Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells
For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offset...
Saved in:
Published in | iScience Vol. 19; no. C; pp. 883 - 893 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.09.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
[Display omitted]
•NIR acceptors with high structural similarity and variable HOMO levels were designed•We achieved the highest PCE of 14.36% by combining J71, ZITI-C, and ZITI-N acceptors•We revealed the importance of the optimized driving force on the device performance
Energy Storage; Materials Characterization; Solid State Physics |
---|---|
AbstractList | For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (
E
loss
) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCE
avg
s of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
•
NIR acceptors with high structural similarity and variable HOMO levels were designed
•
We achieved the highest PCE of 14.36% by combining J71, ZITI-C, and ZITI-N acceptors
•
We revealed the importance of the optimized driving force on the device performance
Energy Storage; Materials Characterization; Solid State Physics For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (E ) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCE s of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. [Display omitted] •NIR acceptors with high structural similarity and variable HOMO levels were designed•We achieved the highest PCE of 14.36% by combining J71, ZITI-C, and ZITI-N acceptors•We revealed the importance of the optimized driving force on the device performance Energy Storage; Materials Characterization; Solid State Physics For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. : Energy Storage; Materials Characterization; Solid State Physics Subject Areas: Energy Storage, Materials Characterization, Solid State Physics For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 G 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss. |
Author | Liu, Yanfeng Zhu, Xiaozhang Zhou, Guanqing Zhang, Jianyun Liu, Feng Xu, Shengjie Liu, Wenrui Zhang, Fengling Zhu, Haiming Zhang, Ming |
AuthorAffiliation | 2 School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 5 Department of Chemistry, Zhejiang University, Hangzhou 310027, China 3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden 1 Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China 4 School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China |
AuthorAffiliation_xml | – name: 4 School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China – name: 3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden – name: 5 Department of Chemistry, Zhejiang University, Hangzhou 310027, China – name: 2 School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China – name: 1 Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
Author_xml | – sequence: 1 givenname: Jianyun surname: Zhang fullname: Zhang, Jianyun organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Wenrui surname: Liu fullname: Liu, Wenrui organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Ming surname: Zhang fullname: Zhang, Ming organization: School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Yanfeng surname: Liu fullname: Liu, Yanfeng organization: Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden – sequence: 5 givenname: Guanqing surname: Zhou fullname: Zhou, Guanqing organization: School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 6 givenname: Shengjie surname: Xu fullname: Xu, Shengjie email: xushengjie@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 7 givenname: Fengling surname: Zhang fullname: Zhang, Fengling organization: Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden – sequence: 8 givenname: Haiming surname: Zhu fullname: Zhu, Haiming organization: Department of Chemistry, Zhejiang University, Hangzhou 310027, China – sequence: 9 givenname: Feng surname: Liu fullname: Liu, Feng email: fengliu82@sjtu.edu.cn organization: School of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 10 givenname: Xiaozhang orcidid: 0000-0002-6812-0856 surname: Zhu fullname: Zhu, Xiaozhang email: xzzhu@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31513973$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1560784$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164834$$DView record from Swedish Publication Index |
BookMark | eNp9Ul1rFDEUHaRia-0f8EGCT77smsxnAiIs62oLWxZa9TVkkjvTLNlkm8ysre_-bzM7tXR9KAQS7j3n3I-c18mRdRaS5C3BU4JJ-XE91UHqaYoJm2I6xRl9kZykBWUTjPP06Mn7ODkLYY0xTuPJWfkqOc5IQTJWZSfJnyvYgTDatqi7ATT3utNSGHTlDCDX7IPnq8sVmhnd2g3YDjmLLsWd3ujfA2veez9EF3edF7LTMSusQtf9dushhAGysODbe7R0ISBt0cq3wmqJrp0RHs3BmPAmedkIE-Ds4T5NfnxdfJ-fT5arbxfz2XIiyyLtJhXFWU0gjkxE0wgJrCkEFDUpWI1TyLBUqqzKvGyKgkmqBEtZkwPJgJWKVHV2mlyMusqJNd96vRH-njuh-T7gfMuFjwswwElJMWOgMqJYrmomilrRshA1yXDdUBW1JqNW-AXbvj5Q-6J_zvZqRvdRKadZHvGfR3wEb0DJuDQvzAHtMGP1DW_djpdVxsqURoH3o4ALnebx8zuQN9JZC7LjpChxRYcqHx6qeHfbQ-j4Jvok7lhYcH3gacowZVW113v3tKHHTv6ZIwLSESB9_DoPzSOEYD6YkK_5YEI-mJBjyqMJI4n-R4qNisEXcShtnqd-GqkQLbDT4IchwUpQ2g8zKqefo_8FzIj5Jw |
CitedBy_id | crossref_primary_10_1039_D0EE02838J crossref_primary_10_1002_ange_202116111 crossref_primary_10_1002_anie_202219245 crossref_primary_10_1021_acsaem_3c02921 crossref_primary_10_1039_D0TA03128C crossref_primary_10_1016_j_cej_2024_157013 crossref_primary_10_1016_j_solener_2020_08_002 crossref_primary_10_1021_acs_macromol_4c00195 crossref_primary_10_1039_D4NJ01897D crossref_primary_10_1021_acsaem_2c00008 crossref_primary_10_1021_jacs_0c04084 crossref_primary_10_1021_acsami_0c13085 crossref_primary_10_1002_adma_202007177 crossref_primary_10_1021_acs_jpcc_1c01488 crossref_primary_10_1002_adma_202100830 crossref_primary_10_1016_j_jechem_2021_05_053 crossref_primary_10_1039_D0EE02461A crossref_primary_10_1002_pol_20220096 crossref_primary_10_1002_solr_202400047 crossref_primary_10_1007_s00894_025_06304_z crossref_primary_10_1002_anie_202116111 crossref_primary_10_1002_aesr_202400028 crossref_primary_10_3390_polym13010002 crossref_primary_10_1016_j_fmre_2023_03_010 crossref_primary_10_1002_slct_202101824 crossref_primary_10_1016_j_polymer_2022_124892 crossref_primary_10_3390_pr13020393 crossref_primary_10_1002_nano_202000012 crossref_primary_10_1021_acsaem_2c03868 crossref_primary_10_1103_PhysRevApplied_14_024034 crossref_primary_10_1016_j_jechem_2020_03_058 crossref_primary_10_1002_marc_202400275 crossref_primary_10_59717_j_xinn_mater_2023_100044 crossref_primary_10_1016_j_giant_2022_100093 crossref_primary_10_1021_acsaem_2c01320 crossref_primary_10_1002_cssc_202100592 crossref_primary_10_1002_marc_202200325 crossref_primary_10_1002_cssc_202101407 crossref_primary_10_1016_j_jechem_2019_12_007 crossref_primary_10_1039_D2TA00812B crossref_primary_10_1016_j_orgel_2021_106063 crossref_primary_10_1021_acsami_2c02272 crossref_primary_10_1021_acs_jpcc_0c09663 crossref_primary_10_1002_macp_202200168 crossref_primary_10_1021_jacs_0c12818 crossref_primary_10_1021_acsaem_1c02277 crossref_primary_10_1021_acsami_2c18540 crossref_primary_10_1002_ange_202219245 crossref_primary_10_1021_acsaem_2c01473 crossref_primary_10_1002_adfm_202111855 crossref_primary_10_1126_sciadv_adh2694 crossref_primary_10_1002_ente_202200215 crossref_primary_10_1039_D0TA02271C crossref_primary_10_1002_aenm_201903298 crossref_primary_10_1016_j_cej_2021_131404 crossref_primary_10_1021_acs_jpcc_0c05654 crossref_primary_10_1039_D0TA10334A crossref_primary_10_1002_solr_202100768 crossref_primary_10_1039_D1TA01500A crossref_primary_10_1021_acsenergylett_0c00177 crossref_primary_10_1002_solr_202201046 crossref_primary_10_1002_aenm_202102363 crossref_primary_10_1039_D1TC04948H crossref_primary_10_1021_acsenergylett_0c00537 crossref_primary_10_1016_j_isci_2021_102235 crossref_primary_10_1016_j_jpcs_2023_111837 crossref_primary_10_1002_ente_202201176 crossref_primary_10_1002_ente_202201211 crossref_primary_10_1016_j_nanoen_2023_108429 crossref_primary_10_1016_j_jechem_2021_01_027 crossref_primary_10_1021_acsami_2c13304 crossref_primary_10_3390_en16166076 crossref_primary_10_3390_en15134639 crossref_primary_10_1002_adma_202302452 crossref_primary_10_1002_adfm_202208950 |
Cites_doi | 10.1016/j.joule.2017.09.020 10.1002/adma.201800403 10.1126/science.270.5243.1789 10.1002/adma.201804215 10.1103/PhysRevApplied.4.014020 10.1038/s41566-018-0104-9 10.1021/acs.chemrev.5b00098 10.1002/aenm.201801537 10.1002/adma.201606574 10.1002/adma.201601197 10.1039/C8EE01564C 10.1021/jacs.7b01170 10.1039/C7CS00892A 10.1002/adma.201602642 10.1038/s41563-018-0128-z 10.1246/cl.2005.2 10.1038/s41467-019-10351-5 10.1038/nenergy.2016.89 10.1002/adma.201803045 10.1021/acs.chemrev.7b00535 10.1002/adma.201704904 10.1016/j.joule.2019.01.004 10.1002/adma.201800613 10.1002/adma.201705209 10.1039/C8TA08961B 10.1002/adma.201707150 10.1002/adma.201704510 10.1038/nmat5063 10.1002/adma.201404317 10.1039/C9EE01030K 10.1038/s41560-018-0234-9 10.1002/adma.201705969 10.1039/C7EE00844A 10.1103/PhysRevB.81.125204 10.1002/adma.201707170 10.1038/s41467-019-10098-z 10.1021/jacs.7b02677 10.1039/C8EE01700J 10.1021/jacs.7b11278 10.1038/natrevmats.2018.3 10.1002/aenm.201802131 10.1038/nmat2548 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 OTOTI 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC DOA |
DOI | 10.1016/j.isci.2019.08.038 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 893 |
ExternalDocumentID | oai_doaj_org_article_168099ed31d94db9a5bd865ab130bf8d oai_DiVA_org_liu_164834 PMC6739628 1560784 31513973 10_1016_j_isci_2019_08_038 S2589004219303165 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 OTOTI 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
ID | FETCH-LOGICAL-c652t-7803b1e0191afface9f5ae5b159b02e30cdd67646f559c8da929f4e13e96d17b3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:17:58 EDT 2025 Thu Aug 21 06:23:35 EDT 2025 Thu Aug 21 13:53:31 EDT 2025 Fri May 19 00:35:10 EDT 2023 Fri Jul 11 11:12:16 EDT 2025 Thu Apr 03 07:03:23 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 01:03:26 EDT 2025 Tue May 16 22:28:48 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Solid State Physics Materials Characterization Energy Storage |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c652t-7803b1e0191afface9f5ae5b159b02e30cdd67646f559c8da929f4e13e96d17b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) Lead Contact These authors contributed equally |
ORCID | 0000-0002-6812-0856 0000000268120856 |
OpenAccessLink | https://doaj.org/article/168099ed31d94db9a5bd865ab130bf8d |
PMID | 31513973 |
PQID | 2290897728 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_168099ed31d94db9a5bd865ab130bf8d swepub_primary_oai_DiVA_org_liu_164834 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6739628 osti_scitechconnect_1560784 proquest_miscellaneous_2290897728 pubmed_primary_31513973 crossref_primary_10_1016_j_isci_2019_08_038 crossref_citationtrail_10_1016_j_isci_2019_08_038 elsevier_sciencedirect_doi_10_1016_j_isci_2019_08_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-27 |
PublicationDateYYYYMMDD | 2019-09-27 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Netherlands |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Vandewal, Tvingstedt, Gadisa, Inganäs, Manca (bib26) 2010; 81 Cha, Tan, Wu, Dong, Zhang, Chen, Rajaram, Narayan, McCulloch, Durrant (bib1) 2018; 8 Yuan, Zhang, Zhou, Zhang, Yip, Lau, Lu, Zhu, Peng, Johnson (bib37) 2019; 3 Hou, Inganas, Friend, Gao (bib6) 2018; 17 Zhang, Zhao, Chow, Jiang, Zhang, Zhu, Zhang, Huang, Yan (bib38) 2018; 118 Yu, Gao, Hummelen, Wudl, Heeger (bib34) 1995; 270 Zhang, Liu, Chen, Xu, Yang, Zhu (bib40) 2018; 6 Kan, Feng, Wan, Liu, Ke, Wang, Wang, Zhang, Li, Hou, Chen (bib7) 2017; 139 Lin, Wang, Zhang, Bai, Li, Zhu, Zhan (bib14) 2015; 27 Wadsworth, Moser, Marks, Little, Gasparini, Brabec, Baran, McCulloch (bib27) 2019; 48 Yamaguchi, Tamao (bib30) 2015; 34 Zhang, Yao, Hou, Zhu, Zhang, Li, Yu, Gao, Zhang, Hou (bib39) 2018; 30 Liu, Luo, Chen, Yang, Xiao, Zhang, Ma, Lu, Zhan, Zhang (bib17) 2019 Liu, Luo, Fan, Zhang, Zhang, Gao, Guo, Ma, Zhang, Yang (bib19) 2018; 11 Lu, Zheng, Wu, Schneider, Zhao, Yu (bib20) 2015; 115 Li, Dai, Ke, Yang, Wang, Yan, Ma, Zhan (bib10) 2018; 30 Liu, Zhang, Zhou, Zhang, Zhang, Xu, Zhu (bib18) 2018; 30 Zhao, Li, Yao, Zhang, Zhang, Yang, Hou (bib41) 2017; 139 Sun, Ma, Zhang, Yu, Zhou, Yin, Yang, Geng, Zhu, Zhang, Tang (bib24) 2018; 30 Yu, Yao, Hong, Xu, Gao, Zhu, Zu, Hou (bib35) 2018; 8 Kan, Zhang, Liu, Wan, Li, Ke, Wang, Feng, Zhang, Long (bib8) 2018; 30 Yao, Kirchartz, Vezie, Faist, Gong, He, Wu, Troughton, Watson, Bryant (bib33) 2015; 4 Li, Zhong, Gautam, Bin, Lin, Wu, Zhang, Jiang, Zhang, Gundogdu (bib12) 2017; 10 Kang, Kim, Kim, Kwon, Kim, Lee (bib9) 2016; 28 Yao, Chen, Qin, Yu, Cui, Yang, Li, Zhang, Hou (bib32) 2016; 28 Li, Ye, Li, Yao, Ade, Hou (bib11) 2018; 30 Liu, Zhou, Zhang, Zhang, Hu, Vergote, Liu, Russell, Zhu (bib15) 2017; 29 Vandewal, Tvingstedt, Gadisa, Inganas, Manca (bib25) 2009; 8 Liu, Chen, Qian, Gautam, Yang, Zhao, Bergqvist, Zhang, Ma, Ade (bib16) 2016; 1 Zhou, Xu, Song, Jin, Yue, Qian, Liu, Zhang, Zhu (bib42) 2018; 3 Fei, Fei, Eisner, Jiao, Azzouzi, Röhr, Han, Shahid, Chesman, Easton (bib5) 2018; 30 Xie, Yang, Li, Uddin, Bi, Fan, Cai, Hao, Woo, Li (bib28) 2018; 30 Qian, Zheng, Yao, Tress, Hopper, Chen, Li, Liu, Chen, Zhang (bib23) 2018; 17 Yan, Barlow, Wang, Yan, Jen, Marder, Zhan (bib31) 2018; 3 Chen, Wang, Zhang, Zhao, Chen, Zhu, Yao, Zhang, Ma, Friend, Chow (bib2) 2018; 30 Cui, Yao, Zhang, Zhang, Wang, Hong, Xian, Xu, Zhang, Peng (bib4) 2019; 10 Li, Lin, Che, Qu, Liu, Liao, Forrest (bib13) 2017; 139 Nian, Kan, Wang, Gao, Xu, Rong, Wang, Wang, Liu, Chen (bib22) 2018; 11 Menke, Ran, Bazan, Friend (bib21) 2018; 2 Cheng, Li, Zhan, Yang (bib3) 2018; 12 Xu, Zhou, Liu, Zhang, Liu, Yan, Zhu (bib29) 2017; 29 Yu, Liu, Chen, Qin, Lau, Yin, Kong, Lu, Shi, Li, Chen (bib36) 2019; 10 Fei (10.1016/j.isci.2019.08.038_bib5) 2018; 30 Yan (10.1016/j.isci.2019.08.038_bib31) 2018; 3 Yao (10.1016/j.isci.2019.08.038_bib32) 2016; 28 Yu (10.1016/j.isci.2019.08.038_bib36) 2019; 10 Li (10.1016/j.isci.2019.08.038_bib10) 2018; 30 Zhang (10.1016/j.isci.2019.08.038_bib40) 2018; 6 Xu (10.1016/j.isci.2019.08.038_bib29) 2017; 29 Yu (10.1016/j.isci.2019.08.038_bib35) 2018; 8 Liu (10.1016/j.isci.2019.08.038_bib19) 2018; 11 Cha (10.1016/j.isci.2019.08.038_bib1) 2018; 8 Chen (10.1016/j.isci.2019.08.038_bib2) 2018; 30 Menke (10.1016/j.isci.2019.08.038_bib21) 2018; 2 Qian (10.1016/j.isci.2019.08.038_bib23) 2018; 17 Wadsworth (10.1016/j.isci.2019.08.038_bib27) 2019; 48 Zhang (10.1016/j.isci.2019.08.038_bib39) 2018; 30 Li (10.1016/j.isci.2019.08.038_bib12) 2017; 10 Liu (10.1016/j.isci.2019.08.038_bib16) 2016; 1 Kan (10.1016/j.isci.2019.08.038_bib7) 2017; 139 Yao (10.1016/j.isci.2019.08.038_bib33) 2015; 4 Cui (10.1016/j.isci.2019.08.038_bib4) 2019; 10 Liu (10.1016/j.isci.2019.08.038_bib17) 2019 Yamaguchi (10.1016/j.isci.2019.08.038_bib30) 2015; 34 Kang (10.1016/j.isci.2019.08.038_bib9) 2016; 28 Vandewal (10.1016/j.isci.2019.08.038_bib26) 2010; 81 Cheng (10.1016/j.isci.2019.08.038_bib3) 2018; 12 Kan (10.1016/j.isci.2019.08.038_bib8) 2018; 30 Li (10.1016/j.isci.2019.08.038_bib11) 2018; 30 Hou (10.1016/j.isci.2019.08.038_bib6) 2018; 17 Li (10.1016/j.isci.2019.08.038_bib13) 2017; 139 Sun (10.1016/j.isci.2019.08.038_bib24) 2018; 30 Zhou (10.1016/j.isci.2019.08.038_bib42) 2018; 3 Liu (10.1016/j.isci.2019.08.038_bib15) 2017; 29 Yu (10.1016/j.isci.2019.08.038_bib34) 1995; 270 Zhang (10.1016/j.isci.2019.08.038_bib38) 2018; 118 Nian (10.1016/j.isci.2019.08.038_bib22) 2018; 11 Yuan (10.1016/j.isci.2019.08.038_bib37) 2019; 3 Zhao (10.1016/j.isci.2019.08.038_bib41) 2017; 139 Liu (10.1016/j.isci.2019.08.038_bib18) 2018; 30 Xie (10.1016/j.isci.2019.08.038_bib28) 2018; 30 Lu (10.1016/j.isci.2019.08.038_bib20) 2015; 115 Vandewal (10.1016/j.isci.2019.08.038_bib25) 2009; 8 Lin (10.1016/j.isci.2019.08.038_bib14) 2015; 27 |
References_xml | – volume: 11 start-page: 3392 year: 2018 end-page: 3399 ident: bib22 article-title: Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13% publication-title: Energy Environ. Sci. – volume: 3 start-page: 1140 year: 2019 end-page: 1151 ident: bib37 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule – volume: 30 start-page: 1707170 year: 2018 ident: bib11 article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor publication-title: Adv. Mater. – volume: 28 start-page: 7821 year: 2016 end-page: 7861 ident: bib9 article-title: Bulk-heterojunction organic solar cells: Five core technologies for their commercialization publication-title: Adv. Mater. – volume: 10 start-page: 2152 year: 2019 ident: bib36 article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells publication-title: Nat. Commun. – volume: 30 start-page: 1804215 year: 2018 ident: bib2 article-title: Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer publication-title: Adv. Mater. – volume: 27 start-page: 1170 year: 2015 end-page: 1174 ident: bib14 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv. Mater. – volume: 17 start-page: 119 year: 2018 end-page: 128 ident: bib6 article-title: Organic solar cells based on non-fullerene acceptors publication-title: Nat. Mater. – year: 2019 ident: bib17 article-title: A nonfullerene acceptor with 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15% publication-title: Energy Environ. Sci. – volume: 8 start-page: 1802131 year: 2018 ident: bib35 article-title: Enhancing the photovoltaic performance of nonfullerene acceptors via conjugated rotatable end groups publication-title: Adv. Energy Mater – volume: 48 start-page: 1596 year: 2019 end-page: 1625 ident: bib27 article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells publication-title: Chem. Soc. Rev. – volume: 30 start-page: 1705209 year: 2018 ident: bib5 article-title: An alkylated indacenodithieno[3,2- publication-title: Adv. Mater. – volume: 29 start-page: 1606574 year: 2017 ident: bib15 article-title: Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor publication-title: Adv. Mater. – volume: 81 start-page: 125204 year: 2010 ident: bib26 article-title: Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells publication-title: Phys. Rev. B – volume: 118 start-page: 3447 year: 2018 end-page: 3507 ident: bib38 article-title: Nonfullerene acceptor molecules for bulk heterojunction organic solar cells publication-title: Chem. Rev. – volume: 11 start-page: 3275 year: 2018 end-page: 3282 ident: bib19 article-title: Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors publication-title: Energy Environ. Sci. – volume: 115 start-page: 12666 year: 2015 end-page: 12731 ident: bib20 article-title: Recent advances in bulk heterojunction polymer solar cells publication-title: Chem. Rev. – volume: 2 start-page: 25 year: 2018 end-page: 35 ident: bib21 article-title: Understanding energy loss in organic solar cells: toward a new efficiency regime publication-title: Joule – volume: 4 start-page: 014020 year: 2015 ident: bib33 article-title: Quantifying losses in open-circuit voltage in solution-processable solar cells publication-title: Phys. Rev. Appl. – volume: 12 start-page: 131 year: 2018 end-page: 142 ident: bib3 article-title: Next-generation organic photovoltaics based on non-fullerene acceptors publication-title: Nat. Photon. – volume: 8 start-page: 904 year: 2009 end-page: 909 ident: bib25 article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells publication-title: Nat. Mater. – volume: 28 start-page: 8283 year: 2016 end-page: 8287 ident: bib32 article-title: Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells publication-title: Adv. Mater. – volume: 30 start-page: 1800403 year: 2018 ident: bib18 article-title: Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaics publication-title: Adv. Mater. – volume: 139 start-page: 4929 year: 2017 end-page: 4934 ident: bib7 article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1707150 year: 2018 ident: bib24 article-title: Dithieno[3,2- publication-title: Adv. Mater. – volume: 30 start-page: 1705969 year: 2018 ident: bib10 article-title: Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells publication-title: Adv. Mater. – volume: 30 start-page: 1800613 year: 2018 ident: bib39 article-title: J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor publication-title: Adv. Mater. – volume: 270 start-page: 1789 year: 1995 end-page: 1791 ident: bib34 article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions publication-title: Science – volume: 17 start-page: 703 year: 2018 end-page: 709 ident: bib23 article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells publication-title: Nat. Mater. – volume: 29 start-page: 1704510 year: 2017 ident: bib29 article-title: A twisted thieno[3,4- publication-title: Adv. Mater. – volume: 30 start-page: 1704904 year: 2018 ident: bib8 article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells publication-title: Adv. Mater. – volume: 3 start-page: 18003 year: 2018 ident: bib31 article-title: Non-fullerene acceptors for organic solar cells publication-title: Nat. Mater. Rev. – volume: 139 start-page: 17114 year: 2017 end-page: 17119 ident: bib13 article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 2 year: 2015 end-page: 7 ident: bib30 article-title: A key role of orbital interaction in the main group element-containing π-electron systems publication-title: Chem. Lett. – volume: 139 start-page: 7148 year: 2017 end-page: 7151 ident: bib41 article-title: Molecular optimization enables over 13% efficiency in organic solar cells publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 22519 year: 2018 end-page: 22525 ident: bib40 article-title: One-pot synthesis of electron-acceptor composite enables efficient fullerene-free ternary organic solar cells publication-title: J. Mater. Chem. A – volume: 8 start-page: 1801537 year: 2018 ident: bib1 article-title: An analysis of the factors determining the efficiency of photocurrent generation in polymer: nonfullerene acceptor solar cells publication-title: Adv. Energy Mater – volume: 1 start-page: 16089 year: 2016 ident: bib16 article-title: Fast charge separation in a non-fullerene organic solar cell with a small driving force publication-title: Nat. Energy – volume: 30 start-page: 1803045 year: 2018 ident: bib28 article-title: Morphology control enables efficient ternary organic solar cells publication-title: Adv. Mater. – volume: 3 start-page: 952 year: 2018 end-page: 959 ident: bib42 article-title: High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors publication-title: Nat. Energy – volume: 10 start-page: 1610 year: 2017 end-page: 1620 ident: bib12 article-title: A near-infrared non-fullerene electron acceptor for high performance polymer solar cells publication-title: Energy Environ. Sci. – volume: 10 start-page: 2515 year: 2019 ident: bib4 article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages publication-title: Nat. Commun. – volume: 2 start-page: 25 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib21 article-title: Understanding energy loss in organic solar cells: toward a new efficiency regime publication-title: Joule doi: 10.1016/j.joule.2017.09.020 – volume: 30 start-page: 1800403 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib18 article-title: Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaics publication-title: Adv. Mater. doi: 10.1002/adma.201800403 – volume: 270 start-page: 1789 year: 1995 ident: 10.1016/j.isci.2019.08.038_bib34 article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 30 start-page: 1804215 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib2 article-title: Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer publication-title: Adv. Mater. doi: 10.1002/adma.201804215 – volume: 4 start-page: 014020 year: 2015 ident: 10.1016/j.isci.2019.08.038_bib33 article-title: Quantifying losses in open-circuit voltage in solution-processable solar cells publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.4.014020 – volume: 12 start-page: 131 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib3 article-title: Next-generation organic photovoltaics based on non-fullerene acceptors publication-title: Nat. Photon. doi: 10.1038/s41566-018-0104-9 – volume: 115 start-page: 12666 year: 2015 ident: 10.1016/j.isci.2019.08.038_bib20 article-title: Recent advances in bulk heterojunction polymer solar cells publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00098 – volume: 8 start-page: 1801537 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib1 article-title: An analysis of the factors determining the efficiency of photocurrent generation in polymer: nonfullerene acceptor solar cells publication-title: Adv. Energy Mater doi: 10.1002/aenm.201801537 – volume: 29 start-page: 1606574 year: 2017 ident: 10.1016/j.isci.2019.08.038_bib15 article-title: Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor publication-title: Adv. Mater. doi: 10.1002/adma.201606574 – volume: 28 start-page: 7821 year: 2016 ident: 10.1016/j.isci.2019.08.038_bib9 article-title: Bulk-heterojunction organic solar cells: Five core technologies for their commercialization publication-title: Adv. Mater. doi: 10.1002/adma.201601197 – volume: 11 start-page: 3392 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib22 article-title: Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13% publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01564C – volume: 139 start-page: 4929 year: 2017 ident: 10.1016/j.isci.2019.08.038_bib7 article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01170 – volume: 48 start-page: 1596 year: 2019 ident: 10.1016/j.isci.2019.08.038_bib27 article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00892A – volume: 28 start-page: 8283 year: 2016 ident: 10.1016/j.isci.2019.08.038_bib32 article-title: Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201602642 – volume: 17 start-page: 703 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib23 article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells publication-title: Nat. Mater. doi: 10.1038/s41563-018-0128-z – volume: 34 start-page: 2 year: 2015 ident: 10.1016/j.isci.2019.08.038_bib30 article-title: A key role of orbital interaction in the main group element-containing π-electron systems publication-title: Chem. Lett. doi: 10.1246/cl.2005.2 – volume: 10 start-page: 2515 year: 2019 ident: 10.1016/j.isci.2019.08.038_bib4 article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages publication-title: Nat. Commun. doi: 10.1038/s41467-019-10351-5 – volume: 1 start-page: 16089 year: 2016 ident: 10.1016/j.isci.2019.08.038_bib16 article-title: Fast charge separation in a non-fullerene organic solar cell with a small driving force publication-title: Nat. Energy doi: 10.1038/nenergy.2016.89 – volume: 30 start-page: 1803045 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib28 article-title: Morphology control enables efficient ternary organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201803045 – volume: 118 start-page: 3447 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib38 article-title: Nonfullerene acceptor molecules for bulk heterojunction organic solar cells publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00535 – volume: 30 start-page: 1704904 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib8 article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201704904 – volume: 3 start-page: 1140 year: 2019 ident: 10.1016/j.isci.2019.08.038_bib37 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 30 start-page: 1800613 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib39 article-title: J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor publication-title: Adv. Mater. doi: 10.1002/adma.201800613 – volume: 30 start-page: 1705209 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib5 article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses publication-title: Adv. Mater. doi: 10.1002/adma.201705209 – volume: 6 start-page: 22519 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib40 article-title: One-pot synthesis of electron-acceptor composite enables efficient fullerene-free ternary organic solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08961B – volume: 30 start-page: 1707150 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib24 article-title: Dithieno[3,2-b:2’,3’-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201707150 – volume: 29 start-page: 1704510 year: 2017 ident: 10.1016/j.isci.2019.08.038_bib29 article-title: A twisted thieno[3,4-b]thiophene-based electron acceptor featuring a 14-π-electron indenoindene core for high-performance organic photovoltaics publication-title: Adv. Mater. doi: 10.1002/adma.201704510 – volume: 17 start-page: 119 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib6 article-title: Organic solar cells based on non-fullerene acceptors publication-title: Nat. Mater. doi: 10.1038/nmat5063 – volume: 27 start-page: 1170 year: 2015 ident: 10.1016/j.isci.2019.08.038_bib14 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201404317 – year: 2019 ident: 10.1016/j.isci.2019.08.038_bib17 article-title: A nonfullerene acceptor with 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15% publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01030K – volume: 3 start-page: 952 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib42 article-title: High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors publication-title: Nat. Energy doi: 10.1038/s41560-018-0234-9 – volume: 30 start-page: 1705969 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib10 article-title: Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201705969 – volume: 10 start-page: 1610 year: 2017 ident: 10.1016/j.isci.2019.08.038_bib12 article-title: A near-infrared non-fullerene electron acceptor for high performance polymer solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00844A – volume: 81 start-page: 125204 year: 2010 ident: 10.1016/j.isci.2019.08.038_bib26 article-title: Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.125204 – volume: 30 start-page: 1707170 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib11 article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor publication-title: Adv. Mater. doi: 10.1002/adma.201707170 – volume: 10 start-page: 2152 year: 2019 ident: 10.1016/j.isci.2019.08.038_bib36 article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-10098-z – volume: 139 start-page: 7148 year: 2017 ident: 10.1016/j.isci.2019.08.038_bib41 article-title: Molecular optimization enables over 13% efficiency in organic solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02677 – volume: 11 start-page: 3275 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib19 article-title: Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01700J – volume: 139 start-page: 17114 year: 2017 ident: 10.1016/j.isci.2019.08.038_bib13 article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11278 – volume: 3 start-page: 18003 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib31 article-title: Non-fullerene acceptors for organic solar cells publication-title: Nat. Mater. Rev. doi: 10.1038/natrevmats.2018.3 – volume: 8 start-page: 1802131 year: 2018 ident: 10.1016/j.isci.2019.08.038_bib35 article-title: Enhancing the photovoltaic performance of nonfullerene acceptors via conjugated rotatable end groups publication-title: Adv. Energy Mater doi: 10.1002/aenm.201802131 – volume: 8 start-page: 904 year: 2009 ident: 10.1016/j.isci.2019.08.038_bib25 article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells publication-title: Nat. Mater. doi: 10.1038/nmat2548 |
SSID | ssj0002002496 |
Score | 2.3848255 |
Snippet | For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the... For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near infrared (NIR) molecular acceptor, the control of the... |
SourceID | doaj swepub pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 883 |
SubjectTerms | Energy Storage Materials Characterization Science & Technology - Other Topics SOLAR ENERGY Solid State Physics |
Title | Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells |
URI | https://dx.doi.org/10.1016/j.isci.2019.08.038 https://www.ncbi.nlm.nih.gov/pubmed/31513973 https://www.proquest.com/docview/2290897728 https://www.osti.gov/biblio/1560784 https://pubmed.ncbi.nlm.nih.gov/PMC6739628 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164834 https://doaj.org/article/168099ed31d94db9a5bd865ab130bf8d |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnnpBIAqEAnIlxAVF5MN2nOPSbrVCLJUKRb1ZduxAqjRB7S6quPO_mbGT1UagcuGa2I48fs48JzNvCHkFmHBM11nMLDcxk0keG-nSWKLUSpWDx_Ll21YfxfKcvb_gFzulvjAmLMgDB8O9TYUEEuNsntqSWVNqbqwUXBt4-ZpaWnz7gs_bOUxd-t9rKIXnK8txjAkCaA4ZMyG4CzNeMa6r9PqdmJyy45W8eP_EOc162G9_46B_hlJOBEe9kzp5QO4P7JLOw6weknuue0R-nbkfQAfBR1Fge3QsbkDP-tbRvvYXl6erUzpvm68-OID2HV3p2-aq-Ym9Bg0nurhdX4c8CKo7S7EgqI-ihSYLn0JIP8DkaNPRkOFZ0U94cKZHrm1v9sn5yeLz0TIeqi_EleDZOi5g3UzqwEaprmtdubLm2nED_MckmcuTylpRCCZqOJRU0mogWjVzae5KYdPC5I_JrOs795RQw6RLbGnLzCaMaaGNzrhNihoTg601EUlH66tqkCbHChmtGmPQLhWumMIVU1g2M5cRebPt8z0Ic9zZ-h0u6rYlimr7CwA1NUBN_QtqEeEjJNTATwLvgKGaOx9-gPjBPijMW2EEE3TCHPZCsogcjrBSsLXxf43uXL-5USjFL4GfZzDCkwCz7QRyYGpAJfOIFBMATmY4vdM137x8uIDtJ3DM1wGqky7HzZe5N0rbbMAg-Kn52f-w3QHZQ4tgpE1WPCez9fXGvQA6tzYv_c79DZiySKs |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Critical+Role+of+the+HOMO+Alignment+on+Maximizing+Current+Extraction+and+Suppressing+Energy+Loss+in+Organic+Solar+Cells&rft.jtitle=iScience&rft.au=Zhang%2C+Jianyun&rft.au=Liu%2C+Wenrui&rft.au=Zhang%2C+Ming&rft.au=Liu%2C+Yanfeng&rft.date=2019-09-27&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=883&rft_id=info:doi/10.1016%2Fj.isci.2019.08.038&rft.externalDocID=oai_DiVA_org_liu_164834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |