Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. II. Continuous Mechanical Wounding Resembling Insect Feeding Is Sufficient to Elicit Herbivory-Related Volatile Emission
Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear....
Saved in:
Published in | Plant physiology (Bethesda) Vol. 137; no. 3; pp. 1160 - 1168 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.03.2005
American Society of Plant Physiologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory. |
---|---|
AbstractList | Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory.Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory. Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory. Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean ( Phaseolus lunatus ), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory. |
Author | Boland, Wilhelm Mithöfer, Axel Wanner, Gerhard |
AuthorAffiliation | Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany (A.M., W.B.); and Botanical Institute, Department Biology, Ludwig Maximilians University, D–80638 Munich, Germany (G.W.) |
AuthorAffiliation_xml | – name: Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany (A.M., W.B.); and Botanical Institute, Department Biology, Ludwig Maximilians University, D–80638 Munich, Germany (G.W.) |
Author_xml | – sequence: 1 fullname: Mithöfer, Axel – sequence: 2 fullname: Wanner, Gerhard – sequence: 3 fullname: Boland, Wilhelm |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16612335$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15728342$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklFv0zAQxyM0xLrCI28ILCR4a7Gd2E5ekKDqWKUipJXBY-Q6585VamdxUmlfjM_HdS0dTEJ7upPu5_v77v5nyYkPHpLkJaNjxmj2oWnGGMZUZJmkT5IBEykfcZHlJ8mAUsxpnhenyVmMa0opS1n2LDllQvE8zfgg-TW1FkwXSbDkHKByfkUWTahC00GrSe26LrS6dgh4MncbTT6Dxgz0FuKYzGZjMgm-c74PfSRfwVxr74yuyc_Q-7tulxBhs6x36cxH1DrqzCJZ9NY648B3pAtkWmPekQtol24b2tvRJdS6g4r8CBhdDWS6cTG64J8nT62uI7w4xGFydT79PrkYzb99mU0-zUdGCt6NVCVtVRi1hFwp4FwyrbVdKllpxUFbKkxmjFRaV5CbCqoMoFBLWthcFixV6TD5uO_b9MsNVAY_itsomxY30d6WQbvy34p31-UqbEtGpcjwFsPk_aFBG256iF2JExioa-0BN1ZKJahQBX8UzKRKWSGKR0FWZCwVd9JvH4Dr0Lce11Vylkua43wIvf57wONkfxyCwLsDoCPe1bbaGxfvOSkZT9Od2mjPmTbE2IK9R2i5c2rZNOUu7J2KfPqAx9PjkcNuj67-76tX-1friL48SmSSF0rkWH6zL1sdSr1q8aNXC46up7TIBceRfwOxQQH3 |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1038_ncomms15172 crossref_primary_10_1104_pp_108_130799 crossref_primary_10_1371_journal_pone_0298229 crossref_primary_10_1111_jipb_12447 crossref_primary_10_3390_f13111931 crossref_primary_10_1093_mp_ssu102 crossref_primary_10_1016_j_tree_2019_01_008 crossref_primary_10_1007_s10886_007_9285_2 crossref_primary_10_1111_1365_2745_12253 crossref_primary_10_1016_j_plaphy_2013_04_026 crossref_primary_10_1039_B507589K crossref_primary_10_1038_s41598_017_00527_8 crossref_primary_10_1088_1748_9326_ab1493 crossref_primary_10_1007_BF02784281 crossref_primary_10_1007_s11829_019_09732_w crossref_primary_10_1111_j_1365_313X_2007_03323_x crossref_primary_10_4161_psb_1_5_3279 crossref_primary_10_1080_09670874_2013_779049 crossref_primary_10_1186_1471_2229_10_164 crossref_primary_10_1093_treephys_tpp124 crossref_primary_10_1186_s12870_019_2148_5 crossref_primary_10_1007_s10886_021_01342_2 crossref_primary_10_3389_fpls_2024_1419999 crossref_primary_10_1098_rspb_2014_2522 crossref_primary_10_1017_S0266467419000117 crossref_primary_10_1093_jpe_rtac069 crossref_primary_10_1093_jxb_ern145 crossref_primary_10_1016_j_pbi_2008_07_001 crossref_primary_10_1080_09670874_2019_1669843 crossref_primary_10_1007_s11101_008_9117_1 crossref_primary_10_1007_s10265_008_0203_7 crossref_primary_10_1016_j_phytochem_2011_03_026 crossref_primary_10_1093_biolinnean_blx149 crossref_primary_10_1104_pp_107_111088 crossref_primary_10_3389_fpls_2021_709858 crossref_primary_10_7554_eLife_89855_3 crossref_primary_10_1007_s11829_011_9138_3 crossref_primary_10_1002_ejoc_200700812 crossref_primary_10_4161_cib_3_4_11834 crossref_primary_10_1098_rspb_2010_2725 crossref_primary_10_4161_psb_4_9_9431 crossref_primary_10_1093_chemse_bji066 crossref_primary_10_1016_j_pbi_2005_05_008 crossref_primary_10_1111_j_1365_2745_2010_01681_x crossref_primary_10_1371_journal_pone_0001081 crossref_primary_10_1016_j_atmosenv_2017_01_003 crossref_primary_10_1371_journal_pone_0022340 crossref_primary_10_36953_ECJ_2020_211201 crossref_primary_10_1146_annurev_phyto_072910_095227 crossref_primary_10_1080_15659801_2014_986878 crossref_primary_10_1007_s11104_021_05110_9 crossref_primary_10_1007_s10886_008_9568_2 crossref_primary_10_1007_s10886_009_9718_1 crossref_primary_10_3389_fpls_2018_00986 crossref_primary_10_1104_pp_106_083907 crossref_primary_10_1016_j_toxicon_2021_04_004 crossref_primary_10_1007_s11829_009_9075_6 crossref_primary_10_1016_j_foodchem_2017_05_124 crossref_primary_10_1104_pp_105_071993 crossref_primary_10_1186_s12870_015_0487_4 crossref_primary_10_1093_jxb_ers372 crossref_primary_10_1093_pcp_pcm090 crossref_primary_10_1111_nph_13075 crossref_primary_10_1007_s12591_019_00458_y crossref_primary_10_1128_AEM_01825_18 crossref_primary_10_1007_s10886_007_9322_1 crossref_primary_10_1007_s10886_016_0776_x crossref_primary_10_1016_j_tplants_2007_06_001 crossref_primary_10_1007_s10886_024_01519_5 crossref_primary_10_1016_j_plaphy_2018_11_035 crossref_primary_10_1080_10408398_2022_2104213 crossref_primary_10_1111_een_12771 crossref_primary_10_1007_s10886_008_9510_7 crossref_primary_10_1016_j_plantsci_2023_111962 crossref_primary_10_1111_j_1469_8137_2011_03768_x crossref_primary_10_1021_acs_jpca_4c03069 crossref_primary_10_1093_jxb_erx274 crossref_primary_10_1093_jxb_erz570 crossref_primary_10_1007_s11738_011_0782_0 crossref_primary_10_1007_s11829_015_9393_9 crossref_primary_10_1007_s10886_008_9453_z crossref_primary_10_1007_s10886_011_9937_0 crossref_primary_10_1007_s13744_011_0003_y crossref_primary_10_1111_j_1744_7909_2007_00395_x crossref_primary_10_1371_journal_pone_0004697 crossref_primary_10_1007_s13205_014_0220_2 crossref_primary_10_1016_j_pbi_2016_06_019 crossref_primary_10_1073_pnas_0811861106 crossref_primary_10_18474_0749_8004_46_3_177 crossref_primary_10_1073_pnas_0705947104 crossref_primary_10_1007_s00425_015_2345_x crossref_primary_10_1080_15592324_2024_2360298 crossref_primary_10_1111_j_1469_8137_2009_02859_x crossref_primary_10_1038_s41598_021_02801_2 crossref_primary_10_4161_psb_2_1_3589 crossref_primary_10_3389_fpls_2014_00578 crossref_primary_10_1016_j_ppees_2016_09_005 crossref_primary_10_1186_1477_5956_10_73 crossref_primary_10_1104_pp_112_196014 crossref_primary_10_1111_jen_12238 crossref_primary_10_1016_j_tplants_2010_01_006 crossref_primary_10_1039_c1np00021g crossref_primary_10_1016_S2095_3119_16_61593_9 crossref_primary_10_1007_s11829_013_9257_0 crossref_primary_10_3389_ffgc_2019_00026 crossref_primary_10_1155_2015_342982 crossref_primary_10_1146_annurev_ecolsys_010421_020045 crossref_primary_10_5511_plantbiotechnology_18_0528a crossref_primary_10_7554_eLife_89855 crossref_primary_10_3390_molecules27196290 crossref_primary_10_1007_s00344_024_11470_0 crossref_primary_10_3389_fpls_2020_583275 crossref_primary_10_1016_j_phytochem_2011_01_030 crossref_primary_10_1111_nph_17814 crossref_primary_10_1016_j_plantsci_2019_03_006 crossref_primary_10_1016_j_envexpbot_2024_105659 crossref_primary_10_1093_pcp_pcs143 crossref_primary_10_1007_s11515_009_0017_6 crossref_primary_10_1111_een_12745 crossref_primary_10_1111_j_1399_3054_2012_01587_x crossref_primary_10_1038_s41598_021_85789_z crossref_primary_10_3390_insects13040391 crossref_primary_10_1002_ps_2229 crossref_primary_10_1007_s10886_015_0619_1 crossref_primary_10_1016_j_pbi_2006_03_002 crossref_primary_10_3390_atmos11111213 crossref_primary_10_1093_treephys_tpq072 crossref_primary_10_1073_pnas_1214668110 crossref_primary_10_1007_s10886_011_9985_5 crossref_primary_10_1007_s11816_008_0074_3 crossref_primary_10_1093_jxb_erw099 crossref_primary_10_1186_s12870_021_02936_4 crossref_primary_10_1007_s11104_011_0991_8 crossref_primary_10_1111_j_1365_313X_2010_04437_x crossref_primary_10_1007_s10886_006_9049_4 crossref_primary_10_1111_j_1399_3054_2008_01152_x crossref_primary_10_3390_insects15080572 crossref_primary_10_1111_1744_7917_12820 crossref_primary_10_1016_j_tplants_2009_04_002 crossref_primary_10_1016_j_sajb_2010_03_003 crossref_primary_10_1016_j_compag_2024_109227 crossref_primary_10_1007_s00442_012_2539_x crossref_primary_10_1007_s10886_012_0228_1 crossref_primary_10_1016_j_aspen_2020_07_014 crossref_primary_10_1016_j_jplph_2010_11_010 crossref_primary_10_1111_j_1365_2745_2009_01591_x crossref_primary_10_1177_1934578X1300800330 crossref_primary_10_14411_eje_2008_111 crossref_primary_10_1016_j_plantsci_2017_08_005 crossref_primary_10_4161_psb_19921 crossref_primary_10_1111_j_1365_313X_2006_02946_x crossref_primary_10_1007_s00344_017_9739_x crossref_primary_10_1016_j_phytochem_2009_07_018 crossref_primary_10_1111_j_1365_3040_2008_01913_x crossref_primary_10_1007_s10886_008_9492_5 crossref_primary_10_1016_j_phytochem_2013_08_007 crossref_primary_10_1146_annurev_ento_010715_023851 crossref_primary_10_1007_s11258_024_01464_z crossref_primary_10_1093_jxb_erz188 crossref_primary_10_1093_ee_nvz128 crossref_primary_10_21769_BioProtoc_2663 crossref_primary_10_3390_ijms23052690 crossref_primary_10_3390_ijms20174151 crossref_primary_10_1155_2012_236762 crossref_primary_10_1007_s10886_014_0543_9 crossref_primary_10_3390_plants11192566 crossref_primary_10_1111_j_1365_3040_2009_01943_x crossref_primary_10_1111_jen_13248 crossref_primary_10_4161_psb_1_4_3163 crossref_primary_10_1007_s00425_006_0458_y crossref_primary_10_1038_s41598_019_53946_0 crossref_primary_10_1146_annurev_genet_102209_163500 crossref_primary_10_1007_s12298_025_01562_w crossref_primary_10_1021_jf203396a crossref_primary_10_1104_pp_107_111484 crossref_primary_10_2525_ecb_47_87 crossref_primary_10_3389_fpls_2023_1135000 crossref_primary_10_1007_s00122_024_04709_7 crossref_primary_10_1016_j_foodchem_2017_03_122 crossref_primary_10_1007_s00425_010_1203_0 crossref_primary_10_1007_s11103_007_9164_9 crossref_primary_10_1139_B08_074 crossref_primary_10_1080_07352680600899973 crossref_primary_10_1007_s00425_006_0301_5 crossref_primary_10_1146_annurev_ento_020117_043507 crossref_primary_10_1007_s10886_024_01520_y crossref_primary_10_1111_j_1469_185X_2009_00100_x crossref_primary_10_1146_annurev_arplant_042110_103854 crossref_primary_10_3389_fpls_2020_610445 crossref_primary_10_1007_s10886_009_9604_x crossref_primary_10_1080_17429140802387739 crossref_primary_10_1016_j_agee_2016_09_028 crossref_primary_10_1016_j_biocontrol_2008_04_012 crossref_primary_10_1007_s11103_014_0207_8 crossref_primary_10_1111_pbi_12080 crossref_primary_10_1007_s11284_012_0979_8 crossref_primary_10_1371_journal_pone_0177739 crossref_primary_10_1007_s10886_016_0794_8 crossref_primary_10_1007_s00442_018_4094_6 crossref_primary_10_1371_journal_pone_0101331 crossref_primary_10_3390_biom9120808 crossref_primary_10_3390_plants3010143 crossref_primary_10_3958_059_039_0309 crossref_primary_10_1007_s10886_007_9254_9 crossref_primary_10_1038_s41598_021_82022_9 crossref_primary_10_1111_1365_2435_12182 crossref_primary_10_1093_treephys_tpac067 crossref_primary_10_1007_s00425_011_1551_4 crossref_primary_10_3389_fpls_2017_00234 crossref_primary_10_1104_pp_111_187831 crossref_primary_10_1186_s12864_023_09894_1 crossref_primary_10_1051_forest_2009096 crossref_primary_10_1016_j_eja_2013_09_003 crossref_primary_10_1199_tab_0107 crossref_primary_10_1584_jpestics_G10_66 crossref_primary_10_1007_s11829_023_09953_0 crossref_primary_10_3389_fpls_2018_01222 crossref_primary_10_1371_journal_pone_0010978 crossref_primary_10_1111_j_1469_8137_2006_01877_x crossref_primary_10_3390_ijms140510242 crossref_primary_10_1603_0046_225X_34_4_906 crossref_primary_10_1007_s10265_019_01094_x crossref_primary_10_1016_j_phytol_2013_08_015 crossref_primary_10_1371_journal_pone_0021742 crossref_primary_10_1002_ps_7614 crossref_primary_10_1016_j_bbalip_2005_03_001 crossref_primary_10_1111_j_1461_0248_2011_01629_x crossref_primary_10_1111_j_1469_8137_2009_03127_x crossref_primary_10_3732_ajb_0800300 crossref_primary_10_1104_pp_112_198150 crossref_primary_10_3389_fpls_2016_00859 crossref_primary_10_1007_s10886_011_9944_1 crossref_primary_10_1073_pnas_1110748108 crossref_primary_10_1007_s11103_007_9185_4 crossref_primary_10_1093_jxb_erx244 crossref_primary_10_1016_j_tplants_2012_01_003 crossref_primary_10_1093_jxb_eru414 crossref_primary_10_1007_s10886_012_0199_2 crossref_primary_10_1007_s11101_008_9115_3 crossref_primary_10_1016_j_jspr_2024_102430 crossref_primary_10_1111_nph_12886 crossref_primary_10_3389_fpls_2018_01569 crossref_primary_10_1007_s11101_017_9510_8 crossref_primary_10_1126_science_1191634 crossref_primary_10_1007_s00468_009_0342_z crossref_primary_10_3389_fpls_2015_01128 crossref_primary_10_4161_psb_5_12_14036 crossref_primary_10_3389_fpls_2022_1037047 crossref_primary_10_1111_j_2007_0030_1299_16204_x crossref_primary_10_1371_journal_pone_0048050 crossref_primary_10_1093_jxb_erae339 crossref_primary_10_1007_s11103_005_4923_y crossref_primary_10_1111_j_1399_3054_2009_01322_x crossref_primary_10_1016_j_plaphy_2011_11_006 crossref_primary_10_1002_ciuz_202000014 crossref_primary_10_3724_SP_J_1011_2012_00612 crossref_primary_10_1016_j_phytochem_2008_04_023 crossref_primary_10_17660_eJHS_2023_038 crossref_primary_10_1016_j_ibmb_2013_06_005 crossref_primary_10_1002_ciuz_200600387 crossref_primary_10_3389_fpls_2017_00388 crossref_primary_10_3390_ijms14047617 crossref_primary_10_1104_pp_107_113118 crossref_primary_10_3389_fpls_2020_00980 crossref_primary_10_1146_annurev_arplant_59_032607_092825 crossref_primary_10_1007_s10526_015_9692_1 crossref_primary_10_1146_annurev_ento_120709_144753 crossref_primary_10_1016_j_aac_2023_08_008 crossref_primary_10_1021_jf302874g crossref_primary_10_1007_s10886_012_0198_3 crossref_primary_10_1111_jen_12899 crossref_primary_10_3390_plants8090318 crossref_primary_10_1371_journal_pone_0197633 crossref_primary_10_1104_pp_107_097154 crossref_primary_10_1094_PHYTO_99_12_1421 crossref_primary_10_1139_cjz_2013_0244 crossref_primary_10_1007_s11829_011_9174_z crossref_primary_10_1094_MPMI_20_11_1332 crossref_primary_10_4331_wjbc_v1_i5_160 crossref_primary_10_1038_s41598_020_73130_z crossref_primary_10_1007_s10886_012_0224_5 crossref_primary_10_1007_s10886_013_0243_x crossref_primary_10_1093_pcp_pcp030 crossref_primary_10_4236_ajps_2012_35071 |
Cites_doi | 10.1016/S0031-9422(02)00240-6 10.1104/pp.121.1.153 10.1093/ee/28.6.973 10.1093/pcp/41.4.391 10.1046/j.1469-8137.2002.00519.x 10.1038/31219 10.1126/science.250.4985.1251 10.1073/pnas.92.6.2036 10.1126/science.291.5511.2141 10.1104/pp.125.2.711 10.1104/pp.125.1.369 10.1126/science.276.5314.945 10.1046/j.1570-7458.2003.00060.x 10.1034/j.1399-3054.2003.00054.x 10.1105/tpc.104.026120 10.1073/pnas.89.17.8399 10.1055/s-2004-820887 10.1007/BF00994327 10.1104/pp.121.2.325 10.1104/pp.103.034165 10.1016/S0040-4039(00)02290-5 10.1016/S0040-4020(02)01489-8 10.1016/S1360-1385(01)02186-0 10.1016/S0040-4020(99)00639-0 10.1007/s004250100603 10.1007/BF01021772 10.1023/B:JOEC.0000017976.60630.8c 10.1073/pnas.0403248101 10.1002/arch.1026 10.1146/annurev.arplant.53.100301.135207 10.1105/tpc.12.5.707 10.1007/s003440000026 10.1104/pp.111.2.487 |
ContentType | Journal Article |
Copyright | Copyright 2005 American Society of Plant Biologists 2005 INIST-CNRS Copyright American Society of Plant Physiologists Mar 2005 Copyright © 2005, American Society of Plant Biologists 2005 |
Copyright_xml | – notice: Copyright 2005 American Society of Plant Biologists – notice: 2005 INIST-CNRS – notice: Copyright American Society of Plant Physiologists Mar 2005 – notice: Copyright © 2005, American Society of Plant Biologists 2005 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 4T- 7X2 7X7 7XB 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0K M0S M1P M2O M2P M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7SS 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.104.054460 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial Entomology Abstracts (Full archive) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) Entomology Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Entomology Abstracts AGRICOLA Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1168 |
ExternalDocumentID | PMC1065415 822069881 15728342 16612335 10_1104_pp_104_054460 4629758 US201300985208 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM 0R~ AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABVGC ABXSQ ABXVV ACHIC ADGKP ADQBN ADXHL AEUYN AGORE AHXOZ AJBYB AJNCP ALIPV AQVQM ATGXG BEYMZ H13 IPSME JXSIZ NU- PHGZM PHGZT AAYXX CITATION ABIME ABPIB ABZEO ACVCV ACZBC AGMDO AHGBF AJDVS APJGH IQODW LU7 PJZUB PPXIY PQGLB ADYWZ CGR CUY CVF ECM EIF NPM VXZ 4T- 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7SS 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c652t-7d6fd9c7be877e2261aaafb76da72eaf05c4cc67aade8cded4ee97b09f8691373 |
IEDL.DBID | 7X7 |
ISSN | 0032-0889 |
IngestDate | Thu Aug 21 13:25:27 EDT 2025 Fri Jul 11 08:27:35 EDT 2025 Mon Jul 21 10:21:18 EDT 2025 Tue Aug 05 10:07:22 EDT 2025 Sat Aug 23 12:33:45 EDT 2025 Wed Feb 19 02:08:47 EST 2025 Mon Jul 21 09:13:56 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 02:53:44 EDT 2025 Fri Jun 20 02:19:02 EDT 2025 Wed Dec 27 19:28:59 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Plant tissue Leguminosae Phaseolus lunatus Dicotyledones Angiospermae Monoterpene Spermatophyta Volatile organic compound Plant leaf Leaf area Fatty acids |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c652t-7d6fd9c7be877e2261aaafb76da72eaf05c4cc67aade8cded4ee97b09f8691373 |
Notes | http://www.plantphysiol.org/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Corresponding author; e-mail boland@ice.mpg.de; fax 49–3641–571202. Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.104.054460. |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/137/3/1160/38706137/plphys_v137_3_1160.pdf |
PMID | 15728342 |
PQID | 218608373 |
PQPubID | 40931 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1065415 proquest_miscellaneous_67505792 proquest_miscellaneous_46731959 proquest_miscellaneous_19413515 proquest_journals_218608373 pubmed_primary_15728342 pascalfrancis_primary_16612335 crossref_primary_10_1104_pp_104_054460 crossref_citationtrail_10_1104_pp_104_054460 jstor_primary_4629758 fao_agris_US201300985208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-03-01 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States – name: Rockville |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2005 |
Publisher | American Society of Plant Biologists American Society of Plant Physiologists |
Publisher_xml | – name: American Society of Plant Biologists – name: American Society of Plant Physiologists |
References | 2021062711283203900_R11 2021062711283203900_R33 2021062711283203900_R12 2021062711283203900_R34 2021062711283203900_R13 2021062711283203900_R35 2021062711283203900_R14 2021062711283203900_R36 2021062711283203900_R30 2021062711283203900_R31 2021062711283203900_R10 2021062711283203900_R32 2021062711283203900_R8 2021062711283203900_R9 2021062711283203900_R4 2021062711283203900_R26 2021062711283203900_R5 2021062711283203900_R27 2021062711283203900_R6 2021062711283203900_R28 2021062711283203900_R7 2021062711283203900_R29 2021062711283203900_R1 2021062711283203900_R3 2021062711283203900_R22 2021062711283203900_R23 2021062711283203900_R24 2021062711283203900_R25 2021062711283203900_R20 2021062711283203900_R21 2021062711283203900_R19 2021062711283203900_R15 2021062711283203900_R37 2021062711283203900_R16 2021062711283203900_R17 2021062711283203900_R18 |
References_xml | – ident: 2021062711283203900_R10 doi: 10.1016/S0031-9422(02)00240-6 – ident: 2021062711283203900_R19 doi: 10.1104/pp.121.1.153 – ident: 2021062711283203900_R20 doi: 10.1093/ee/28.6.973 – ident: 2021062711283203900_R23 doi: 10.1093/pcp/41.4.391 – ident: 2021062711283203900_R3 – ident: 2021062711283203900_R13 doi: 10.1046/j.1469-8137.2002.00519.x – ident: 2021062711283203900_R5 doi: 10.1038/31219 – ident: 2021062711283203900_R34 doi: 10.1126/science.250.4985.1251 – ident: 2021062711283203900_R22 doi: 10.1073/pnas.92.6.2036 – ident: 2021062711283203900_R17 doi: 10.1126/science.291.5511.2141 – ident: 2021062711283203900_R11 – ident: 2021062711283203900_R14 doi: 10.1104/pp.125.2.711 – ident: 2021062711283203900_R9 doi: 10.1104/pp.125.1.369 – ident: 2021062711283203900_R1 doi: 10.1126/science.276.5314.945 – ident: 2021062711283203900_R36 doi: 10.1046/j.1570-7458.2003.00060.x – ident: 2021062711283203900_R30 doi: 10.1034/j.1399-3054.2003.00054.x – ident: 2021062711283203900_R26 doi: 10.1105/tpc.104.026120 – ident: 2021062711283203900_R33 doi: 10.1073/pnas.89.17.8399 – ident: 2021062711283203900_R35 doi: 10.1055/s-2004-820887 – ident: 2021062711283203900_R7 doi: 10.1007/BF00994327 – ident: 2021062711283203900_R24 doi: 10.1104/pp.121.2.325 – ident: 2021062711283203900_R21 doi: 10.1104/pp.103.034165 – ident: 2021062711283203900_R32 doi: 10.1016/S0040-4039(00)02290-5 – ident: 2021062711283203900_R31 doi: 10.1016/S0040-4020(02)01489-8 – ident: 2021062711283203900_R15 doi: 10.1016/S1360-1385(01)02186-0 – ident: 2021062711283203900_R25 doi: 10.1016/S0040-4020(99)00639-0 – ident: 2021062711283203900_R29 doi: 10.1007/s004250100603 – ident: 2021062711283203900_R8 doi: 10.1007/BF01021772 – ident: 2021062711283203900_R4 doi: 10.1023/B:JOEC.0000017976.60630.8c – ident: 2021062711283203900_R6 doi: 10.1073/pnas.0403248101 – ident: 2021062711283203900_R12 doi: 10.1002/arch.1026 – ident: 2021062711283203900_R16 – ident: 2021062711283203900_R18 doi: 10.1146/annurev.arplant.53.100301.135207 – ident: 2021062711283203900_R27 doi: 10.1105/tpc.12.5.707 – ident: 2021062711283203900_R37 doi: 10.1007/s003440000026 – ident: 2021062711283203900_R28 doi: 10.1104/pp.111.2.487 |
SSID | ssj0001314 |
Score | 2.3447044 |
Snippet | Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1160 |
SubjectTerms | Animals Biological and medical sciences Caterpillars Cepaca hortensis Cepaea hortensis Emissions Feeding Feeding Behavior Fundamental and applied biological sciences. Psychology Herbivores Herbivory Infestation Insect larvae Insects Larva Larva - physiology Leaves Lima lima beans mechanical damage Mesas Metabolism Monoterpenes Organic compounds Phaseolus Phaseolus - metabolism Phaseolus - physiology Phaseolus lunatus Photosynthesis, respiration. Anabolism, catabolism physiology Phytophagous insects plant damage Plant Leaves Plant Leaves - physiology Plant Leaves - ultrastructure Plant physiology and development plant response Plant tissues Plants Plants Interacting with Other Organisms Snails Snails - physiology Spodoptera Spodoptera - physiology Spodoptera littoralis ultrastructure VOCs Volatile organic compounds Volatilization |
Title | Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. II. Continuous Mechanical Wounding Resembling Insect Feeding Is Sufficient to Elicit Herbivory-Related Volatile Emission |
URI | https://www.jstor.org/stable/4629758 https://www.ncbi.nlm.nih.gov/pubmed/15728342 https://www.proquest.com/docview/218608373 https://www.proquest.com/docview/19413515 https://www.proquest.com/docview/46731959 https://www.proquest.com/docview/67505792 https://pubmed.ncbi.nlm.nih.gov/PMC1065415 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lc9MwENbQlgMXhkehphB0YDjh1i9J9okhkEzCo8MQAr15JEsqmUltUzud6R_j97FrOw5hCKc41o7leDfSJ-vbbwl54VmbBIprlymAbxHPPFfGSrvC00nAVIi5lsi2OOOTefT-nJ133Jyqo1Wux8RmoNZFhu_IT7F2EsAFEb4uf7pYNAo3V7sKGnvkAJXLMKjFeb_eQiWZVoQ5DFxk8_QSm9FpWeLm5gnglagRp9xMSXtWFmtuIhIlZQXPyrZFLv6FQv8mU_4xO43vkbsdrKRv2ji4T26Z_AG5PSwA-t08JL9ajeKKFpaO2-mKzkpYkJaYf0wBideYqL8Ag5x-XFxKOjQSjoy8hnU0nU5PKKpYLfJVsaroJ4PZwuhc-h2LMuHVkMB3qTC1nU7zCvrq-5lWdLZqdCrgzmld0NESjms6AX8urourG7fh4xlNvxXIy1saOoLYw5d4h2Q-Hn19O3G7gg1uxllQu0Jzq5NMKBMLYQDY-VJKqwTXUgRGWo9lUZZxIaU2caaNjoxJhPISG_PEB98-Ivt5kZsjQkObSe5zk2muELQppj0bC-slSrNMJQ55tfZZmnVq5lhUY5k2qxovSssyxY_WxQ552ZuXrYzHLsMjCIBUXsAQm85nAW7seknMAi92yGETFf0FIo5pyXB-sBUlmw44atuEzCHH67BJuxGiSvt4dsjzvhUeL-7XyNyAO1M_ibB-ItttAbNciIG_2wLWg5huHDjkcRumm7tjAqBlBC1iK4B7AxQe327JFz8aAXIfM5J99uS_v-uY3Glkbhu-3lOyX1-tzDMAcLUaNH_TATkYjs4-f4Fv76YffgN9EEmw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENa0hRm4MDwKNYVWB-CEWz8l-8AwFJKJadpLGsjNSJYMmUltUztl8qO48vvYtWOHMIRbT_FEO5KTXa--tXa_JeSFlaahI5kyfQnwzWOJZYpAKpNbKnR86WKtJWZbnLPB2Ps48Sdb5GdbC4Npla1PrB21yhN8R36MvZMALnD3bfHdxKZReLjadtBorOJUL35AxFa-iT6Ael86Tr938X5gLpsKmAnzncrkiqUqTLjUAecawIcthEglZ0pwR4vU8hMvSRgXQukgUVp5WodcWmEasNCG9WHebXIL9l0LYz0-6eI7ZK5pSJ9dx8TsoY7S0zsuCjxMPQJ85NVkmKstcDsVeZsLiYmZogTdpE1TjX-h3r-TN__YDfv3yb0ljKXvGrt7QLZ09pDcPskBai4ekV8NJ3JJ85T2m-2RjgoIgAusd6aA_CskBpiCQEaH00tBT7SAKy2uIW6nUXREkTVrms3zeUnPNFYnozHRz9gECmfDhMFLiaX0NMpKWKtbJyrpaF7zYsCd0yqnvRlcV3QA9jO9zq8WZp3_pxX9lGMe4EzTHtg6vjTcJeMb0eVjspPlmd4j1E0TwWymE8UkgkTpKysNeGqFUvmJDA3yutVZnCzZ07GJxyyuoyjLi4sixo9GxQZ51YkXDW3IJsE9MIBYfAWXHo9HDh4kW2HgO1ZgkN3aKroJPIZl0PD9wZqVrBZgyKXj-gbZb80mXnqkMu6eH4McdqPw9-L5kMg0qDO2Qw_7NfqbJWBXdZGNaLMExJ9Y3uwY5Eljpqu78zlAWQ9G-JoBdwJIdL4-kk2_1YTnNlZA2_7T__6uQ3JncHE2jIfR-ek-uVtT7Na5gs_ITnU1188BPFbyoH5kKfly0z7iN5i_hvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2DiFeEB-DlcHmB-CJrPm0kweEKGvVslFNlLK9BTu2oVKXhKUd6j-GxH_HXdKmFFHe9tSoPjlu73K-i3_3O0Ke28ZErmTKCiSEbz5LbEuEUlncVpEbSA9rLRFtMWC9kf_-IrjYIr-WtTAIq1z6xNJRqyzBd-Qt7J0E4QL3WmaBijg77r7Jv1vYQAoPWpfdNCoLOdHzH5C9Fa_7x6DqF67b7Xx617MWDQashAXu1OKKGRUlXOqQcw2BiCOEMJIzJbirhbGDxE8SxoVQOkyUVr7WEZd2ZEIWObAWmHeb7HBMihpkp90ZnH2stwHHq4jFbc-1EEtUE3z6rTzHo9UjiJb8khpztSFuG5EtkZEI0xQFaMpULTb-FQP_DeX8Y2_s3iN3F0EtfVtZ4X2ypdMH5FY7g8Bz_pD8rBiSC5oZ2q02SzrMIR3OsfqZQh4wRZqAMQik9HR8KWhbC7jS4hqyeNrvH1Hk0Bqns2xW0A8aa5XRtOg5toTC2RA-eCmxsJ720wLuVd-nX9DhrGTJgJXTaUY7E7ie0h5Y0_g6u5pbJRpQK_o5Q1TgRNMOWD6-QtwloxvR5iPSSLNU7xHqmUQwh-lEMYkhowyUbUJu7EiqIJFRk7xa6ixOFlzq2NJjEpc5le3HeR7jR6XiJnlZi-cVicgmwT0wgFh8BQcfj4YuHivbURi4dtgku6VV1BP4DIui4fuDNStZ3YAhs44XNMn-0mzihX8q4vppapLDehT-XjwtEqkGdcZO5GP3xmCzBOyxHnITbZaAbBSLnd0meVyZ6Wp1AYfA1ocRvmbAtQDSnq-PpONvJf25g_XQTvDkv7_rkNwG_xCf9gcn--ROybdbAgefksb0aqafQSQ5lQeLZ5aSLzftJn4DPv2Mjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Feeding+Spodoptera+littoralis+on+Lima+Bean+Leaves.+II.+Continuous+Mechanical+Wounding+Resembling+Insect+Feeding+Is+Sufficient+to+Elicit+Herbivory-Related+Volatile+Emission&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Mitho%CC%88fer%2C+Axel&rft.au=Wanner%2C+Gerhard&rft.au=Boland%2C+Wilhelm&rft.date=2005-03-01&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=137&rft.issue=3&rft.spage=1160&rft.epage=1168&rft_id=info:doi/10.1104%2Fpp.104.054460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_104_054460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |