 1481 start-page: 1 year: 2012 end-page: 12 article-title: Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers publication-title: Brain Res – volume: 9 start-page: e96159 year: 2014 article-title: Stimulus‐response mappings shape inhibition processes: A combined EEG‐fMRI study of contextual stopping publication-title: PLoS One – volume: 91 start-page: 80 year: 2014 end-page: 87 article-title: The role of trait impulsivity in response inhibition: Event‐related potentials in a stop‐signal task publication-title: Int J Psychophysiol – year: 1995 – volume: 45 start-page: 2147 year: 2007 end-page: 2157 article-title: Functional brain correlates of response time variability in children publication-title: Neuropsychologia – volume: 8 start-page: e69674 year: 2013 article-title: On the temporal characteristics of performance variability in attention deficit hyperactivity disorder (ADHD) publication-title: PLoS One – volume: 1286 start-page: 114 year: 2009 end-page: 122 article-title: The P300 and reward valence, magnitude, and expectancy in outcome evaluation publication-title: Brain Res – volume: 101 start-page: 485 year: 2014 end-page: 493 article-title: Prefrontal recruitment during social rejection predicts greater subsequent self‐regulatory imbalance and impairment: Neural and longitudinal evidence publication-title: NeuroImage – volume: 134 start-page: 382 year: 1979 end-page: 389 article-title: A new depression scale designed to be sensitive to change publication-title: Br J Psychiatry J Ment Sci – volume: 25 start-page: 355 year: 2001 end-page: 373 article-title: The novelty P3: An event‐related brain potential (ERP) sign of the brain's evaluation of novelty publication-title: Neurosci Biobehav Rev – volume: 13 start-page: 214 year: 2007 end-page: 228 article-title: The neural basis of inhibition in cognitive control publication-title: Neuroscientist – volume: 56 start-page: 165 year: 2004 end-page: 176 article-title: The N2 in Go/No‐Go tasks reflects conflict monitoring not response inhibition publication-title: Brain Cogn – volume: 10 start-page: 1209 year: 1998 end-page: 1213 article-title: No‐Go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging publication-title: Eur J Neurosci – volume: 44 start-page: 457 year: 2000 end-page: 465 article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI publication-title: Magn Reson Med – volume: 20 start-page: 751 year: 2008 end-page: 761 article-title: Response inhibition and response selection: Two sides of the same coin publication-title: J Cogn Neurosci – volume: 221 year: 2016 article-title: Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: A combined task‐specific and coordinate‐based meta‐analytic fMRI study publication-title: Brain Struct Funct – volume: 9 start-page: 500 year: 2012 end-page: 508 article-title: Reaction Time Variability in ADHD: A review publication-title: Neurotherapeutics – volume: 41 start-page: 49 year: 2000 end-page: 100 article-title: The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis publication-title: Cognit Psychol – volume: 202 start-page: 132 year: 2012 end-page: 141 article-title: Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD publication-title: Psychiatry Res Neuroimaging – volume: 6 start-page: 115 year: 2003 end-page: 116 article-title: Stop‐signal inhibition disrupted by damage to right inferior frontal gyrus in humans publication-title: Nat Neurosci – volume: 91 start-page: 412 year: 2014 end-page: 419 article-title: Cluster‐extent based thresholding in fMRI analyses: Pitfalls and recommendations publication-title: NeuroImage – volume: 94 start-page: 349 year: 2014 end-page: 359 article-title: Sequential inhibitory control processes assessed through simultaneous EEG–fMRI publication-title: NeuroImage – volume: 46 start-page: 224 year: 2008 end-page: 232 article-title: Meta‐analysis of Go/No‐go tasks demonstrating that fMRI activation associated with response inhibition is task‐dependent publication-title: Neuropsychologia – year: 1997 – volume: 2 start-page: 139 year: 1994 end-page: 146 article-title: Movement‐related potentials associated with motor inhibition as determined by use of a stop signal paradigm in humans publication-title: Cogn Brain Res – volume: 40 start-page: 305 year: 2006 end-page: 315 article-title: Dimensions of impulsive behavior: Personality and behavioral measures publication-title: Pers Individ Differ – volume: 51 start-page: 1888 year: 2013 end-page: 1895 article-title: Neurophysiological differences in inhibitory control between adults with ADHD and their peers publication-title: Neuropsychologia – year: 2015 – volume: 17 start-page: 45 year: 2003 end-page: 59 article-title: Reliability and validity of the borderline personality disorder severity index publication-title: J Pers Disord – volume: 52 start-page: 472 year: 2015 end-page: 480 article-title: It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop‐signal paradigm: Onset latency indexes response inhibition publication-title: Psychophysiology – volume: 121 start-page: 65 year: 1997 end-page: 94 article-title: Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD publication-title: Psychol Bull – volume: 33 start-page: 2350 year: 2012 end-page: 2361 article-title: Response inhibition and reward anticipation in medication‐naïve adults with attention‐deficit/hyperactivity disorder: A within‐subject case‐control neuroimaging study publication-title: Hum Brain Mapp – volume: 37 start-page: 11 year: 2013 end-page: 23 article-title: Have we been asking the right questions when assessing response inhibition in Go/No‐Go tasks with fMRI? A meta‐analysis and critical review publication-title: Neurosci Biobehav Rev – volume: 69 start-page: e55 year: 2011 end-page: e68 article-title: From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses publication-title: Biol Psychiatry – volume: 26 start-page: 2424 year: 2006 end-page: 2433 article-title: Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus publication-title: J Neurosci – volume: 94 start-page: 120 year: 2014 end-page: 128 article-title: Functional and effective connectivity of stopping publication-title: NeuroImage – volume: 85 start-page: 174 year: 2012 end-page: 187 article-title: Differential relationships between sub‐traits of BIS‐11 impulsivity and executive processes: An ERP study publication-title: Int J Psychophysiol – year: 1996 – volume: 126 start-page: 713 year: 2003 end-page: 723 article-title: Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington's disease publication-title: Brain – volume: 52 start-page: 3 year: 1999 end-page: 6 article-title: The ten‐twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 68 start-page: 209 year: 2008a end-page: 218 article-title: Electrophysiological evidence for reduced inhibitory control in depressed patients in partial remission: A Go/Nogo study publication-title: Int J Psychophysiol – volume: 56 start-page: 1588 year: 2011 end-page: 1597 article-title: Multimodal imaging of functional networks and event‐related potentials in performance monitoring publication-title: NeuroImage – volume: 4 start-page: 215 year: 2000 end-page: 222 article-title: Cognitive and emotional influences in anterior cingulate cortex publication-title: Trends Cogn Sci – volume: 9 year: 2015 article-title: Neural correlates of high‐risk behavior tendencies and impulsivity in an emotional Go/NoGo fMRI task publication-title: Front Syst Neurosci – volume: 44 start-page: 384 year: 2006 end-page: 395 article-title: Electrophysiological activity underlying inhibitory control processes in normal adults publication-title: Neuropsychologia – volume: 12 start-page: 230 year: 2000 end-page: 239 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: NeuroImage – volume: 122 start-page: 2390 year: 2011 end-page: 2399 article-title: Dis‐regulation of response inhibition in adult attention deficit hyperactivity disorder (ADHD): An ERP study publication-title: Clin Neurophysiol – volume: 74 start-page: 987 year: 2003 end-page: 993 article-title: Reliabilität und validität der wender‐utah‐rating‐scale‐kurzform publication-title: Nervenarzt – year: 1988 – volume: 51 start-page: 768 year: 1995 end-page: 774 article-title: Factor structure of the barratt impulsiveness scale publication-title: J Clin Psychol – volume: 112 start-page: 2224 year: 2001 end-page: 2232 article-title: Electrophysiological correlates for response inhibition in a Go/NoGo task publication-title: Clin Neurophysiol – volume: 82 start-page: 477 year: 1992 end-page: 482 article-title: Relation of a negative ERP component to response inhibition in a Go/No‐Go task publication-title: Electroencephalogr Clin Neurophysiol – volume: 48 start-page: 366 year: 2010 end-page: 373 article-title: Response inhibition subprocesses and dopaminergic pathways: Basal ganglia disease effects publication-title: Neuropsychologia – volume: 254 year: 2004 article-title: Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study publication-title: Eur Arch Psychiatry Clin Neurosci – volume: 54 start-page: 1345 year: 2003 end-page: 1354 article-title: Inhibitory motor control in children with attention‐deficit/hyperactivity disorder: Event‐related potentials in the stop‐signal paradigm publication-title: Biol Psychiatry – volume: 9 start-page: 97 year: 1971 end-page: 113 article-title: The assessment and analysis of handedness: The Edinburgh inventory publication-title: Neuropsychologia – year: 1999 – ident: e_1_2_6_8_1 doi: 10.1523/JNEUROSCI.4682-05.2006 – ident: e_1_2_6_83_1 doi: 10.1016/j.pscychresns.2012.02.010 – ident: e_1_2_6_45_1 doi: 10.1016/j.ijpsycho.2012.08.001 – ident: e_1_2_6_92_1 doi: 10.1093/brain/awg237 – ident: e_1_2_6_33_1 doi: 10.1371/journal.pone.0069674 – volume: 8 start-page: 175 year: 2014 ident: e_1_2_6_82_1 article-title: Data‐driven analysis of simultaneous EEG/fMRI using an ICA approach publication-title: Front Neurosci – ident: e_1_2_6_39_1 doi: 10.1002/hbm.460010306 – ident: e_1_2_6_71_1 doi: 10.1046/j.1469-8986.2003.00128.x – ident: e_1_2_6_104_1 doi: 10.1002/mrm.20261 – ident: e_1_2_6_5_1 doi: 10.1093/brain/awg067 – ident: e_1_2_6_67_1 doi: 10.1016/j.neuroimage.2008.04.236 – ident: e_1_2_6_73_1 doi: 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1 – ident: e_1_2_6_90_1 doi: 10.1016/j.neuropsychologia.2007.07.015 – volume: 3 start-page: 499 year: 2003 ident: e_1_2_6_50_1 article-title: Timecourse of neural signatures of object recognition publication-title: J Vis doi: 10.1167/3.7.4 – ident: e_1_2_6_16_1 doi: 10.3389/fnsys.2015.00024 – ident: e_1_2_6_102_1 doi: 10.1016/j.neuroimage.2013.12.058 – ident: e_1_2_6_57_1 doi: 10.1016/0921-884X(96)95617-9 – ident: e_1_2_6_36_1 doi: 10.1016/j.clinph.2011.05.010 – ident: e_1_2_6_14_1 doi: 10.1016/j.neuropsychologia.2009.09.023 – ident: e_1_2_6_96_1 doi: 10.1016/j.neuropsychologia.2009.01.022 – ident: e_1_2_6_6_1 doi: 10.1177/1073858407299288 – ident: e_1_2_6_29_1 doi: 10.1017/S1092852900013754 – ident: e_1_2_6_27_1 doi: 10.1016/S0006-3223(03)00703-0 – volume-title: User's Guide for the Structured Clinical Interview for DSM‐IV Personality Disorders (SCID‐II) year: 1996 ident: e_1_2_6_34_1 – ident: e_1_2_6_12_1 doi: 10.1016/j.neuroimage.2014.01.023 – volume-title: Borderline Personality Disorder Severity Index (BPDSI) year: 1999 ident: e_1_2_6_37_1 – ident: e_1_2_6_87_1 doi: 10.1073/pnas.1000175107 – ident: e_1_2_6_19_1 doi: 10.1016/j.neubiorev.2008.08.016 – ident: e_1_2_6_51_1 doi: 10.1016/j.ijpsycho.2012.05.006 – volume-title: R: A Language and Environment for Statistical Computing year: 2014 ident: e_1_2_6_75_1 – ident: e_1_2_6_9_1 doi: 10.1038/nn1003 – ident: e_1_2_6_98_1 doi: 10.1016/S0191-8869(00)00064-7 – volume-title: Manual zum MWT‐B year: 1995 ident: e_1_2_6_62_1 – ident: e_1_2_6_91_1 doi: 10.1037/a0033981 – volume-title: Strukturiertes Klinisches Interview für DSM‐IV, Achse II: Persönlichkeitsstörungen year: 1997 ident: e_1_2_6_40_1 – ident: e_1_2_6_64_1 doi: 10.1006/cogp.1999.0734 – ident: e_1_2_6_72_1 doi: 10.1016/0028-3932(71)90067-4 – volume: 5 start-page: 41 year: 2014 ident: e_1_2_6_52_1 article-title: Deficits during voluntary selection in adult patients with ADHD: New insights from single‐trial coupling of simultaneous EEG/fMRI publication-title: Neuropsychiatr Imaging Stimul – ident: e_1_2_6_47_1 doi: 10.1159/000304174 – ident: e_1_2_6_44_1 doi: 10.1016/j.neuroimage.2011.03.039 – ident: e_1_2_6_7_1 doi: 10.1016/j.biopsych.2010.07.024 – ident: e_1_2_6_31_1 doi: 10.1016/S0001-6918(99)00008-6 – ident: e_1_2_6_55_1 doi: 10.1016/j.ijpsycho.2014.01.008 – ident: e_1_2_6_77_1 doi: 10.1016/j.paid.2005.03.024 – ident: e_1_2_6_48_1 doi: 10.1523/JNEUROSCI.5253-10.2011 – ident: e_1_2_6_88_1 doi: 10.1016/j.ijpsycho.2013.11.004 – volume: 41 start-page: 377 year: 2005 ident: e_1_2_6_63_1 article-title: Abnormal brain activity related to performance monitoring and error detection in children with ADHD publication-title: Cortex J Devoted Study Nerv Syst Behav doi: 10.1016/S0010-9452(08)70274-0 – ident: e_1_2_6_4_1 doi: 10.1521/pedi.17.1.45.24053 – ident: e_1_2_6_28_1 doi: 10.1016/j.bandc.2004.04.005 – ident: e_1_2_6_95_1 doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R – ident: e_1_2_6_76_1 doi: 10.1007/s00115-002-1447-4 – ident: e_1_2_6_10_1 doi: 10.1007/s00406-004-0488-z – ident: e_1_2_6_89_1 doi: 10.1016/j.neuropsychologia.2007.01.013 – ident: e_1_2_6_15_1 doi: 10.1016/S1388-2457(01)00691-5 – ident: e_1_2_6_46_1 doi: 10.1016/j.neuroimage.2014.02.034 – ident: e_1_2_6_84_1 doi: 10.1016/j.neurobiolaging.2013.03.013 – ident: e_1_2_6_65_1 doi: 10.1192/bjp.134.4.382 – ident: e_1_2_6_81_1 doi: 10.1016/j.neuropsychologia.2005.06.005 – volume-title: Beck‐Depressions‐Inventar (BDI) year: 1995 ident: e_1_2_6_41_1 – volume-title: Oscillatory Brain Activity and its Analysis on the Basis for MEG and EEG year: 1999 ident: e_1_2_6_32_1 – ident: e_1_2_6_2_1 doi: 10.1017/S003329171200270X – volume-title: Structured Clinical Interview for DSM‐IV® Axis I Disorders (SCID‐I), Clinician Version, User's Guide year: 1997 ident: e_1_2_6_35_1 – ident: e_1_2_6_80_1 doi: 10.1016/j.ijpsycho.2008.03.008 – ident: e_1_2_6_85_1 doi: 10.1016/j.neuroimage.2012.09.020 – ident: e_1_2_6_58_1 doi: 10.1371/journal.pone.0096159 – ident: e_1_2_6_56_1 doi: 10.1046/j.1460-9568.1998.00167.x – volume-title: SKID: Strukturiertes klinisches Interview für DSM‐IV: Achse I und II year: 1997 ident: e_1_2_6_100_1 – ident: e_1_2_6_23_1 doi: 10.1016/j.eurpsy.2010.12.010 – ident: e_1_2_6_78_1 doi: 10.1016/j.ijpsycho.2008.01.010 – ident: e_1_2_6_68_1 doi: 10.1002/jmri.21277 – ident: e_1_2_6_49_1 doi: 10.1016/0013-4694(92)90054-L – ident: e_1_2_6_74_1 doi: 10.1016/j.neulet.2007.04.011 – ident: e_1_2_6_97_1 doi: 10.1111/psyp.12374 – ident: e_1_2_6_59_1 doi: 10.1111/j.1460-9568.2004.03683.x – ident: e_1_2_6_3_1 doi: 10.1006/nimg.2000.0599 – ident: e_1_2_6_22_1 doi: 10.1016/j.eurpsy.2009.12.024 – volume: 52 start-page: 3 year: 1999 ident: e_1_2_6_54_1 article-title: The ten‐twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology publication-title: Electroencephalogr Clin Neurophysiol Suppl – ident: e_1_2_6_61_1 doi: 10.1162/089976699300016719 – ident: e_1_2_6_30_1 doi: 10.1037/a0022155 – ident: e_1_2_6_60_1 – ident: e_1_2_6_13_1 doi: 10.1026//0012-1924.49.2.61 – ident: e_1_2_6_66_1 doi: 10.1162/jocn.2008.20500 – ident: e_1_2_6_21_1 doi: 10.1093/cercor/bhn065 – ident: e_1_2_6_43_1 doi: 10.1016/S0028-3932(03)00077-0 – ident: e_1_2_6_25_1 doi: 10.1016/j.neubiorev.2012.11.003 – ident: e_1_2_6_17_1 doi: 10.1016/S1364-6613(00)01483-2 – ident: e_1_2_6_103_1 doi: 10.1016/j.brainres.2009.06.032 – ident: e_1_2_6_18_1 doi: 10.1002/hbm.21368 – ident: e_1_2_6_79_1 doi: 10.1007/s00702-008-0042-7 – ident: e_1_2_6_38_1 doi: 10.1016/S0149-7634(01)00019-7 – ident: e_1_2_6_11_1 doi: 10.1037/0033-2909.121.1.65 – ident: e_1_2_6_42_1 doi: 10.1016/j.neuropsychologia.2011.03.014 – ident: e_1_2_6_86_1 doi: 10.1007/s00429-015-0994-y – ident: e_1_2_6_53_1 doi: 10.1016/j.biopsych.2006.04.003 – ident: e_1_2_6_20_1 doi: 10.1016/j.neuroimage.2014.07.054 – ident: e_1_2_6_26_1 doi: 10.1016/j.cpr.2011.06.001 – ident: e_1_2_6_99_1 doi: 10.1080/13803390500212896 – ident: e_1_2_6_101_1 doi: 10.1016/j.neuropsychologia.2013.06.023 – ident: e_1_2_6_24_1 doi: 10.1016/j.brainres.2012.08.004 – ident: e_1_2_6_70_1 – ident: e_1_2_6_69_1 doi: 10.1016/0926-6410(94)90010-8 – ident: e_1_2_6_93_1 doi: 10.1016/j.neuroimage.2011.02.070 – ident: e_1_2_6_94_1 doi: 10.1007/s13311-012-0138-5 |
SSID | ssj0011501 |
Score | 2.277533 |
Snippet | Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these... Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3114 |
SubjectTerms | Adult Brain - physiology Disruptive, Impulse Control, and Conduct Disorders - physiopathology Electroencephalography electrophysiological phenotypes Female Go/Nogo Humans Image Processing, Computer-Assisted Impulsive Behavior - physiology independent component analysis (ICA) Inhibition (Psychology) inter-individual differences Magnetic Resonance Imaging Male response inhibition Signal Processing, Computer-Assisted simultaneous EEG/fMRI |
Title | Data-driven analysis of simultaneous EEG/fMRI reveals neurophysiological phenotypes of impulse control |
URI | https://api.istex.fr/ark:/67375/WNG-0BZSKG0F-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23230 https://www.ncbi.nlm.nih.gov/pubmed/27133468 https://www.proquest.com/docview/1811546060 https://www.proquest.com/docview/1810555763 https://www.proquest.com/docview/1815690855 https://pubmed.ncbi.nlm.nih.gov/PMC6867467 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB1VRUJ9obQFamjRglDVF-fiy24snlrIBVD60FI1qpBWu7ZXiUqcKBcJeOIT-o39EmbWF0gpCPHmyGPLO5mdObM-PgvwqolVR_DIc73Y-G7A46arueHYqpg4Ul4ifCu72D_hvfPg_SAcrMHr8luYXB-iWnCjmWHzNU1wpef1n6KhQz2uIRzwqV8nrhYBotNKOoqAjm22sMS6EWbgUlWo4dWrK1dq0T1y65e7gObvfMlfcawtRJ1N-FQOIeefXNWWC12Lv91Sd_zPMT6EBwVAZUd5RG3BWpptw85Rhs35-Cs7YJYyatfit-F-v3gzvwPDt2qhbr5fJzNKn0wVWidsYth8RKxFlaWT5Zy129266Z--YyQdhaHPrKDmtLwphQwj2tmE1obt5aPxdIn1mxWk-kdw3ml_fNNzi10c3JgT66KZaMwiWgVEdBUmiJQIjfKTKCUsxT3siVppqDTiBu2jWWx04FNbZZJQJyL1H8N6NsnSXWCIphTC2VQEJgpi_KFox3aEmDrkkdBNBw7L_1PGhcQ57bTxWebizJ5Eh0rrUAdeVqbTXNfjLqMDGxSVhZpdERFOhPLipCsbx5dnH7qNjhw4sFdGjSxywFwidkJ8iiPB-7yoTuPspVcyudPJhhTXMMn_1QaHR3xCB57kgVg9kEdrDAFvOSBWQrQyIPXw1TPZaGhVxHmL01Yz6DMbgX_2guwd9-3B0383fQYbiCx5Tsbbg_XFbJnuI3pb6Od2mv4Axg1BKw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FRIJcWBIIhgANgojLeJmlx3PgkOAVxz6ERLG4NN2zyFbwjOVFEE58Ah_Cr_ATfAlVPQsYAuKSAzdbU9Oarq7qet3z5jXA0xpWHZd7pmH6kWXY3K8ZikcclyqR70kzcC0tu9gf8M6J_WroDNfgS_4tTKoPUWy4UWbo-ZoSnDakKz9UQ0dqUkY8YFUzSmUvPH-PC7b5i24DR_eZabaaxy87RnamgOFz4gDUAoUxraRNtEs3sj3pOpG0Ai-kys5NROj10JEKq5iy0MyPlG0RyI8CRwVuaGG7V2CDThAnpf7GUSFWRdBKL--wqBsezvm5jlHVrBSPulL9NmggP1wEbX9naP6MnHXpa92Ar7nTUsbLWXm5UGX_4y96kv-LV2_C9QyDs_00aW7BWhhvwfZ-LBfJ5JztMc2K1a8btuBqPyMfbMOoIRfy26fPwYwqBJOZnAtLIjYfEzFTxmGynLNms12J-kddRupYmN1Ma4ZO80YpKxgx6xLa_ta3jyfTJUIUln03cBtOLqX7d2A9TuLwLjAEjBIRe-jakWf7-EfSofSIopXDPVfVSvA8DyDhZyrudJjIO5HqT5sCB1DoASzBk8J0mkqXXGS0p6OwsJCzM-L6uY44HbRF9eDN61672hLDEuzmYSqyaW4uEB4iBMeeYDuPi8s4QdFbp9TpZEOicljH_mqD3SPKZAl20sgvHsikbRSb10vgruREYUAC6atX4vFIC6XzOqfTdNBnOuT_7AXROejrH_f-3fQRXOsc9w_FYXfQuw-bCKR5yj3chfXFbBk-QLC6UA_1HMHg7WWnz3fkvZ5i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FRIq4sCQshgANgojLeJmlx3PgkOAVYwsFIiwuTffMtGwFjy0vgnDiE_gPfoWv4Euo6lnAEBCXHLjZmprWdHVV1-ueN68BHtaw6vg8sC071I7l8rBmKa45LlV0GEg78h0ju9gf8M6x-2zoDTfgS_4tTKoPUWy4UWaY-ZoSfBbpyg_R0JGalBEOONWMUdmLT9_jem3xpNvAwX1k263mq6cdKztSwAo5UQBqkcKQVtIl1qWv3UD6npZOFMRU2LmNAL0ee1JhEVMOmoVauQ5hfB15KvJjB9u9AFsurwZ0TkTjqNCqImRlVndY060Ap_xcxqhqV4pHXSt-WzSOH85Ctr8TNH8GzqbytS7D19xnKeHlpLxaqnL48Rc5yf_EqVfgUobA2UGaMldhI052YPcgkcvp5JTtM8OJNS8bdmC7n1EPdmHUkEv57dPnaE71gclMzIVNNVuMiZYpk3i6WrBms13R_aMuI20szG1mFENneaOUE4x4dVPa_Da3jyezFQIUln01cA2Oz6X712EzmSbxTWAIFyXi9dh3deCG-EfSkfSIoZXHA1_VSvA4jx8RZhrudJTIO5GqT9sCB1CYASzBg8J0lgqXnGW0b4KwsJDzE2L6-Z54PWiL6uGbl712tSWGJdjLo1Rkk9xCIDhEAI49wXbuF5dxeqJ3TqnTyYYk5bCK_dUGu0eEyRLcSAO_eCCbNlFcXi-Bv5YShQHJo69fScYjI5PO65zO0kGfmYj_sxdE57Bvftz6d9N7sP2i0RLPu4PebbiIKJqnxMM92FzOV_EdRKpLddfMEAzennf2fAdi_50R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+analysis+of+simultaneous+EEG%2FfMRI+reveals+neurophysiological+phenotypes+of+impulse+control&rft.jtitle=Human+brain+mapping&rft.au=Schm%C3%BCser%2C+Lena&rft.au=Sebastian%2C+Alexandra&rft.au=Mobascher%2C+Arian&rft.au=Lieb%2C+Klaus&rft.date=2016-09-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=37&rft.issue=9&rft.spage=3114&rft.epage=3136&rft_id=info:doi/10.1002%2Fhbm.23230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_23230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |