Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells

For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offset...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 19; no. C; pp. 883 - 893
Main Authors Zhang, Jianyun, Liu, Wenrui, Zhang, Ming, Liu, Yanfeng, Zhou, Guanqing, Xu, Shengjie, Zhang, Fengling, Zhu, Haiming, Liu, Feng, Zhu, Xiaozhang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.09.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. [Display omitted] •NIR acceptors with high structural similarity and variable HOMO levels were designed•We achieved the highest PCE of 14.36% by combining J71, ZITI-C, and ZITI-N acceptors•We revealed the importance of the optimized driving force on the device performance Energy Storage; Materials Characterization; Solid State Physics
AbstractList For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss ( E loss ) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCE avg s of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. • NIR acceptors with high structural similarity and variable HOMO levels were designed • We achieved the highest PCE of 14.36% by combining J71, ZITI-C, and ZITI-N acceptors • We revealed the importance of the optimized driving force on the device performance Energy Storage; Materials Characterization; Solid State Physics
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (E ) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCE s of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. [Display omitted] •NIR acceptors with high structural similarity and variable HOMO levels were designed•We achieved the highest PCE of 14.36% by combining J71, ZITI-C, and ZITI-N acceptors•We revealed the importance of the optimized driving force on the device performance Energy Storage; Materials Characterization; Solid State Physics
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. : Energy Storage; Materials Characterization; Solid State Physics Subject Areas: Energy Storage, Materials Characterization, Solid State Physics
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 G 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
Author Liu, Yanfeng
Zhu, Xiaozhang
Zhou, Guanqing
Zhang, Jianyun
Liu, Feng
Xu, Shengjie
Liu, Wenrui
Zhang, Fengling
Zhu, Haiming
Zhang, Ming
AuthorAffiliation 2 School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
5 Department of Chemistry, Zhejiang University, Hangzhou 310027, China
3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
1 Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
4 School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China
AuthorAffiliation_xml – name: 4 School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China
– name: 3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
– name: 5 Department of Chemistry, Zhejiang University, Hangzhou 310027, China
– name: 2 School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
– name: 1 Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  givenname: Jianyun
  surname: Zhang
  fullname: Zhang, Jianyun
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Wenrui
  surname: Liu
  fullname: Liu, Wenrui
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  organization: School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Yanfeng
  surname: Liu
  fullname: Liu, Yanfeng
  organization: Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
– sequence: 5
  givenname: Guanqing
  surname: Zhou
  fullname: Zhou, Guanqing
  organization: School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 6
  givenname: Shengjie
  surname: Xu
  fullname: Xu, Shengjie
  email: xushengjie@iccas.ac.cn
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 7
  givenname: Fengling
  surname: Zhang
  fullname: Zhang, Fengling
  organization: Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
– sequence: 8
  givenname: Haiming
  surname: Zhu
  fullname: Zhu, Haiming
  organization: Department of Chemistry, Zhejiang University, Hangzhou 310027, China
– sequence: 9
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  email: fengliu82@sjtu.edu.cn
  organization: School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 10
  givenname: Xiaozhang
  orcidid: 0000-0002-6812-0856
  surname: Zhu
  fullname: Zhu, Xiaozhang
  email: xzzhu@iccas.ac.cn
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31513973$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1560784$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164834$$DView record from Swedish Publication Index
BookMark eNp9Ul1rFDEUHaRia-0f8EGCT77smsxnAiIs62oLWxZa9TVkkjvTLNlkm8ysre_-bzM7tXR9KAQS7j3n3I-c18mRdRaS5C3BU4JJ-XE91UHqaYoJm2I6xRl9kZykBWUTjPP06Mn7ODkLYY0xTuPJWfkqOc5IQTJWZSfJnyvYgTDatqi7ATT3utNSGHTlDCDX7IPnq8sVmhnd2g3YDjmLLsWd3ujfA2veez9EF3edF7LTMSusQtf9dushhAGysODbe7R0ISBt0cq3wmqJrp0RHs3BmPAmedkIE-Ds4T5NfnxdfJ-fT5arbxfz2XIiyyLtJhXFWU0gjkxE0wgJrCkEFDUpWI1TyLBUqqzKvGyKgkmqBEtZkwPJgJWKVHV2mlyMusqJNd96vRH-njuh-T7gfMuFjwswwElJMWOgMqJYrmomilrRshA1yXDdUBW1JqNW-AXbvj5Q-6J_zvZqRvdRKadZHvGfR3wEb0DJuDQvzAHtMGP1DW_djpdVxsqURoH3o4ALnebx8zuQN9JZC7LjpChxRYcqHx6qeHfbQ-j4Jvok7lhYcH3gacowZVW113v3tKHHTv6ZIwLSESB9_DoPzSOEYD6YkK_5YEI-mJBjyqMJI4n-R4qNisEXcShtnqd-GqkQLbDT4IchwUpQ2g8zKqefo_8FzIj5Jw
CitedBy_id crossref_primary_10_1039_D0EE02838J
crossref_primary_10_1002_ange_202116111
crossref_primary_10_1002_anie_202219245
crossref_primary_10_1021_acsaem_3c02921
crossref_primary_10_1039_D0TA03128C
crossref_primary_10_1016_j_cej_2024_157013
crossref_primary_10_1016_j_solener_2020_08_002
crossref_primary_10_1021_acs_macromol_4c00195
crossref_primary_10_1039_D4NJ01897D
crossref_primary_10_1021_acsaem_2c00008
crossref_primary_10_1021_jacs_0c04084
crossref_primary_10_1021_acsami_0c13085
crossref_primary_10_1002_adma_202007177
crossref_primary_10_1021_acs_jpcc_1c01488
crossref_primary_10_1002_adma_202100830
crossref_primary_10_1016_j_jechem_2021_05_053
crossref_primary_10_1039_D0EE02461A
crossref_primary_10_1002_pol_20220096
crossref_primary_10_1002_solr_202400047
crossref_primary_10_1007_s00894_025_06304_z
crossref_primary_10_1002_anie_202116111
crossref_primary_10_1002_aesr_202400028
crossref_primary_10_3390_polym13010002
crossref_primary_10_1016_j_fmre_2023_03_010
crossref_primary_10_1002_slct_202101824
crossref_primary_10_1016_j_polymer_2022_124892
crossref_primary_10_3390_pr13020393
crossref_primary_10_1002_nano_202000012
crossref_primary_10_1021_acsaem_2c03868
crossref_primary_10_1103_PhysRevApplied_14_024034
crossref_primary_10_1016_j_jechem_2020_03_058
crossref_primary_10_1002_marc_202400275
crossref_primary_10_59717_j_xinn_mater_2023_100044
crossref_primary_10_1016_j_giant_2022_100093
crossref_primary_10_1021_acsaem_2c01320
crossref_primary_10_1002_cssc_202100592
crossref_primary_10_1002_marc_202200325
crossref_primary_10_1002_cssc_202101407
crossref_primary_10_1016_j_jechem_2019_12_007
crossref_primary_10_1039_D2TA00812B
crossref_primary_10_1016_j_orgel_2021_106063
crossref_primary_10_1021_acsami_2c02272
crossref_primary_10_1021_acs_jpcc_0c09663
crossref_primary_10_1002_macp_202200168
crossref_primary_10_1021_jacs_0c12818
crossref_primary_10_1021_acsaem_1c02277
crossref_primary_10_1021_acsami_2c18540
crossref_primary_10_1002_ange_202219245
crossref_primary_10_1021_acsaem_2c01473
crossref_primary_10_1002_adfm_202111855
crossref_primary_10_1126_sciadv_adh2694
crossref_primary_10_1002_ente_202200215
crossref_primary_10_1039_D0TA02271C
crossref_primary_10_1002_aenm_201903298
crossref_primary_10_1016_j_cej_2021_131404
crossref_primary_10_1021_acs_jpcc_0c05654
crossref_primary_10_1039_D0TA10334A
crossref_primary_10_1002_solr_202100768
crossref_primary_10_1039_D1TA01500A
crossref_primary_10_1021_acsenergylett_0c00177
crossref_primary_10_1002_solr_202201046
crossref_primary_10_1002_aenm_202102363
crossref_primary_10_1039_D1TC04948H
crossref_primary_10_1021_acsenergylett_0c00537
crossref_primary_10_1016_j_isci_2021_102235
crossref_primary_10_1016_j_jpcs_2023_111837
crossref_primary_10_1002_ente_202201176
crossref_primary_10_1002_ente_202201211
crossref_primary_10_1016_j_nanoen_2023_108429
crossref_primary_10_1016_j_jechem_2021_01_027
crossref_primary_10_1021_acsami_2c13304
crossref_primary_10_3390_en16166076
crossref_primary_10_3390_en15134639
crossref_primary_10_1002_adma_202302452
crossref_primary_10_1002_adfm_202208950
Cites_doi 10.1016/j.joule.2017.09.020
10.1002/adma.201800403
10.1126/science.270.5243.1789
10.1002/adma.201804215
10.1103/PhysRevApplied.4.014020
10.1038/s41566-018-0104-9
10.1021/acs.chemrev.5b00098
10.1002/aenm.201801537
10.1002/adma.201606574
10.1002/adma.201601197
10.1039/C8EE01564C
10.1021/jacs.7b01170
10.1039/C7CS00892A
10.1002/adma.201602642
10.1038/s41563-018-0128-z
10.1246/cl.2005.2
10.1038/s41467-019-10351-5
10.1038/nenergy.2016.89
10.1002/adma.201803045
10.1021/acs.chemrev.7b00535
10.1002/adma.201704904
10.1016/j.joule.2019.01.004
10.1002/adma.201800613
10.1002/adma.201705209
10.1039/C8TA08961B
10.1002/adma.201707150
10.1002/adma.201704510
10.1038/nmat5063
10.1002/adma.201404317
10.1039/C9EE01030K
10.1038/s41560-018-0234-9
10.1002/adma.201705969
10.1039/C7EE00844A
10.1103/PhysRevB.81.125204
10.1002/adma.201707170
10.1038/s41467-019-10098-z
10.1021/jacs.7b02677
10.1039/C8EE01700J
10.1021/jacs.7b11278
10.1038/natrevmats.2018.3
10.1002/aenm.201802131
10.1038/nmat2548
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
OTOTI
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOA
DOI 10.1016/j.isci.2019.08.038
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 893
ExternalDocumentID oai_doaj_org_article_168099ed31d94db9a5bd865ab130bf8d
oai_DiVA_org_liu_164834
PMC6739628
1560784
31513973
10_1016_j_isci_2019_08_038
S2589004219303165
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
OTOTI
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c652t-7803b1e0191afface9f5ae5b159b02e30cdd67646f559c8da929f4e13e96d17b3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:17:58 EDT 2025
Thu Aug 21 06:23:35 EDT 2025
Thu Aug 21 13:53:31 EDT 2025
Fri May 19 00:35:10 EDT 2023
Fri Jul 11 11:12:16 EDT 2025
Thu Apr 03 07:03:23 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 01:03:26 EDT 2025
Tue May 16 22:28:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Solid State Physics
Materials Characterization
Energy Storage
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c652t-7803b1e0191afface9f5ae5b159b02e30cdd67646f559c8da929f4e13e96d17b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Lead Contact
These authors contributed equally
ORCID 0000-0002-6812-0856
0000000268120856
OpenAccessLink https://doaj.org/article/168099ed31d94db9a5bd865ab130bf8d
PMID 31513973
PQID 2290897728
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_168099ed31d94db9a5bd865ab130bf8d
swepub_primary_oai_DiVA_org_liu_164834
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6739628
osti_scitechconnect_1560784
proquest_miscellaneous_2290897728
pubmed_primary_31513973
crossref_primary_10_1016_j_isci_2019_08_038
crossref_citationtrail_10_1016_j_isci_2019_08_038
elsevier_sciencedirect_doi_10_1016_j_isci_2019_08_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-27
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Netherlands
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Vandewal, Tvingstedt, Gadisa, Inganäs, Manca (bib26) 2010; 81
Cha, Tan, Wu, Dong, Zhang, Chen, Rajaram, Narayan, McCulloch, Durrant (bib1) 2018; 8
Yuan, Zhang, Zhou, Zhang, Yip, Lau, Lu, Zhu, Peng, Johnson (bib37) 2019; 3
Hou, Inganas, Friend, Gao (bib6) 2018; 17
Zhang, Zhao, Chow, Jiang, Zhang, Zhu, Zhang, Huang, Yan (bib38) 2018; 118
Yu, Gao, Hummelen, Wudl, Heeger (bib34) 1995; 270
Zhang, Liu, Chen, Xu, Yang, Zhu (bib40) 2018; 6
Kan, Feng, Wan, Liu, Ke, Wang, Wang, Zhang, Li, Hou, Chen (bib7) 2017; 139
Lin, Wang, Zhang, Bai, Li, Zhu, Zhan (bib14) 2015; 27
Wadsworth, Moser, Marks, Little, Gasparini, Brabec, Baran, McCulloch (bib27) 2019; 48
Yamaguchi, Tamao (bib30) 2015; 34
Zhang, Yao, Hou, Zhu, Zhang, Li, Yu, Gao, Zhang, Hou (bib39) 2018; 30
Liu, Luo, Chen, Yang, Xiao, Zhang, Ma, Lu, Zhan, Zhang (bib17) 2019
Liu, Luo, Fan, Zhang, Zhang, Gao, Guo, Ma, Zhang, Yang (bib19) 2018; 11
Lu, Zheng, Wu, Schneider, Zhao, Yu (bib20) 2015; 115
Li, Dai, Ke, Yang, Wang, Yan, Ma, Zhan (bib10) 2018; 30
Liu, Zhang, Zhou, Zhang, Zhang, Xu, Zhu (bib18) 2018; 30
Zhao, Li, Yao, Zhang, Zhang, Yang, Hou (bib41) 2017; 139
Sun, Ma, Zhang, Yu, Zhou, Yin, Yang, Geng, Zhu, Zhang, Tang (bib24) 2018; 30
Yu, Yao, Hong, Xu, Gao, Zhu, Zu, Hou (bib35) 2018; 8
Kan, Zhang, Liu, Wan, Li, Ke, Wang, Feng, Zhang, Long (bib8) 2018; 30
Yao, Kirchartz, Vezie, Faist, Gong, He, Wu, Troughton, Watson, Bryant (bib33) 2015; 4
Li, Zhong, Gautam, Bin, Lin, Wu, Zhang, Jiang, Zhang, Gundogdu (bib12) 2017; 10
Kang, Kim, Kim, Kwon, Kim, Lee (bib9) 2016; 28
Yao, Chen, Qin, Yu, Cui, Yang, Li, Zhang, Hou (bib32) 2016; 28
Li, Ye, Li, Yao, Ade, Hou (bib11) 2018; 30
Liu, Zhou, Zhang, Zhang, Hu, Vergote, Liu, Russell, Zhu (bib15) 2017; 29
Vandewal, Tvingstedt, Gadisa, Inganas, Manca (bib25) 2009; 8
Liu, Chen, Qian, Gautam, Yang, Zhao, Bergqvist, Zhang, Ma, Ade (bib16) 2016; 1
Zhou, Xu, Song, Jin, Yue, Qian, Liu, Zhang, Zhu (bib42) 2018; 3
Fei, Fei, Eisner, Jiao, Azzouzi, Röhr, Han, Shahid, Chesman, Easton (bib5) 2018; 30
Xie, Yang, Li, Uddin, Bi, Fan, Cai, Hao, Woo, Li (bib28) 2018; 30
Qian, Zheng, Yao, Tress, Hopper, Chen, Li, Liu, Chen, Zhang (bib23) 2018; 17
Yan, Barlow, Wang, Yan, Jen, Marder, Zhan (bib31) 2018; 3
Chen, Wang, Zhang, Zhao, Chen, Zhu, Yao, Zhang, Ma, Friend, Chow (bib2) 2018; 30
Cui, Yao, Zhang, Zhang, Wang, Hong, Xian, Xu, Zhang, Peng (bib4) 2019; 10
Li, Lin, Che, Qu, Liu, Liao, Forrest (bib13) 2017; 139
Nian, Kan, Wang, Gao, Xu, Rong, Wang, Wang, Liu, Chen (bib22) 2018; 11
Menke, Ran, Bazan, Friend (bib21) 2018; 2
Cheng, Li, Zhan, Yang (bib3) 2018; 12
Xu, Zhou, Liu, Zhang, Liu, Yan, Zhu (bib29) 2017; 29
Yu, Liu, Chen, Qin, Lau, Yin, Kong, Lu, Shi, Li, Chen (bib36) 2019; 10
Fei (10.1016/j.isci.2019.08.038_bib5) 2018; 30
Yan (10.1016/j.isci.2019.08.038_bib31) 2018; 3
Yao (10.1016/j.isci.2019.08.038_bib32) 2016; 28
Yu (10.1016/j.isci.2019.08.038_bib36) 2019; 10
Li (10.1016/j.isci.2019.08.038_bib10) 2018; 30
Zhang (10.1016/j.isci.2019.08.038_bib40) 2018; 6
Xu (10.1016/j.isci.2019.08.038_bib29) 2017; 29
Yu (10.1016/j.isci.2019.08.038_bib35) 2018; 8
Liu (10.1016/j.isci.2019.08.038_bib19) 2018; 11
Cha (10.1016/j.isci.2019.08.038_bib1) 2018; 8
Chen (10.1016/j.isci.2019.08.038_bib2) 2018; 30
Menke (10.1016/j.isci.2019.08.038_bib21) 2018; 2
Qian (10.1016/j.isci.2019.08.038_bib23) 2018; 17
Wadsworth (10.1016/j.isci.2019.08.038_bib27) 2019; 48
Zhang (10.1016/j.isci.2019.08.038_bib39) 2018; 30
Li (10.1016/j.isci.2019.08.038_bib12) 2017; 10
Liu (10.1016/j.isci.2019.08.038_bib16) 2016; 1
Kan (10.1016/j.isci.2019.08.038_bib7) 2017; 139
Yao (10.1016/j.isci.2019.08.038_bib33) 2015; 4
Cui (10.1016/j.isci.2019.08.038_bib4) 2019; 10
Liu (10.1016/j.isci.2019.08.038_bib17) 2019
Yamaguchi (10.1016/j.isci.2019.08.038_bib30) 2015; 34
Kang (10.1016/j.isci.2019.08.038_bib9) 2016; 28
Vandewal (10.1016/j.isci.2019.08.038_bib26) 2010; 81
Cheng (10.1016/j.isci.2019.08.038_bib3) 2018; 12
Kan (10.1016/j.isci.2019.08.038_bib8) 2018; 30
Li (10.1016/j.isci.2019.08.038_bib11) 2018; 30
Hou (10.1016/j.isci.2019.08.038_bib6) 2018; 17
Li (10.1016/j.isci.2019.08.038_bib13) 2017; 139
Sun (10.1016/j.isci.2019.08.038_bib24) 2018; 30
Zhou (10.1016/j.isci.2019.08.038_bib42) 2018; 3
Liu (10.1016/j.isci.2019.08.038_bib15) 2017; 29
Yu (10.1016/j.isci.2019.08.038_bib34) 1995; 270
Zhang (10.1016/j.isci.2019.08.038_bib38) 2018; 118
Nian (10.1016/j.isci.2019.08.038_bib22) 2018; 11
Yuan (10.1016/j.isci.2019.08.038_bib37) 2019; 3
Zhao (10.1016/j.isci.2019.08.038_bib41) 2017; 139
Liu (10.1016/j.isci.2019.08.038_bib18) 2018; 30
Xie (10.1016/j.isci.2019.08.038_bib28) 2018; 30
Lu (10.1016/j.isci.2019.08.038_bib20) 2015; 115
Vandewal (10.1016/j.isci.2019.08.038_bib25) 2009; 8
Lin (10.1016/j.isci.2019.08.038_bib14) 2015; 27
References_xml – volume: 11
  start-page: 3392
  year: 2018
  end-page: 3399
  ident: bib22
  article-title: Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1140
  year: 2019
  end-page: 1151
  ident: bib37
  article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core
  publication-title: Joule
– volume: 30
  start-page: 1707170
  year: 2018
  ident: bib11
  article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor
  publication-title: Adv. Mater.
– volume: 28
  start-page: 7821
  year: 2016
  end-page: 7861
  ident: bib9
  article-title: Bulk-heterojunction organic solar cells: Five core technologies for their commercialization
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2152
  year: 2019
  ident: bib36
  article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1804215
  year: 2018
  ident: bib2
  article-title: Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1170
  year: 2015
  end-page: 1174
  ident: bib14
  article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells
  publication-title: Adv. Mater.
– volume: 17
  start-page: 119
  year: 2018
  end-page: 128
  ident: bib6
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: Nat. Mater.
– year: 2019
  ident: bib17
  article-title: A nonfullerene acceptor with 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1802131
  year: 2018
  ident: bib35
  article-title: Enhancing the photovoltaic performance of nonfullerene acceptors via conjugated rotatable end groups
  publication-title: Adv. Energy Mater
– volume: 48
  start-page: 1596
  year: 2019
  end-page: 1625
  ident: bib27
  article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 1705209
  year: 2018
  ident: bib5
  article-title: An alkylated indacenodithieno[3,2-
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606574
  year: 2017
  ident: bib15
  article-title: Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor
  publication-title: Adv. Mater.
– volume: 81
  start-page: 125204
  year: 2010
  ident: bib26
  article-title: Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells
  publication-title: Phys. Rev. B
– volume: 118
  start-page: 3447
  year: 2018
  end-page: 3507
  ident: bib38
  article-title: Nonfullerene acceptor molecules for bulk heterojunction organic solar cells
  publication-title: Chem. Rev.
– volume: 11
  start-page: 3275
  year: 2018
  end-page: 3282
  ident: bib19
  article-title: Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors
  publication-title: Energy Environ. Sci.
– volume: 115
  start-page: 12666
  year: 2015
  end-page: 12731
  ident: bib20
  article-title: Recent advances in bulk heterojunction polymer solar cells
  publication-title: Chem. Rev.
– volume: 2
  start-page: 25
  year: 2018
  end-page: 35
  ident: bib21
  article-title: Understanding energy loss in organic solar cells: toward a new efficiency regime
  publication-title: Joule
– volume: 4
  start-page: 014020
  year: 2015
  ident: bib33
  article-title: Quantifying losses in open-circuit voltage in solution-processable solar cells
  publication-title: Phys. Rev. Appl.
– volume: 12
  start-page: 131
  year: 2018
  end-page: 142
  ident: bib3
  article-title: Next-generation organic photovoltaics based on non-fullerene acceptors
  publication-title: Nat. Photon.
– volume: 8
  start-page: 904
  year: 2009
  end-page: 909
  ident: bib25
  article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells
  publication-title: Nat. Mater.
– volume: 28
  start-page: 8283
  year: 2016
  end-page: 8287
  ident: bib32
  article-title: Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1800403
  year: 2018
  ident: bib18
  article-title: Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaics
  publication-title: Adv. Mater.
– volume: 139
  start-page: 4929
  year: 2017
  end-page: 4934
  ident: bib7
  article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1707150
  year: 2018
  ident: bib24
  article-title: Dithieno[3,2-
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1705969
  year: 2018
  ident: bib10
  article-title: Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1800613
  year: 2018
  ident: bib39
  article-title: J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor
  publication-title: Adv. Mater.
– volume: 270
  start-page: 1789
  year: 1995
  end-page: 1791
  ident: bib34
  article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions
  publication-title: Science
– volume: 17
  start-page: 703
  year: 2018
  end-page: 709
  ident: bib23
  article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells
  publication-title: Nat. Mater.
– volume: 29
  start-page: 1704510
  year: 2017
  ident: bib29
  article-title: A twisted thieno[3,4-
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1704904
  year: 2018
  ident: bib8
  article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells
  publication-title: Adv. Mater.
– volume: 3
  start-page: 18003
  year: 2018
  ident: bib31
  article-title: Non-fullerene acceptors for organic solar cells
  publication-title: Nat. Mater. Rev.
– volume: 139
  start-page: 17114
  year: 2017
  end-page: 17119
  ident: bib13
  article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 2
  year: 2015
  end-page: 7
  ident: bib30
  article-title: A key role of orbital interaction in the main group element-containing π-electron systems
  publication-title: Chem. Lett.
– volume: 139
  start-page: 7148
  year: 2017
  end-page: 7151
  ident: bib41
  article-title: Molecular optimization enables over 13% efficiency in organic solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 22519
  year: 2018
  end-page: 22525
  ident: bib40
  article-title: One-pot synthesis of electron-acceptor composite enables efficient fullerene-free ternary organic solar cells
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1801537
  year: 2018
  ident: bib1
  article-title: An analysis of the factors determining the efficiency of photocurrent generation in polymer: nonfullerene acceptor solar cells
  publication-title: Adv. Energy Mater
– volume: 1
  start-page: 16089
  year: 2016
  ident: bib16
  article-title: Fast charge separation in a non-fullerene organic solar cell with a small driving force
  publication-title: Nat. Energy
– volume: 30
  start-page: 1803045
  year: 2018
  ident: bib28
  article-title: Morphology control enables efficient ternary organic solar cells
  publication-title: Adv. Mater.
– volume: 3
  start-page: 952
  year: 2018
  end-page: 959
  ident: bib42
  article-title: High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors
  publication-title: Nat. Energy
– volume: 10
  start-page: 1610
  year: 2017
  end-page: 1620
  ident: bib12
  article-title: A near-infrared non-fullerene electron acceptor for high performance polymer solar cells
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2515
  year: 2019
  ident: bib4
  article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages
  publication-title: Nat. Commun.
– volume: 2
  start-page: 25
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib21
  article-title: Understanding energy loss in organic solar cells: toward a new efficiency regime
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.020
– volume: 30
  start-page: 1800403
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib18
  article-title: Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800403
– volume: 270
  start-page: 1789
  year: 1995
  ident: 10.1016/j.isci.2019.08.038_bib34
  article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 30
  start-page: 1804215
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib2
  article-title: Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804215
– volume: 4
  start-page: 014020
  year: 2015
  ident: 10.1016/j.isci.2019.08.038_bib33
  article-title: Quantifying losses in open-circuit voltage in solution-processable solar cells
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.014020
– volume: 12
  start-page: 131
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib3
  article-title: Next-generation organic photovoltaics based on non-fullerene acceptors
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0104-9
– volume: 115
  start-page: 12666
  year: 2015
  ident: 10.1016/j.isci.2019.08.038_bib20
  article-title: Recent advances in bulk heterojunction polymer solar cells
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00098
– volume: 8
  start-page: 1801537
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib1
  article-title: An analysis of the factors determining the efficiency of photocurrent generation in polymer: nonfullerene acceptor solar cells
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201801537
– volume: 29
  start-page: 1606574
  year: 2017
  ident: 10.1016/j.isci.2019.08.038_bib15
  article-title: Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606574
– volume: 28
  start-page: 7821
  year: 2016
  ident: 10.1016/j.isci.2019.08.038_bib9
  article-title: Bulk-heterojunction organic solar cells: Five core technologies for their commercialization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601197
– volume: 11
  start-page: 3392
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib22
  article-title: Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01564C
– volume: 139
  start-page: 4929
  year: 2017
  ident: 10.1016/j.isci.2019.08.038_bib7
  article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01170
– volume: 48
  start-page: 1596
  year: 2019
  ident: 10.1016/j.isci.2019.08.038_bib27
  article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00892A
– volume: 28
  start-page: 8283
  year: 2016
  ident: 10.1016/j.isci.2019.08.038_bib32
  article-title: Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602642
– volume: 17
  start-page: 703
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib23
  article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0128-z
– volume: 34
  start-page: 2
  year: 2015
  ident: 10.1016/j.isci.2019.08.038_bib30
  article-title: A key role of orbital interaction in the main group element-containing π-electron systems
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2005.2
– volume: 10
  start-page: 2515
  year: 2019
  ident: 10.1016/j.isci.2019.08.038_bib4
  article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10351-5
– volume: 1
  start-page: 16089
  year: 2016
  ident: 10.1016/j.isci.2019.08.038_bib16
  article-title: Fast charge separation in a non-fullerene organic solar cell with a small driving force
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.89
– volume: 30
  start-page: 1803045
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib28
  article-title: Morphology control enables efficient ternary organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803045
– volume: 118
  start-page: 3447
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib38
  article-title: Nonfullerene acceptor molecules for bulk heterojunction organic solar cells
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00535
– volume: 30
  start-page: 1704904
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib8
  article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704904
– volume: 3
  start-page: 1140
  year: 2019
  ident: 10.1016/j.isci.2019.08.038_bib37
  article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 30
  start-page: 1800613
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib39
  article-title: J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800613
– volume: 30
  start-page: 1705209
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib5
  article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705209
– volume: 6
  start-page: 22519
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib40
  article-title: One-pot synthesis of electron-acceptor composite enables efficient fullerene-free ternary organic solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08961B
– volume: 30
  start-page: 1707150
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib24
  article-title: Dithieno[3,2-b:2’,3’-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707150
– volume: 29
  start-page: 1704510
  year: 2017
  ident: 10.1016/j.isci.2019.08.038_bib29
  article-title: A twisted thieno[3,4-b]thiophene-based electron acceptor featuring a 14-π-electron indenoindene core for high-performance organic photovoltaics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704510
– volume: 17
  start-page: 119
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib6
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 27
  start-page: 1170
  year: 2015
  ident: 10.1016/j.isci.2019.08.038_bib14
  article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404317
– year: 2019
  ident: 10.1016/j.isci.2019.08.038_bib17
  article-title: A nonfullerene acceptor with 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01030K
– volume: 3
  start-page: 952
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib42
  article-title: High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0234-9
– volume: 30
  start-page: 1705969
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib10
  article-title: Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705969
– volume: 10
  start-page: 1610
  year: 2017
  ident: 10.1016/j.isci.2019.08.038_bib12
  article-title: A near-infrared non-fullerene electron acceptor for high performance polymer solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00844A
– volume: 81
  start-page: 125204
  year: 2010
  ident: 10.1016/j.isci.2019.08.038_bib26
  article-title: Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.125204
– volume: 30
  start-page: 1707170
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib11
  article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707170
– volume: 10
  start-page: 2152
  year: 2019
  ident: 10.1016/j.isci.2019.08.038_bib36
  article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10098-z
– volume: 139
  start-page: 7148
  year: 2017
  ident: 10.1016/j.isci.2019.08.038_bib41
  article-title: Molecular optimization enables over 13% efficiency in organic solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02677
– volume: 11
  start-page: 3275
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib19
  article-title: Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01700J
– volume: 139
  start-page: 17114
  year: 2017
  ident: 10.1016/j.isci.2019.08.038_bib13
  article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11278
– volume: 3
  start-page: 18003
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib31
  article-title: Non-fullerene acceptors for organic solar cells
  publication-title: Nat. Mater. Rev.
  doi: 10.1038/natrevmats.2018.3
– volume: 8
  start-page: 1802131
  year: 2018
  ident: 10.1016/j.isci.2019.08.038_bib35
  article-title: Enhancing the photovoltaic performance of nonfullerene acceptors via conjugated rotatable end groups
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201802131
– volume: 8
  start-page: 904
  year: 2009
  ident: 10.1016/j.isci.2019.08.038_bib25
  article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2548
SSID ssj0002002496
Score 2.3848255
Snippet For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the...
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near infrared (NIR) molecular acceptor, the control of the...
SourceID doaj
swepub
pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 883
SubjectTerms Energy Storage
Materials Characterization
Science & Technology - Other Topics
SOLAR ENERGY
Solid State Physics
Title Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells
URI https://dx.doi.org/10.1016/j.isci.2019.08.038
https://www.ncbi.nlm.nih.gov/pubmed/31513973
https://www.proquest.com/docview/2290897728
https://www.osti.gov/biblio/1560784
https://pubmed.ncbi.nlm.nih.gov/PMC6739628
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164834
https://doaj.org/article/168099ed31d94db9a5bd865ab130bf8d
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnnpBIAqEAnIlxAVF5MN2nOPSbrVCLJUKRb1ZduxAqjRB7S6quPO_mbGT1UagcuGa2I48fs48JzNvCHkFmHBM11nMLDcxk0keG-nSWKLUSpWDx_Ll21YfxfKcvb_gFzulvjAmLMgDB8O9TYUEEuNsntqSWVNqbqwUXBt4-ZpaWnz7gs_bOUxd-t9rKIXnK8txjAkCaA4ZMyG4CzNeMa6r9PqdmJyy45W8eP_EOc162G9_46B_hlJOBEe9kzp5QO4P7JLOw6weknuue0R-nbkfQAfBR1Fge3QsbkDP-tbRvvYXl6erUzpvm68-OID2HV3p2-aq-Ym9Bg0nurhdX4c8CKo7S7EgqI-ihSYLn0JIP8DkaNPRkOFZ0U94cKZHrm1v9sn5yeLz0TIeqi_EleDZOi5g3UzqwEaprmtdubLm2nED_MckmcuTylpRCCZqOJRU0mogWjVzae5KYdPC5I_JrOs795RQw6RLbGnLzCaMaaGNzrhNihoTg601EUlH66tqkCbHChmtGmPQLhWumMIVU1g2M5cRebPt8z0Ic9zZ-h0u6rYlimr7CwA1NUBN_QtqEeEjJNTATwLvgKGaOx9-gPjBPijMW2EEE3TCHPZCsogcjrBSsLXxf43uXL-5USjFL4GfZzDCkwCz7QRyYGpAJfOIFBMATmY4vdM137x8uIDtJ3DM1wGqky7HzZe5N0rbbMAg-Kn52f-w3QHZQ4tgpE1WPCez9fXGvQA6tzYv_c79DZiySKs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Critical+Role+of+the+HOMO+Alignment+on+Maximizing+Current+Extraction+and+Suppressing+Energy+Loss+in+Organic+Solar+Cells&rft.jtitle=iScience&rft.au=Zhang%2C+Jianyun&rft.au=Liu%2C+Wenrui&rft.au=Zhang%2C+Ming&rft.au=Liu%2C+Yanfeng&rft.date=2019-09-27&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=883&rft_id=info:doi/10.1016%2Fj.isci.2019.08.038&rft.externalDocID=oai_DiVA_org_liu_164834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon