Single-nucleotide and long-patch base excision repair of DNA damage in plants
Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 60; no. 4; pp. 716 - 728 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2009
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways. |
---|---|
AbstractList | Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through
in vitro
reproduction of the entire repair reaction in cell‐free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage
in vitro
. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5′‐ or 3′‐blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short‐patch BER) or several nucleotides (long‐patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways. Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways. [PUBLICATION ABSTRACT] Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways. Summary Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell‐free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5′‐ or 3′‐blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short‐patch BER) or several nucleotides (long‐patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways. Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways. |
Author | Ariza, Rafael R Morales-Ruiz, Teresa Roldán-Arjona, Teresa Córdoba-Cañero, Dolores |
Author_xml | – sequence: 1 fullname: Córdoba-Cañero, Dolores – sequence: 2 fullname: Morales-Ruiz, Teresa – sequence: 3 fullname: Roldán-Arjona, Teresa – sequence: 4 fullname: Ariza, Rafael R |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22149302$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19682284$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktlu1DAUhi1URKeFVwALCcFNBm9JnAuQqpZVZZGmSNxZ3pJ6lLEHO6HTt8dhplPgAtU3tnS-8_ss_xE48MFbACBGc5zPy-Uc06osKKabOUGomSPaNGy-uQdmN4HvB2CGmgoVNcPkEByltEQI17RiD8AhbipOCGcz8GnhfNfbwo-6t2FwxkLpDeyD74q1HPQlVDJZaDfaJRc8jHYtXYShhWefT6CRK9lZ6Dxc99IP6SG438o-2Ue7-xgs3r65OH1fnH959-H05LzQVUlZYYxWpKqIRU2pkEJlpWpdWi0pMVwZrCquSi6p4qbhrWGUMqKYrbnBWnF6DF5vVdejWlmjrR-i7MU6upWM1yJIJ_6OeHcpuvBTkKZkjDZZ4PlOIIYfo02DWLmkbZ97sGFMoqYMM0LYRL74L4k5ophUnJcZffoPugxj9HkMgmDKakRpnaHHf5a-r_lmIRl4tgNk0rJvo_R58nuOEJyrQiRzfMvpGFKKtr2VQmLyiFiKyQpisoKYPCJ-e0Rsbse3T9VukEPebh6W6-8i8GorcOV6e33nj8XF14_TK-c_2ea3MgjZxdzftwVBmGZ_IoLqmv4C1Z_eTg |
CitedBy_id | crossref_primary_10_1093_jxb_ers185 crossref_primary_10_1016_j_molcel_2011_11_034 crossref_primary_10_1093_nar_gks327 crossref_primary_10_1111_ppl_70162 crossref_primary_10_3389_fpls_2019_01055 crossref_primary_10_3390_ijms22168763 crossref_primary_10_1073_pnas_1719497115 crossref_primary_10_1016_j_dnarep_2018_02_011 crossref_primary_10_1016_j_dnarep_2016_10_009 crossref_primary_10_1016_j_dnarep_2018_02_010 crossref_primary_10_1093_plcell_koae052 crossref_primary_10_1270_jsbbs_18117 crossref_primary_10_1038_s41477_024_01678_z crossref_primary_10_1074_jbc_M112_427617 crossref_primary_10_3390_ijms241914746 crossref_primary_10_1016_j_isci_2023_106778 crossref_primary_10_3390_ijms24032404 crossref_primary_10_1016_j_bbrc_2019_04_156 crossref_primary_10_1111_plb_12083 crossref_primary_10_3390_ijms251910345 crossref_primary_10_1371_journal_pone_0092963 crossref_primary_10_1111_tpj_12588 crossref_primary_10_1093_nar_gkae1297 crossref_primary_10_1093_jxb_erv080 crossref_primary_10_1093_hr_uhab004 crossref_primary_10_1007_s00299_010_0975_9 crossref_primary_10_1371_journal_pgen_1004905 crossref_primary_10_3389_fpls_2015_00885 crossref_primary_10_3390_ijms20194683 crossref_primary_10_1007_s11103_023_01407_8 crossref_primary_10_1111_j_1365_313X_2010_04331_x crossref_primary_10_1016_j_plaphy_2012_07_031 crossref_primary_10_1016_j_dnarep_2025_103810 crossref_primary_10_1093_nar_gku834 crossref_primary_10_1016_j_ecoenv_2020_111525 crossref_primary_10_1534_genetics_120_303028 crossref_primary_10_1007_s00018_016_2436_2 crossref_primary_10_1074_jbc_M109_067173 crossref_primary_10_1371_journal_pone_0018658 crossref_primary_10_3389_fgene_2021_675686 crossref_primary_10_1111_j_1365_313X_2011_04720_x crossref_primary_10_3390_genes11111370 crossref_primary_10_3390_ijms20194814 crossref_primary_10_1371_journal_pone_0109160 |
Cites_doi | 10.1007/s004380100506 10.18388/abp.2003_3724 10.1016/j.dnarep.2008.07.012 10.1074/jbc.M111601200 10.1016/j.mrrev.2008.07.003 10.1074/jbc.273.33.21203 10.1093/nar/27.18.3712 10.1016/j.molcel.2004.06.003 10.1093/emboj/16.11.3341 10.1074/jbc.275.6.4460 10.1074/jbc.M201411200 10.1074/jbc.273.50.33811 10.1016/j.dnarep.2006.10.014 10.1016/j.dnarep.2008.01.002 10.1074/jbc.M411864200 10.1016/j.dnarep.2003.10.002 10.1021/bi9923151 10.1007/s11103-008-9346-0 10.1021/cr040482n 10.1073/pnas.91.8.3299 10.1016/j.bbrc.2004.05.152 10.1016/j.dnarep.2005.02.007 10.1073/pnas.0603563103 10.1021/cr010219b 10.1006/jmbi.2000.4005 10.1023/A:1013644026132 10.1016/j.dnarep.2003.12.009 10.1016/j.biochi.2008.07.005 10.1093/nar/18.17.5069 10.1016/j.mrfmmm.2005.03.011 10.1046/j.1365-313X.2002.01274.x 10.1073/pnas.0601109103 10.1042/bj20020375 10.1105/tpc.010258 10.1128/MCB.11.9.4441 10.1016/j.dnarep.2006.10.008 10.1046/j.1365-313x.1998.00240.x 10.1016/S1568-7864(02)00093-9 10.1016/S0968-0004(00)89089-1 10.1128/MCB.9.9.3750 10.1016/S0960-9822(00)00245-1 10.1016/j.dnarep.2003.09.002 10.1002/j.1460-2075.1996.tb01056.x 10.1093/nar/24.17.3307 10.1074/jbc.M109.008342 10.1093/nar/gkh851 10.1016/S0300-483X(03)00288-9 10.1073/pnas.94.15.8016 10.1111/j.1432-1033.2004.04214.x 10.1128/MCB.13.2.1051 10.1074/jbc.274.47.33696 10.1023/A:1006429114451 10.1074/jbc.M106212200 10.1016/j.molcel.2005.06.014 10.1038/362709a0 10.1038/sj.onc.1205561 10.1074/jbc.270.2.949 10.1016/S0021-9258(18)99242-2 10.1016/j.mrfmmm.2003.09.002 10.1128/MCB.12.4.1605 10.1016/j.cell.2005.12.034 10.1002/em.20094 10.1111/j.1469-8137.2005.01548.x 10.1021/bi962950w 10.1074/jbc.274.21.15230 10.1046/j.1365-2443.2002.00547.x 10.1007/s004380050851 10.1111/tab.0005 |
ContentType | Journal Article |
Copyright | 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd 2015 INIST-CNRS Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology |
DBID | FBQ 24P AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1111/j.1365-313x.2009.03994.x |
DatabaseName | AGRIS Wiley Online Library Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 728 |
ExternalDocumentID | PMC2954439 1901673551 19682284 22149302 10_1111_j_1365_313X_2009_03994_x TPJ3994 US201301702077 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT 24P AEUQT AFPWT ESX IPNFZ WRC AAYXX AEYWJ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c6534-ddcb2662e095b0b056b7c5eca32d8bd1b68b58a3b8d98fd43342b4e78d1cb83 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Thu Aug 21 18:20:05 EDT 2025 Fri Jul 11 12:32:59 EDT 2025 Fri Jul 11 11:52:35 EDT 2025 Fri Jul 25 11:03:00 EDT 2025 Mon Jul 21 05:56:17 EDT 2025 Mon Jul 21 09:11:41 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Tue Jul 01 03:57:03 EDT 2025 Wed Jan 22 16:21:34 EST 2025 Thu Apr 03 09:43:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Site Vegetals Excision DNA polymerase Enzyme Arabidopsis Transferases abasic sites DNA repair Arabidopsis thaliana Nucleotidyltransferases Plant Cruciferae Dicotyledones DNA Angiospermae Nucleotide Spermatophyta Lesion Repair Uracil DNA-directed DNA polymerase |
Language | English |
License | CC BY 4.0 Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6534-ddcb2662e095b0b056b7c5eca32d8bd1b68b58a3b8d98fd43342b4e78d1cb83 |
Notes | http://dx.doi.org/10.1111/j.1365-313X.2009.03994.x http://www3.interscience.wiley.com/authorresources/onlineopen.html Re‐use of this article is permitted in accordance with the Terms and Conditions set out at SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www3.interscience.wiley.com/authorresources/onlineopen.html |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2009.03994.x |
PMID | 19682284 |
PQID | 213470337 |
PQPubID | 31702 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2954439 proquest_miscellaneous_734142249 proquest_miscellaneous_1803126885 proquest_journals_213470337 pubmed_primary_19682284 pascalfrancis_primary_22149302 crossref_primary_10_1111_j_1365_313X_2009_03994_x crossref_citationtrail_10_1111_j_1365_313X_2009_03994_x wiley_primary_10_1111_j_1365_313X_2009_03994_x_TPJ3994 fao_agris_US201301702077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2009 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: November 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2001; 265 2004; 320 2002; 14 1990; 18 1991; 11 2000; 44 2005; 577 2002; 277 2004; 3 2008; 7 2003; 193 2003; 50 1992; 12 2001; 47 1993; 362 1998; 273 2004; 32 1995; 20 1998; 15 1997; 94 1991; 266 2007; 6 2008; 67 1997; 16 2009; 284 2009; 681 1996; 24 2006; 124 2002; 30 1999; 27 1989; 9 2002; 7 2002; 1 2006 2000; 275 2002 1998; 259 2003; 531 1996; 15 2005; 45 1995; 270 2008; 91 2001; 276 2005; 280 1993; 13 2005; 19 2000; 39 2000; 301 2005; 168 1997; 36 2004; 15 2002; 21 2004; 271 2002; 365 1999; 274 2005; 4 1994; 91 2003; 103 2003; 63 2006; 106 1994; 4 2006; 103 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 Kelley M.R. (e_1_2_6_30_1) 2003; 63 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Friedberg E.C. (e_1_2_6_21_1) 2006 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 15206945 - Eur J Biochem. 2004 Jul;271(13):2799-807 15749700 - J Biol Chem. 2005 May 6;280(18):18469-75 12000456 - Plant J. 2002 Apr;30(2):203-12 15964249 - DNA Repair (Amst). 2005 Jul 12;4(7):760-72 16864782 - Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11796-801 17116429 - DNA Repair (Amst). 2007 Apr 1;6(4):505-16 15177179 - DNA Repair (Amst). 2004 Jul 2;3(7):703-10 8533153 - Trends Biochem Sci. 1995 Oct;20(10):405-11 11551933 - J Biol Chem. 2001 Nov 9;276(45):42588-600 10660619 - J Biol Chem. 2000 Feb 11;275(6):4460-6 18493721 - Plant Mol Biol. 2008 Aug;67(6):671-81 18721906 - DNA Repair (Amst). 2008 Nov 1;7(11):1869-81 12509283 - DNA Repair (Amst). 2002 Aug 6;1(8):579-600 17129767 - DNA Repair (Amst). 2007 Apr 1;6(4):398-409 14697756 - DNA Repair (Amst). 2004 Jan 5;3(1):23-31 1674744 - J Biol Chem. 1991 Jun 5;266(16):10420-8 10966791 - J Mol Biol. 2000 Aug 25;301(4):851-67 9694877 - J Biol Chem. 1998 Aug 14;273(33):21203-9 19372224 - J Biol Chem. 2009 Jun 19;284(25):17006-12 11523787 - Mol Genet Genomics. 2001 Aug;265(6):954-63 11826311 - Plant Cell. 2002 Jan;14(1):263-73 16313635 - New Phytol. 2005 Dec;168(3):511-28 11821417 - J Biol Chem. 2002 Apr 12;277(15):13184-91 8423775 - Mol Cell Biol. 1993 Feb;13(2):1051-8 9200707 - Biochemistry. 1997 Jun 17;36(24):7557-66 2779565 - Mol Cell Biol. 1989 Sep;9(9):3750-7 14599766 - Toxicology. 2003 Nov 15;193(1-2):35-41 12149642 - Oncogene. 2002 Aug 8;21(34):5204-12 18707020 - Mutat Res. 2009 Mar-Jun;681(2-3):169-79 12673357 - Acta Biochim Pol. 2003;50(1):169-79 8978692 - EMBO J. 1996 Dec 2;15(23):6662-70 9837971 - J Biol Chem. 1998 Dec 11;273(50):33811-6 18295553 - DNA Repair (Amst). 2008 Apr 2;7(4):605-16 12566294 - Cancer Res. 2003 Feb 1;63(3):549-54 11785940 - Plant Mol Biol. 2001 Dec;47(6):795-804 1698278 - Nucleic Acids Res. 1990 Sep 11;18(17):5069-75 10559260 - J Biol Chem. 1999 Nov 19;274(47):33696-702 14697754 - DNA Repair (Amst). 2004 Jan 5;3(1):1-12 9223306 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8016-20 12081642 - Genes Cells. 2002 Jul;7(7):639-51 15207714 - Biochem Biophys Res Commun. 2004 Jul 16;320(1):145-55 9819050 - Mol Gen Genet. 1998 Oct;259(6):577-90 10329732 - J Biol Chem. 1999 May 21;274(21):15230-6 11966472 - Biochem J. 2002 Jul 15;365(Pt 2):547-53 7822335 - J Biol Chem. 1995 Jan 13;270(2):949-57 11948185 - J Biol Chem. 2002 Jun 28;277(26):23675-83 10651642 - Biochemistry. 2000 Feb 1;39(4):763-72 1875931 - Mol Cell Biol. 1991 Sep;11(9):4441-7 16061187 - Mol Cell. 2005 Aug 5;19(3):421-8 15452279 - Nucleic Acids Res. 2004;32(17):5119-25 7512729 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3299-303 14637251 - Mutat Res. 2003 Oct 29;531(1-2):141-56 9214649 - EMBO J. 1997 Jun 2;16(11):3341-8 7535646 - Curr Biol. 1994 Dec 1;4(12):1069-76 16469697 - Cell. 2006 Feb 10;124(3):495-506 10471741 - Nucleic Acids Res. 1999 Sep 15;27(18):3712-9 9778846 - Plant J. 1998 Sep;15(5):635-45 11094978 - Plant Mol Biol. 2000 Sep;44(1):43-52 15260972 - Mol Cell. 2004 Jul 23;15(2):209-20 8469282 - Nature. 1993 Apr 22;362(6422):709-15 15939442 - Mutat Res. 2005 Sep 4;577(1-2):24-54 8811082 - Nucleic Acids Res. 1996 Sep 1;24(17):3307-12 16464023 - Chem Rev. 2006 Feb;106(2):753-66 16624880 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):6853-8 18706967 - Biochimie. 2009 Feb;91(2):165-70 12848584 - Chem Rev. 2003 Jul;103(7):2729-59 1549115 - Mol Cell Biol. 1992 Apr;12(4):1605-12 15645454 - Environ Mol Mutagen. 2005 Mar-Apr;45(2-3):115-27 |
References_xml | – volume: 67 start-page: 671 year: 2008 end-page: 681 article-title: Arabidopsis DEMETER‐LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks publication-title: Plant Mol. Biol. – volume: 27 start-page: 3712 year: 1999 end-page: 3719 article-title: Single‐nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts publication-title: Nucleic Acids Res. – volume: 3 start-page: 23 year: 2004 end-page: 31 article-title: Orchestration of base excision repair by controlling the rates of enzymatic activities publication-title: DNA Repair (Amst) – volume: 6 start-page: 398 year: 2007 end-page: 409 article-title: Base damage and single‐strand break repair: mechanisms and functional significance of short‐ and long‐patch repair subpathways publication-title: DNA Repair (Amst) – volume: 36 start-page: 7557 year: 1997 end-page: 7566 article-title: Reconstitution of human base excision repair with purified proteins publication-title: Biochemistry – volume: 270 start-page: 949 year: 1995 end-page: 957 article-title: DNA polymerase β conducts the gap‐filling step in uracil‐initiated base excision repair in a bovine testis nuclear extract publication-title: J. Biol. Chem. – volume: 577 start-page: 24 year: 2005 end-page: 54 article-title: The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases publication-title: Mutat. Res. – volume: 106 start-page: 753 year: 2006 end-page: 766 article-title: DNA repair in plants publication-title: Chem. Rev. – volume: 365 start-page: 547 year: 2002 end-page: 553 article-title: Embryonic extracts derived from the nematode remove uracil from DNA by the sequential action of uracil‐DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease publication-title: Biochem. J. – volume: 273 start-page: 21203 year: 1998 end-page: 21209 article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate‐determining steps publication-title: J. Biol. Chem. – volume: 266 start-page: 10420 year: 1991 end-page: 10428 article-title: Biochemical and functional comparison of DNA polymerases α, δ, and ε from calf thymus publication-title: J. Biol. Chem. – volume: 18 start-page: 5069 year: 1990 end-page: 5075 article-title: Analysis of class II (hydrolytic) and class I (beta‐lyase) apurinic/apyrimidinic endonucleases with a synthetic DNA substrate publication-title: Nucleic Acids Res. – volume: 16 start-page: 3341 year: 1997 end-page: 3348 article-title: Second pathway for completion of human DNA base excision‐repair: reconstitution with purified proteins and requirement for DNase IV (FEN1) publication-title: EMBO J. – volume: 30 start-page: 203 year: 2002 end-page: 212 article-title: Synchronous Arabidopsis suspension cultures for analysis of cell‐cycle gene activity publication-title: Plant J. – volume: 9 start-page: 3750 year: 1989 end-page: 3757 article-title: Repair of a synthetic abasic site in DNA in a oocyte extract publication-title: Mol. Cell. Biol. – volume: 19 start-page: 421 year: 2005 end-page: 428 article-title: Biochemical specialization within Arabidopsis RNA silencing pathways publication-title: Mol. Cell – volume: 91 start-page: 165 year: 2008 end-page: 170 article-title: Distribution and roles of X‐family DNA polymerases in eukaryotes publication-title: Biochimie – volume: 4 start-page: 1069 year: 1994 end-page: 1076 article-title: Reconstitution of the DNA base excision‐repair pathway publication-title: Curr. Biol. – volume: 259 start-page: 577 year: 1998 end-page: 590 article-title: Molecular cloning of , an ortholog of the gene, and analysis of functional domains of its product publication-title: Mol. Gen. Genet. – volume: 7 start-page: 605 year: 2008 end-page: 616 article-title: Mitochondrial base excision repair of uracil and AP sites takes place by single‐nucleotide insertion and long‐patch DNA synthesis publication-title: DNA Repair (Amst) – volume: 4 start-page: 760 year: 2005 end-page: 772 article-title: Xenopus CENP‐A assembly into chromatin requires base excision repair proteins publication-title: DNA Repair (Amst) – volume: 168 start-page: 511 year: 2005 end-page: 528 article-title: DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity publication-title: New Phytol. – volume: 277 start-page: 23675 year: 2002 end-page: 23683 article-title: A nick‐sensing DNA 3′‐repair enzyme from Arabidopsis publication-title: J. Biol. Chem. – volume: 271 start-page: 2799 year: 2004 end-page: 2807 article-title: Plant DNA polymerase λ, a DNA repair enzyme that functions in plant meristematic and meiotic tissues publication-title: Eur. J. Biochem. – volume: 21 start-page: 5204 year: 2002 end-page: 5212 article-title: Base excision repair of adenine/8‐oxoguanine mispairs by an aphidicolin‐sensitive DNA polymerase in human cell extracts publication-title: Oncogene – volume: 91 start-page: 3299 year: 1994 end-page: 3303 article-title: The apurinic endonuclease Arp reduces human transcription factors Fos and Jun publication-title: Proc. Natl Acad. Sci. USA – volume: 1 start-page: 579 year: 2002 end-page: 600 article-title: , a versatile model system for study of eukaryotic genome‐maintenance functions publication-title: DNA Repair – volume: 362 start-page: 709 year: 1993 end-page: 715 article-title: Instability and decay of the primary structure of DNA publication-title: Nature – volume: 6 start-page: 505 year: 2007 end-page: 516 article-title: Uracil in DNA – General mutagen, but normal intermediate in acquired immunity publication-title: DNA Repair (Amst) – volume: 275 start-page: 4460 year: 2000 end-page: 4466 article-title: FEN1 stimulation of DNA polymerase β mediates an excision step in mammalian long patch base excision repair publication-title: J. Biol. Chem. – volume: 3 start-page: 1 year: 2004 end-page: 12 article-title: Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae publication-title: DNA Repair (Amst) – volume: 14 start-page: 263 year: 2002 end-page: 273 article-title: Repair of damaged DNA by Arabidopsis cell extract publication-title: Plant Cell – volume: 7 start-page: 639 year: 2002 end-page: 651 article-title: Over‐expression of human DNA polymerase λ in and characterization of the recombinant enzyme publication-title: Genes Cells – volume: 3 start-page: 703 year: 2004 end-page: 710 article-title: Aphidicolin‐resistant and ‐sensitive base excision repair in wild‐type and DNA polymerase β‐defective mouse cells publication-title: DNA Repair (Amst) – volume: 274 start-page: 15230 year: 1999 end-page: 15236 article-title: The type of DNA glycosylase determines the base excision repair pathway in mammalian cells publication-title: J. Biol. Chem. – volume: 124 start-page: 495 year: 2006 end-page: 506 article-title: DEMETER DNA glycosylase establishes polycomb gene self‐imprinting by allele‐specific demethylation publication-title: Cell – volume: 12 start-page: 1605 year: 1992 end-page: 1612 article-title: Generation of single‐nucleotide repair patches following excision of uracil residues from DNA publication-title: Mol. Cell. Biol. – volume: 273 start-page: 33811 year: 1998 end-page: 33816 article-title: Repair pathways for processing of 8‐oxoguanine in DNA by mammalian cell extracts publication-title: J. Biol. Chem. – volume: 32 start-page: 5119 year: 2004 end-page: 5125 article-title: A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in publication-title: Nucleic Acids Res. – volume: 277 start-page: 13184 year: 2002 end-page: 13191 article-title: DNA polymerase λ, a novel DNA repair enzyme in human cells publication-title: J. Biol. Chem. – volume: 276 start-page: 42588 year: 2001 end-page: 42600 article-title: Fidelity of uracil‐initiated base excision DNA repair in DNA polymerase β‐proficient and ‐deficient mouse embryonic fibroblast cell extracts publication-title: J. Biol. Chem. – volume: 681 start-page: 169 year: 2009 end-page: 179 article-title: Repair and tolerance of oxidative DNA damage in plants publication-title: Mutat. Res. – volume: 103 start-page: 11796 year: 2006 end-page: 11801 article-title: Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation publication-title: Proc. Natl Acad. Sci. USA – volume: 103 start-page: 2729 year: 2003 end-page: 2759 article-title: A mechanistic perspective on the chemistry of DNA repair glycosylases publication-title: Chem. Rev. – volume: 39 start-page: 763 year: 2000 end-page: 772 article-title: DNA base excision repair in human malaria parasites is predominantly by a long‐patch pathway publication-title: Biochemistry – volume: 50 start-page: 169 year: 2003 end-page: 179 article-title: Poly(ADP‐ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing publication-title: Acta Biochim. Pol. – volume: 7 start-page: 1869 year: 2008 end-page: 1881 article-title: The rate of base excision repair of uracil is controlled by the initiating glycosylase publication-title: DNA Repair (Amst) – volume: 15 start-page: 6662 year: 1996 end-page: 6670 article-title: Reconstitution of DNA base excision‐repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein publication-title: EMBO J. – volume: 280 start-page: 18469 year: 2005 end-page: 18475 article-title: DNA polymerase λ mediates a back‐up base excision repair activity in extracts of mouse embryonic fibroblasts publication-title: J. Biol. Chem. – volume: 193 start-page: 35 year: 2003 end-page: 41 article-title: Monitoring base excision repair by assays publication-title: Toxicology – volume: 11 start-page: 4441 year: 1991 end-page: 4447 article-title: Repair of a synthetic abasic site involves concerted reactions of DNA synthesis followed by excision and ligation publication-title: Mol. Cell. Biol. – volume: 44 start-page: 43 year: 2000 end-page: 52 article-title: cDNA cloning, expression and functional characterization of an homologue of the DNA repair enzyme endonuclease III publication-title: Plant Mol. Biol. – volume: 45 start-page: 115 year: 2005 end-page: 127 article-title: Components of nucleotide excision repair and DNA damage tolerance in publication-title: Environ. Mol. Mutagen. – volume: 103 start-page: 6853 year: 2006 end-page: 6858 article-title: and encode 5‐methylcytosine DNA glycosylases publication-title: Proc. Natl Acad. Sci. USA – volume: 15 start-page: 635 year: 1998 end-page: 645 article-title: Higher plants possess two structurally different poly(ADP‐ribose) polymerases publication-title: Plant J. – volume: 265 start-page: 954 year: 2001 end-page: 963 article-title: Ionising radiation induces the expression of PARP‐1 and PARP‐2 genes in Arabidopsis publication-title: Mol. Genet. Genomics – volume: 531 start-page: 141 year: 2003 end-page: 156 article-title: Recognition of damaged DNA by Fpg protein: insights from structural and kinetic data publication-title: Mutat. Res. – volume: 47 start-page: 795 year: 2001 end-page: 804 article-title: An orthologue encoding a functional 8‐oxoguanine DNA glycosylase/lyase in publication-title: Plant Mol. Biol. – volume: 284 start-page: 17006 year: 2009 end-page: 17012 article-title: Evidence for base excision repair of oxidative DNA Damage in chloroplasts of publication-title: J. Biol. Chem. – volume: 13 start-page: 1051 year: 1993 end-page: 1058 article-title: DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase ε and is influenced by DNA polymerases α and δ in publication-title: Mol. Cell. Biol. – volume: 24 start-page: 3307 year: 1996 end-page: 3312 article-title: Molecular cloning and functional analysis of a homologue of endonuclease III publication-title: Nucleic Acids Res. – volume: 274 start-page: 33696 year: 1999 end-page: 33702 article-title: Long patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases δ and ε publication-title: J. Biol. Chem. – volume: 15 start-page: 209 year: 2004 end-page: 220 article-title: AP endonuclease‐independent DNA base excision repair in human cells publication-title: Mol. Cell – year: 2002 – volume: 20 start-page: 405 year: 1995 end-page: 411 article-title: Post‐translational modification of poly(ADP‐ribose) polymerase induced by DNA strand breaks publication-title: Trends Biochem. Sci. – year: 2006 – volume: 320 start-page: 145 year: 2004 end-page: 155 article-title: Dideoxynucleoside triphosphate‐sensitive DNA polymerase from rice is involved in base excision repair and immunologically similar to mammalian DNA pol β publication-title: Biochem. Biophys. Res. Commun. – volume: 94 start-page: 8016 year: 1997 end-page: 8020 article-title: Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8‐hydroxyguanine‐DNA glycosylase publication-title: Proc. Natl Acad. Sci. USA – volume: 301 start-page: 851 year: 2000 end-page: 867 article-title: DNA polymerase λ (Pol λ), a novel eukaryotic DNA polymerase with a potential role in meiosis publication-title: J. Mol. Biol. – volume: 63 start-page: 549 year: 2003 end-page: 554 article-title: Disparity between DNA base excision repair in yeast and mammals: translational implications publication-title: Cancer Res. – ident: e_1_2_6_18_1 doi: 10.1007/s004380100506 – ident: e_1_2_6_4_1 doi: 10.18388/abp.2003_3724 – ident: e_1_2_6_65_1 doi: 10.1016/j.dnarep.2008.07.012 – ident: e_1_2_6_23_1 doi: 10.1074/jbc.M111601200 – ident: e_1_2_6_52_1 doi: 10.1016/j.mrrev.2008.07.003 – ident: e_1_2_6_60_1 doi: 10.1074/jbc.273.33.21203 – ident: e_1_2_6_61_1 doi: 10.1093/nar/27.18.3712 – ident: e_1_2_6_68_1 doi: 10.1016/j.molcel.2004.06.003 – ident: e_1_2_6_32_1 doi: 10.1093/emboj/16.11.3341 – ident: e_1_2_6_50_1 doi: 10.1074/jbc.275.6.4460 – ident: e_1_2_6_49_1 doi: 10.1074/jbc.M201411200 – ident: e_1_2_6_17_1 doi: 10.1074/jbc.273.50.33811 – ident: e_1_2_6_29_1 doi: 10.1016/j.dnarep.2006.10.014 – ident: e_1_2_6_3_1 doi: 10.1016/j.dnarep.2008.01.002 – ident: e_1_2_6_11_1 doi: 10.1074/jbc.M411864200 – ident: e_1_2_6_10_1 doi: 10.1016/j.dnarep.2003.10.002 – ident: e_1_2_6_27_1 doi: 10.1021/bi9923151 – ident: e_1_2_6_45_1 doi: 10.1007/s11103-008-9346-0 – ident: e_1_2_6_31_1 doi: 10.1021/cr040482n – ident: e_1_2_6_7_1 doi: 10.1073/pnas.91.8.3299 – ident: e_1_2_6_56_1 doi: 10.1016/j.bbrc.2004.05.152 – ident: e_1_2_6_69_1 doi: 10.1016/j.dnarep.2005.02.007 – ident: e_1_2_6_2_1 doi: 10.1073/pnas.0603563103 – ident: e_1_2_6_62_1 doi: 10.1021/cr010219b – ident: e_1_2_6_22_1 doi: 10.1006/jmbi.2000.4005 – ident: e_1_2_6_24_1 doi: 10.1023/A:1013644026132 – ident: e_1_2_6_47_1 doi: 10.1016/j.dnarep.2003.12.009 – ident: e_1_2_6_64_1 doi: 10.1016/j.biochi.2008.07.005 – ident: e_1_2_6_35_1 doi: 10.1093/nar/18.17.5069 – ident: e_1_2_6_70_1 doi: 10.1016/j.mrfmmm.2005.03.011 – ident: e_1_2_6_41_1 doi: 10.1046/j.1365-313X.2002.01274.x – ident: e_1_2_6_42_1 doi: 10.1073/pnas.0601109103 – ident: e_1_2_6_57_1 doi: 10.1042/bj20020375 – ident: e_1_2_6_36_1 doi: 10.1105/tpc.010258 – ident: e_1_2_6_40_1 doi: 10.1128/MCB.11.9.4441 – ident: e_1_2_6_19_1 doi: 10.1016/j.dnarep.2006.10.008 – ident: e_1_2_6_8_1 doi: 10.1046/j.1365-313x.1998.00240.x – ident: e_1_2_6_28_1 doi: 10.1016/S1568-7864(02)00093-9 – volume-title: DNA Repair and Mutagenesis year: 2006 ident: e_1_2_6_21_1 – ident: e_1_2_6_38_1 doi: 10.1016/S0968-0004(00)89089-1 – ident: e_1_2_6_39_1 doi: 10.1128/MCB.9.9.3750 – ident: e_1_2_6_15_1 doi: 10.1016/S0960-9822(00)00245-1 – ident: e_1_2_6_5_1 doi: 10.1016/j.dnarep.2003.09.002 – ident: e_1_2_6_33_1 doi: 10.1002/j.1460-2075.1996.tb01056.x – ident: e_1_2_6_53_1 doi: 10.1093/nar/24.17.3307 – ident: e_1_2_6_26_1 doi: 10.1074/jbc.M109.008342 – ident: e_1_2_6_6_1 doi: 10.1093/nar/gkh851 – ident: e_1_2_6_14_1 doi: 10.1016/S0300-483X(03)00288-9 – ident: e_1_2_6_54_1 doi: 10.1073/pnas.94.15.8016 – ident: e_1_2_6_63_1 doi: 10.1111/j.1432-1033.2004.04214.x – ident: e_1_2_6_66_1 doi: 10.1128/MCB.13.2.1051 – ident: e_1_2_6_48_1 doi: 10.1074/jbc.274.47.33696 – ident: e_1_2_6_55_1 doi: 10.1023/A:1006429114451 – ident: e_1_2_6_9_1 doi: 10.1074/jbc.M106212200 – ident: e_1_2_6_51_1 doi: 10.1016/j.molcel.2005.06.014 – ident: e_1_2_6_37_1 doi: 10.1038/362709a0 – ident: e_1_2_6_46_1 doi: 10.1038/sj.onc.1205561 – ident: e_1_2_6_59_1 doi: 10.1074/jbc.270.2.949 – ident: e_1_2_6_67_1 doi: 10.1016/S0021-9258(18)99242-2 – volume: 63 start-page: 549 year: 2003 ident: e_1_2_6_30_1 article-title: Disparity between DNA base excision repair in yeast and mammals: translational implications publication-title: Cancer Res. – ident: e_1_2_6_71_1 doi: 10.1016/j.mrfmmm.2003.09.002 – ident: e_1_2_6_16_1 doi: 10.1128/MCB.12.4.1605 – ident: e_1_2_6_25_1 doi: 10.1016/j.cell.2005.12.034 – ident: e_1_2_6_34_1 doi: 10.1002/em.20094 – ident: e_1_2_6_12_1 doi: 10.1111/j.1469-8137.2005.01548.x – ident: e_1_2_6_43_1 doi: 10.1021/bi962950w – ident: e_1_2_6_20_1 doi: 10.1074/jbc.274.21.15230 – ident: e_1_2_6_58_1 doi: 10.1046/j.1365-2443.2002.00547.x – ident: e_1_2_6_44_1 doi: 10.1007/s004380050851 – ident: e_1_2_6_13_1 doi: 10.1111/tab.0005 – reference: 12000456 - Plant J. 2002 Apr;30(2):203-12 – reference: 8978692 - EMBO J. 1996 Dec 2;15(23):6662-70 – reference: 10471741 - Nucleic Acids Res. 1999 Sep 15;27(18):3712-9 – reference: 16624880 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):6853-8 – reference: 18295553 - DNA Repair (Amst). 2008 Apr 2;7(4):605-16 – reference: 11094978 - Plant Mol Biol. 2000 Sep;44(1):43-52 – reference: 15749700 - J Biol Chem. 2005 May 6;280(18):18469-75 – reference: 11523787 - Mol Genet Genomics. 2001 Aug;265(6):954-63 – reference: 14599766 - Toxicology. 2003 Nov 15;193(1-2):35-41 – reference: 15206945 - Eur J Biochem. 2004 Jul;271(13):2799-807 – reference: 10329732 - J Biol Chem. 1999 May 21;274(21):15230-6 – reference: 16469697 - Cell. 2006 Feb 10;124(3):495-506 – reference: 11966472 - Biochem J. 2002 Jul 15;365(Pt 2):547-53 – reference: 18721906 - DNA Repair (Amst). 2008 Nov 1;7(11):1869-81 – reference: 18493721 - Plant Mol Biol. 2008 Aug;67(6):671-81 – reference: 15177179 - DNA Repair (Amst). 2004 Jul 2;3(7):703-10 – reference: 9778846 - Plant J. 1998 Sep;15(5):635-45 – reference: 1698278 - Nucleic Acids Res. 1990 Sep 11;18(17):5069-75 – reference: 1549115 - Mol Cell Biol. 1992 Apr;12(4):1605-12 – reference: 10559260 - J Biol Chem. 1999 Nov 19;274(47):33696-702 – reference: 1875931 - Mol Cell Biol. 1991 Sep;11(9):4441-7 – reference: 9223306 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8016-20 – reference: 9837971 - J Biol Chem. 1998 Dec 11;273(50):33811-6 – reference: 12509283 - DNA Repair (Amst). 2002 Aug 6;1(8):579-600 – reference: 15939442 - Mutat Res. 2005 Sep 4;577(1-2):24-54 – reference: 7512729 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3299-303 – reference: 16464023 - Chem Rev. 2006 Feb;106(2):753-66 – reference: 2779565 - Mol Cell Biol. 1989 Sep;9(9):3750-7 – reference: 8469282 - Nature. 1993 Apr 22;362(6422):709-15 – reference: 11948185 - J Biol Chem. 2002 Jun 28;277(26):23675-83 – reference: 16061187 - Mol Cell. 2005 Aug 5;19(3):421-8 – reference: 15207714 - Biochem Biophys Res Commun. 2004 Jul 16;320(1):145-55 – reference: 15964249 - DNA Repair (Amst). 2005 Jul 12;4(7):760-72 – reference: 12566294 - Cancer Res. 2003 Feb 1;63(3):549-54 – reference: 16313635 - New Phytol. 2005 Dec;168(3):511-28 – reference: 11821417 - J Biol Chem. 2002 Apr 12;277(15):13184-91 – reference: 12081642 - Genes Cells. 2002 Jul;7(7):639-51 – reference: 12673357 - Acta Biochim Pol. 2003;50(1):169-79 – reference: 11785940 - Plant Mol Biol. 2001 Dec;47(6):795-804 – reference: 14697754 - DNA Repair (Amst). 2004 Jan 5;3(1):1-12 – reference: 7535646 - Curr Biol. 1994 Dec 1;4(12):1069-76 – reference: 15645454 - Environ Mol Mutagen. 2005 Mar-Apr;45(2-3):115-27 – reference: 1674744 - J Biol Chem. 1991 Jun 5;266(16):10420-8 – reference: 11826311 - Plant Cell. 2002 Jan;14(1):263-73 – reference: 12848584 - Chem Rev. 2003 Jul;103(7):2729-59 – reference: 9694877 - J Biol Chem. 1998 Aug 14;273(33):21203-9 – reference: 8423775 - Mol Cell Biol. 1993 Feb;13(2):1051-8 – reference: 15452279 - Nucleic Acids Res. 2004;32(17):5119-25 – reference: 18707020 - Mutat Res. 2009 Mar-Jun;681(2-3):169-79 – reference: 7822335 - J Biol Chem. 1995 Jan 13;270(2):949-57 – reference: 17116429 - DNA Repair (Amst). 2007 Apr 1;6(4):505-16 – reference: 10966791 - J Mol Biol. 2000 Aug 25;301(4):851-67 – reference: 14697756 - DNA Repair (Amst). 2004 Jan 5;3(1):23-31 – reference: 18706967 - Biochimie. 2009 Feb;91(2):165-70 – reference: 9200707 - Biochemistry. 1997 Jun 17;36(24):7557-66 – reference: 9819050 - Mol Gen Genet. 1998 Oct;259(6):577-90 – reference: 15260972 - Mol Cell. 2004 Jul 23;15(2):209-20 – reference: 19372224 - J Biol Chem. 2009 Jun 19;284(25):17006-12 – reference: 8533153 - Trends Biochem Sci. 1995 Oct;20(10):405-11 – reference: 8811082 - Nucleic Acids Res. 1996 Sep 1;24(17):3307-12 – reference: 11551933 - J Biol Chem. 2001 Nov 9;276(45):42588-600 – reference: 14637251 - Mutat Res. 2003 Oct 29;531(1-2):141-56 – reference: 16864782 - Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11796-801 – reference: 12149642 - Oncogene. 2002 Aug 8;21(34):5204-12 – reference: 10660619 - J Biol Chem. 2000 Feb 11;275(6):4460-6 – reference: 9214649 - EMBO J. 1997 Jun 2;16(11):3341-8 – reference: 17129767 - DNA Repair (Amst). 2007 Apr 1;6(4):398-409 – reference: 10651642 - Biochemistry. 2000 Feb 1;39(4):763-72 |
SSID | ssj0017364 |
Score | 2.1984115 |
Snippet | Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated... Summary Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 716 |
SubjectTerms | abasic sites animals Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics bacteria Biochemical analysis Biochemistry Biological and medical sciences biosynthesis Botany Cellular biology Deoxyribonucleic acid DNA DNA Damage DNA Glycosylases DNA Glycosylases - genetics DNA Glycosylases - metabolism DNA polymerase DNA Repair DNA, Plant DNA, Plant - biosynthesis DNA-(Apurinic or Apyrimidinic Site) Lyase DNA-(Apurinic or Apyrimidinic Site) Lyase - genetics DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism DNA-directed DNA polymerase enzymology evolution excision Fundamental and applied biological sciences. Psychology genetics glycosylases Lesions lyases metabolism nucleotides Original plant damage Plant extracts Plant physiology and development Proteins reproduction uracil Uracil - metabolism Yeasts |
Title | Single-nucleotide and long-patch base excision repair of DNA damage in plants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2009.03994.x https://www.ncbi.nlm.nih.gov/pubmed/19682284 https://www.proquest.com/docview/213470337 https://www.proquest.com/docview/1803126885 https://www.proquest.com/docview/734142249 https://pubmed.ncbi.nlm.nih.gov/PMC2954439 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZoxYELOzQURkbimtHEdmLnWJaqqkRVmFaam-Ut7ahDMppFKpz4CfxGfgnvJZnQlCJViFvkTfLLW77Ez98j5E0qjPK54nGSWxuLzIU4lyOJzIiKh5Cnor4e_fEoOzgVh5N00uY_4V2Yhh-i--GGllH7azRwY5d9I8cMLZ7wSUs7CbFWDBFPYgfio88dk1QiecMkBYA9hiB6LannxoV6kWqrMBXmTZoliK5oal7cBEr_zK28innroLX_gFxsttvkqlwM1ys7dN-uMUH-H3k8JPdbbEv3GmV8RO6E8jG5-7YC_Pn1Cfk0hig5Cz-__yiRQ7laTX2gpvR0VpVn0DqHoHBOMarScNkU_qELCJbTBa0K-v5oj3rzBbwfnZZ0PsP0nadkvP_h5N1B3BZ0iF2WchF77ywAAhYA19mRBexlpUuDM5x5ZX1iM2VTZbhF9Sm84FwwK4JUPnFW8Wdku6zKsEMoy3xwMnUeWoWxALoCLwAsJbywOcvSiMjNq9Ou5TrHkhszfeWbB6SlUVpYiTPXtbT0ZUSSbua84fu4xZwd0A5tzsAt69Mxw8PgRAIOlzIig57KdGsyBp-mfMQisrvRId16j6VGlj3wxBymv-56wezxLMeUoVovdaLAG7NMKdgr_csYCQhFAETLI_K8UcrfW8ozQIZKgKB66toNQNbxfk85Pa_Zx_FgGFBsRLJaG28tJX1yfIhPL_514i65Vx_l1RdBX5Lt1WIdXgEiXNkB2WLieFBb_C-oj1Jx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGlPEtDoRiJa1ab2ImdY3lUS2lXwG6lvVnxI-2KkKz2IbWc-An8Rn4JM0k2NKVIFeIWOXYkT-bx2R5_Q8iriKfSJpL5QaK1z2Pj_ET0BTIjSuZcEvHqevTRMB4c84NJNGnKAeFdmJofot1wQ8uo_DUaOG5Id60cU7RYwCYN7yQEW94DQHkLC3xX66vPLZdUIFjNJQWQ3Ycweimt58ovdWLVzSwtMXMyXYDwsrrqxVWw9M_syouotwpb-_dIvp5wna3ypbda6p75dokL8j9J5D7ZbOAt3av18QG54YqH5PbrEiDo-SPyaQSBMnc_v_8okEa5XE6to2lhaV4WJ9A6g7hwSjGwUndW1_6hc4iX0zktM_p2uEdt-hUcIJ0WdJZjBs9jMtp_N34z8JuaDr6JI8Z9a40GTBA6gHa6rwF-aWEiZ1IWWqltoGOpI5kyjRqUWc4YDzV3QtrAaMm2yEZRFm6b0DC2zojIWGjlqQbc5VgGeClgmU7COPKIWP87ZRq6c6y6kasLyx6QlkJpYTHORFXSUmceCdqRs5ry4xpjtkE9VHoCnlkdj0I8Dw4EQHEhPLLb0Zn2m2EIq1PWDz2ys1Yi1TiQhUKiPXDGDIa_bN-C5eNxTlq4crVQgQSHHMZSwlzpX_oIACkcUFrikSe1Vv6eUhIDOJQcBNXR17YDEo933xTT04qAHM-GAch6JK7U8dpSUuOPB_j09F8HviB3BuOjQ3X4fvhhh9ytTvaqe6HPyMZyvnLPASAu9W5l-L8AvatVtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwELWgIMRLudNQKEbiNauN7djOY2FZlQKrwrbSvlm-pV11SVZ7kVqe-AS-kS9hnGRDtxSpQrxFSRzJkzMzJ_H4DEKvU6alyySNk8yYmHHr40x0RVBGlNT7LGXV9uhPA753xPZH6aipfwp7YWp9iPaHW_CMKl4HB5-6fN3JQ4UWTeiokZ2EXMs6wCdvMd6VAeG9L62UVCJoLSUFjD2GLHqpqufKJ62lqpu5LkPhpJ6D7fK66cVVrPTP4sqLpLfKWv176HQ137pY5bSzXJiO_XZJCvL_GOQ-2mzILd6t0fgA3fDFQ3T7TQkE9PwR-jyENDnxP7__KIKIcrkYO4914fCkLI7h7BSywgkOaRX7s7rzD55BthzPcJnj3mAXO_0Vwh8eF3g6CfU7j9Gw_-7w7V7cdHSILU8pi52zBhgB8UDsTNcA-TLCpt5qSpw0LjFcmlRqagJ-cscoZcQwL6RLrJH0CdooysJvIUy481ak1sFZpg2wLk9zYEsJzU1GeBohsXp1yjZi56HnxkRd-OgBa6lgrdCKM1OVtdRZhJJ25LQW_LjGmC1Ah9LHEJfV0ZCE1eBEABEXIkI7a5Bpn0kIfJvSLonQ9gpDqgkfcxVk9iAUUxj-qr0Kfh8Wc3Thy-VcJRLCMeFSwlzxX-4RQFEYcLQsQk9rUP6eUsaBGkoGhlqDa3tDkB1fv1KMTyr58bAyDDQ2QrxC47WtpA4P9sPRs38d-BLdOej11cf3gw_b6G61rFdtCn2ONhazpX8B7HBhdiq3_wWMplRt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90nucleotide+and+long%E2%80%90patch+base+excision+repair+of+DNA+damage+in+plants&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=C%C3%B3rdoba%E2%80%90Ca%C3%B1ero%2C+Dolores&rft.au=Morales%E2%80%90Ruiz%2C+Teresa&rft.au=Rold%C3%A1n%E2%80%90Arjona%2C+Teresa&rft.au=Ariza%2C+Rafael+R.&rft.date=2009-11-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=60&rft.issue=4&rft.spage=716&rft.epage=728&rft_id=info:doi/10.1111%2Fj.1365-313X.2009.03994.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_313X_2009_03994_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |