Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. II. Continuous Mechanical Wounding Resembling Insect Feeding Is Sufficient to Elicit Herbivory-Related Volatile Emission

Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear....

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 137; no. 3; pp. 1160 - 1168
Main Authors Mithöfer, Axel, Wanner, Gerhard, Boland, Wilhelm
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.03.2005
American Society of Plant Physiologists
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory.
AbstractList Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory.Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory.
Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory.
Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean ( Phaseolus lunatus ), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory.
Author Boland, Wilhelm
Mithöfer, Axel
Wanner, Gerhard
AuthorAffiliation Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany (A.M., W.B.); and Botanical Institute, Department Biology, Ludwig Maximilians University, D–80638 Munich, Germany (G.W.)
AuthorAffiliation_xml – name: Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany (A.M., W.B.); and Botanical Institute, Department Biology, Ludwig Maximilians University, D–80638 Munich, Germany (G.W.)
Author_xml – sequence: 1
  fullname: Mithöfer, Axel
– sequence: 2
  fullname: Wanner, Gerhard
– sequence: 3
  fullname: Boland, Wilhelm
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16612335$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15728342$$D View this record in MEDLINE/PubMed
BookMark eNqFklFv0zAQxyM0xLrCI28ILCR4a7Gd2E5ekKDqWKUipJXBY-Q6585VamdxUmlfjM_HdS0dTEJ7upPu5_v77v5nyYkPHpLkJaNjxmj2oWnGGMZUZJmkT5IBEykfcZHlJ8mAUsxpnhenyVmMa0opS1n2LDllQvE8zfgg-TW1FkwXSbDkHKByfkUWTahC00GrSe26LrS6dgh4MncbTT6Dxgz0FuKYzGZjMgm-c74PfSRfwVxr74yuyc_Q-7tulxBhs6x36cxH1DrqzCJZ9NY648B3pAtkWmPekQtol24b2tvRJdS6g4r8CBhdDWS6cTG64J8nT62uI7w4xGFydT79PrkYzb99mU0-zUdGCt6NVCVtVRi1hFwp4FwyrbVdKllpxUFbKkxmjFRaV5CbCqoMoFBLWthcFixV6TD5uO_b9MsNVAY_itsomxY30d6WQbvy34p31-UqbEtGpcjwFsPk_aFBG256iF2JExioa-0BN1ZKJahQBX8UzKRKWSGKR0FWZCwVd9JvH4Dr0Lce11Vylkua43wIvf57wONkfxyCwLsDoCPe1bbaGxfvOSkZT9Od2mjPmTbE2IK9R2i5c2rZNOUu7J2KfPqAx9PjkcNuj67-76tX-1friL48SmSSF0rkWH6zL1sdSr1q8aNXC46up7TIBceRfwOxQQH3
CODEN PPHYA5
CitedBy_id crossref_primary_10_1038_ncomms15172
crossref_primary_10_1104_pp_108_130799
crossref_primary_10_1371_journal_pone_0298229
crossref_primary_10_1111_jipb_12447
crossref_primary_10_3390_f13111931
crossref_primary_10_1093_mp_ssu102
crossref_primary_10_1016_j_tree_2019_01_008
crossref_primary_10_1007_s10886_007_9285_2
crossref_primary_10_1111_1365_2745_12253
crossref_primary_10_1016_j_plaphy_2013_04_026
crossref_primary_10_1039_B507589K
crossref_primary_10_1038_s41598_017_00527_8
crossref_primary_10_1088_1748_9326_ab1493
crossref_primary_10_1007_BF02784281
crossref_primary_10_1007_s11829_019_09732_w
crossref_primary_10_1111_j_1365_313X_2007_03323_x
crossref_primary_10_4161_psb_1_5_3279
crossref_primary_10_1080_09670874_2013_779049
crossref_primary_10_1186_1471_2229_10_164
crossref_primary_10_1093_treephys_tpp124
crossref_primary_10_1186_s12870_019_2148_5
crossref_primary_10_1007_s10886_021_01342_2
crossref_primary_10_3389_fpls_2024_1419999
crossref_primary_10_1098_rspb_2014_2522
crossref_primary_10_1017_S0266467419000117
crossref_primary_10_1093_jpe_rtac069
crossref_primary_10_1093_jxb_ern145
crossref_primary_10_1016_j_pbi_2008_07_001
crossref_primary_10_1080_09670874_2019_1669843
crossref_primary_10_1007_s11101_008_9117_1
crossref_primary_10_1007_s10265_008_0203_7
crossref_primary_10_1016_j_phytochem_2011_03_026
crossref_primary_10_1093_biolinnean_blx149
crossref_primary_10_1104_pp_107_111088
crossref_primary_10_3389_fpls_2021_709858
crossref_primary_10_7554_eLife_89855_3
crossref_primary_10_1007_s11829_011_9138_3
crossref_primary_10_1002_ejoc_200700812
crossref_primary_10_4161_cib_3_4_11834
crossref_primary_10_1098_rspb_2010_2725
crossref_primary_10_4161_psb_4_9_9431
crossref_primary_10_1093_chemse_bji066
crossref_primary_10_1016_j_pbi_2005_05_008
crossref_primary_10_1111_j_1365_2745_2010_01681_x
crossref_primary_10_1371_journal_pone_0001081
crossref_primary_10_1016_j_atmosenv_2017_01_003
crossref_primary_10_1371_journal_pone_0022340
crossref_primary_10_36953_ECJ_2020_211201
crossref_primary_10_1146_annurev_phyto_072910_095227
crossref_primary_10_1080_15659801_2014_986878
crossref_primary_10_1007_s11104_021_05110_9
crossref_primary_10_1007_s10886_008_9568_2
crossref_primary_10_1007_s10886_009_9718_1
crossref_primary_10_3389_fpls_2018_00986
crossref_primary_10_1104_pp_106_083907
crossref_primary_10_1016_j_toxicon_2021_04_004
crossref_primary_10_1007_s11829_009_9075_6
crossref_primary_10_1016_j_foodchem_2017_05_124
crossref_primary_10_1104_pp_105_071993
crossref_primary_10_1186_s12870_015_0487_4
crossref_primary_10_1093_jxb_ers372
crossref_primary_10_1093_pcp_pcm090
crossref_primary_10_1111_nph_13075
crossref_primary_10_1007_s12591_019_00458_y
crossref_primary_10_1128_AEM_01825_18
crossref_primary_10_1007_s10886_007_9322_1
crossref_primary_10_1007_s10886_016_0776_x
crossref_primary_10_1016_j_tplants_2007_06_001
crossref_primary_10_1007_s10886_024_01519_5
crossref_primary_10_1016_j_plaphy_2018_11_035
crossref_primary_10_1080_10408398_2022_2104213
crossref_primary_10_1111_een_12771
crossref_primary_10_1007_s10886_008_9510_7
crossref_primary_10_1016_j_plantsci_2023_111962
crossref_primary_10_1111_j_1469_8137_2011_03768_x
crossref_primary_10_1021_acs_jpca_4c03069
crossref_primary_10_1093_jxb_erx274
crossref_primary_10_1093_jxb_erz570
crossref_primary_10_1007_s11738_011_0782_0
crossref_primary_10_1007_s11829_015_9393_9
crossref_primary_10_1007_s10886_008_9453_z
crossref_primary_10_1007_s10886_011_9937_0
crossref_primary_10_1007_s13744_011_0003_y
crossref_primary_10_1111_j_1744_7909_2007_00395_x
crossref_primary_10_1371_journal_pone_0004697
crossref_primary_10_1007_s13205_014_0220_2
crossref_primary_10_1016_j_pbi_2016_06_019
crossref_primary_10_1073_pnas_0811861106
crossref_primary_10_18474_0749_8004_46_3_177
crossref_primary_10_1073_pnas_0705947104
crossref_primary_10_1007_s00425_015_2345_x
crossref_primary_10_1080_15592324_2024_2360298
crossref_primary_10_1111_j_1469_8137_2009_02859_x
crossref_primary_10_1038_s41598_021_02801_2
crossref_primary_10_4161_psb_2_1_3589
crossref_primary_10_3389_fpls_2014_00578
crossref_primary_10_1016_j_ppees_2016_09_005
crossref_primary_10_1186_1477_5956_10_73
crossref_primary_10_1104_pp_112_196014
crossref_primary_10_1111_jen_12238
crossref_primary_10_1016_j_tplants_2010_01_006
crossref_primary_10_1039_c1np00021g
crossref_primary_10_1016_S2095_3119_16_61593_9
crossref_primary_10_1007_s11829_013_9257_0
crossref_primary_10_3389_ffgc_2019_00026
crossref_primary_10_1155_2015_342982
crossref_primary_10_1146_annurev_ecolsys_010421_020045
crossref_primary_10_5511_plantbiotechnology_18_0528a
crossref_primary_10_7554_eLife_89855
crossref_primary_10_3390_molecules27196290
crossref_primary_10_1007_s00344_024_11470_0
crossref_primary_10_3389_fpls_2020_583275
crossref_primary_10_1016_j_phytochem_2011_01_030
crossref_primary_10_1111_nph_17814
crossref_primary_10_1016_j_plantsci_2019_03_006
crossref_primary_10_1016_j_envexpbot_2024_105659
crossref_primary_10_1093_pcp_pcs143
crossref_primary_10_1007_s11515_009_0017_6
crossref_primary_10_1111_een_12745
crossref_primary_10_1111_j_1399_3054_2012_01587_x
crossref_primary_10_1038_s41598_021_85789_z
crossref_primary_10_3390_insects13040391
crossref_primary_10_1002_ps_2229
crossref_primary_10_1007_s10886_015_0619_1
crossref_primary_10_1016_j_pbi_2006_03_002
crossref_primary_10_3390_atmos11111213
crossref_primary_10_1093_treephys_tpq072
crossref_primary_10_1073_pnas_1214668110
crossref_primary_10_1007_s10886_011_9985_5
crossref_primary_10_1007_s11816_008_0074_3
crossref_primary_10_1093_jxb_erw099
crossref_primary_10_1186_s12870_021_02936_4
crossref_primary_10_1007_s11104_011_0991_8
crossref_primary_10_1111_j_1365_313X_2010_04437_x
crossref_primary_10_1007_s10886_006_9049_4
crossref_primary_10_1111_j_1399_3054_2008_01152_x
crossref_primary_10_3390_insects15080572
crossref_primary_10_1111_1744_7917_12820
crossref_primary_10_1016_j_tplants_2009_04_002
crossref_primary_10_1016_j_sajb_2010_03_003
crossref_primary_10_1016_j_compag_2024_109227
crossref_primary_10_1007_s00442_012_2539_x
crossref_primary_10_1007_s10886_012_0228_1
crossref_primary_10_1016_j_aspen_2020_07_014
crossref_primary_10_1016_j_jplph_2010_11_010
crossref_primary_10_1111_j_1365_2745_2009_01591_x
crossref_primary_10_1177_1934578X1300800330
crossref_primary_10_14411_eje_2008_111
crossref_primary_10_1016_j_plantsci_2017_08_005
crossref_primary_10_4161_psb_19921
crossref_primary_10_1111_j_1365_313X_2006_02946_x
crossref_primary_10_1007_s00344_017_9739_x
crossref_primary_10_1016_j_phytochem_2009_07_018
crossref_primary_10_1111_j_1365_3040_2008_01913_x
crossref_primary_10_1007_s10886_008_9492_5
crossref_primary_10_1016_j_phytochem_2013_08_007
crossref_primary_10_1146_annurev_ento_010715_023851
crossref_primary_10_1007_s11258_024_01464_z
crossref_primary_10_1093_jxb_erz188
crossref_primary_10_1093_ee_nvz128
crossref_primary_10_21769_BioProtoc_2663
crossref_primary_10_3390_ijms23052690
crossref_primary_10_3390_ijms20174151
crossref_primary_10_1155_2012_236762
crossref_primary_10_1007_s10886_014_0543_9
crossref_primary_10_3390_plants11192566
crossref_primary_10_1111_j_1365_3040_2009_01943_x
crossref_primary_10_1111_jen_13248
crossref_primary_10_4161_psb_1_4_3163
crossref_primary_10_1007_s00425_006_0458_y
crossref_primary_10_1038_s41598_019_53946_0
crossref_primary_10_1146_annurev_genet_102209_163500
crossref_primary_10_1007_s12298_025_01562_w
crossref_primary_10_1021_jf203396a
crossref_primary_10_1104_pp_107_111484
crossref_primary_10_2525_ecb_47_87
crossref_primary_10_3389_fpls_2023_1135000
crossref_primary_10_1007_s00122_024_04709_7
crossref_primary_10_1016_j_foodchem_2017_03_122
crossref_primary_10_1007_s00425_010_1203_0
crossref_primary_10_1007_s11103_007_9164_9
crossref_primary_10_1139_B08_074
crossref_primary_10_1080_07352680600899973
crossref_primary_10_1007_s00425_006_0301_5
crossref_primary_10_1146_annurev_ento_020117_043507
crossref_primary_10_1007_s10886_024_01520_y
crossref_primary_10_1111_j_1469_185X_2009_00100_x
crossref_primary_10_1146_annurev_arplant_042110_103854
crossref_primary_10_3389_fpls_2020_610445
crossref_primary_10_1007_s10886_009_9604_x
crossref_primary_10_1080_17429140802387739
crossref_primary_10_1016_j_agee_2016_09_028
crossref_primary_10_1016_j_biocontrol_2008_04_012
crossref_primary_10_1007_s11103_014_0207_8
crossref_primary_10_1111_pbi_12080
crossref_primary_10_1007_s11284_012_0979_8
crossref_primary_10_1371_journal_pone_0177739
crossref_primary_10_1007_s10886_016_0794_8
crossref_primary_10_1007_s00442_018_4094_6
crossref_primary_10_1371_journal_pone_0101331
crossref_primary_10_3390_biom9120808
crossref_primary_10_3390_plants3010143
crossref_primary_10_3958_059_039_0309
crossref_primary_10_1007_s10886_007_9254_9
crossref_primary_10_1038_s41598_021_82022_9
crossref_primary_10_1111_1365_2435_12182
crossref_primary_10_1093_treephys_tpac067
crossref_primary_10_1007_s00425_011_1551_4
crossref_primary_10_3389_fpls_2017_00234
crossref_primary_10_1104_pp_111_187831
crossref_primary_10_1186_s12864_023_09894_1
crossref_primary_10_1051_forest_2009096
crossref_primary_10_1016_j_eja_2013_09_003
crossref_primary_10_1199_tab_0107
crossref_primary_10_1584_jpestics_G10_66
crossref_primary_10_1007_s11829_023_09953_0
crossref_primary_10_3389_fpls_2018_01222
crossref_primary_10_1371_journal_pone_0010978
crossref_primary_10_1111_j_1469_8137_2006_01877_x
crossref_primary_10_3390_ijms140510242
crossref_primary_10_1603_0046_225X_34_4_906
crossref_primary_10_1007_s10265_019_01094_x
crossref_primary_10_1016_j_phytol_2013_08_015
crossref_primary_10_1371_journal_pone_0021742
crossref_primary_10_1002_ps_7614
crossref_primary_10_1016_j_bbalip_2005_03_001
crossref_primary_10_1111_j_1461_0248_2011_01629_x
crossref_primary_10_1111_j_1469_8137_2009_03127_x
crossref_primary_10_3732_ajb_0800300
crossref_primary_10_1104_pp_112_198150
crossref_primary_10_3389_fpls_2016_00859
crossref_primary_10_1007_s10886_011_9944_1
crossref_primary_10_1073_pnas_1110748108
crossref_primary_10_1007_s11103_007_9185_4
crossref_primary_10_1093_jxb_erx244
crossref_primary_10_1016_j_tplants_2012_01_003
crossref_primary_10_1093_jxb_eru414
crossref_primary_10_1007_s10886_012_0199_2
crossref_primary_10_1007_s11101_008_9115_3
crossref_primary_10_1016_j_jspr_2024_102430
crossref_primary_10_1111_nph_12886
crossref_primary_10_3389_fpls_2018_01569
crossref_primary_10_1007_s11101_017_9510_8
crossref_primary_10_1126_science_1191634
crossref_primary_10_1007_s00468_009_0342_z
crossref_primary_10_3389_fpls_2015_01128
crossref_primary_10_4161_psb_5_12_14036
crossref_primary_10_3389_fpls_2022_1037047
crossref_primary_10_1111_j_2007_0030_1299_16204_x
crossref_primary_10_1371_journal_pone_0048050
crossref_primary_10_1093_jxb_erae339
crossref_primary_10_1007_s11103_005_4923_y
crossref_primary_10_1111_j_1399_3054_2009_01322_x
crossref_primary_10_1016_j_plaphy_2011_11_006
crossref_primary_10_1002_ciuz_202000014
crossref_primary_10_3724_SP_J_1011_2012_00612
crossref_primary_10_1016_j_phytochem_2008_04_023
crossref_primary_10_17660_eJHS_2023_038
crossref_primary_10_1016_j_ibmb_2013_06_005
crossref_primary_10_1002_ciuz_200600387
crossref_primary_10_3389_fpls_2017_00388
crossref_primary_10_3390_ijms14047617
crossref_primary_10_1104_pp_107_113118
crossref_primary_10_3389_fpls_2020_00980
crossref_primary_10_1146_annurev_arplant_59_032607_092825
crossref_primary_10_1007_s10526_015_9692_1
crossref_primary_10_1146_annurev_ento_120709_144753
crossref_primary_10_1016_j_aac_2023_08_008
crossref_primary_10_1021_jf302874g
crossref_primary_10_1007_s10886_012_0198_3
crossref_primary_10_1111_jen_12899
crossref_primary_10_3390_plants8090318
crossref_primary_10_1371_journal_pone_0197633
crossref_primary_10_1104_pp_107_097154
crossref_primary_10_1094_PHYTO_99_12_1421
crossref_primary_10_1139_cjz_2013_0244
crossref_primary_10_1007_s11829_011_9174_z
crossref_primary_10_1094_MPMI_20_11_1332
crossref_primary_10_4331_wjbc_v1_i5_160
crossref_primary_10_1038_s41598_020_73130_z
crossref_primary_10_1007_s10886_012_0224_5
crossref_primary_10_1007_s10886_013_0243_x
crossref_primary_10_1093_pcp_pcp030
crossref_primary_10_4236_ajps_2012_35071
Cites_doi 10.1016/S0031-9422(02)00240-6
10.1104/pp.121.1.153
10.1093/ee/28.6.973
10.1093/pcp/41.4.391
10.1046/j.1469-8137.2002.00519.x
10.1038/31219
10.1126/science.250.4985.1251
10.1073/pnas.92.6.2036
10.1126/science.291.5511.2141
10.1104/pp.125.2.711
10.1104/pp.125.1.369
10.1126/science.276.5314.945
10.1046/j.1570-7458.2003.00060.x
10.1034/j.1399-3054.2003.00054.x
10.1105/tpc.104.026120
10.1073/pnas.89.17.8399
10.1055/s-2004-820887
10.1007/BF00994327
10.1104/pp.121.2.325
10.1104/pp.103.034165
10.1016/S0040-4039(00)02290-5
10.1016/S0040-4020(02)01489-8
10.1016/S1360-1385(01)02186-0
10.1016/S0040-4020(99)00639-0
10.1007/s004250100603
10.1007/BF01021772
10.1023/B:JOEC.0000017976.60630.8c
10.1073/pnas.0403248101
10.1002/arch.1026
10.1146/annurev.arplant.53.100301.135207
10.1105/tpc.12.5.707
10.1007/s003440000026
10.1104/pp.111.2.487
ContentType Journal Article
Copyright Copyright 2005 American Society of Plant Biologists
2005 INIST-CNRS
Copyright American Society of Plant Physiologists Mar 2005
Copyright © 2005, American Society of Plant Biologists 2005
Copyright_xml – notice: Copyright 2005 American Society of Plant Biologists
– notice: 2005 INIST-CNRS
– notice: Copyright American Society of Plant Physiologists Mar 2005
– notice: Copyright © 2005, American Society of Plant Biologists 2005
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7X2
7X7
7XB
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2O
M2P
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7SS
7S9
L.6
7X8
5PM
DOI 10.1104/pp.104.054460
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
Entomology Abstracts (Full archive)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
Entomology Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Entomology Abstracts
AGRICOLA
Agricultural Science Database


CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 1168
ExternalDocumentID PMC1065415
822069881
15728342
16612335
10_1104_pp_104_054460
4629758
US201300985208
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
PJZUB
PPXIY
PQGLB
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
4T-
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7SS
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c652t-7d6fd9c7be877e2261aaafb76da72eaf05c4cc67aade8cded4ee97b09f8691373
IEDL.DBID 7X7
ISSN 0032-0889
IngestDate Thu Aug 21 13:25:27 EDT 2025
Fri Jul 11 08:27:35 EDT 2025
Mon Jul 21 10:21:18 EDT 2025
Tue Aug 05 10:07:22 EDT 2025
Sat Aug 23 12:33:45 EDT 2025
Wed Feb 19 02:08:47 EST 2025
Mon Jul 21 09:13:56 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Tue Jul 01 02:53:44 EDT 2025
Fri Jun 20 02:19:02 EDT 2025
Wed Dec 27 19:28:59 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Plant tissue
Leguminosae
Phaseolus lunatus
Dicotyledones
Angiospermae
Monoterpene
Spermatophyta
Volatile organic compound
Plant leaf
Leaf area
Fatty acids
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c652t-7d6fd9c7be877e2261aaafb76da72eaf05c4cc67aade8cded4ee97b09f8691373
Notes http://www.plantphysiol.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Corresponding author; e-mail boland@ice.mpg.de; fax 49–3641–571202.
Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.104.054460.
OpenAccessLink https://academic.oup.com/plphys/article-pdf/137/3/1160/38706137/plphys_v137_3_1160.pdf
PMID 15728342
PQID 218608373
PQPubID 40931
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1065415
proquest_miscellaneous_67505792
proquest_miscellaneous_46731959
proquest_miscellaneous_19413515
proquest_journals_218608373
pubmed_primary_15728342
pascalfrancis_primary_16612335
crossref_primary_10_1104_pp_104_054460
crossref_citationtrail_10_1104_pp_104_054460
jstor_primary_4629758
fao_agris_US201300985208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-03-01
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
– name: Rockville
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2005
Publisher American Society of Plant Biologists
American Society of Plant Physiologists
Publisher_xml – name: American Society of Plant Biologists
– name: American Society of Plant Physiologists
References 2021062711283203900_R11
2021062711283203900_R33
2021062711283203900_R12
2021062711283203900_R34
2021062711283203900_R13
2021062711283203900_R35
2021062711283203900_R14
2021062711283203900_R36
2021062711283203900_R30
2021062711283203900_R31
2021062711283203900_R10
2021062711283203900_R32
2021062711283203900_R8
2021062711283203900_R9
2021062711283203900_R4
2021062711283203900_R26
2021062711283203900_R5
2021062711283203900_R27
2021062711283203900_R6
2021062711283203900_R28
2021062711283203900_R7
2021062711283203900_R29
2021062711283203900_R1
2021062711283203900_R3
2021062711283203900_R22
2021062711283203900_R23
2021062711283203900_R24
2021062711283203900_R25
2021062711283203900_R20
2021062711283203900_R21
2021062711283203900_R19
2021062711283203900_R15
2021062711283203900_R37
2021062711283203900_R16
2021062711283203900_R17
2021062711283203900_R18
References_xml – ident: 2021062711283203900_R10
  doi: 10.1016/S0031-9422(02)00240-6
– ident: 2021062711283203900_R19
  doi: 10.1104/pp.121.1.153
– ident: 2021062711283203900_R20
  doi: 10.1093/ee/28.6.973
– ident: 2021062711283203900_R23
  doi: 10.1093/pcp/41.4.391
– ident: 2021062711283203900_R3
– ident: 2021062711283203900_R13
  doi: 10.1046/j.1469-8137.2002.00519.x
– ident: 2021062711283203900_R5
  doi: 10.1038/31219
– ident: 2021062711283203900_R34
  doi: 10.1126/science.250.4985.1251
– ident: 2021062711283203900_R22
  doi: 10.1073/pnas.92.6.2036
– ident: 2021062711283203900_R17
  doi: 10.1126/science.291.5511.2141
– ident: 2021062711283203900_R11
– ident: 2021062711283203900_R14
  doi: 10.1104/pp.125.2.711
– ident: 2021062711283203900_R9
  doi: 10.1104/pp.125.1.369
– ident: 2021062711283203900_R1
  doi: 10.1126/science.276.5314.945
– ident: 2021062711283203900_R36
  doi: 10.1046/j.1570-7458.2003.00060.x
– ident: 2021062711283203900_R30
  doi: 10.1034/j.1399-3054.2003.00054.x
– ident: 2021062711283203900_R26
  doi: 10.1105/tpc.104.026120
– ident: 2021062711283203900_R33
  doi: 10.1073/pnas.89.17.8399
– ident: 2021062711283203900_R35
  doi: 10.1055/s-2004-820887
– ident: 2021062711283203900_R7
  doi: 10.1007/BF00994327
– ident: 2021062711283203900_R24
  doi: 10.1104/pp.121.2.325
– ident: 2021062711283203900_R21
  doi: 10.1104/pp.103.034165
– ident: 2021062711283203900_R32
  doi: 10.1016/S0040-4039(00)02290-5
– ident: 2021062711283203900_R31
  doi: 10.1016/S0040-4020(02)01489-8
– ident: 2021062711283203900_R15
  doi: 10.1016/S1360-1385(01)02186-0
– ident: 2021062711283203900_R25
  doi: 10.1016/S0040-4020(99)00639-0
– ident: 2021062711283203900_R29
  doi: 10.1007/s004250100603
– ident: 2021062711283203900_R8
  doi: 10.1007/BF01021772
– ident: 2021062711283203900_R4
  doi: 10.1023/B:JOEC.0000017976.60630.8c
– ident: 2021062711283203900_R6
  doi: 10.1073/pnas.0403248101
– ident: 2021062711283203900_R12
  doi: 10.1002/arch.1026
– ident: 2021062711283203900_R16
– ident: 2021062711283203900_R18
  doi: 10.1146/annurev.arplant.53.100301.135207
– ident: 2021062711283203900_R27
  doi: 10.1105/tpc.12.5.707
– ident: 2021062711283203900_R37
  doi: 10.1007/s003440000026
– ident: 2021062711283203900_R28
  doi: 10.1104/pp.111.2.487
SSID ssj0001314
Score 2.3447044
Snippet Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1160
SubjectTerms Animals
Biological and medical sciences
Caterpillars
Cepaca hortensis
Cepaea hortensis
Emissions
Feeding
Feeding Behavior
Fundamental and applied biological sciences. Psychology
Herbivores
Herbivory
Infestation
Insect larvae
Insects
Larva
Larva - physiology
Leaves
Lima
lima beans
mechanical damage
Mesas
Metabolism
Monoterpenes
Organic compounds
Phaseolus
Phaseolus - metabolism
Phaseolus - physiology
Phaseolus lunatus
Photosynthesis, respiration. Anabolism, catabolism
physiology
Phytophagous insects
plant damage
Plant Leaves
Plant Leaves - physiology
Plant Leaves - ultrastructure
Plant physiology and development
plant response
Plant tissues
Plants
Plants Interacting with Other Organisms
Snails
Snails - physiology
Spodoptera
Spodoptera - physiology
Spodoptera littoralis
ultrastructure
VOCs
Volatile organic compounds
Volatilization
Title Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. II. Continuous Mechanical Wounding Resembling Insect Feeding Is Sufficient to Elicit Herbivory-Related Volatile Emission
URI https://www.jstor.org/stable/4629758
https://www.ncbi.nlm.nih.gov/pubmed/15728342
https://www.proquest.com/docview/218608373
https://www.proquest.com/docview/19413515
https://www.proquest.com/docview/46731959
https://www.proquest.com/docview/67505792
https://pubmed.ncbi.nlm.nih.gov/PMC1065415
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lc9MwENbQlgMXhkehphB0YDjh1i9J9okhkEzCo8MQAr15JEsqmUltUzud6R_j97FrOw5hCKc41o7leDfSJ-vbbwl54VmbBIprlymAbxHPPFfGSrvC00nAVIi5lsi2OOOTefT-nJ133Jyqo1Wux8RmoNZFhu_IT7F2EsAFEb4uf7pYNAo3V7sKGnvkAJXLMKjFeb_eQiWZVoQ5DFxk8_QSm9FpWeLm5gnglagRp9xMSXtWFmtuIhIlZQXPyrZFLv6FQv8mU_4xO43vkbsdrKRv2ji4T26Z_AG5PSwA-t08JL9ajeKKFpaO2-mKzkpYkJaYf0wBideYqL8Ag5x-XFxKOjQSjoy8hnU0nU5PKKpYLfJVsaroJ4PZwuhc-h2LMuHVkMB3qTC1nU7zCvrq-5lWdLZqdCrgzmld0NESjms6AX8urourG7fh4xlNvxXIy1saOoLYw5d4h2Q-Hn19O3G7gg1uxllQu0Jzq5NMKBMLYQDY-VJKqwTXUgRGWo9lUZZxIaU2caaNjoxJhPISG_PEB98-Ivt5kZsjQkObSe5zk2muELQppj0bC-slSrNMJQ55tfZZmnVq5lhUY5k2qxovSssyxY_WxQ552ZuXrYzHLsMjCIBUXsAQm85nAW7seknMAi92yGETFf0FIo5pyXB-sBUlmw44atuEzCHH67BJuxGiSvt4dsjzvhUeL-7XyNyAO1M_ibB-ItttAbNciIG_2wLWg5huHDjkcRumm7tjAqBlBC1iK4B7AxQe327JFz8aAXIfM5J99uS_v-uY3Glkbhu-3lOyX1-tzDMAcLUaNH_TATkYjs4-f4Fv76YffgN9EEmw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENa0hRm4MDwKNYVWB-CEWz8l-8AwFJKJadpLGsjNSJYMmUltUztl8qO48vvYtWOHMIRbT_FEO5KTXa--tXa_JeSFlaahI5kyfQnwzWOJZYpAKpNbKnR86WKtJWZbnLPB2Ps48Sdb5GdbC4Npla1PrB21yhN8R36MvZMALnD3bfHdxKZReLjadtBorOJUL35AxFa-iT6Ael86Tr938X5gLpsKmAnzncrkiqUqTLjUAecawIcthEglZ0pwR4vU8hMvSRgXQukgUVp5WodcWmEasNCG9WHebXIL9l0LYz0-6eI7ZK5pSJ9dx8TsoY7S0zsuCjxMPQJ85NVkmKstcDsVeZsLiYmZogTdpE1TjX-h3r-TN__YDfv3yb0ljKXvGrt7QLZ09pDcPskBai4ekV8NJ3JJ85T2m-2RjgoIgAusd6aA_CskBpiCQEaH00tBT7SAKy2uIW6nUXREkTVrms3zeUnPNFYnozHRz9gECmfDhMFLiaX0NMpKWKtbJyrpaF7zYsCd0yqnvRlcV3QA9jO9zq8WZp3_pxX9lGMe4EzTHtg6vjTcJeMb0eVjspPlmd4j1E0TwWymE8UkgkTpKysNeGqFUvmJDA3yutVZnCzZ07GJxyyuoyjLi4sixo9GxQZ51YkXDW3IJsE9MIBYfAWXHo9HDh4kW2HgO1ZgkN3aKroJPIZl0PD9wZqVrBZgyKXj-gbZb80mXnqkMu6eH4McdqPw9-L5kMg0qDO2Qw_7NfqbJWBXdZGNaLMExJ9Y3uwY5Eljpqu78zlAWQ9G-JoBdwJIdL4-kk2_1YTnNlZA2_7T__6uQ3JncHE2jIfR-ek-uVtT7Na5gs_ITnU1188BPFbyoH5kKfly0z7iN5i_hvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2DiFeEB-DlcHmB-CJrPm0kweEKGvVslFNlLK9BTu2oVKXhKUd6j-GxH_HXdKmFFHe9tSoPjlu73K-i3_3O0Ke28ZErmTKCiSEbz5LbEuEUlncVpEbSA9rLRFtMWC9kf_-IrjYIr-WtTAIq1z6xNJRqyzBd-Qt7J0E4QL3WmaBijg77r7Jv1vYQAoPWpfdNCoLOdHzH5C9Fa_7x6DqF67b7Xx617MWDQashAXu1OKKGRUlXOqQcw2BiCOEMJIzJbirhbGDxE8SxoVQOkyUVr7WEZd2ZEIWObAWmHeb7HBMihpkp90ZnH2stwHHq4jFbc-1EEtUE3z6rTzHo9UjiJb8khpztSFuG5EtkZEI0xQFaMpULTb-FQP_DeX8Y2_s3iN3F0EtfVtZ4X2ypdMH5FY7g8Bz_pD8rBiSC5oZ2q02SzrMIR3OsfqZQh4wRZqAMQik9HR8KWhbC7jS4hqyeNrvH1Hk0Bqns2xW0A8aa5XRtOg5toTC2RA-eCmxsJ720wLuVd-nX9DhrGTJgJXTaUY7E7ie0h5Y0_g6u5pbJRpQK_o5Q1TgRNMOWD6-QtwloxvR5iPSSLNU7xHqmUQwh-lEMYkhowyUbUJu7EiqIJFRk7xa6ixOFlzq2NJjEpc5le3HeR7jR6XiJnlZi-cVicgmwT0wgFh8BQcfj4YuHivbURi4dtgku6VV1BP4DIui4fuDNStZ3YAhs44XNMn-0mzihX8q4vppapLDehT-XjwtEqkGdcZO5GP3xmCzBOyxHnITbZaAbBSLnd0meVyZ6Wp1AYfA1ocRvmbAtQDSnq-PpONvJf25g_XQTvDkv7_rkNwG_xCf9gcn--ROybdbAgefksb0aqafQSQ5lQeLZ5aSLzftJn4DPv2Mjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Feeding+Spodoptera+littoralis+on+Lima+Bean+Leaves.+II.+Continuous+Mechanical+Wounding+Resembling+Insect+Feeding+Is+Sufficient+to+Elicit+Herbivory-Related+Volatile+Emission&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Mitho%CC%88fer%2C+Axel&rft.au=Wanner%2C+Gerhard&rft.au=Boland%2C+Wilhelm&rft.date=2005-03-01&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=137&rft.issue=3&rft.spage=1160&rft.epage=1168&rft_id=info:doi/10.1104%2Fpp.104.054460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_104_054460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon