Data-driven analysis of simultaneous EEG/fMRI reveals neurophysiological phenotypes of impulse control

Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlyi...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 37; no. 9; pp. 3114 - 3136
Main Authors Schmüser, Lena, Sebastian, Alexandra, Mobascher, Arian, Lieb, Klaus, Feige, Bernd, Tüscher, Oliver
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2016
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single‐trial EEG/fMRI analysis allows to increase sensitivity for inter‐individual differences by incorporating intra‐individual variability. Thirty‐eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo‐related ICs (Nogo‐IC‐positive) while 17 subjects (Nogo‐IC‐negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo‐IC‐negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra‐individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo‐IC‐negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data‐driven approach for IC classification and the resulting presence or absence of early Nogo‐specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter‐individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter‐individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo‐IC‐positive phenotype possibly providing protection against impulsivity‐related dysfunction. Hum Brain Mapp 37:3114–3136, 2016. © 2016 Wiley Periodicals, Inc.
AbstractList Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing protection against impulsivity-related dysfunction. Hum Brain Mapp 37:3114-3136, 2016. copyright 2016 Wiley Periodicals, Inc.
Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single‐trial EEG/fMRI analysis allows to increase sensitivity for inter‐individual differences by incorporating intra‐individual variability. Thirty‐eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo‐related ICs (Nogo‐IC‐positive) while 17 subjects (Nogo‐IC‐negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo‐IC‐negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra‐individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo‐IC‐negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data‐driven approach for IC classification and the resulting presence or absence of early Nogo‐specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter‐individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter‐individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo‐IC‐positive phenotype possibly providing protection against impulsivity‐related dysfunction. Hum Brain Mapp 37:3114–3136, 2016 . © 2016 Wiley Periodicals, Inc .
Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these processes. Between‐subject differences in the intra‐individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single‐trial EEG/fMRI analysis allows to increase sensitivity for inter‐individual differences by incorporating intra‐individual variability. Thirty‐eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo‐related ICs (Nogo‐IC‐positive) while 17 subjects (Nogo‐IC‐negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo‐IC‐negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra‐individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo‐IC‐negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data‐driven approach for IC classification and the resulting presence or absence of early Nogo‐specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter‐individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter‐individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo‐IC‐positive phenotype possibly providing protection against impulsivity‐related dysfunction. Hum Brain Mapp 37:3114–3136, 2016. © 2016 Wiley Periodicals, Inc.
Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing protection against impulsivity-related dysfunction. Hum Brain Mapp 37:3114-3136, 2016. © 2016 Wiley Periodicals, Inc.Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing protection against impulsivity-related dysfunction. Hum Brain Mapp 37:3114-3136, 2016. © 2016 Wiley Periodicals, Inc.
Author Schmüser, Lena
Lieb, Klaus
Tüscher, Oliver
Feige, Bernd
Sebastian, Alexandra
Mobascher, Arian
AuthorAffiliation 3 Department of Psychiatry and Psychotherapy Albert Ludwigs University of Freiburg Medical Center Freiburg Germany
4 Department of Neurology Albert Ludwigs University of Freiburg Medical Center Freiburg Germany
2 Department of Psychiatry and Psychotherapy St. Elisabeth Krankenhaus Lahnstein Lahnstein Germany
1 Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz Mainz Germany
AuthorAffiliation_xml – name: 3 Department of Psychiatry and Psychotherapy Albert Ludwigs University of Freiburg Medical Center Freiburg Germany
– name: 1 Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz Mainz Germany
– name: 2 Department of Psychiatry and Psychotherapy St. Elisabeth Krankenhaus Lahnstein Lahnstein Germany
– name: 4 Department of Neurology Albert Ludwigs University of Freiburg Medical Center Freiburg Germany
Author_xml – sequence: 1
  givenname: Lena
  surname: Schmüser
  fullname: Schmüser, Lena
  email: lena.schmueser@unimedizin-mainz.de
  organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
– sequence: 2
  givenname: Alexandra
  surname: Sebastian
  fullname: Sebastian, Alexandra
  organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
– sequence: 3
  givenname: Arian
  surname: Mobascher
  fullname: Mobascher, Arian
  organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
– sequence: 4
  givenname: Klaus
  surname: Lieb
  fullname: Lieb, Klaus
  organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
– sequence: 5
  givenname: Bernd
  surname: Feige
  fullname: Feige, Bernd
  organization: Department of Psychiatry and Psychotherapy, Albert Ludwigs University of Freiburg Medical Center, Freiburg, Germany
– sequence: 6
  givenname: Oliver
  surname: Tüscher
  fullname: Tüscher, Oliver
  organization: Emotion Regulation and Impulse Control Group, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27133468$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-w4A-gSGxgkY4dx3ayQaJlOq1oQeIhEBvLSa47bp042MnA_Hs8rwoqkFjZkr9zfHx8D9Fe5zpA6CnBxwTjbDKv2uOMZhQ_QAcElyLFpKR7qz1naZkLso8OQ7jBmBCGySO0nwlCac6LA6TfqEGljTcL6BLVKbsMJiROJ8G0ox1UB24MyXQ6m-irDxeJhwUoG5IORu_6eYSdddemVjbp59C5YdnDWm7afrQBktp1g3f2MXqoow6ebNcj9Pls-un0PL18P7s4fX2Z1pzlOCVNJSiuVE7KMhM6L5VgWtGmBMII41lGRAFMVQWjFY1Yrauccsy5bljVCKBH6NXGtx-rFpoa4u3Kyt6bVvmldMrIP086M5fXbiF5wUXORTR4sTXw7vsIYZCtCTVYu2lCkiLmKHHB2P-gmDEmOI3o83vojRt9bHtNEZbHN-BIPfs9_F3q3W9FYLIBau9C8KBlbQY1mFXHylhJsFzNg4zzINfzEBUv7yl2pn9jt-4_jIXlv0F5fnK1U6QbhQkD_LxTKH8rY5WCyS_vZhKffPv4dobP5Ff6C2sI1DI
CitedBy_id crossref_primary_10_1007_s11920_017_0768_8
crossref_primary_10_1007_s40473_018_0145_x
crossref_primary_10_1016_j_euroneuro_2020_03_013
crossref_primary_10_1016_j_neuroscience_2017_06_011
crossref_primary_10_1016_j_neuroscience_2017_10_016
crossref_primary_10_1038_s41598_020_79475_9
crossref_primary_10_15407_fz65_02_052
crossref_primary_10_1016_j_dcn_2018_03_012
crossref_primary_10_1109_ACCESS_2018_2872765
crossref_primary_10_1111_acer_15025
crossref_primary_10_1002_hbm_24699
crossref_primary_10_1002_hbm_23835
crossref_primary_10_3389_fnhum_2022_884251
Cites_doi 10.1523/JNEUROSCI.4682-05.2006
10.1016/j.pscychresns.2012.02.010
10.1016/j.ijpsycho.2012.08.001
10.1093/brain/awg237
10.1371/journal.pone.0069674
10.1002/hbm.460010306
10.1046/j.1469-8986.2003.00128.x
10.1002/mrm.20261
10.1093/brain/awg067
10.1016/j.neuroimage.2008.04.236
10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1
10.1016/j.neuropsychologia.2007.07.015
10.1167/3.7.4
10.3389/fnsys.2015.00024
10.1016/j.neuroimage.2013.12.058
10.1016/0921-884X(96)95617-9
10.1016/j.clinph.2011.05.010
10.1016/j.neuropsychologia.2009.09.023
10.1016/j.neuropsychologia.2009.01.022
10.1177/1073858407299288
10.1017/S1092852900013754
10.1016/S0006-3223(03)00703-0
10.1016/j.neuroimage.2014.01.023
10.1073/pnas.1000175107
10.1016/j.neubiorev.2008.08.016
10.1016/j.ijpsycho.2012.05.006
10.1038/nn1003
10.1016/S0191-8869(00)00064-7
10.1037/a0033981
10.1006/cogp.1999.0734
10.1016/0028-3932(71)90067-4
10.1159/000304174
10.1016/j.neuroimage.2011.03.039
10.1016/j.biopsych.2010.07.024
10.1016/S0001-6918(99)00008-6
10.1016/j.ijpsycho.2014.01.008
10.1016/j.paid.2005.03.024
10.1523/JNEUROSCI.5253-10.2011
10.1016/j.ijpsycho.2013.11.004
10.1016/S0010-9452(08)70274-0
10.1521/pedi.17.1.45.24053
10.1016/j.bandc.2004.04.005
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1007/s00115-002-1447-4
10.1007/s00406-004-0488-z
10.1016/j.neuropsychologia.2007.01.013
10.1016/S1388-2457(01)00691-5
10.1016/j.neuroimage.2014.02.034
10.1016/j.neurobiolaging.2013.03.013
10.1192/bjp.134.4.382
10.1016/j.neuropsychologia.2005.06.005
10.1017/S003329171200270X
10.1016/j.ijpsycho.2008.03.008
10.1016/j.neuroimage.2012.09.020
10.1371/journal.pone.0096159
10.1046/j.1460-9568.1998.00167.x
10.1016/j.eurpsy.2010.12.010
10.1016/j.ijpsycho.2008.01.010
10.1002/jmri.21277
10.1016/0013-4694(92)90054-L
10.1016/j.neulet.2007.04.011
10.1111/psyp.12374
10.1111/j.1460-9568.2004.03683.x
10.1006/nimg.2000.0599
10.1016/j.eurpsy.2009.12.024
10.1162/089976699300016719
10.1037/a0022155
10.1026//0012-1924.49.2.61
10.1162/jocn.2008.20500
10.1093/cercor/bhn065
10.1016/S0028-3932(03)00077-0
10.1016/j.neubiorev.2012.11.003
10.1016/S1364-6613(00)01483-2
10.1016/j.brainres.2009.06.032
10.1002/hbm.21368
10.1007/s00702-008-0042-7
10.1016/S0149-7634(01)00019-7
10.1037/0033-2909.121.1.65
10.1016/j.neuropsychologia.2011.03.014
10.1007/s00429-015-0994-y
10.1016/j.biopsych.2006.04.003
10.1016/j.neuroimage.2014.07.054
10.1016/j.cpr.2011.06.001
10.1080/13803390500212896
10.1016/j.neuropsychologia.2013.06.023
10.1016/j.brainres.2012.08.004
10.1016/0926-6410(94)90010-8
10.1016/j.neuroimage.2011.02.070
10.1007/s13311-012-0138-5
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23230
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
CrossRef

Technology Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate EEG/fMRI Reveal Phenotypes of Impulse Control
EISSN 1097-0193
EndPage 3136
ExternalDocumentID PMC6867467
4148135051
27133468
10_1002_hbm_23230
HBM23230
ark_67375_WNG_0BZSKG0F_X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Focus Program Translational Neuroscience of the Johannes‐Gutenberg‐University Mainz (PhD fellowship)
– fundername: Federal Ministry of Education and Research
  funderid: 01GW0730
– fundername: Federal Ministry of Education and Research
  grantid: 01GW0730
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c6540-1db730ba419927f49a75fa3d9e1515622178e5ab853b3ba4cfb436066fd5bd7e3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:26:49 EDT 2025
Tue Aug 05 10:59:09 EDT 2025
Fri Jul 11 15:19:36 EDT 2025
Sat Jul 26 02:18:10 EDT 2025
Wed Feb 19 02:42:35 EST 2025
Tue Jul 01 04:26:05 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:57:32 EST 2025
Wed Oct 30 09:56:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords inter-individual differences
electrophysiological phenotypes
simultaneous EEG/fMRI
independent component analysis (ICA)
response inhibition
Go/Nogo
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6540-1db730ba419927f49a75fa3d9e1515622178e5ab853b3ba4cfb436066fd5bd7e3
Notes istex:F07084079205C6AF9EC5853DC3BB1FFE9FE8BA51
ark:/67375/WNG-0BZSKG0F-X
Focus Program Translational Neuroscience of the Johannes-Gutenberg-University Mainz (PhD fellowship)
ArticleID:HBM23230
Federal Ministry of Education and Research - No. 01GW0730
Bernd Feige and Oliver Tüscher contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6867467
PMID 27133468
PQID 1811546060
PQPubID 996345
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867467
proquest_miscellaneous_1815690855
proquest_miscellaneous_1810555763
proquest_journals_1811546060
pubmed_primary_27133468
crossref_citationtrail_10_1002_hbm_23230
crossref_primary_10_1002_hbm_23230
wiley_primary_10_1002_hbm_23230_HBM23230
istex_primary_ark_67375_WNG_0BZSKG0F_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Donkers FCL, van Boxtel GJM (2004): The N2 in Go/No-Go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165-176.
Drevets WC, Savitz J, Trimble M (2008): The subgenual anterior cingulate cortex in mood disorders. CNS Spectrosc 13:663-681.
Wessel JR, Aron AR (2015): It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm: Onset latency indexes response inhibition. Psychophysiology 52:472-480.
Mostofsky SH, Simmonds DJ (2008): Response inhibition and response selection: Two sides of the same coin. J Cogn Neurosci 20:751-761.
Reynolds B, Ortengren A, Richards JB, de Wit H (2006): Dimensions of impulsive behavior: Personality and behavioral measures. Pers Individ Differ 40:305-315.
Barkley RA (1997): Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol Bull 121:65-94.
Wiersema R, van der Meere J, Antrop I, Roeyers H (2006): State regulation in adult ADHD: An event-related potential study. J Clin Exp Neuropsychol 28:1113-1126.
Simmonds DJ, Fotedar SG, Suskauer SJ, Pekar JJ, Denckla MB, Mostofsky SH (2007): Functional brain correlates of response time variability in children. Neuropsychologia 45:2147-2157.
Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S, Miyashita Y, Konishi S (2009): Functional dissociation in right inferior frontal cortex during performance of Go/No-Go task. Cereb Cortex 19:146-152.
Sebastian A, Pohl MF, Klöppel S, Feige B, Lange T, Stahl C, Voss A, Klauer KC, Lieb K, Tüscher O (2013b): Disentangling common and specific neural subprocesses of response inhibition. NeuroImage 64:601-615.
Karch S, Voelker J, Thalmeier T, Ertl M, Leicht G, Pogarell O, Mulert C (2014): Deficits during voluntary selection in adult patients with ADHD: New insights from single-trial coupling of simultaneous EEG/fMRI. Neuropsychiatr Imaging Stimul 5:41.
Christiansen H, Kis B, Hirsch O, Matthies S, Hebebrand J, Uekermann J, Abdel-Hamid M, Kraemer M, Wiltfang J, Graf E, Colla M, Sobanski E, Alm B, Rösler M, Jacob C, Jans T, Huss M, Schimmelmann BG, Philipsen A (2012): German validation of the Conners Adult ADHD Rating Scales (CAARS) II: Reliability, validity, diagnostic sensitivity and specificity. Eur Psychiatry 27:321-328.
Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210-220.
R Core Team (2014): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org/.
Montgomery SA, Asberg M (1979): A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci 134:382-389.
Swick D, Ashley V, Turken U (2011): Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage 56:1655-1665.
Klein C, Wendling K, Huettner P, Ruder H, Peper M (2006): Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry 60:1088-1097.
First M, Spitzer R, Gibbon M, Williams J (1997): Structured Clinical Interview for DSM-IV® Axis I Disorders (SCID-I), Clinician Version, User's Guide. Washington (DC): American Psychiatric Press.
Kopp B, Mattler U, Goertz R, Rist F (1996): N2, P3 and the lateralized readiness potential in a No-Go task involving selective response priming. Electroencephalogr Clin Neurophysiol 99:19-27.
Carmona S, Hoekzema E, Ramos-Quiroga JA, Richarte V, Canals C, Bosch R, Rovira M, Carlos Soliva J, Bulbena A, Tobeña A, Casas M, Vilarroya O (2012): Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: A within-subject case-control neuroimaging study. Hum Brain Mapp 33:2350-2361.
Retz-Junginger P, Retz W, Blocher D, Stieglitz R-D, Georg T, Supprian T, Wender PH, Rösler M (2003): Reliabilität und validität der wender-utah-rating-scale-kurzform. Nervenarzt 74:987-993.
Criaud M, Boulinguez P (2013): Have we been asking the right questions when assessing response inhibition in Go/No-Go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev 37:11-23.
Arntz A, van den Hoorn M, Cornelis J, Verheul R, van den Bosch WM, de Bie AJ (2003): Reliability and validity of the borderline personality disorder severity index. J Pers Disord 17:45-59.
Chambers CD, Garavan H, Bellgrove MA (2009): Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33:631-646.
Collins HR, Corbly CR, Liu X, Kelly TH, Lynam D, Joseph JE (2012): Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers. Brain Res 1481:1-12.
Hautzinger M, Bailer, M, Worall H, Keller F (1995): Beck-Depressions-Inventar (BDI). Bern: Hans Huber.
Baumeister S, Hohmann S, Wolf I, Plichta MM, Rechtsteiner S, Zangl M, Ruf M, Holz N, Boecker R, Meyer-Lindenberg A, Holtmann M, Laucht M, Banaschewski T, Brandeis D (2014): Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage 94:349-359.
Wu Y, Zhou X (2009): The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Res 1286:114-122.
Jodo E, Kayama Y (1992): Relation of a negative ERP component to response inhibition in a Go/No-Go task. Electroencephalogr Clin Neurophysiol 82:477-482.
Miyake A (2000): The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognit Psychol 41:49-100.
Lehrl S (1995): Manual zum MWT-B. Balingen: Spitta-Verl.
Horn NR, Dolan M, Elliott R, Deakin JFW, Woodruff PWR (2003): Response inhibition and impulsivity: An fMRI study. Neuropsychologia 41:1959-1966.
Epstein JN, Langberg JM, Rosen PJ, Graham A, Narad ME, Antonini TN, Brinkman WB, Froehlich T, Simon JO, Altaye M (2011): Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations. Neuropsychology 25:427-441.
Sharp DJ, Bonnelle V, Boissezon XD, Beckmann CF, James SG, Patel MC, Mehta MA (2010): Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci 107:6106-6111.
Allen PJ, Josephs O, Turner R (2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12:230-239.
Chester DS, DeWall CN (2014): Prefrontal recruitment during social rejection predicts greater subsequent self-regulatory imbalance and impairment: Neural and longitudinal evidence. NeuroImage 101:485-493.
Lavallee CF, Herrmann CS, Weerda R, Huster RJ (2014): Stimulus-response mappings shape inhibition processes: A combined EEG-fMRI study of contextual stopping. PLoS One 9:e96159.
Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998): No-Go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10:1209-1213.
Klem GH, Lüders HO, Jasper HH, Elger C (1999): The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3-6.
Mullinger KJ, Morgan PS, Bowtell RW (2008): Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings. J Magn Reson Imaging 27:607-616.
Bokura H, Yamaguchi S, Kobayashi S (2001): Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112:2224-2232.
Nieuwenhuis S, Yeung N, Cohen JD (2004): Stimulus modality, perceptual overlap, and the Go/No-go N2. Psychophysiology 41:157-160.
Woltering S, Liu Z, Rokeach A, Tannock R (2013): Neurophysiological differences in inhibitory control between adults with ADHD and their peers. Neuropsychologia 51:1888-1895.
Lee T-W, Girolami M, Sejnowski TJ (1999): Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources. Neural Comput 11:417-441.
Zaitsev M, Hennig J, Speck O (2004): Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156-1166.
First M, Spitzer R, Gibbon M, Williams J (1996): User's Guide for the Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II). Washington (DC): American Psychiatric Press.
Sebastian A, Jung P, Neuhoff J, Wibral M, Fox PT, Lieb K, Fries P, Eickhoff SB, Tüscher O, Mobascher A (2016): Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: A combined task-specific and coordinate-based meta-analytic fMRI study. Brain Struct Funct 221:1635-1651.
Brown MRG, Benoit JRA, Juhás M, Lebel RM, MacKay M, Dametto E, Silverstone PH, Dolcos F, Dursun SM, Greenshaw AJ (2015): Neural correlates of high-risk behavior tendencies and impulsivity in an emotional Go/NoGo fMRI task. Front Syst Neurosci 9:24. http://www.frontiersin.org/Systems_Neuroscience/10.3389/fnsys.2015.00024/abstract.
Oldfield RC (1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97-113.
Friedman D, Cycowicz YM, Gaeta H (2001): The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neurosci Biobehav Rev 25:355-373.
Tamm L, Narad ME, Antonini TN, O'Brien KM, Hawk LW, Epstein JN (2012): Reaction Time Variability in ADHD: A review. Neurotherapeutics 9:500-508.
Schmajuk M, Liotti M, Busse L, Woldorff MG (2006): Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia 44:384-395.
Dimoska A, Johnstone SJ, Barry RJ, Clarke AR (2003): Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-rel
2009; 47
2004; 20
2012; 1481
2010; 107
2000; 4
2000; 44
2000; 41
2016; 221
2003; 17
2011; 56
2012; 202
2013; 8
2009; 1286
2003; 54
2008b; 115
2004; 254
2006; 60
1971; 9
2014; 5
2000; 12
2003; 6
2013; 51
2006; 28
2008; 27
2006; 26
2008; 69
2003; 3
1999; 11
2003; 49
1999; 52
2011; 26
2012; 27
2011; 69
2011; 25
2008; 20
2003; 126
2014; 9
2007; 419
2009; 19
2014; 8
2014; 94
1998; 10
2003; 41
1992; 82
2011; 122
1988
2004; 41
1995; 51
2014; 92
2014; 91
2013a; 34
2013; 43
2013; 87
2015; 52
2011; 31
1997
2005; 41
1996
2008; 13
1995
1999; 101
2015; 9
2012; 33
2001; 25
2003; 74
2007; 13
1999
1996; 99
2008a; 68
2009; 33
2010; 43
2004; 52
2001; 112
2013; 37
2010; 48
1979; 134
2006; 40
2006; 44
2013b; 64
1997; 121
2004; 56
2008; 46
2015
2014
2008; 42
1994; 1
2014; 143
2011; 49
1994; 2
2007; 45
2001; 30
2014; 101
2012; 85
2012; 9
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
Liotti M (e_1_2_6_63_1) 2005; 41
e_1_2_6_11_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_31_1
Karch S (e_1_2_6_52_1) 2014; 5
e_1_2_6_92_1
Hautzinger M (e_1_2_6_41_1) 1995
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_61_1
e_1_2_6_101_1
First M (e_1_2_6_34_1) 1996
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
Johnson JS (e_1_2_6_50_1) 2003; 3
e_1_2_6_70_1
e_1_2_6_93_1
Klem GH (e_1_2_6_54_1) 1999; 52
Lehrl S (e_1_2_6_62_1) 1995
R Core Team (e_1_2_6_75_1) 2014
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
First M (e_1_2_6_35_1) 1997
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
Wittchen H‐U (e_1_2_6_100_1) 1997
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_98_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_79_1
e_1_2_6_103_1
Fydrich T (e_1_2_6_40_1) 1997
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_8_1
Feige B (e_1_2_6_32_1) 1999
e_1_2_6_4_1
Freese S (e_1_2_6_37_1) 1999
Schmüser L (e_1_2_6_82_1) 2014; 8
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – reference: Criaud M, Boulinguez P (2013): Have we been asking the right questions when assessing response inhibition in Go/No-Go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev 37:11-23.
– reference: Falkenstein M, Hoormann J, Hohnsbein J (1999): ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol (Amst) 101:267-291.
– reference: Bush G, Luu P, Posner MI (2000): Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215-222.
– reference: Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003): Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115-116.
– reference: Swick D, Ashley V, Turken U (2011): Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage 56:1655-1665.
– reference: Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005): Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex J Devoted Study Nerv Syst Behav 41:377-388.
– reference: Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S, Miyashita Y, Konishi S (2009): Functional dissociation in right inferior frontal cortex during performance of Go/No-Go task. Cereb Cortex 19:146-152.
– reference: Sebastian A, Jung P, Neuhoff J, Wibral M, Fox PT, Lieb K, Fries P, Eickhoff SB, Tüscher O, Mobascher A (2016): Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: A combined task-specific and coordinate-based meta-analytic fMRI study. Brain Struct Funct 221:1635-1651.
– reference: Retz-Junginger P, Retz W, Blocher D, Stieglitz R-D, Georg T, Supprian T, Wender PH, Rösler M (2003): Reliabilität und validität der wender-utah-rating-scale-kurzform. Nervenarzt 74:987-993.
– reference: Naito E, Matsumura M (1994): Movement-related potentials associated with motor inhibition as determined by use of a stop signal paradigm in humans. Cogn Brain Res 2:139-146.
– reference: Allen PJ, Josephs O, Turner R (2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12:230-239.
– reference: Horn NR, Dolan M, Elliott R, Deakin JFW, Woodruff PWR (2003): Response inhibition and impulsivity: An fMRI study. Neuropsychologia 41:1959-1966.
– reference: Beste C, Willemssen R, Saft C, Falkenstein M (2010): Response inhibition subprocesses and dopaminergic pathways: Basal ganglia disease effects. Neuropsychologia 48:366-373.
– reference: Ruchsow M, Groen G, Kiefer M, Hermle L, Spitzer M, Falkenstein M (2008b): Impulsiveness and ERP components in a Go/Nogo task. J Neural Transm 115:909-915.
– reference: Feige B (1999): Oscillatory Brain Activity and its Analysis on the Basis for MEG and EEG. Münster: Waxmann.
– reference: Christiansen H, Kis B, Hirsch O, Philipsen A, Henneck M, Panczuk A, Pietrowsky R, Hebebrand J, Schimmelmann BG (2011): German validation of the Conners Adult ADHD Rating Scales-Self-report (CAARS-S) I: Factor structure and normative data. Eur Psychiatry 26:100-107.
– reference: Zaitsev M, Hennig J, Speck O (2004): Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156-1166.
– reference: Schmajuk M, Liotti M, Busse L, Woldorff MG (2006): Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia 44:384-395.
– reference: Asahi S, Okamoto Y, Okada G, Yamawaki S, Yokota N (2004): Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. Eur Arch Psychiatry Clin Neurosci 254:245-251. http://link.springer.com/10.1007/s00406-004-0488-z.
– reference: Prox V, Dietrich DE, Zhang Y, Emrich HM, Ohlmeier MD (2007): Attentional processing in adults with ADHD as reflected by event-related potentials. Neurosci Lett 419:236-241.
– reference: Karch S, Voelker J, Thalmeier T, Ertl M, Leicht G, Pogarell O, Mulert C (2014): Deficits during voluntary selection in adult patients with ADHD: New insights from single-trial coupling of simultaneous EEG/fMRI. Neuropsychiatr Imaging Stimul 5:41.
– reference: Albrecht B, Brandeis D, Uebel H, Valko L, Heinrich H, Drechsler R, Heise A, Müller UC, Steinhausen H-C, Rothenberger A, Banaschewski T (2013): Familiality of neural preparation and response control in childhood attention deficit-hyperactivity disorder. Psychol Med 43:1997-2011.
– reference: Aron AR (2011): From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biol Psychiatry 69:e55-e68.
– reference: Helenius P, Laasonen M, Hokkanen L, Paetau R, Niemivirta M (2011): Impaired engagement of the ventral attentional pathway in ADHD. Neuropsychologia 49:1889-1896.
– reference: Lavallee CF, Herrmann CS, Weerda R, Huster RJ (2014): Stimulus-response mappings shape inhibition processes: A combined EEG-fMRI study of contextual stopping. PLoS One 9:e96159.
– reference: Arntz A, van den Hoorn M, Cornelis J, Verheul R, van den Bosch WM, de Bie AJ (2003): Reliability and validity of the borderline personality disorder severity index. J Pers Disord 17:45-59.
– reference: Fisher T, Aharon-Peretz J, Pratt H (2011): Dis-regulation of response inhibition in adult attention deficit hyperactivity disorder (ADHD): An ERP study. Clin Neurophysiol 122:2390-2399.
– reference: Huster RJ, Plis SM, Lavallee CF, Calhoun VD, Herrmann CS (2014): Functional and effective connectivity of stopping. NeuroImage 94:120-128.
– reference: Lee T-W, Girolami M, Sejnowski TJ (1999): Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources. Neural Comput 11:417-441.
– reference: Sharp DJ, Bonnelle V, Boissezon XD, Beckmann CF, James SG, Patel MC, Mehta MA (2010): Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci 107:6106-6111.
– reference: Thesen S, Heid O, Mueller E, Schad LR (2000): Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457-465.
– reference: Sebastian A, Gerdes B, Feige B, Klöppel S, Lange T, Philipsen A, Tebartz van Elst L, Lieb K, Tüscher O (2012): Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD. Psychiatry Res Neuroimaging 202:132-141.
– reference: Stahl C, Voss A, Schmitz F, Nuszbaum M, Tüscher O, Lieb K, Klauer KC (2014): Behavioral components of impulsivity. J Exp Psychol Gen 143:850-886.
– reference: Jacob GA, Gutz L, Bader K, Lieb K, Tüscher O, Stahl C (2010): Impulsivity in borderline personality disorder: Impairment in self-report measures, but not behavioral inhibition. Psychopathology 43:180-188.
– reference: Chambers CD, Garavan H, Bellgrove MA (2009): Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33:631-646.
– reference: Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210-220.
– reference: First M, Spitzer R, Gibbon M, Williams J (1996): User's Guide for the Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II). Washington (DC): American Psychiatric Press.
– reference: Klem GH, Lüders HO, Jasper HH, Elger C (1999): The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3-6.
– reference: Christiansen H, Kis B, Hirsch O, Matthies S, Hebebrand J, Uekermann J, Abdel-Hamid M, Kraemer M, Wiltfang J, Graf E, Colla M, Sobanski E, Alm B, Rösler M, Jacob C, Jans T, Huss M, Schimmelmann BG, Philipsen A (2012): German validation of the Conners Adult ADHD Rating Scales (CAARS) II: Reliability, validity, diagnostic sensitivity and specificity. Eur Psychiatry 27:321-328.
– reference: Brown MRG, Benoit JRA, Juhás M, Lebel RM, MacKay M, Dametto E, Silverstone PH, Dolcos F, Dursun SM, Greenshaw AJ (2015): Neural correlates of high-risk behavior tendencies and impulsivity in an emotional Go/NoGo fMRI task. Front Syst Neurosci 9:24. http://www.frontiersin.org/Systems_Neuroscience/10.3389/fnsys.2015.00024/abstract.
– reference: Patton JH, Stanford MS, Barratt ES (1995): Factor structure of the barratt impulsiveness scale. J Clin Psychol 51:768-774.
– reference: Aron AR (2007): The neural basis of inhibition in cognitive control. Neuroscientist 13:214-228.
– reference: Sebastian A, Pohl MF, Klöppel S, Feige B, Lange T, Stahl C, Voss A, Klauer KC, Lieb K, Tüscher O (2013b): Disentangling common and specific neural subprocesses of response inhibition. NeuroImage 64:601-615.
– reference: Fydrich T, Renneberg B, Schmitz B, Wittchen H-U (1997): Strukturiertes Klinisches Interview für DSM-IV, Achse II: Persönlichkeitsstörungen. Göttingen (Germany): Hogrefe.
– reference: Lavric A, Pizzagalli DA, Forstmeier S (2004): When "Go" and "Nogo" are equally frequent: ERP components and cortical tomography. Eur J Neurosci 20:2483-2488.
– reference: Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS (2013): Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int J Psychophysiol 87:217-233.
– reference: Sebastian A, Baldermann C, Feige B, Katzev M, Scheller E, Hellwig B, Lieb K, Weiller C, Tüscher O, Klöppel S (2013a): Differential effects of age on subcomponents of response inhibition. Neurobiol Aging 34:2183-2193.
– reference: Schmüser L, Sebastian A, Mobascher A, Lieb K, Tüscher O, Feige B (2014): Data-driven analysis of simultaneous EEG/fMRI using an ICA approach. Front Neurosci 8:175.
– reference: Epstein JN, Langberg JM, Rosen PJ, Graham A, Narad ME, Antonini TN, Brinkman WB, Froehlich T, Simon JO, Altaye M (2011): Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations. Neuropsychology 25:427-441.
– reference: Wu Y, Zhou X (2009): The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Res 1286:114-122.
– reference: Lehrl S (1995): Manual zum MWT-B. Balingen: Spitta-Verl.
– reference: Oldfield RC (1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97-113.
– reference: Feige B, Biscaldi M, Saville CWN, Kluckert C, Bender S, Ebner-Priemer U, Hennighausen K, Rauh R, Fleischhaker C, Klein C (2013): On the temporal characteristics of performance variability in attention deficit hyperactivity disorder (ADHD). PLoS One 8:e69674.
– reference: Whiteside SP, Lynam DR (2001): The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Pers Individ Differ 30:669-689.
– reference: Tamm L, Narad ME, Antonini TN, O'Brien KM, Hawk LW, Epstein JN (2012): Reaction Time Variability in ADHD: A review. Neurotherapeutics 9:500-508.
– reference: Drevets WC, Savitz J, Trimble M (2008): The subgenual anterior cingulate cortex in mood disorders. CNS Spectrosc 13:663-681.
– reference: Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998): No-Go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10:1209-1213.
– reference: Bokura H, Yamaguchi S, Kobayashi S (2001): Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112:2224-2232.
– reference: First M, Spitzer R, Gibbon M, Williams J (1997): Structured Clinical Interview for DSM-IV® Axis I Disorders (SCID-I), Clinician Version, User's Guide. Washington (DC): American Psychiatric Press.
– reference: Kam JWY, Dominelli R, Carlson SR (2012). Differential relationships between sub-traits of BIS-11 impulsivity and executive processes: An ERP study. Int J Psychophysiol 85:174-187.
– reference: Klein C, Wendling K, Huettner P, Ruder H, Peper M (2006): Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry 60:1088-1097.
– reference: Cyders MA, Coskunpinar A (2011): Measurement of constructs using self-report and behavioral lab tasks: Is there overlap in nomothetic span and construct representation for impulsivity? Clin Psychol Rev 31:965-982.
– reference: Stuss DT (2003): Staying on the job: The frontal lobes control individual performance variability. Brain 126:2363-2380.
– reference: Jahfari S, Waldorp L, van den Wildenberg WPM, Scholte HS, Ridderinkhof KR, Forstmann BU (2011): Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci off J Soc Neurosci 31:6891-6899.
– reference: Friedman D, Cycowicz YM, Gaeta H (2001): The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neurosci Biobehav Rev 25:355-373.
– reference: Mostofsky SH, Simmonds DJ (2008): Response inhibition and response selection: Two sides of the same coin. J Cogn Neurosci 20:751-761.
– reference: Wiersema R, van der Meere J, Antrop I, Roeyers H (2006): State regulation in adult ADHD: An event-related potential study. J Clin Exp Neuropsychol 28:1113-1126.
– reference: Dimoska A, Johnstone SJ, Barry RJ, Clarke AR (2003): Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biol Psychiatry 54:1345-1354.
– reference: Kóbor A, Takács Á, Honbolygó F, Csépe V (2014): Generalized lapse of responding in trait impulsivity indicated by ERPs: The role of energetic factors in inhibitory control. Int J Psychophysiol 92:16-25.
– reference: Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller H-J, Hegerl U, Pogarell O, Jäger L (2008): Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42:158-168.
– reference: Ruchsow M, Groen G, Kiefer M, Beschoner P, Hermle L, Ebert D, Falkenstein M (2008a): Electrophysiological evidence for reduced inhibitory control in depressed patients in partial remission: A Go/Nogo study. Int J Psychophysiol 68:209-218.
– reference: Johnson JS, Olshausen BA (2003): Timecourse of neural signatures of object recognition. J Vis 3:499-512.
– reference: R Core Team (2014): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org/.
– reference: Simmonds DJ, Fotedar SG, Suskauer SJ, Pekar JJ, Denckla MB, Mostofsky SH (2007): Functional brain correlates of response time variability in children. Neuropsychologia 45:2147-2157.
– reference: Aron AR (2003): Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington's disease. Brain 126:713-723.
– reference: Jodo E, Kayama Y (1992): Relation of a negative ERP component to response inhibition in a Go/No-Go task. Electroencephalogr Clin Neurophysiol 82:477-482.
– reference: Baumeister S, Hohmann S, Wolf I, Plichta MM, Rechtsteiner S, Zangl M, Ruf M, Holz N, Boecker R, Meyer-Lindenberg A, Holtmann M, Laucht M, Banaschewski T, Brandeis D (2014): Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage 94:349-359.
– reference: Mullinger KJ, Morgan PS, Bowtell RW (2008): Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings. J Magn Reson Imaging 27:607-616.
– reference: Freese S, Kröger C (1999): Borderline Personality Disorder Severity Index (BPDSI). Braunschweig (Germany): Christoph-Dornier-Stiftung, Institut für Psychologie.
– reference: Russo PM, De Pascalis V, Varriale V, Barratt ES (2008): Impulsivity, intelligence and P300 wave: An empirical study. Int J Psychophysiol 69:112-118.
– reference: Woltering S, Liu Z, Rokeach A, Tannock R (2013): Neurophysiological differences in inhibitory control between adults with ADHD and their peers. Neuropsychologia 51:1888-1895.
– reference: Barkley RA (1997): Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol Bull 121:65-94.
– reference: Kopp B, Mattler U, Goertz R, Rist F (1996): N2, P3 and the lateralized readiness potential in a No-Go task involving selective response priming. Electroencephalogr Clin Neurophysiol 99:19-27.
– reference: Carmona S, Hoekzema E, Ramos-Quiroga JA, Richarte V, Canals C, Bosch R, Rovira M, Carlos Soliva J, Bulbena A, Tobeña A, Casas M, Vilarroya O (2012): Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: A within-subject case-control neuroimaging study. Hum Brain Mapp 33:2350-2361.
– reference: Huster RJ, Eichele T, Enriquez-Geppert S, Wollbrink A, Kugel H, Konrad C, Pantev C (2011): Multimodal imaging of functional networks and event-related potentials in performance monitoring. NeuroImage 56:1588-1597.
– reference: Montgomery SA, Asberg M (1979): A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci 134:382-389.
– reference: Woo C-W, Krishnan A, Wager TD (2014): Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage 91:412-419.
– reference: Wessel JR, Aron AR (2015): It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm: Onset latency indexes response inhibition. Psychophysiology 52:472-480.
– reference: Miyake A (2000): The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognit Psychol 41:49-100.
– reference: Beauducel A, Strobel A, Brocke B (2003): Psychometrische Eigenschaften und Normen einer deutschsprachigen Fassung der Sensation Seeking-Skalen, Form V. Diagnostica 49:61-72.
– reference: Donkers FCL, van Boxtel GJM (2004): The N2 in Go/No-Go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165-176.
– reference: Simmonds DJ, Pekar JJ, Mostofsky SH (2008): Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46:224-232.
– reference: Shen I-H, Lee D-S, Chen C (2014): The role of trait impulsivity in response inhibition: Event-related potentials in a stop-signal task. Int J Psychophysiol 91:80-87.
– reference: Chester DS, DeWall CN (2014): Prefrontal recruitment during social rejection predicts greater subsequent self-regulatory imbalance and impairment: Neural and longitudinal evidence. NeuroImage 101:485-493.
– reference: Vaurio RG, Simmonds DJ, Mostofsky SH (2009): Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia 47:2389-2396.
– reference: Collins HR, Corbly CR, Liu X, Kelly TH, Lynam D, Joseph JE (2012): Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers. Brain Res 1481:1-12.
– reference: Hautzinger M, Bailer, M, Worall H, Keller F (1995): Beck-Depressions-Inventar (BDI). Bern: Hans Huber.
– reference: Wittchen H-U, First MB, Zaudig M, Fydrich T (1997): SKID: Strukturiertes klinisches Interview für DSM-IV: Achse I und II. Göttingen (Germany): Hogrefe.
– reference: Aron AR, Poldrack RA (2006): Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. J Neurosci 26:2424-2433.
– reference: Reynolds B, Ortengren A, Richards JB, de Wit H (2006): Dimensions of impulsive behavior: Personality and behavioral measures. Pers Individ Differ 40:305-315.
– reference: Nieuwenhuis S, Yeung N, Cohen JD (2004): Stimulus modality, perceptual overlap, and the Go/No-go N2. Psychophysiology 41:157-160.
– volume: 101
  start-page: 267
  year: 1999
  end-page: 291
  article-title: ERP components in Go/Nogo tasks and their relation to inhibition
  publication-title: Acta Psychol (Amst)
– volume: 99
  start-page: 19
  year: 1996
  end-page: 27
  article-title: N2, P3 and the lateralized readiness potential in a No‐Go task involving selective response priming
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 64
  start-page: 601
  year: 2013b
  end-page: 615
  article-title: Disentangling common and specific neural subprocesses of response inhibition
  publication-title: NeuroImage
– volume: 52
  start-page: 1156
  year: 2004
  end-page: 1166
  article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo‐planar imaging distortion correction
  publication-title: Magn Reson Med
– volume: 1
  start-page: 210
  year: 1994
  end-page: 220
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum Brain Mapp
– volume: 27
  start-page: 321
  year: 2012
  end-page: 328
  article-title: German validation of the Conners Adult ADHD Rating Scales (CAARS) II: Reliability, validity, diagnostic sensitivity and specificity
  publication-title: Eur Psychiatry
– volume: 20
  start-page: 2483
  year: 2004
  end-page: 2488
  article-title: When “Go” and “Nogo” are equally frequent: ERP components and cortical tomography
  publication-title: Eur J Neurosci
– year: 2014
– volume: 30
  start-page: 669
  year: 2001
  end-page: 689
  article-title: The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity
  publication-title: Pers Individ Differ
– volume: 47
  start-page: 2389
  year: 2009
  end-page: 2396
  article-title: Increased intra‐individual reaction time variability in attention‐deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands
  publication-title: Neuropsychologia
– volume: 33
  start-page: 631
  year: 2009
  end-page: 646
  article-title: Insights into the neural basis of response inhibition from cognitive and clinical neuroscience
  publication-title: Neurosci Biobehav Rev
– volume: 41
  start-page: 377
  year: 2005
  end-page: 388
  article-title: Abnormal brain activity related to performance monitoring and error detection in children with ADHD
  publication-title: Cortex J Devoted Study Nerv Syst Behav
– volume: 28
  start-page: 1113
  year: 2006
  end-page: 1126
  article-title: State regulation in adult ADHD: An event‐related potential study
  publication-title: J Clin Exp Neuropsychol
– volume: 27
  start-page: 607
  year: 2008
  end-page: 616
  article-title: Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings
  publication-title: J Magn Reson Imaging
– volume: 56
  start-page: 1655
  year: 2011
  end-page: 1665
  article-title: Are the neural correlates of stopping and not going identical? Quantitative meta‐analysis of two response inhibition tasks
  publication-title: NeuroImage
– volume: 43
  start-page: 1997
  year: 2013
  end-page: 2011
  article-title: Familiality of neural preparation and response control in childhood attention deficit‐hyperactivity disorder
  publication-title: Psychol Med
– volume: 43
  start-page: 180
  year: 2010
  end-page: 188
  article-title: Impulsivity in borderline personality disorder: Impairment in self‐report measures, but not behavioral inhibition
  publication-title: Psychopathology
– volume: 5
  start-page: 41
  year: 2014
  article-title: Deficits during voluntary selection in adult patients with ADHD: New insights from single‐trial coupling of simultaneous EEG/fMRI
  publication-title: Neuropsychiatr Imaging Stimul
– volume: 34
  start-page: 2183
  year: 2013a
  end-page: 2193
  article-title: Differential effects of age on subcomponents of response inhibition
  publication-title: Neurobiol Aging
– volume: 92
  start-page: 16
  year: 2014
  end-page: 25
  article-title: Generalized lapse of responding in trait impulsivity indicated by ERPs: The role of energetic factors in inhibitory control
  publication-title: Int J Psychophysiol
– volume: 41
  start-page: 157
  year: 2004
  end-page: 160
  article-title: Stimulus modality, perceptual overlap, and the Go/No‐go N2
  publication-title: Psychophysiology
– volume: 19
  start-page: 146
  year: 2009
  end-page: 152
  article-title: Functional dissociation in right inferior frontal cortex during performance of Go/No‐Go task
  publication-title: Cereb Cortex
– volume: 25
  start-page: 427
  year: 2011
  end-page: 441
  article-title: Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations
  publication-title: Neuropsychology
– volume: 126
  start-page: 2363
  year: 2003
  end-page: 2380
  article-title: Staying on the job: The frontal lobes control individual performance variability
  publication-title: Brain
– volume: 49
  start-page: 61
  year: 2003
  end-page: 72
  article-title: Psychometrische Eigenschaften und Normen einer deutschsprachigen Fassung der Sensation Seeking‐Skalen, Form V
  publication-title: Diagnostica
– volume: 60
  start-page: 1088
  year: 2006
  end-page: 1097
  article-title: Intra‐subject variability in attention‐deficit hyperactivity disorder
  publication-title: Biol Psychiatry
– volume: 41
  start-page: 1959
  year: 2003
  end-page: 1966
  article-title: Response inhibition and impulsivity: An fMRI study
  publication-title: Neuropsychologia
– volume: 42
  start-page: 158
  year: 2008
  end-page: 168
  article-title: Single‐trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making
  publication-title: NeuroImage
– volume: 31
  start-page: 6891
  year: 2011
  end-page: 6899
  article-title: Effective connectivity reveals important roles for both the hyperdirect (fronto‐subthalamic) and the indirect (fronto‐striatal‐pallidal) fronto‐basal ganglia pathways during response inhibition
  publication-title: J Neurosci off J Soc Neurosci
– volume: 8
  start-page: 175
  year: 2014
  article-title: Data‐driven analysis of simultaneous EEG/fMRI using an ICA approach
  publication-title: Front Neurosci
– volume: 31
  start-page: 965
  year: 2011
  end-page: 982
  article-title: Measurement of constructs using self‐report and behavioral lab tasks: Is there overlap in nomothetic span and construct representation for impulsivity?
  publication-title: Clin Psychol Rev
– volume: 69
  start-page: 112
  year: 2008
  end-page: 118
  article-title: Impulsivity, intelligence and P300 wave: An empirical study
  publication-title: Int J Psychophysiol
– volume: 87
  start-page: 217
  year: 2013
  end-page: 233
  article-title: Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions
  publication-title: Int J Psychophysiol
– volume: 26
  start-page: 100
  year: 2011
  end-page: 107
  article-title: German validation of the Conners Adult ADHD Rating Scales—Self‐report (CAARS‐S) I: Factor structure and normative data
  publication-title: Eur Psychiatry
– volume: 115
  start-page: 909
  year: 2008b
  end-page: 915
  article-title: Impulsiveness and ERP components in a Go/Nogo task
  publication-title: J Neural Transm
– volume: 3
  start-page: 499
  year: 2003
  end-page: 512
  article-title: Timecourse of neural signatures of object recognition
  publication-title: J Vis
– volume: 143
  start-page: 850
  year: 2014
  end-page: 886
  article-title: Behavioral components of impulsivity
  publication-title: J Exp Psychol Gen
– volume: 49
  start-page: 1889
  year: 2011
  end-page: 1896
  article-title: Impaired engagement of the ventral attentional pathway in ADHD
  publication-title: Neuropsychologia
– volume: 419
  start-page: 236
  year: 2007
  end-page: 241
  article-title: Attentional processing in adults with ADHD as reflected by event‐related potentials
  publication-title: Neurosci Lett
– volume: 13
  start-page: 663
  year: 2008
  end-page: 681
  article-title: The subgenual anterior cingulate cortex in mood disorders
  publication-title: CNS Spectrosc
– volume: 107
  start-page: 6106
  year: 2010
  end-page: 6111
  article-title: Distinct frontal systems for response inhibition, attentional capture, and error processing
  publication-title: Proc Natl Acad Sci
– volume: 11
  start-page: 417
  year: 1999
  end-page: 441
  article-title: Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources
  publication-title: Neural Comput
– volume: 1481
  start-page: 1
  year: 2012
  end-page: 12
  article-title: Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers
  publication-title: Brain Res
– volume: 9
  start-page: e96159
  year: 2014
  article-title: Stimulus‐response mappings shape inhibition processes: A combined EEG‐fMRI study of contextual stopping
  publication-title: PLoS One
– volume: 91
  start-page: 80
  year: 2014
  end-page: 87
  article-title: The role of trait impulsivity in response inhibition: Event‐related potentials in a stop‐signal task
  publication-title: Int J Psychophysiol
– year: 1995
– volume: 45
  start-page: 2147
  year: 2007
  end-page: 2157
  article-title: Functional brain correlates of response time variability in children
  publication-title: Neuropsychologia
– volume: 8
  start-page: e69674
  year: 2013
  article-title: On the temporal characteristics of performance variability in attention deficit hyperactivity disorder (ADHD)
  publication-title: PLoS One
– volume: 1286
  start-page: 114
  year: 2009
  end-page: 122
  article-title: The P300 and reward valence, magnitude, and expectancy in outcome evaluation
  publication-title: Brain Res
– volume: 101
  start-page: 485
  year: 2014
  end-page: 493
  article-title: Prefrontal recruitment during social rejection predicts greater subsequent self‐regulatory imbalance and impairment: Neural and longitudinal evidence
  publication-title: NeuroImage
– volume: 134
  start-page: 382
  year: 1979
  end-page: 389
  article-title: A new depression scale designed to be sensitive to change
  publication-title: Br J Psychiatry J Ment Sci
– volume: 25
  start-page: 355
  year: 2001
  end-page: 373
  article-title: The novelty P3: An event‐related brain potential (ERP) sign of the brain's evaluation of novelty
  publication-title: Neurosci Biobehav Rev
– volume: 13
  start-page: 214
  year: 2007
  end-page: 228
  article-title: The neural basis of inhibition in cognitive control
  publication-title: Neuroscientist
– volume: 56
  start-page: 165
  year: 2004
  end-page: 176
  article-title: The N2 in Go/No‐Go tasks reflects conflict monitoring not response inhibition
  publication-title: Brain Cogn
– volume: 10
  start-page: 1209
  year: 1998
  end-page: 1213
  article-title: No‐Go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging
  publication-title: Eur J Neurosci
– volume: 44
  start-page: 457
  year: 2000
  end-page: 465
  article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI
  publication-title: Magn Reson Med
– volume: 20
  start-page: 751
  year: 2008
  end-page: 761
  article-title: Response inhibition and response selection: Two sides of the same coin
  publication-title: J Cogn Neurosci
– volume: 221
  year: 2016
  article-title: Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: A combined task‐specific and coordinate‐based meta‐analytic fMRI study
  publication-title: Brain Struct Funct
– volume: 9
  start-page: 500
  year: 2012
  end-page: 508
  article-title: Reaction Time Variability in ADHD: A review
  publication-title: Neurotherapeutics
– volume: 41
  start-page: 49
  year: 2000
  end-page: 100
  article-title: The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis
  publication-title: Cognit Psychol
– volume: 202
  start-page: 132
  year: 2012
  end-page: 141
  article-title: Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD
  publication-title: Psychiatry Res Neuroimaging
– volume: 6
  start-page: 115
  year: 2003
  end-page: 116
  article-title: Stop‐signal inhibition disrupted by damage to right inferior frontal gyrus in humans
  publication-title: Nat Neurosci
– volume: 91
  start-page: 412
  year: 2014
  end-page: 419
  article-title: Cluster‐extent based thresholding in fMRI analyses: Pitfalls and recommendations
  publication-title: NeuroImage
– volume: 94
  start-page: 349
  year: 2014
  end-page: 359
  article-title: Sequential inhibitory control processes assessed through simultaneous EEG–fMRI
  publication-title: NeuroImage
– volume: 46
  start-page: 224
  year: 2008
  end-page: 232
  article-title: Meta‐analysis of Go/No‐go tasks demonstrating that fMRI activation associated with response inhibition is task‐dependent
  publication-title: Neuropsychologia
– year: 1997
– volume: 2
  start-page: 139
  year: 1994
  end-page: 146
  article-title: Movement‐related potentials associated with motor inhibition as determined by use of a stop signal paradigm in humans
  publication-title: Cogn Brain Res
– volume: 40
  start-page: 305
  year: 2006
  end-page: 315
  article-title: Dimensions of impulsive behavior: Personality and behavioral measures
  publication-title: Pers Individ Differ
– volume: 51
  start-page: 1888
  year: 2013
  end-page: 1895
  article-title: Neurophysiological differences in inhibitory control between adults with ADHD and their peers
  publication-title: Neuropsychologia
– year: 2015
– volume: 17
  start-page: 45
  year: 2003
  end-page: 59
  article-title: Reliability and validity of the borderline personality disorder severity index
  publication-title: J Pers Disord
– volume: 52
  start-page: 472
  year: 2015
  end-page: 480
  article-title: It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop‐signal paradigm: Onset latency indexes response inhibition
  publication-title: Psychophysiology
– volume: 121
  start-page: 65
  year: 1997
  end-page: 94
  article-title: Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD
  publication-title: Psychol Bull
– volume: 33
  start-page: 2350
  year: 2012
  end-page: 2361
  article-title: Response inhibition and reward anticipation in medication‐naïve adults with attention‐deficit/hyperactivity disorder: A within‐subject case‐control neuroimaging study
  publication-title: Hum Brain Mapp
– volume: 37
  start-page: 11
  year: 2013
  end-page: 23
  article-title: Have we been asking the right questions when assessing response inhibition in Go/No‐Go tasks with fMRI? A meta‐analysis and critical review
  publication-title: Neurosci Biobehav Rev
– volume: 69
  start-page: e55
  year: 2011
  end-page: e68
  article-title: From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses
  publication-title: Biol Psychiatry
– volume: 26
  start-page: 2424
  year: 2006
  end-page: 2433
  article-title: Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus
  publication-title: J Neurosci
– volume: 94
  start-page: 120
  year: 2014
  end-page: 128
  article-title: Functional and effective connectivity of stopping
  publication-title: NeuroImage
– volume: 85
  start-page: 174
  year: 2012
  end-page: 187
  article-title: Differential relationships between sub‐traits of BIS‐11 impulsivity and executive processes: An ERP study
  publication-title: Int J Psychophysiol
– year: 1996
– volume: 126
  start-page: 713
  year: 2003
  end-page: 723
  article-title: Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington's disease
  publication-title: Brain
– volume: 52
  start-page: 3
  year: 1999
  end-page: 6
  article-title: The ten‐twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 68
  start-page: 209
  year: 2008a
  end-page: 218
  article-title: Electrophysiological evidence for reduced inhibitory control in depressed patients in partial remission: A Go/Nogo study
  publication-title: Int J Psychophysiol
– volume: 56
  start-page: 1588
  year: 2011
  end-page: 1597
  article-title: Multimodal imaging of functional networks and event‐related potentials in performance monitoring
  publication-title: NeuroImage
– volume: 4
  start-page: 215
  year: 2000
  end-page: 222
  article-title: Cognitive and emotional influences in anterior cingulate cortex
  publication-title: Trends Cogn Sci
– volume: 9
  year: 2015
  article-title: Neural correlates of high‐risk behavior tendencies and impulsivity in an emotional Go/NoGo fMRI task
  publication-title: Front Syst Neurosci
– volume: 44
  start-page: 384
  year: 2006
  end-page: 395
  article-title: Electrophysiological activity underlying inhibitory control processes in normal adults
  publication-title: Neuropsychologia
– volume: 12
  start-page: 230
  year: 2000
  end-page: 239
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: NeuroImage
– volume: 122
  start-page: 2390
  year: 2011
  end-page: 2399
  article-title: Dis‐regulation of response inhibition in adult attention deficit hyperactivity disorder (ADHD): An ERP study
  publication-title: Clin Neurophysiol
– volume: 74
  start-page: 987
  year: 2003
  end-page: 993
  article-title: Reliabilität und validität der wender‐utah‐rating‐scale‐kurzform
  publication-title: Nervenarzt
– year: 1988
– volume: 51
  start-page: 768
  year: 1995
  end-page: 774
  article-title: Factor structure of the barratt impulsiveness scale
  publication-title: J Clin Psychol
– volume: 112
  start-page: 2224
  year: 2001
  end-page: 2232
  article-title: Electrophysiological correlates for response inhibition in a Go/NoGo task
  publication-title: Clin Neurophysiol
– volume: 82
  start-page: 477
  year: 1992
  end-page: 482
  article-title: Relation of a negative ERP component to response inhibition in a Go/No‐Go task
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 48
  start-page: 366
  year: 2010
  end-page: 373
  article-title: Response inhibition subprocesses and dopaminergic pathways: Basal ganglia disease effects
  publication-title: Neuropsychologia
– volume: 254
  year: 2004
  article-title: Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study
  publication-title: Eur Arch Psychiatry Clin Neurosci
– volume: 54
  start-page: 1345
  year: 2003
  end-page: 1354
  article-title: Inhibitory motor control in children with attention‐deficit/hyperactivity disorder: Event‐related potentials in the stop‐signal paradigm
  publication-title: Biol Psychiatry
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
– year: 1999
– ident: e_1_2_6_8_1
  doi: 10.1523/JNEUROSCI.4682-05.2006
– ident: e_1_2_6_83_1
  doi: 10.1016/j.pscychresns.2012.02.010
– ident: e_1_2_6_45_1
  doi: 10.1016/j.ijpsycho.2012.08.001
– ident: e_1_2_6_92_1
  doi: 10.1093/brain/awg237
– ident: e_1_2_6_33_1
  doi: 10.1371/journal.pone.0069674
– volume: 8
  start-page: 175
  year: 2014
  ident: e_1_2_6_82_1
  article-title: Data‐driven analysis of simultaneous EEG/fMRI using an ICA approach
  publication-title: Front Neurosci
– ident: e_1_2_6_39_1
  doi: 10.1002/hbm.460010306
– ident: e_1_2_6_71_1
  doi: 10.1046/j.1469-8986.2003.00128.x
– ident: e_1_2_6_104_1
  doi: 10.1002/mrm.20261
– ident: e_1_2_6_5_1
  doi: 10.1093/brain/awg067
– ident: e_1_2_6_67_1
  doi: 10.1016/j.neuroimage.2008.04.236
– ident: e_1_2_6_73_1
  doi: 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1
– ident: e_1_2_6_90_1
  doi: 10.1016/j.neuropsychologia.2007.07.015
– volume: 3
  start-page: 499
  year: 2003
  ident: e_1_2_6_50_1
  article-title: Timecourse of neural signatures of object recognition
  publication-title: J Vis
  doi: 10.1167/3.7.4
– ident: e_1_2_6_16_1
  doi: 10.3389/fnsys.2015.00024
– ident: e_1_2_6_102_1
  doi: 10.1016/j.neuroimage.2013.12.058
– ident: e_1_2_6_57_1
  doi: 10.1016/0921-884X(96)95617-9
– ident: e_1_2_6_36_1
  doi: 10.1016/j.clinph.2011.05.010
– ident: e_1_2_6_14_1
  doi: 10.1016/j.neuropsychologia.2009.09.023
– ident: e_1_2_6_96_1
  doi: 10.1016/j.neuropsychologia.2009.01.022
– ident: e_1_2_6_6_1
  doi: 10.1177/1073858407299288
– ident: e_1_2_6_29_1
  doi: 10.1017/S1092852900013754
– ident: e_1_2_6_27_1
  doi: 10.1016/S0006-3223(03)00703-0
– volume-title: User's Guide for the Structured Clinical Interview for DSM‐IV Personality Disorders (SCID‐II)
  year: 1996
  ident: e_1_2_6_34_1
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuroimage.2014.01.023
– volume-title: Borderline Personality Disorder Severity Index (BPDSI)
  year: 1999
  ident: e_1_2_6_37_1
– ident: e_1_2_6_87_1
  doi: 10.1073/pnas.1000175107
– ident: e_1_2_6_19_1
  doi: 10.1016/j.neubiorev.2008.08.016
– ident: e_1_2_6_51_1
  doi: 10.1016/j.ijpsycho.2012.05.006
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: e_1_2_6_75_1
– ident: e_1_2_6_9_1
  doi: 10.1038/nn1003
– ident: e_1_2_6_98_1
  doi: 10.1016/S0191-8869(00)00064-7
– volume-title: Manual zum MWT‐B
  year: 1995
  ident: e_1_2_6_62_1
– ident: e_1_2_6_91_1
  doi: 10.1037/a0033981
– volume-title: Strukturiertes Klinisches Interview für DSM‐IV, Achse II: Persönlichkeitsstörungen
  year: 1997
  ident: e_1_2_6_40_1
– ident: e_1_2_6_64_1
  doi: 10.1006/cogp.1999.0734
– ident: e_1_2_6_72_1
  doi: 10.1016/0028-3932(71)90067-4
– volume: 5
  start-page: 41
  year: 2014
  ident: e_1_2_6_52_1
  article-title: Deficits during voluntary selection in adult patients with ADHD: New insights from single‐trial coupling of simultaneous EEG/fMRI
  publication-title: Neuropsychiatr Imaging Stimul
– ident: e_1_2_6_47_1
  doi: 10.1159/000304174
– ident: e_1_2_6_44_1
  doi: 10.1016/j.neuroimage.2011.03.039
– ident: e_1_2_6_7_1
  doi: 10.1016/j.biopsych.2010.07.024
– ident: e_1_2_6_31_1
  doi: 10.1016/S0001-6918(99)00008-6
– ident: e_1_2_6_55_1
  doi: 10.1016/j.ijpsycho.2014.01.008
– ident: e_1_2_6_77_1
  doi: 10.1016/j.paid.2005.03.024
– ident: e_1_2_6_48_1
  doi: 10.1523/JNEUROSCI.5253-10.2011
– ident: e_1_2_6_88_1
  doi: 10.1016/j.ijpsycho.2013.11.004
– volume: 41
  start-page: 377
  year: 2005
  ident: e_1_2_6_63_1
  article-title: Abnormal brain activity related to performance monitoring and error detection in children with ADHD
  publication-title: Cortex J Devoted Study Nerv Syst Behav
  doi: 10.1016/S0010-9452(08)70274-0
– ident: e_1_2_6_4_1
  doi: 10.1521/pedi.17.1.45.24053
– ident: e_1_2_6_28_1
  doi: 10.1016/j.bandc.2004.04.005
– ident: e_1_2_6_95_1
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– ident: e_1_2_6_76_1
  doi: 10.1007/s00115-002-1447-4
– ident: e_1_2_6_10_1
  doi: 10.1007/s00406-004-0488-z
– ident: e_1_2_6_89_1
  doi: 10.1016/j.neuropsychologia.2007.01.013
– ident: e_1_2_6_15_1
  doi: 10.1016/S1388-2457(01)00691-5
– ident: e_1_2_6_46_1
  doi: 10.1016/j.neuroimage.2014.02.034
– ident: e_1_2_6_84_1
  doi: 10.1016/j.neurobiolaging.2013.03.013
– ident: e_1_2_6_65_1
  doi: 10.1192/bjp.134.4.382
– ident: e_1_2_6_81_1
  doi: 10.1016/j.neuropsychologia.2005.06.005
– volume-title: Beck‐Depressions‐Inventar (BDI)
  year: 1995
  ident: e_1_2_6_41_1
– volume-title: Oscillatory Brain Activity and its Analysis on the Basis for MEG and EEG
  year: 1999
  ident: e_1_2_6_32_1
– ident: e_1_2_6_2_1
  doi: 10.1017/S003329171200270X
– volume-title: Structured Clinical Interview for DSM‐IV® Axis I Disorders (SCID‐I), Clinician Version, User's Guide
  year: 1997
  ident: e_1_2_6_35_1
– ident: e_1_2_6_80_1
  doi: 10.1016/j.ijpsycho.2008.03.008
– ident: e_1_2_6_85_1
  doi: 10.1016/j.neuroimage.2012.09.020
– ident: e_1_2_6_58_1
  doi: 10.1371/journal.pone.0096159
– ident: e_1_2_6_56_1
  doi: 10.1046/j.1460-9568.1998.00167.x
– volume-title: SKID: Strukturiertes klinisches Interview für DSM‐IV: Achse I und II
  year: 1997
  ident: e_1_2_6_100_1
– ident: e_1_2_6_23_1
  doi: 10.1016/j.eurpsy.2010.12.010
– ident: e_1_2_6_78_1
  doi: 10.1016/j.ijpsycho.2008.01.010
– ident: e_1_2_6_68_1
  doi: 10.1002/jmri.21277
– ident: e_1_2_6_49_1
  doi: 10.1016/0013-4694(92)90054-L
– ident: e_1_2_6_74_1
  doi: 10.1016/j.neulet.2007.04.011
– ident: e_1_2_6_97_1
  doi: 10.1111/psyp.12374
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1460-9568.2004.03683.x
– ident: e_1_2_6_3_1
  doi: 10.1006/nimg.2000.0599
– ident: e_1_2_6_22_1
  doi: 10.1016/j.eurpsy.2009.12.024
– volume: 52
  start-page: 3
  year: 1999
  ident: e_1_2_6_54_1
  article-title: The ten‐twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– ident: e_1_2_6_61_1
  doi: 10.1162/089976699300016719
– ident: e_1_2_6_30_1
  doi: 10.1037/a0022155
– ident: e_1_2_6_60_1
– ident: e_1_2_6_13_1
  doi: 10.1026//0012-1924.49.2.61
– ident: e_1_2_6_66_1
  doi: 10.1162/jocn.2008.20500
– ident: e_1_2_6_21_1
  doi: 10.1093/cercor/bhn065
– ident: e_1_2_6_43_1
  doi: 10.1016/S0028-3932(03)00077-0
– ident: e_1_2_6_25_1
  doi: 10.1016/j.neubiorev.2012.11.003
– ident: e_1_2_6_17_1
  doi: 10.1016/S1364-6613(00)01483-2
– ident: e_1_2_6_103_1
  doi: 10.1016/j.brainres.2009.06.032
– ident: e_1_2_6_18_1
  doi: 10.1002/hbm.21368
– ident: e_1_2_6_79_1
  doi: 10.1007/s00702-008-0042-7
– ident: e_1_2_6_38_1
  doi: 10.1016/S0149-7634(01)00019-7
– ident: e_1_2_6_11_1
  doi: 10.1037/0033-2909.121.1.65
– ident: e_1_2_6_42_1
  doi: 10.1016/j.neuropsychologia.2011.03.014
– ident: e_1_2_6_86_1
  doi: 10.1007/s00429-015-0994-y
– ident: e_1_2_6_53_1
  doi: 10.1016/j.biopsych.2006.04.003
– ident: e_1_2_6_20_1
  doi: 10.1016/j.neuroimage.2014.07.054
– ident: e_1_2_6_26_1
  doi: 10.1016/j.cpr.2011.06.001
– ident: e_1_2_6_99_1
  doi: 10.1080/13803390500212896
– ident: e_1_2_6_101_1
  doi: 10.1016/j.neuropsychologia.2013.06.023
– ident: e_1_2_6_24_1
  doi: 10.1016/j.brainres.2012.08.004
– ident: e_1_2_6_70_1
– ident: e_1_2_6_69_1
  doi: 10.1016/0926-6410(94)90010-8
– ident: e_1_2_6_93_1
  doi: 10.1016/j.neuroimage.2011.02.070
– ident: e_1_2_6_94_1
  doi: 10.1007/s13311-012-0138-5
SSID ssj0011501
Score 2.277533
Snippet Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto‐striatal network is involved in these...
Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3114
SubjectTerms Adult
Brain - physiology
Disruptive, Impulse Control, and Conduct Disorders - physiopathology
Electroencephalography
electrophysiological phenotypes
Female
Go/Nogo
Humans
Image Processing, Computer-Assisted
Impulsive Behavior - physiology
independent component analysis (ICA)
Inhibition (Psychology)
inter-individual differences
Magnetic Resonance Imaging
Male
response inhibition
Signal Processing, Computer-Assisted
simultaneous EEG/fMRI
Title Data-driven analysis of simultaneous EEG/fMRI reveals neurophysiological phenotypes of impulse control
URI https://api.istex.fr/ark:/67375/WNG-0BZSKG0F-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23230
https://www.ncbi.nlm.nih.gov/pubmed/27133468
https://www.proquest.com/docview/1811546060
https://www.proquest.com/docview/1810555763
https://www.proquest.com/docview/1815690855
https://pubmed.ncbi.nlm.nih.gov/PMC6867467
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB1VRUJ9obQFamjRglDVF-fiy24snlrIBVD60FI1qpBWu7ZXiUqcKBcJeOIT-o39EmbWF0gpCPHmyGPLO5mdObM-PgvwqolVR_DIc73Y-G7A46arueHYqpg4Ul4ifCu72D_hvfPg_SAcrMHr8luYXB-iWnCjmWHzNU1wpef1n6KhQz2uIRzwqV8nrhYBotNKOoqAjm22sMS6EWbgUlWo4dWrK1dq0T1y65e7gObvfMlfcawtRJ1N-FQOIeefXNWWC12Lv91Sd_zPMT6EBwVAZUd5RG3BWpptw85Rhs35-Cs7YJYyatfit-F-v3gzvwPDt2qhbr5fJzNKn0wVWidsYth8RKxFlaWT5Zy129266Z--YyQdhaHPrKDmtLwphQwj2tmE1obt5aPxdIn1mxWk-kdw3ml_fNNzi10c3JgT66KZaMwiWgVEdBUmiJQIjfKTKCUsxT3siVppqDTiBu2jWWx04FNbZZJQJyL1H8N6NsnSXWCIphTC2VQEJgpi_KFox3aEmDrkkdBNBw7L_1PGhcQ57bTxWebizJ5Eh0rrUAdeVqbTXNfjLqMDGxSVhZpdERFOhPLipCsbx5dnH7qNjhw4sFdGjSxywFwidkJ8iiPB-7yoTuPspVcyudPJhhTXMMn_1QaHR3xCB57kgVg9kEdrDAFvOSBWQrQyIPXw1TPZaGhVxHmL01Yz6DMbgX_2guwd9-3B0383fQYbiCx5Tsbbg_XFbJnuI3pb6Od2mv4Axg1BKw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FRIJcWBIIhgANgojLeJmlx3PgkOAVxz6ERLG4NN2zyFbwjOVFEE58Ah_Cr_ATfAlVPQsYAuKSAzdbU9Oarq7qet3z5jXA0xpWHZd7pmH6kWXY3K8ZikcclyqR70kzcC0tu9gf8M6J_WroDNfgS_4tTKoPUWy4UWbo-ZoSnDakKz9UQ0dqUkY8YFUzSmUvPH-PC7b5i24DR_eZabaaxy87RnamgOFz4gDUAoUxraRNtEs3sj3pOpG0Ai-kys5NROj10JEKq5iy0MyPlG0RyI8CRwVuaGG7V2CDThAnpf7GUSFWRdBKL--wqBsezvm5jlHVrBSPulL9NmggP1wEbX9naP6MnHXpa92Ar7nTUsbLWXm5UGX_4y96kv-LV2_C9QyDs_00aW7BWhhvwfZ-LBfJ5JztMc2K1a8btuBqPyMfbMOoIRfy26fPwYwqBJOZnAtLIjYfEzFTxmGynLNms12J-kddRupYmN1Ma4ZO80YpKxgx6xLa_ta3jyfTJUIUln03cBtOLqX7d2A9TuLwLjAEjBIRe-jakWf7-EfSofSIopXDPVfVSvA8DyDhZyrudJjIO5HqT5sCB1DoASzBk8J0mkqXXGS0p6OwsJCzM-L6uY44HbRF9eDN61672hLDEuzmYSqyaW4uEB4iBMeeYDuPi8s4QdFbp9TpZEOicljH_mqD3SPKZAl20sgvHsikbRSb10vgruREYUAC6atX4vFIC6XzOqfTdNBnOuT_7AXROejrH_f-3fQRXOsc9w_FYXfQuw-bCKR5yj3chfXFbBk-QLC6UA_1HMHg7WWnz3fkvZ5i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FRIq4sCQshgANgojLeJmlx3PgkOAVYwsFIiwuTffMtGwFjy0vgnDiE_gPfoWv4Euo6lnAEBCXHLjZmprWdHVV1-ueN68BHtaw6vg8sC071I7l8rBmKa45LlV0GEg78h0ju9gf8M6x-2zoDTfgS_4tTKoPUWy4UWaY-ZoSfBbpyg_R0JGalBEOONWMUdmLT9_jem3xpNvAwX1k263mq6cdKztSwAo5UQBqkcKQVtIl1qWv3UD6npZOFMRU2LmNAL0ee1JhEVMOmoVauQ5hfB15KvJjB9u9AFsurwZ0TkTjqNCqImRlVndY060Ap_xcxqhqV4pHXSt-WzSOH85Ctr8TNH8GzqbytS7D19xnKeHlpLxaqnL48Rc5yf_EqVfgUobA2UGaMldhI052YPcgkcvp5JTtM8OJNS8bdmC7n1EPdmHUkEv57dPnaE71gclMzIVNNVuMiZYpk3i6WrBms13R_aMuI20szG1mFENneaOUE4x4dVPa_Da3jyezFQIUln01cA2Oz6X712EzmSbxTWAIFyXi9dh3deCG-EfSkfSIoZXHA1_VSvA4jx8RZhrudJTIO5GqT9sCB1CYASzBg8J0lgqXnGW0b4KwsJDzE2L6-Z54PWiL6uGbl712tSWGJdjLo1Rkk9xCIDhEAI49wXbuF5dxeqJ3TqnTyYYk5bCK_dUGu0eEyRLcSAO_eCCbNlFcXi-Bv5YShQHJo69fScYjI5PO65zO0kGfmYj_sxdE57Bvftz6d9N7sP2i0RLPu4PebbiIKJqnxMM92FzOV_EdRKpLddfMEAzennf2fAdi_50R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+analysis+of+simultaneous+EEG%2FfMRI+reveals+neurophysiological+phenotypes+of+impulse+control&rft.jtitle=Human+brain+mapping&rft.au=Schm%C3%BCser%2C+Lena&rft.au=Sebastian%2C+Alexandra&rft.au=Mobascher%2C+Arian&rft.au=Lieb%2C+Klaus&rft.date=2016-09-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=37&rft.issue=9&rft.spage=3114&rft.epage=3136&rft_id=info:doi/10.1002%2Fhbm.23230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_23230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon