Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes

We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 6; p. e5696
Main Authors Nagasawa, Toshihiko, Tabuchi, Hitoshi, Masumoto, Hiroki, Enno, Hiroki, Niki, Masanori, Ohsugi, Hideharu, Mitamura, Yoshinori
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 22.10.2018
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5–100%]) and high specificity of 99.5% (95% CI [97.1–99.9%]). The area under the curve was 0.9993 (95% CI [0.9993–0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning.
AbstractList We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5–100%]) and high specificity of 99.5% (95% CI [97.1–99.9%]). The area under the curve was 0.9993 (95% CI [0.9993–0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning.
We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5-100%]) and high specificity of 99.5% (95% CI [97.1-99.9%]). The area under the curve was 0.9993 (95% CI [0.9993-0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning.We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5-100%]) and high specificity of 99.5% (95% CI [97.1-99.9%]). The area under the curve was 0.9993 (95% CI [0.9993-0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning.
ArticleNumber e5696
Audience Academic
Author Tabuchi, Hitoshi
Nagasawa, Toshihiko
Ohsugi, Hideharu
Enno, Hiroki
Mitamura, Yoshinori
Niki, Masanori
Masumoto, Hiroki
Author_xml – sequence: 1
  givenname: Toshihiko
  surname: Nagasawa
  fullname: Nagasawa, Toshihiko
  organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan
– sequence: 2
  givenname: Hitoshi
  surname: Tabuchi
  fullname: Tabuchi, Hitoshi
  organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan
– sequence: 3
  givenname: Hiroki
  surname: Masumoto
  fullname: Masumoto, Hiroki
  organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan
– sequence: 4
  givenname: Hiroki
  surname: Enno
  fullname: Enno, Hiroki
  organization: Rist Inc., Tokyo, Japan
– sequence: 5
  givenname: Masanori
  surname: Niki
  fullname: Niki, Masanori
  organization: Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima Prefecture, Japan
– sequence: 6
  givenname: Hideharu
  surname: Ohsugi
  fullname: Ohsugi, Hideharu
  organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan
– sequence: 7
  givenname: Yoshinori
  surname: Mitamura
  fullname: Mitamura, Yoshinori
  organization: Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima Prefecture, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30370184$$D View this record in MEDLINE/PubMed
BookMark eNptkstq3DAUhk1JaS7Npg9QDIUSSjyVfJHsTWEIvQQC3bRrcSwfjTXIkivZLfMQfefKmSTMlEgLiaP__3Qk_vPkxDqLSfKGkhXnlH8cEf12VbGGvUjOcsp4VhdVc3KwP00uQ9iSOOqckbp4lZwWpOCE1uVZ8nct5exB7lKn0g5xTA2Ct9purlNIB5C9tvhUSyeUvXXGbXbX6RyWymwmD9kf3WGmNJouVbPt5pC6sZ96MIML0o27VDkf8dE-LSbdaTfC1Gu5XDEb8GnvDIbXyUsFJuDlw3qR_Pzy-cfNt-zu-9fbm_VdJlmVT1nOoeEMOdZSdk1FJSvLjvKaAJCGFC0lLUqVo8KCtqQF2bCmRtYSVVKUvCwukts9t3OwFaPXA_idcKDFfcH5jQA_aWlQlKxUOZWUAIWyjFeyJuesUPHzGaMFjaxPe9Y4twN2Em38EHMEPT6xuhcb91uwnFBe1BFw9QDw7teMYRKDDhKNAYtuDiKnOWsIr-ul73d76QZia9oqF4lykYt1xUjBKKlIVK2eUcXZ4aBljI_SsX5keH9g6BHM1Adn5kk7G46Fbw_f-vTIxzxFAdkLpHcheFRC6gkWTmxBG0GJWFIr7lMrltRGy4f_LI_UZ8T_AB_17tY
CitedBy_id crossref_primary_10_1159_000512634
crossref_primary_10_3390_diagnostics14010105
crossref_primary_10_1167_tvst_13_2_1
crossref_primary_10_1038_s41433_021_01715_7
crossref_primary_10_1097_ICO_0000000000002279
crossref_primary_10_1038_s41746_020_00350_y
crossref_primary_10_4103_IJO_IJO_1895_24
crossref_primary_10_1080_13816810_2025_2455576
crossref_primary_10_1007_s00417_023_06101_5
crossref_primary_10_1007_s00417_021_05078_3
crossref_primary_10_1007_s00417_022_05741_3
crossref_primary_10_1007_s11517_021_02321_1
crossref_primary_10_1136_bjophthalmol_2021_319030
crossref_primary_10_1001_jamaophthalmol_2020_5900
crossref_primary_10_1186_s40942_025_00630_3
crossref_primary_10_7717_peerj_7256
crossref_primary_10_1371_journal_pone_0227240
crossref_primary_10_1016_j_survophthal_2024_09_003
crossref_primary_10_1007_s40123_022_00627_3
crossref_primary_10_1007_s00417_021_05105_3
crossref_primary_10_1038_s42256_022_00566_5
crossref_primary_10_1001_jamaophthalmol_2022_6393
crossref_primary_10_1136_bjophthalmol_2021_318844
crossref_primary_10_1038_s41598_020_76513_4
crossref_primary_10_1186_s40942_024_00526_8
crossref_primary_10_7717_peerj_6900
Cites_doi 10.1097/IAE.0000000000000937
10.1016/j.ajo.2014.07.021
10.1038/s41551-018-0195-0
10.1097/IAE.0b013e3182278b64
10.1111/aos.13618
10.1038/s41598-017-09891-x
10.1109/TBME.2014.2372011
10.1111/j.1442-9071.1995.tb00136.x
10.1016/j.ophtha.2009.09.019
10.1001/archopht.1988.01060130683026
10.1016/S0002-9394(00)00383-4
10.1001/jama.2016.17216
10.1016/S0002-9394(14)72781-3
10.1038/nature14539
10.1001/archopht.1991.01080050068031
10.1038/nature22985
10.1038/srep26286
10.1136/bjophthalmol-2011-301378
ContentType Journal Article
Copyright COPYRIGHT 2018 PeerJ. Ltd.
2018 Nagasawa et al. 2018 Nagasawa et al.
Copyright_xml – notice: COPYRIGHT 2018 PeerJ. Ltd.
– notice: 2018 Nagasawa et al. 2018 Nagasawa et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.7717/peerj.5696
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef



MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_464f21c10a1a447e8692763f77166131
PMC6201738
A560361050
30370184
10_7717_peerj_5696
Genre Journal Article
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
W2D
YAO
3V.
NPM
PMFND
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c652t-27a976e7e8ccd951c644d1780aa0903b10becf2efe31b0bac9698e6b0f41ec743
IEDL.DBID M48
ISSN 2167-8359
IngestDate Wed Aug 27 01:14:10 EDT 2025
Thu Aug 21 13:52:38 EDT 2025
Fri Jul 11 07:27:18 EDT 2025
Tue Jun 17 22:04:46 EDT 2025
Tue Jun 10 21:03:05 EDT 2025
Thu May 22 21:24:11 EDT 2025
Wed Feb 19 02:43:59 EST 2025
Tue Jul 01 00:34:11 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Macular holes
Wide-angle ocular fundus camera
Convolutional neural network
Wide- angle camera
Optos
Algorithm
Language English
License http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c652t-27a976e7e8ccd951c644d1780aa0903b10becf2efe31b0bac9698e6b0f41ec743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.5696
PMID 30370184
PQID 2126907884
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_464f21c10a1a447e8692763f77166131
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6201738
proquest_miscellaneous_2126907884
gale_infotracmisc_A560361050
gale_infotracacademiconefile_A560361050
gale_healthsolutions_A560361050
pubmed_primary_30370184
crossref_citationtrail_10_7717_peerj_5696
crossref_primary_10_7717_peerj_5696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-22
PublicationDateYYYYMMDD 2018-10-22
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2018
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Ogura (10.7717/peerj.5696/ref-13) 2014; 158
Selvaraju (10.7717/peerj.5696/ref-18) 2016
Gulshan (10.7717/peerj.5696/ref-5) 2016; 316
Kelly (10.7717/peerj.5696/ref-6) 1991; 109
Resnikoff (10.7717/peerj.5696/ref-16) 2012; 96
Prasad (10.7717/peerj.5696/ref-15) 2010; 117
Wessel (10.7717/peerj.5696/ref-19) 2012; 32
Ohsugi (10.7717/peerj.5696/ref-14) 2017; 7
Ryan (10.7717/peerj.5696/ref-17) 2018; 2
Gass (10.7717/peerj.5696/ref-3) 1988; 106
Gass (10.7717/peerj.5696/ref-4) 1995; 119
Litjens (10.7717/peerj.5696/ref-9) 2016; 6
Esteva (10.7717/peerj.5696/ref-1) 2017; 542
Liu (10.7717/peerj.5696/ref-10) 2015; 62
Nagiel (10.7717/peerj.5696/ref-12) 2016; 36
Forsaa (10.7717/peerj.5696/ref-2) 2017
Kishi (10.7717/peerj.5696/ref-7) 2000; 130
Luckie (10.7717/peerj.5696/ref-11) 1995; 23
LeCun (10.7717/peerj.5696/ref-8) 2015; 521
2025167 - Arch Ophthalmol. 1991 May;109(5):654-9
27212078 - Sci Rep. 2016 May 23;6:26286
25062603 - Am J Ophthalmol. 2014 Nov;158(5):1093-8
28842613 - Sci Rep. 2017 Aug 25;7(1):9425
25423647 - IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40
29197164 - Acta Ophthalmol. 2018 Jun;96(4):397-404
27014860 - Retina. 2016 Apr;36(4):660-78
28117445 - Nature. 2017 Feb 2;542(7639):115-118
22080911 - Retina. 2012 Apr;32(4):785-91
27898976 - JAMA. 2016 Dec 13;316(22):2402-2410
7546697 - Aust N Z J Ophthalmol. 1995 May;23(2):93-100
22452836 - Br J Ophthalmol. 2012 Jun;96(6):783-7
11004261 - Am J Ophthalmol. 2000 Jul;130(1):65-75
3358729 - Arch Ophthalmol. 1988 May;106(5):629-39
26017442 - Nature. 2015 May 28;521(7553):436-44
7785690 - Am J Ophthalmol. 1995 Jun;119(6):752-9
20045570 - Ophthalmology. 2010 Apr;117(4):780-4
References_xml – volume: 36
  start-page: 660
  year: 2016
  ident: 10.7717/peerj.5696/ref-12
  article-title: Ultra-widefield fundus imaging: a review of clinical applications and future trends
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000937
– volume: 158
  start-page: 1093
  year: 2014
  ident: 10.7717/peerj.5696/ref-13
  article-title: Wide-field fundus autofluorescence imaging to evaluate retinal function in patients with retinitis pigmentosa
  publication-title: American Journal of Ophthalmology
  doi: 10.1016/j.ajo.2014.07.021
– volume: 2
  start-page: 158
  year: 2018
  ident: 10.7717/peerj.5696/ref-17
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-018-0195-0
– volume: 32
  start-page: 785
  year: 2012
  ident: 10.7717/peerj.5696/ref-19
  article-title: Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy
  publication-title: Retina
  doi: 10.1097/IAE.0b013e3182278b64
– year: 2017
  ident: 10.7717/peerj.5696/ref-2
  article-title: Epidemiology and morphology of full-thickness macular holes
  publication-title: Acta Ophthalmologica
  doi: 10.1111/aos.13618
– volume: 7
  start-page: 9425
  year: 2017
  ident: 10.7717/peerj.5696/ref-14
  article-title: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-09891-x
– volume: 62
  start-page: 1132
  year: 2015
  ident: 10.7717/peerj.5696/ref-10
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2014.2372011
– volume: 23
  start-page: 93
  year: 1995
  ident: 10.7717/peerj.5696/ref-11
  article-title: Macular holes. Pathogenesis, natural history and surgical outcomes
  publication-title: Australian and New Zealand Journal of Ophthalomology
  doi: 10.1111/j.1442-9071.1995.tb00136.x
– volume: 117
  start-page: 780
  year: 2010
  ident: 10.7717/peerj.5696/ref-15
  article-title: Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.09.019
– volume: 106
  start-page: 629
  year: 1988
  ident: 10.7717/peerj.5696/ref-3
  article-title: Idiopathic senile macular hole: its early stages and pathogenesis
  publication-title: Archives of Ophthalmology
  doi: 10.1001/archopht.1988.01060130683026
– year: 2016
  ident: 10.7717/peerj.5696/ref-18
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
– volume: 130
  start-page: 65
  year: 2000
  ident: 10.7717/peerj.5696/ref-7
  article-title: Three-dimensional observations of developing macular holes
  publication-title: American Journal of Ophthalmology
  doi: 10.1016/S0002-9394(00)00383-4
– volume: 316
  start-page: 2402
  year: 2016
  ident: 10.7717/peerj.5696/ref-5
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.2016.17216
– volume: 119
  start-page: 752
  year: 1995
  ident: 10.7717/peerj.5696/ref-4
  article-title: Reappraisal of biomicroscopic classification of stages of development of a macular hole
  publication-title: American Journal of Ophthalmology
  doi: 10.1016/S0002-9394(14)72781-3
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.7717/peerj.5696/ref-8
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 109
  start-page: 654
  year: 1991
  ident: 10.7717/peerj.5696/ref-6
  article-title: Vitreous surgery for idiopathic macular holes: results of a pilot study
  publication-title: Archives of Ophthalmology
  doi: 10.1001/archopht.1991.01080050068031
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.7717/peerj.5696/ref-1
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature22985
– volume: 6
  start-page: 26286
  year: 2016
  ident: 10.7717/peerj.5696/ref-9
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Scientific Reports
  doi: 10.1038/srep26286
– volume: 96
  start-page: 783
  year: 2012
  ident: 10.7717/peerj.5696/ref-16
  article-title: The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200,000 practitioners
  publication-title: British Journal Ophthalmology
  doi: 10.1136/bjophthalmol-2011-301378
– reference: 11004261 - Am J Ophthalmol. 2000 Jul;130(1):65-75
– reference: 27014860 - Retina. 2016 Apr;36(4):660-78
– reference: 28117445 - Nature. 2017 Feb 2;542(7639):115-118
– reference: 25423647 - IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40
– reference: 22080911 - Retina. 2012 Apr;32(4):785-91
– reference: 3358729 - Arch Ophthalmol. 1988 May;106(5):629-39
– reference: 28842613 - Sci Rep. 2017 Aug 25;7(1):9425
– reference: 25062603 - Am J Ophthalmol. 2014 Nov;158(5):1093-8
– reference: 27212078 - Sci Rep. 2016 May 23;6:26286
– reference: 27898976 - JAMA. 2016 Dec 13;316(22):2402-2410
– reference: 29197164 - Acta Ophthalmol. 2018 Jun;96(4):397-404
– reference: 2025167 - Arch Ophthalmol. 1991 May;109(5):654-9
– reference: 7546697 - Aust N Z J Ophthalmol. 1995 May;23(2):93-100
– reference: 26017442 - Nature. 2015 May 28;521(7553):436-44
– reference: 20045570 - Ophthalmology. 2010 Apr;117(4):780-4
– reference: 22452836 - Br J Ophthalmol. 2012 Jun;96(6):783-7
– reference: 7785690 - Am J Ophthalmol. 1995 Jun;119(6):752-9
SSID ssj0000826083
Score 2.3004544
Snippet We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e5696
SubjectTerms Algorithm
Computational Science
Convolutional neural network
Deep learning
Diagnosis
Machine learning
Macular degeneration
Macular holes
Neural networks
Ophthalmology
Ophthalmoscope and ophthalmoscopy
Optos
Wide-angle ocular fundus camera
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXBJRHoBQjkBBSQ23HsZPjUlFVSOVEpd4sx3G6W22T1W4i1B_Bf2bGSaNEIHHhak8e9sxkPjvjbwj5kDDw5gI8zeZWxNIKGee5V7HXqvKVciUL1RsuvqvzS_ntKr2alPrCnLCeHrifuBOpZCW448xyK6X2mcoF-ESlAehDKAoLH4h5k8VU-AYDagZw0fORgqg-2Xi_vfmcKmTnn0SgQNT_5-d4Eo_muZKT4HP2mDwaUCNd9G_7hDzw9VOyfzH8Fz8gvxbOdVvr7mhT0dL7DR2qQVwfU0tvQ8KkH9toO-6nH1NMfL-m3RoeG_9clT4OOW0U4l3Z7WizWbZLu75t8PTKHQWEC7fH_w540apcNaGiscNHYD4rxWq7u2fk8uzrj9PzeCi0EDuVijYW2gIq8TC5zpUAuRyApJLrjFmL2zgFZ6DpSvjKJ7xghXW5yjOvClZJ7h1gkOdkr25q_5JQKQrOLay4FbSXhcgLjZhLi1RYZhMVkU_3k2_cwEKOxTDWBlYjqCgTFGVQURF5P8pueu6Nv0p9QR2OEsiXHRrAisxgReZfVhSRt2gBpj98Onq9WQAgTABhpiwiH4ME-j28sLPD8QUYNjJozSQPZ5Lgr27W_e7eygx2YZJb7ZtuZwBF4F5FlsmIvOitbhwVIA3NOPbomT3Ohj3vqVfLQBeuAOPpJHv1P-bpNXkIdwuEwEIckr122_k3gMra4ig44G9WGzad
  priority: 102
  providerName: Directory of Open Access Journals
Title Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes
URI https://www.ncbi.nlm.nih.gov/pubmed/30370184
https://www.proquest.com/docview/2126907884
https://pubmed.ncbi.nlm.nih.gov/PMC6201738
https://doaj.org/article/464f21c10a1a447e8692763f77166131
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZr2gvgmMIoRSAhpKbHj2skT6tDGhNQJISrtLXIcpy3qmtIPQf8I_mfu3DRaYE-8VJV9TuLc18_O-Q7gTRyhNueoaSY1IpRGyDBNnQqdVqUrlS0iX71hcKkuhvLzVe9qD3b1O-sXuLx1aUf1pIaLaffXj80HVHjEr12Nq5H3c-cW37s9lao7cIAeSZOCDmqY7y0yYmiEGtvspH8NOYJDtOI64olsuSafwf9fO33DUbWDKG94pfN7cLeGk6y_5f992HOzB3A4qD-YP4TffWvXC2M3rCpZ4dyc1WUiRifMsGsfSemaNrZqNtpPGEXEj9h6ircNf04KF_pgN4aOsFgvWTUfr8Zmel3RsZYNQ-iLl6cPEjRoUkwqX-rY0i0o0JVRGd7lIxien337eBHWFRhCq3piFQptEK447RJrC8RiFtFTwXUSGUP7OzmPUARK4UoX8zzKjU1VmjiVR6XkziI4eQz7s2rmngKTIufc4FJcYXuRizTXBMa06AkTmVgF8G738jNbpyenKhnTDJcpxLPM8ywjngXwuqGdb5Ny3Ep1SjxsKCiRtm-oFqOs1stMKlkKbnlkuJESJ6pSgSa3xGshcol5AC9JArLtqdTGHGR9RIoxQs9eFMBbT0Eiig9sTX2uAadNqbValMctSlRk2-p-tZOyjLoo-m3mqvUyQ3hBmxhJIgN4spW6ZlY74Q1At-SxNe12z2wy9nnEFYI_HSfP_nvkczjCPz49sBDHsL9arN0LxGirvAMHp2eXX752_B4H_n664h2vlH8AWFxDjQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+deep+learning%2C+a+machine+learning+technology%2C+using+ultra-wide-field+fundus+ophthalmoscopy+for+detecting+idiopathic+macular+holes&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Nagasawa%2C+Toshihiko&rft.au=Tabuchi%2C+Hitoshi&rft.au=Masumoto%2C+Hiroki&rft.au=Enno%2C+Hiroki&rft.date=2018-10-22&rft.pub=PeerJ+Inc&rft.eissn=2167-8359&rft.volume=6&rft_id=info:doi/10.7717%2Fpeerj.5696&rft_id=info%3Apmid%2F30370184&rft.externalDocID=PMC6201738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon