Single-nucleotide and long-patch base excision repair of DNA damage in plants

Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 60; no. 4; pp. 716 - 728
Main Authors Córdoba-Cañero, Dolores, Morales-Ruiz, Teresa, Roldán-Arjona, Teresa, Ariza, Rafael R
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2009
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.
AbstractList Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell‐free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro . We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5′‐ or 3′‐blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short‐patch BER) or several nucleotides (long‐patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.
Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways. [PUBLICATION ABSTRACT]
Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.
Summary Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell‐free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5′‐ or 3′‐blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short‐patch BER) or several nucleotides (long‐patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.
Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell-free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5'- or 3'-blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short-patch BER) or several nucleotides (long-patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.
Author Ariza, Rafael R
Morales-Ruiz, Teresa
Roldán-Arjona, Teresa
Córdoba-Cañero, Dolores
Author_xml – sequence: 1
  fullname: Córdoba-Cañero, Dolores
– sequence: 2
  fullname: Morales-Ruiz, Teresa
– sequence: 3
  fullname: Roldán-Arjona, Teresa
– sequence: 4
  fullname: Ariza, Rafael R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22149302$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19682284$$D View this record in MEDLINE/PubMed
BookMark eNqNktlu1DAUhi1URKeFVwALCcFNBm9JnAuQqpZVZZGmSNxZ3pJ6lLEHO6HTt8dhplPgAtU3tnS-8_ss_xE48MFbACBGc5zPy-Uc06osKKabOUGomSPaNGy-uQdmN4HvB2CGmgoVNcPkEByltEQI17RiD8AhbipOCGcz8GnhfNfbwo-6t2FwxkLpDeyD74q1HPQlVDJZaDfaJRc8jHYtXYShhWefT6CRK9lZ6Dxc99IP6SG438o-2Ue7-xgs3r65OH1fnH959-H05LzQVUlZYYxWpKqIRU2pkEJlpWpdWi0pMVwZrCquSi6p4qbhrWGUMqKYrbnBWnF6DF5vVdejWlmjrR-i7MU6upWM1yJIJ_6OeHcpuvBTkKZkjDZZ4PlOIIYfo02DWLmkbZ97sGFMoqYMM0LYRL74L4k5ophUnJcZffoPugxj9HkMgmDKakRpnaHHf5a-r_lmIRl4tgNk0rJvo_R58nuOEJyrQiRzfMvpGFKKtr2VQmLyiFiKyQpisoKYPCJ-e0Rsbse3T9VukEPebh6W6-8i8GorcOV6e33nj8XF14_TK-c_2ea3MgjZxdzftwVBmGZ_IoLqmv4C1Z_eTg
CitedBy_id crossref_primary_10_1093_jxb_ers185
crossref_primary_10_1016_j_molcel_2011_11_034
crossref_primary_10_1093_nar_gks327
crossref_primary_10_1111_ppl_70162
crossref_primary_10_3389_fpls_2019_01055
crossref_primary_10_3390_ijms22168763
crossref_primary_10_1073_pnas_1719497115
crossref_primary_10_1016_j_dnarep_2018_02_011
crossref_primary_10_1016_j_dnarep_2016_10_009
crossref_primary_10_1016_j_dnarep_2018_02_010
crossref_primary_10_1093_plcell_koae052
crossref_primary_10_1270_jsbbs_18117
crossref_primary_10_1038_s41477_024_01678_z
crossref_primary_10_1074_jbc_M112_427617
crossref_primary_10_3390_ijms241914746
crossref_primary_10_1016_j_isci_2023_106778
crossref_primary_10_3390_ijms24032404
crossref_primary_10_1016_j_bbrc_2019_04_156
crossref_primary_10_1111_plb_12083
crossref_primary_10_3390_ijms251910345
crossref_primary_10_1371_journal_pone_0092963
crossref_primary_10_1111_tpj_12588
crossref_primary_10_1093_nar_gkae1297
crossref_primary_10_1093_jxb_erv080
crossref_primary_10_1093_hr_uhab004
crossref_primary_10_1007_s00299_010_0975_9
crossref_primary_10_1371_journal_pgen_1004905
crossref_primary_10_3389_fpls_2015_00885
crossref_primary_10_3390_ijms20194683
crossref_primary_10_1007_s11103_023_01407_8
crossref_primary_10_1111_j_1365_313X_2010_04331_x
crossref_primary_10_1016_j_plaphy_2012_07_031
crossref_primary_10_1016_j_dnarep_2025_103810
crossref_primary_10_1093_nar_gku834
crossref_primary_10_1016_j_ecoenv_2020_111525
crossref_primary_10_1534_genetics_120_303028
crossref_primary_10_1007_s00018_016_2436_2
crossref_primary_10_1074_jbc_M109_067173
crossref_primary_10_1371_journal_pone_0018658
crossref_primary_10_3389_fgene_2021_675686
crossref_primary_10_1111_j_1365_313X_2011_04720_x
crossref_primary_10_3390_genes11111370
crossref_primary_10_3390_ijms20194814
crossref_primary_10_1371_journal_pone_0109160
Cites_doi 10.1007/s004380100506
10.18388/abp.2003_3724
10.1016/j.dnarep.2008.07.012
10.1074/jbc.M111601200
10.1016/j.mrrev.2008.07.003
10.1074/jbc.273.33.21203
10.1093/nar/27.18.3712
10.1016/j.molcel.2004.06.003
10.1093/emboj/16.11.3341
10.1074/jbc.275.6.4460
10.1074/jbc.M201411200
10.1074/jbc.273.50.33811
10.1016/j.dnarep.2006.10.014
10.1016/j.dnarep.2008.01.002
10.1074/jbc.M411864200
10.1016/j.dnarep.2003.10.002
10.1021/bi9923151
10.1007/s11103-008-9346-0
10.1021/cr040482n
10.1073/pnas.91.8.3299
10.1016/j.bbrc.2004.05.152
10.1016/j.dnarep.2005.02.007
10.1073/pnas.0603563103
10.1021/cr010219b
10.1006/jmbi.2000.4005
10.1023/A:1013644026132
10.1016/j.dnarep.2003.12.009
10.1016/j.biochi.2008.07.005
10.1093/nar/18.17.5069
10.1016/j.mrfmmm.2005.03.011
10.1046/j.1365-313X.2002.01274.x
10.1073/pnas.0601109103
10.1042/bj20020375
10.1105/tpc.010258
10.1128/MCB.11.9.4441
10.1016/j.dnarep.2006.10.008
10.1046/j.1365-313x.1998.00240.x
10.1016/S1568-7864(02)00093-9
10.1016/S0968-0004(00)89089-1
10.1128/MCB.9.9.3750
10.1016/S0960-9822(00)00245-1
10.1016/j.dnarep.2003.09.002
10.1002/j.1460-2075.1996.tb01056.x
10.1093/nar/24.17.3307
10.1074/jbc.M109.008342
10.1093/nar/gkh851
10.1016/S0300-483X(03)00288-9
10.1073/pnas.94.15.8016
10.1111/j.1432-1033.2004.04214.x
10.1128/MCB.13.2.1051
10.1074/jbc.274.47.33696
10.1023/A:1006429114451
10.1074/jbc.M106212200
10.1016/j.molcel.2005.06.014
10.1038/362709a0
10.1038/sj.onc.1205561
10.1074/jbc.270.2.949
10.1016/S0021-9258(18)99242-2
10.1016/j.mrfmmm.2003.09.002
10.1128/MCB.12.4.1605
10.1016/j.cell.2005.12.034
10.1002/em.20094
10.1111/j.1469-8137.2005.01548.x
10.1021/bi962950w
10.1074/jbc.274.21.15230
10.1046/j.1365-2443.2002.00547.x
10.1007/s004380050851
10.1111/tab.0005
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
2015 INIST-CNRS
Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology
DBID FBQ
24P
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1111/j.1365-313x.2009.03994.x
DatabaseName AGRIS
Wiley Online Library Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts


AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 728
ExternalDocumentID PMC2954439
1901673551
19682284
22149302
10_1111_j_1365_313X_2009_03994_x
TPJ3994
US201301702077
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
24P
AEUQT
AFPWT
ESX
IPNFZ
WRC
AAYXX
AEYWJ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c6534-ddcb2662e095b0b056b7c5eca32d8bd1b68b58a3b8d98fd43342b4e78d1cb83
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Thu Aug 21 18:20:05 EDT 2025
Fri Jul 11 12:32:59 EDT 2025
Fri Jul 11 11:52:35 EDT 2025
Fri Jul 25 11:03:00 EDT 2025
Mon Jul 21 05:56:17 EDT 2025
Mon Jul 21 09:11:41 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Tue Jul 01 03:57:03 EDT 2025
Wed Jan 22 16:21:34 EST 2025
Thu Apr 03 09:43:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Site
Vegetals
Excision
DNA polymerase
Enzyme
Arabidopsis
Transferases
abasic sites
DNA repair
Arabidopsis thaliana
Nucleotidyltransferases
Plant
Cruciferae
Dicotyledones
DNA
Angiospermae
Nucleotide
Spermatophyta
Lesion
Repair
Uracil
DNA-directed DNA polymerase
Language English
License CC BY 4.0
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6534-ddcb2662e095b0b056b7c5eca32d8bd1b68b58a3b8d98fd43342b4e78d1cb83
Notes http://dx.doi.org/10.1111/j.1365-313X.2009.03994.x
http://www3.interscience.wiley.com/authorresources/onlineopen.html
Re‐use of this article is permitted in accordance with the Terms and Conditions set out at
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www3.interscience.wiley.com/authorresources/onlineopen.html
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2009.03994.x
PMID 19682284
PQID 213470337
PQPubID 31702
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2954439
proquest_miscellaneous_734142249
proquest_miscellaneous_1803126885
proquest_journals_213470337
pubmed_primary_19682284
pascalfrancis_primary_22149302
crossref_primary_10_1111_j_1365_313X_2009_03994_x
crossref_citationtrail_10_1111_j_1365_313X_2009_03994_x
wiley_primary_10_1111_j_1365_313X_2009_03994_x_TPJ3994
fao_agris_US201301702077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References 2001; 265
2004; 320
2002; 14
1990; 18
1991; 11
2000; 44
2005; 577
2002; 277
2004; 3
2008; 7
2003; 193
2003; 50
1992; 12
2001; 47
1993; 362
1998; 273
2004; 32
1995; 20
1998; 15
1997; 94
1991; 266
2007; 6
2008; 67
1997; 16
2009; 284
2009; 681
1996; 24
2006; 124
2002; 30
1999; 27
1989; 9
2002; 7
2002; 1
2006
2000; 275
2002
1998; 259
2003; 531
1996; 15
2005; 45
1995; 270
2008; 91
2001; 276
2005; 280
1993; 13
2005; 19
2000; 39
2000; 301
2005; 168
1997; 36
2004; 15
2002; 21
2004; 271
2002; 365
1999; 274
2005; 4
1994; 91
2003; 103
2003; 63
2006; 106
1994; 4
2006; 103
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
Kelley M.R. (e_1_2_6_30_1) 2003; 63
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Friedberg E.C. (e_1_2_6_21_1) 2006
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
15206945 - Eur J Biochem. 2004 Jul;271(13):2799-807
15749700 - J Biol Chem. 2005 May 6;280(18):18469-75
12000456 - Plant J. 2002 Apr;30(2):203-12
15964249 - DNA Repair (Amst). 2005 Jul 12;4(7):760-72
16864782 - Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11796-801
17116429 - DNA Repair (Amst). 2007 Apr 1;6(4):505-16
15177179 - DNA Repair (Amst). 2004 Jul 2;3(7):703-10
8533153 - Trends Biochem Sci. 1995 Oct;20(10):405-11
11551933 - J Biol Chem. 2001 Nov 9;276(45):42588-600
10660619 - J Biol Chem. 2000 Feb 11;275(6):4460-6
18493721 - Plant Mol Biol. 2008 Aug;67(6):671-81
18721906 - DNA Repair (Amst). 2008 Nov 1;7(11):1869-81
12509283 - DNA Repair (Amst). 2002 Aug 6;1(8):579-600
17129767 - DNA Repair (Amst). 2007 Apr 1;6(4):398-409
14697756 - DNA Repair (Amst). 2004 Jan 5;3(1):23-31
1674744 - J Biol Chem. 1991 Jun 5;266(16):10420-8
10966791 - J Mol Biol. 2000 Aug 25;301(4):851-67
9694877 - J Biol Chem. 1998 Aug 14;273(33):21203-9
19372224 - J Biol Chem. 2009 Jun 19;284(25):17006-12
11523787 - Mol Genet Genomics. 2001 Aug;265(6):954-63
11826311 - Plant Cell. 2002 Jan;14(1):263-73
16313635 - New Phytol. 2005 Dec;168(3):511-28
11821417 - J Biol Chem. 2002 Apr 12;277(15):13184-91
8423775 - Mol Cell Biol. 1993 Feb;13(2):1051-8
9200707 - Biochemistry. 1997 Jun 17;36(24):7557-66
2779565 - Mol Cell Biol. 1989 Sep;9(9):3750-7
14599766 - Toxicology. 2003 Nov 15;193(1-2):35-41
12149642 - Oncogene. 2002 Aug 8;21(34):5204-12
18707020 - Mutat Res. 2009 Mar-Jun;681(2-3):169-79
12673357 - Acta Biochim Pol. 2003;50(1):169-79
8978692 - EMBO J. 1996 Dec 2;15(23):6662-70
9837971 - J Biol Chem. 1998 Dec 11;273(50):33811-6
18295553 - DNA Repair (Amst). 2008 Apr 2;7(4):605-16
12566294 - Cancer Res. 2003 Feb 1;63(3):549-54
11785940 - Plant Mol Biol. 2001 Dec;47(6):795-804
1698278 - Nucleic Acids Res. 1990 Sep 11;18(17):5069-75
10559260 - J Biol Chem. 1999 Nov 19;274(47):33696-702
14697754 - DNA Repair (Amst). 2004 Jan 5;3(1):1-12
9223306 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8016-20
12081642 - Genes Cells. 2002 Jul;7(7):639-51
15207714 - Biochem Biophys Res Commun. 2004 Jul 16;320(1):145-55
9819050 - Mol Gen Genet. 1998 Oct;259(6):577-90
10329732 - J Biol Chem. 1999 May 21;274(21):15230-6
11966472 - Biochem J. 2002 Jul 15;365(Pt 2):547-53
7822335 - J Biol Chem. 1995 Jan 13;270(2):949-57
11948185 - J Biol Chem. 2002 Jun 28;277(26):23675-83
10651642 - Biochemistry. 2000 Feb 1;39(4):763-72
1875931 - Mol Cell Biol. 1991 Sep;11(9):4441-7
16061187 - Mol Cell. 2005 Aug 5;19(3):421-8
15452279 - Nucleic Acids Res. 2004;32(17):5119-25
7512729 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3299-303
14637251 - Mutat Res. 2003 Oct 29;531(1-2):141-56
9214649 - EMBO J. 1997 Jun 2;16(11):3341-8
7535646 - Curr Biol. 1994 Dec 1;4(12):1069-76
16469697 - Cell. 2006 Feb 10;124(3):495-506
10471741 - Nucleic Acids Res. 1999 Sep 15;27(18):3712-9
9778846 - Plant J. 1998 Sep;15(5):635-45
11094978 - Plant Mol Biol. 2000 Sep;44(1):43-52
15260972 - Mol Cell. 2004 Jul 23;15(2):209-20
8469282 - Nature. 1993 Apr 22;362(6422):709-15
15939442 - Mutat Res. 2005 Sep 4;577(1-2):24-54
8811082 - Nucleic Acids Res. 1996 Sep 1;24(17):3307-12
16464023 - Chem Rev. 2006 Feb;106(2):753-66
16624880 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):6853-8
18706967 - Biochimie. 2009 Feb;91(2):165-70
12848584 - Chem Rev. 2003 Jul;103(7):2729-59
1549115 - Mol Cell Biol. 1992 Apr;12(4):1605-12
15645454 - Environ Mol Mutagen. 2005 Mar-Apr;45(2-3):115-27
References_xml – volume: 67
  start-page: 671
  year: 2008
  end-page: 681
  article-title: Arabidopsis DEMETER‐LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks
  publication-title: Plant Mol. Biol.
– volume: 27
  start-page: 3712
  year: 1999
  end-page: 3719
  article-title: Single‐nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 23
  year: 2004
  end-page: 31
  article-title: Orchestration of base excision repair by controlling the rates of enzymatic activities
  publication-title: DNA Repair (Amst)
– volume: 6
  start-page: 398
  year: 2007
  end-page: 409
  article-title: Base damage and single‐strand break repair: mechanisms and functional significance of short‐ and long‐patch repair subpathways
  publication-title: DNA Repair (Amst)
– volume: 36
  start-page: 7557
  year: 1997
  end-page: 7566
  article-title: Reconstitution of human base excision repair with purified proteins
  publication-title: Biochemistry
– volume: 270
  start-page: 949
  year: 1995
  end-page: 957
  article-title: DNA polymerase β conducts the gap‐filling step in uracil‐initiated base excision repair in a bovine testis nuclear extract
  publication-title: J. Biol. Chem.
– volume: 577
  start-page: 24
  year: 2005
  end-page: 54
  article-title: The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases
  publication-title: Mutat. Res.
– volume: 106
  start-page: 753
  year: 2006
  end-page: 766
  article-title: DNA repair in plants
  publication-title: Chem. Rev.
– volume: 365
  start-page: 547
  year: 2002
  end-page: 553
  article-title: Embryonic extracts derived from the nematode remove uracil from DNA by the sequential action of uracil‐DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease
  publication-title: Biochem. J.
– volume: 273
  start-page: 21203
  year: 1998
  end-page: 21209
  article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate‐determining steps
  publication-title: J. Biol. Chem.
– volume: 266
  start-page: 10420
  year: 1991
  end-page: 10428
  article-title: Biochemical and functional comparison of DNA polymerases α, δ, and ε from calf thymus
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 5069
  year: 1990
  end-page: 5075
  article-title: Analysis of class II (hydrolytic) and class I (beta‐lyase) apurinic/apyrimidinic endonucleases with a synthetic DNA substrate
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 3341
  year: 1997
  end-page: 3348
  article-title: Second pathway for completion of human DNA base excision‐repair: reconstitution with purified proteins and requirement for DNase IV (FEN1)
  publication-title: EMBO J.
– volume: 30
  start-page: 203
  year: 2002
  end-page: 212
  article-title: Synchronous Arabidopsis suspension cultures for analysis of cell‐cycle gene activity
  publication-title: Plant J.
– volume: 9
  start-page: 3750
  year: 1989
  end-page: 3757
  article-title: Repair of a synthetic abasic site in DNA in a oocyte extract
  publication-title: Mol. Cell. Biol.
– volume: 19
  start-page: 421
  year: 2005
  end-page: 428
  article-title: Biochemical specialization within Arabidopsis RNA silencing pathways
  publication-title: Mol. Cell
– volume: 91
  start-page: 165
  year: 2008
  end-page: 170
  article-title: Distribution and roles of X‐family DNA polymerases in eukaryotes
  publication-title: Biochimie
– volume: 4
  start-page: 1069
  year: 1994
  end-page: 1076
  article-title: Reconstitution of the DNA base excision‐repair pathway
  publication-title: Curr. Biol.
– volume: 259
  start-page: 577
  year: 1998
  end-page: 590
  article-title: Molecular cloning of , an ortholog of the gene, and analysis of functional domains of its product
  publication-title: Mol. Gen. Genet.
– volume: 7
  start-page: 605
  year: 2008
  end-page: 616
  article-title: Mitochondrial base excision repair of uracil and AP sites takes place by single‐nucleotide insertion and long‐patch DNA synthesis
  publication-title: DNA Repair (Amst)
– volume: 4
  start-page: 760
  year: 2005
  end-page: 772
  article-title: Xenopus CENP‐A assembly into chromatin requires base excision repair proteins
  publication-title: DNA Repair (Amst)
– volume: 168
  start-page: 511
  year: 2005
  end-page: 528
  article-title: DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity
  publication-title: New Phytol.
– volume: 277
  start-page: 23675
  year: 2002
  end-page: 23683
  article-title: A nick‐sensing DNA 3′‐repair enzyme from Arabidopsis
  publication-title: J. Biol. Chem.
– volume: 271
  start-page: 2799
  year: 2004
  end-page: 2807
  article-title: Plant DNA polymerase λ, a DNA repair enzyme that functions in plant meristematic and meiotic tissues
  publication-title: Eur. J. Biochem.
– volume: 21
  start-page: 5204
  year: 2002
  end-page: 5212
  article-title: Base excision repair of adenine/8‐oxoguanine mispairs by an aphidicolin‐sensitive DNA polymerase in human cell extracts
  publication-title: Oncogene
– volume: 91
  start-page: 3299
  year: 1994
  end-page: 3303
  article-title: The apurinic endonuclease Arp reduces human transcription factors Fos and Jun
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 1
  start-page: 579
  year: 2002
  end-page: 600
  article-title: , a versatile model system for study of eukaryotic genome‐maintenance functions
  publication-title: DNA Repair
– volume: 362
  start-page: 709
  year: 1993
  end-page: 715
  article-title: Instability and decay of the primary structure of DNA
  publication-title: Nature
– volume: 6
  start-page: 505
  year: 2007
  end-page: 516
  article-title: Uracil in DNA – General mutagen, but normal intermediate in acquired immunity
  publication-title: DNA Repair (Amst)
– volume: 275
  start-page: 4460
  year: 2000
  end-page: 4466
  article-title: FEN1 stimulation of DNA polymerase β mediates an excision step in mammalian long patch base excision repair
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 1
  year: 2004
  end-page: 12
  article-title: Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae
  publication-title: DNA Repair (Amst)
– volume: 14
  start-page: 263
  year: 2002
  end-page: 273
  article-title: Repair of damaged DNA by Arabidopsis cell extract
  publication-title: Plant Cell
– volume: 7
  start-page: 639
  year: 2002
  end-page: 651
  article-title: Over‐expression of human DNA polymerase λ in and characterization of the recombinant enzyme
  publication-title: Genes Cells
– volume: 3
  start-page: 703
  year: 2004
  end-page: 710
  article-title: Aphidicolin‐resistant and ‐sensitive base excision repair in wild‐type and DNA polymerase β‐defective mouse cells
  publication-title: DNA Repair (Amst)
– volume: 274
  start-page: 15230
  year: 1999
  end-page: 15236
  article-title: The type of DNA glycosylase determines the base excision repair pathway in mammalian cells
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 495
  year: 2006
  end-page: 506
  article-title: DEMETER DNA glycosylase establishes polycomb gene self‐imprinting by allele‐specific demethylation
  publication-title: Cell
– volume: 12
  start-page: 1605
  year: 1992
  end-page: 1612
  article-title: Generation of single‐nucleotide repair patches following excision of uracil residues from DNA
  publication-title: Mol. Cell. Biol.
– volume: 273
  start-page: 33811
  year: 1998
  end-page: 33816
  article-title: Repair pathways for processing of 8‐oxoguanine in DNA by mammalian cell extracts
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 5119
  year: 2004
  end-page: 5125
  article-title: A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in
  publication-title: Nucleic Acids Res.
– volume: 277
  start-page: 13184
  year: 2002
  end-page: 13191
  article-title: DNA polymerase λ, a novel DNA repair enzyme in human cells
  publication-title: J. Biol. Chem.
– volume: 276
  start-page: 42588
  year: 2001
  end-page: 42600
  article-title: Fidelity of uracil‐initiated base excision DNA repair in DNA polymerase β‐proficient and ‐deficient mouse embryonic fibroblast cell extracts
  publication-title: J. Biol. Chem.
– volume: 681
  start-page: 169
  year: 2009
  end-page: 179
  article-title: Repair and tolerance of oxidative DNA damage in plants
  publication-title: Mutat. Res.
– volume: 103
  start-page: 11796
  year: 2006
  end-page: 11801
  article-title: Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 103
  start-page: 2729
  year: 2003
  end-page: 2759
  article-title: A mechanistic perspective on the chemistry of DNA repair glycosylases
  publication-title: Chem. Rev.
– volume: 39
  start-page: 763
  year: 2000
  end-page: 772
  article-title: DNA base excision repair in human malaria parasites is predominantly by a long‐patch pathway
  publication-title: Biochemistry
– volume: 50
  start-page: 169
  year: 2003
  end-page: 179
  article-title: Poly(ADP‐ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing
  publication-title: Acta Biochim. Pol.
– volume: 7
  start-page: 1869
  year: 2008
  end-page: 1881
  article-title: The rate of base excision repair of uracil is controlled by the initiating glycosylase
  publication-title: DNA Repair (Amst)
– volume: 15
  start-page: 6662
  year: 1996
  end-page: 6670
  article-title: Reconstitution of DNA base excision‐repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein
  publication-title: EMBO J.
– volume: 280
  start-page: 18469
  year: 2005
  end-page: 18475
  article-title: DNA polymerase λ mediates a back‐up base excision repair activity in extracts of mouse embryonic fibroblasts
  publication-title: J. Biol. Chem.
– volume: 193
  start-page: 35
  year: 2003
  end-page: 41
  article-title: Monitoring base excision repair by assays
  publication-title: Toxicology
– volume: 11
  start-page: 4441
  year: 1991
  end-page: 4447
  article-title: Repair of a synthetic abasic site involves concerted reactions of DNA synthesis followed by excision and ligation
  publication-title: Mol. Cell. Biol.
– volume: 44
  start-page: 43
  year: 2000
  end-page: 52
  article-title: cDNA cloning, expression and functional characterization of an homologue of the DNA repair enzyme endonuclease III
  publication-title: Plant Mol. Biol.
– volume: 45
  start-page: 115
  year: 2005
  end-page: 127
  article-title: Components of nucleotide excision repair and DNA damage tolerance in
  publication-title: Environ. Mol. Mutagen.
– volume: 103
  start-page: 6853
  year: 2006
  end-page: 6858
  article-title: and encode 5‐methylcytosine DNA glycosylases
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 15
  start-page: 635
  year: 1998
  end-page: 645
  article-title: Higher plants possess two structurally different poly(ADP‐ribose) polymerases
  publication-title: Plant J.
– volume: 265
  start-page: 954
  year: 2001
  end-page: 963
  article-title: Ionising radiation induces the expression of PARP‐1 and PARP‐2 genes in Arabidopsis
  publication-title: Mol. Genet. Genomics
– volume: 531
  start-page: 141
  year: 2003
  end-page: 156
  article-title: Recognition of damaged DNA by Fpg protein: insights from structural and kinetic data
  publication-title: Mutat. Res.
– volume: 47
  start-page: 795
  year: 2001
  end-page: 804
  article-title: An orthologue encoding a functional 8‐oxoguanine DNA glycosylase/lyase in
  publication-title: Plant Mol. Biol.
– volume: 284
  start-page: 17006
  year: 2009
  end-page: 17012
  article-title: Evidence for base excision repair of oxidative DNA Damage in chloroplasts of
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 1051
  year: 1993
  end-page: 1058
  article-title: DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase ε and is influenced by DNA polymerases α and δ in
  publication-title: Mol. Cell. Biol.
– volume: 24
  start-page: 3307
  year: 1996
  end-page: 3312
  article-title: Molecular cloning and functional analysis of a homologue of endonuclease III
  publication-title: Nucleic Acids Res.
– volume: 274
  start-page: 33696
  year: 1999
  end-page: 33702
  article-title: Long patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases δ and ε
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 209
  year: 2004
  end-page: 220
  article-title: AP endonuclease‐independent DNA base excision repair in human cells
  publication-title: Mol. Cell
– year: 2002
– volume: 20
  start-page: 405
  year: 1995
  end-page: 411
  article-title: Post‐translational modification of poly(ADP‐ribose) polymerase induced by DNA strand breaks
  publication-title: Trends Biochem. Sci.
– year: 2006
– volume: 320
  start-page: 145
  year: 2004
  end-page: 155
  article-title: Dideoxynucleoside triphosphate‐sensitive DNA polymerase from rice is involved in base excision repair and immunologically similar to mammalian DNA pol β
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 94
  start-page: 8016
  year: 1997
  end-page: 8020
  article-title: Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8‐hydroxyguanine‐DNA glycosylase
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 301
  start-page: 851
  year: 2000
  end-page: 867
  article-title: DNA polymerase λ (Pol λ), a novel eukaryotic DNA polymerase with a potential role in meiosis
  publication-title: J. Mol. Biol.
– volume: 63
  start-page: 549
  year: 2003
  end-page: 554
  article-title: Disparity between DNA base excision repair in yeast and mammals: translational implications
  publication-title: Cancer Res.
– ident: e_1_2_6_18_1
  doi: 10.1007/s004380100506
– ident: e_1_2_6_4_1
  doi: 10.18388/abp.2003_3724
– ident: e_1_2_6_65_1
  doi: 10.1016/j.dnarep.2008.07.012
– ident: e_1_2_6_23_1
  doi: 10.1074/jbc.M111601200
– ident: e_1_2_6_52_1
  doi: 10.1016/j.mrrev.2008.07.003
– ident: e_1_2_6_60_1
  doi: 10.1074/jbc.273.33.21203
– ident: e_1_2_6_61_1
  doi: 10.1093/nar/27.18.3712
– ident: e_1_2_6_68_1
  doi: 10.1016/j.molcel.2004.06.003
– ident: e_1_2_6_32_1
  doi: 10.1093/emboj/16.11.3341
– ident: e_1_2_6_50_1
  doi: 10.1074/jbc.275.6.4460
– ident: e_1_2_6_49_1
  doi: 10.1074/jbc.M201411200
– ident: e_1_2_6_17_1
  doi: 10.1074/jbc.273.50.33811
– ident: e_1_2_6_29_1
  doi: 10.1016/j.dnarep.2006.10.014
– ident: e_1_2_6_3_1
  doi: 10.1016/j.dnarep.2008.01.002
– ident: e_1_2_6_11_1
  doi: 10.1074/jbc.M411864200
– ident: e_1_2_6_10_1
  doi: 10.1016/j.dnarep.2003.10.002
– ident: e_1_2_6_27_1
  doi: 10.1021/bi9923151
– ident: e_1_2_6_45_1
  doi: 10.1007/s11103-008-9346-0
– ident: e_1_2_6_31_1
  doi: 10.1021/cr040482n
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.91.8.3299
– ident: e_1_2_6_56_1
  doi: 10.1016/j.bbrc.2004.05.152
– ident: e_1_2_6_69_1
  doi: 10.1016/j.dnarep.2005.02.007
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.0603563103
– ident: e_1_2_6_62_1
  doi: 10.1021/cr010219b
– ident: e_1_2_6_22_1
  doi: 10.1006/jmbi.2000.4005
– ident: e_1_2_6_24_1
  doi: 10.1023/A:1013644026132
– ident: e_1_2_6_47_1
  doi: 10.1016/j.dnarep.2003.12.009
– ident: e_1_2_6_64_1
  doi: 10.1016/j.biochi.2008.07.005
– ident: e_1_2_6_35_1
  doi: 10.1093/nar/18.17.5069
– ident: e_1_2_6_70_1
  doi: 10.1016/j.mrfmmm.2005.03.011
– ident: e_1_2_6_41_1
  doi: 10.1046/j.1365-313X.2002.01274.x
– ident: e_1_2_6_42_1
  doi: 10.1073/pnas.0601109103
– ident: e_1_2_6_57_1
  doi: 10.1042/bj20020375
– ident: e_1_2_6_36_1
  doi: 10.1105/tpc.010258
– ident: e_1_2_6_40_1
  doi: 10.1128/MCB.11.9.4441
– ident: e_1_2_6_19_1
  doi: 10.1016/j.dnarep.2006.10.008
– ident: e_1_2_6_8_1
  doi: 10.1046/j.1365-313x.1998.00240.x
– ident: e_1_2_6_28_1
  doi: 10.1016/S1568-7864(02)00093-9
– volume-title: DNA Repair and Mutagenesis
  year: 2006
  ident: e_1_2_6_21_1
– ident: e_1_2_6_38_1
  doi: 10.1016/S0968-0004(00)89089-1
– ident: e_1_2_6_39_1
  doi: 10.1128/MCB.9.9.3750
– ident: e_1_2_6_15_1
  doi: 10.1016/S0960-9822(00)00245-1
– ident: e_1_2_6_5_1
  doi: 10.1016/j.dnarep.2003.09.002
– ident: e_1_2_6_33_1
  doi: 10.1002/j.1460-2075.1996.tb01056.x
– ident: e_1_2_6_53_1
  doi: 10.1093/nar/24.17.3307
– ident: e_1_2_6_26_1
  doi: 10.1074/jbc.M109.008342
– ident: e_1_2_6_6_1
  doi: 10.1093/nar/gkh851
– ident: e_1_2_6_14_1
  doi: 10.1016/S0300-483X(03)00288-9
– ident: e_1_2_6_54_1
  doi: 10.1073/pnas.94.15.8016
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1432-1033.2004.04214.x
– ident: e_1_2_6_66_1
  doi: 10.1128/MCB.13.2.1051
– ident: e_1_2_6_48_1
  doi: 10.1074/jbc.274.47.33696
– ident: e_1_2_6_55_1
  doi: 10.1023/A:1006429114451
– ident: e_1_2_6_9_1
  doi: 10.1074/jbc.M106212200
– ident: e_1_2_6_51_1
  doi: 10.1016/j.molcel.2005.06.014
– ident: e_1_2_6_37_1
  doi: 10.1038/362709a0
– ident: e_1_2_6_46_1
  doi: 10.1038/sj.onc.1205561
– ident: e_1_2_6_59_1
  doi: 10.1074/jbc.270.2.949
– ident: e_1_2_6_67_1
  doi: 10.1016/S0021-9258(18)99242-2
– volume: 63
  start-page: 549
  year: 2003
  ident: e_1_2_6_30_1
  article-title: Disparity between DNA base excision repair in yeast and mammals: translational implications
  publication-title: Cancer Res.
– ident: e_1_2_6_71_1
  doi: 10.1016/j.mrfmmm.2003.09.002
– ident: e_1_2_6_16_1
  doi: 10.1128/MCB.12.4.1605
– ident: e_1_2_6_25_1
  doi: 10.1016/j.cell.2005.12.034
– ident: e_1_2_6_34_1
  doi: 10.1002/em.20094
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1469-8137.2005.01548.x
– ident: e_1_2_6_43_1
  doi: 10.1021/bi962950w
– ident: e_1_2_6_20_1
  doi: 10.1074/jbc.274.21.15230
– ident: e_1_2_6_58_1
  doi: 10.1046/j.1365-2443.2002.00547.x
– ident: e_1_2_6_44_1
  doi: 10.1007/s004380050851
– ident: e_1_2_6_13_1
  doi: 10.1111/tab.0005
– reference: 12000456 - Plant J. 2002 Apr;30(2):203-12
– reference: 8978692 - EMBO J. 1996 Dec 2;15(23):6662-70
– reference: 10471741 - Nucleic Acids Res. 1999 Sep 15;27(18):3712-9
– reference: 16624880 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):6853-8
– reference: 18295553 - DNA Repair (Amst). 2008 Apr 2;7(4):605-16
– reference: 11094978 - Plant Mol Biol. 2000 Sep;44(1):43-52
– reference: 15749700 - J Biol Chem. 2005 May 6;280(18):18469-75
– reference: 11523787 - Mol Genet Genomics. 2001 Aug;265(6):954-63
– reference: 14599766 - Toxicology. 2003 Nov 15;193(1-2):35-41
– reference: 15206945 - Eur J Biochem. 2004 Jul;271(13):2799-807
– reference: 10329732 - J Biol Chem. 1999 May 21;274(21):15230-6
– reference: 16469697 - Cell. 2006 Feb 10;124(3):495-506
– reference: 11966472 - Biochem J. 2002 Jul 15;365(Pt 2):547-53
– reference: 18721906 - DNA Repair (Amst). 2008 Nov 1;7(11):1869-81
– reference: 18493721 - Plant Mol Biol. 2008 Aug;67(6):671-81
– reference: 15177179 - DNA Repair (Amst). 2004 Jul 2;3(7):703-10
– reference: 9778846 - Plant J. 1998 Sep;15(5):635-45
– reference: 1698278 - Nucleic Acids Res. 1990 Sep 11;18(17):5069-75
– reference: 1549115 - Mol Cell Biol. 1992 Apr;12(4):1605-12
– reference: 10559260 - J Biol Chem. 1999 Nov 19;274(47):33696-702
– reference: 1875931 - Mol Cell Biol. 1991 Sep;11(9):4441-7
– reference: 9223306 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8016-20
– reference: 9837971 - J Biol Chem. 1998 Dec 11;273(50):33811-6
– reference: 12509283 - DNA Repair (Amst). 2002 Aug 6;1(8):579-600
– reference: 15939442 - Mutat Res. 2005 Sep 4;577(1-2):24-54
– reference: 7512729 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3299-303
– reference: 16464023 - Chem Rev. 2006 Feb;106(2):753-66
– reference: 2779565 - Mol Cell Biol. 1989 Sep;9(9):3750-7
– reference: 8469282 - Nature. 1993 Apr 22;362(6422):709-15
– reference: 11948185 - J Biol Chem. 2002 Jun 28;277(26):23675-83
– reference: 16061187 - Mol Cell. 2005 Aug 5;19(3):421-8
– reference: 15207714 - Biochem Biophys Res Commun. 2004 Jul 16;320(1):145-55
– reference: 15964249 - DNA Repair (Amst). 2005 Jul 12;4(7):760-72
– reference: 12566294 - Cancer Res. 2003 Feb 1;63(3):549-54
– reference: 16313635 - New Phytol. 2005 Dec;168(3):511-28
– reference: 11821417 - J Biol Chem. 2002 Apr 12;277(15):13184-91
– reference: 12081642 - Genes Cells. 2002 Jul;7(7):639-51
– reference: 12673357 - Acta Biochim Pol. 2003;50(1):169-79
– reference: 11785940 - Plant Mol Biol. 2001 Dec;47(6):795-804
– reference: 14697754 - DNA Repair (Amst). 2004 Jan 5;3(1):1-12
– reference: 7535646 - Curr Biol. 1994 Dec 1;4(12):1069-76
– reference: 15645454 - Environ Mol Mutagen. 2005 Mar-Apr;45(2-3):115-27
– reference: 1674744 - J Biol Chem. 1991 Jun 5;266(16):10420-8
– reference: 11826311 - Plant Cell. 2002 Jan;14(1):263-73
– reference: 12848584 - Chem Rev. 2003 Jul;103(7):2729-59
– reference: 9694877 - J Biol Chem. 1998 Aug 14;273(33):21203-9
– reference: 8423775 - Mol Cell Biol. 1993 Feb;13(2):1051-8
– reference: 15452279 - Nucleic Acids Res. 2004;32(17):5119-25
– reference: 18707020 - Mutat Res. 2009 Mar-Jun;681(2-3):169-79
– reference: 7822335 - J Biol Chem. 1995 Jan 13;270(2):949-57
– reference: 17116429 - DNA Repair (Amst). 2007 Apr 1;6(4):505-16
– reference: 10966791 - J Mol Biol. 2000 Aug 25;301(4):851-67
– reference: 14697756 - DNA Repair (Amst). 2004 Jan 5;3(1):23-31
– reference: 18706967 - Biochimie. 2009 Feb;91(2):165-70
– reference: 9200707 - Biochemistry. 1997 Jun 17;36(24):7557-66
– reference: 9819050 - Mol Gen Genet. 1998 Oct;259(6):577-90
– reference: 15260972 - Mol Cell. 2004 Jul 23;15(2):209-20
– reference: 19372224 - J Biol Chem. 2009 Jun 19;284(25):17006-12
– reference: 8533153 - Trends Biochem Sci. 1995 Oct;20(10):405-11
– reference: 8811082 - Nucleic Acids Res. 1996 Sep 1;24(17):3307-12
– reference: 11551933 - J Biol Chem. 2001 Nov 9;276(45):42588-600
– reference: 14637251 - Mutat Res. 2003 Oct 29;531(1-2):141-56
– reference: 16864782 - Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11796-801
– reference: 12149642 - Oncogene. 2002 Aug 8;21(34):5204-12
– reference: 10660619 - J Biol Chem. 2000 Feb 11;275(6):4460-6
– reference: 9214649 - EMBO J. 1997 Jun 2;16(11):3341-8
– reference: 17129767 - DNA Repair (Amst). 2007 Apr 1;6(4):398-409
– reference: 10651642 - Biochemistry. 2000 Feb 1;39(4):763-72
SSID ssj0017364
Score 2.1984115
Snippet Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated...
Summary Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 716
SubjectTerms abasic sites
animals
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
bacteria
Biochemical analysis
Biochemistry
Biological and medical sciences
biosynthesis
Botany
Cellular biology
Deoxyribonucleic acid
DNA
DNA Damage
DNA Glycosylases
DNA Glycosylases - genetics
DNA Glycosylases - metabolism
DNA polymerase
DNA Repair
DNA, Plant
DNA, Plant - biosynthesis
DNA-(Apurinic or Apyrimidinic Site) Lyase
DNA-(Apurinic or Apyrimidinic Site) Lyase - genetics
DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism
DNA-directed DNA polymerase
enzymology
evolution
excision
Fundamental and applied biological sciences. Psychology
genetics
glycosylases
Lesions
lyases
metabolism
nucleotides
Original
plant damage
Plant extracts
Plant physiology and development
Proteins
reproduction
uracil
Uracil - metabolism
Yeasts
Title Single-nucleotide and long-patch base excision repair of DNA damage in plants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2009.03994.x
https://www.ncbi.nlm.nih.gov/pubmed/19682284
https://www.proquest.com/docview/213470337
https://www.proquest.com/docview/1803126885
https://www.proquest.com/docview/734142249
https://pubmed.ncbi.nlm.nih.gov/PMC2954439
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZoxYELOzQURkbimtHEdmLnWJaqqkRVmFaam-Ut7ahDMppFKpz4CfxGfgnvJZnQlCJViFvkTfLLW77Ez98j5E0qjPK54nGSWxuLzIU4lyOJzIiKh5Cnor4e_fEoOzgVh5N00uY_4V2Yhh-i--GGllH7azRwY5d9I8cMLZ7wSUs7CbFWDBFPYgfio88dk1QiecMkBYA9hiB6LannxoV6kWqrMBXmTZoliK5oal7cBEr_zK28innroLX_gFxsttvkqlwM1ys7dN-uMUH-H3k8JPdbbEv3GmV8RO6E8jG5-7YC_Pn1Cfk0hig5Cz-__yiRQ7laTX2gpvR0VpVn0DqHoHBOMarScNkU_qELCJbTBa0K-v5oj3rzBbwfnZZ0PsP0nadkvP_h5N1B3BZ0iF2WchF77ywAAhYA19mRBexlpUuDM5x5ZX1iM2VTZbhF9Sm84FwwK4JUPnFW8Wdku6zKsEMoy3xwMnUeWoWxALoCLwAsJbywOcvSiMjNq9Ou5TrHkhszfeWbB6SlUVpYiTPXtbT0ZUSSbua84fu4xZwd0A5tzsAt69Mxw8PgRAIOlzIig57KdGsyBp-mfMQisrvRId16j6VGlj3wxBymv-56wezxLMeUoVovdaLAG7NMKdgr_csYCQhFAETLI_K8UcrfW8ozQIZKgKB66toNQNbxfk85Pa_Zx_FgGFBsRLJaG28tJX1yfIhPL_514i65Vx_l1RdBX5Lt1WIdXgEiXNkB2WLieFBb_C-oj1Jx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGlPEtDoRiJa1ab2ImdY3lUS2lXwG6lvVnxI-2KkKz2IbWc-An8Rn4JM0k2NKVIFeIWOXYkT-bx2R5_Q8iriKfSJpL5QaK1z2Pj_ET0BTIjSuZcEvHqevTRMB4c84NJNGnKAeFdmJofot1wQ8uo_DUaOG5Id60cU7RYwCYN7yQEW94DQHkLC3xX66vPLZdUIFjNJQWQ3Ycweimt58ovdWLVzSwtMXMyXYDwsrrqxVWw9M_syouotwpb-_dIvp5wna3ypbda6p75dokL8j9J5D7ZbOAt3av18QG54YqH5PbrEiDo-SPyaQSBMnc_v_8okEa5XE6to2lhaV4WJ9A6g7hwSjGwUndW1_6hc4iX0zktM_p2uEdt-hUcIJ0WdJZjBs9jMtp_N34z8JuaDr6JI8Z9a40GTBA6gHa6rwF-aWEiZ1IWWqltoGOpI5kyjRqUWc4YDzV3QtrAaMm2yEZRFm6b0DC2zojIWGjlqQbc5VgGeClgmU7COPKIWP87ZRq6c6y6kasLyx6QlkJpYTHORFXSUmceCdqRs5ry4xpjtkE9VHoCnlkdj0I8Dw4EQHEhPLLb0Zn2m2EIq1PWDz2ys1Yi1TiQhUKiPXDGDIa_bN-C5eNxTlq4crVQgQSHHMZSwlzpX_oIACkcUFrikSe1Vv6eUhIDOJQcBNXR17YDEo933xTT04qAHM-GAch6JK7U8dpSUuOPB_j09F8HviB3BuOjQ3X4fvhhh9ytTvaqe6HPyMZyvnLPASAu9W5l-L8AvatVtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwELWgIMRLudNQKEbiNauN7djOY2FZlQKrwrbSvlm-pV11SVZ7kVqe-AS-kS9hnGRDtxSpQrxFSRzJkzMzJ_H4DEKvU6alyySNk8yYmHHr40x0RVBGlNT7LGXV9uhPA753xPZH6aipfwp7YWp9iPaHW_CMKl4HB5-6fN3JQ4UWTeiokZ2EXMs6wCdvMd6VAeG9L62UVCJoLSUFjD2GLHqpqufKJ62lqpu5LkPhpJ6D7fK66cVVrPTP4sqLpLfKWv176HQ137pY5bSzXJiO_XZJCvL_GOQ-2mzILd6t0fgA3fDFQ3T7TQkE9PwR-jyENDnxP7__KIKIcrkYO4914fCkLI7h7BSywgkOaRX7s7rzD55BthzPcJnj3mAXO_0Vwh8eF3g6CfU7j9Gw_-7w7V7cdHSILU8pi52zBhgB8UDsTNcA-TLCpt5qSpw0LjFcmlRqagJ-cscoZcQwL6RLrJH0CdooysJvIUy481ak1sFZpg2wLk9zYEsJzU1GeBohsXp1yjZi56HnxkRd-OgBa6lgrdCKM1OVtdRZhJJ25LQW_LjGmC1Ah9LHEJfV0ZCE1eBEABEXIkI7a5Bpn0kIfJvSLonQ9gpDqgkfcxVk9iAUUxj-qr0Kfh8Wc3Thy-VcJRLCMeFSwlzxX-4RQFEYcLQsQk9rUP6eUsaBGkoGhlqDa3tDkB1fv1KMTyr58bAyDDQ2QrxC47WtpA4P9sPRs38d-BLdOej11cf3gw_b6G61rFdtCn2ONhazpX8B7HBhdiq3_wWMplRt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90nucleotide+and+long%E2%80%90patch+base+excision+repair+of+DNA+damage+in+plants&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=C%C3%B3rdoba%E2%80%90Ca%C3%B1ero%2C+Dolores&rft.au=Morales%E2%80%90Ruiz%2C+Teresa&rft.au=Rold%C3%A1n%E2%80%90Arjona%2C+Teresa&rft.au=Ariza%2C+Rafael+R.&rft.date=2009-11-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=60&rft.issue=4&rft.spage=716&rft.epage=728&rft_id=info:doi/10.1111%2Fj.1365-313X.2009.03994.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_313X_2009_03994_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon