Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes
We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images...
Saved in:
Published in | PeerJ (San Francisco, CA) Vol. 6; p. e5696 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
22.10.2018
PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5–100%]) and high specificity of 99.5% (95% CI [97.1–99.9%]). The area under the curve was 0.9993 (95% CI [0.9993–0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning. |
---|---|
AbstractList | We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5–100%]) and high specificity of 99.5% (95% CI [97.1–99.9%]). The area under the curve was 0.9993 (95% CI [0.9993–0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning. We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5-100%]) and high specificity of 99.5% (95% CI [97.1-99.9%]). The area under the curve was 0.9993 (95% CI [0.9993-0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning.We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5-100%]) and high specificity of 99.5% (95% CI [97.1-99.9%]). The area under the curve was 0.9993 (95% CI [0.9993-0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning. |
ArticleNumber | e5696 |
Audience | Academic |
Author | Tabuchi, Hitoshi Nagasawa, Toshihiko Ohsugi, Hideharu Enno, Hiroki Mitamura, Yoshinori Niki, Masanori Masumoto, Hiroki |
Author_xml | – sequence: 1 givenname: Toshihiko surname: Nagasawa fullname: Nagasawa, Toshihiko organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan – sequence: 2 givenname: Hitoshi surname: Tabuchi fullname: Tabuchi, Hitoshi organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan – sequence: 3 givenname: Hiroki surname: Masumoto fullname: Masumoto, Hiroki organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan – sequence: 4 givenname: Hiroki surname: Enno fullname: Enno, Hiroki organization: Rist Inc., Tokyo, Japan – sequence: 5 givenname: Masanori surname: Niki fullname: Niki, Masanori organization: Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima Prefecture, Japan – sequence: 6 givenname: Hideharu surname: Ohsugi fullname: Ohsugi, Hideharu organization: Department of Ophthalmology, Tsukazaki Hospital, Himeji City, Hyogo Prefecture, Japan – sequence: 7 givenname: Yoshinori surname: Mitamura fullname: Mitamura, Yoshinori organization: Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima Prefecture, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30370184$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstq3DAUhk1JaS7Npg9QDIUSSjyVfJHsTWEIvQQC3bRrcSwfjTXIkivZLfMQfefKmSTMlEgLiaP__3Qk_vPkxDqLSfKGkhXnlH8cEf12VbGGvUjOcsp4VhdVc3KwP00uQ9iSOOqckbp4lZwWpOCE1uVZ8nct5exB7lKn0g5xTA2Ct9purlNIB5C9tvhUSyeUvXXGbXbX6RyWymwmD9kf3WGmNJouVbPt5pC6sZ96MIML0o27VDkf8dE-LSbdaTfC1Gu5XDEb8GnvDIbXyUsFJuDlw3qR_Pzy-cfNt-zu-9fbm_VdJlmVT1nOoeEMOdZSdk1FJSvLjvKaAJCGFC0lLUqVo8KCtqQF2bCmRtYSVVKUvCwukts9t3OwFaPXA_idcKDFfcH5jQA_aWlQlKxUOZWUAIWyjFeyJuesUPHzGaMFjaxPe9Y4twN2Em38EHMEPT6xuhcb91uwnFBe1BFw9QDw7teMYRKDDhKNAYtuDiKnOWsIr-ul73d76QZia9oqF4lykYt1xUjBKKlIVK2eUcXZ4aBljI_SsX5keH9g6BHM1Adn5kk7G46Fbw_f-vTIxzxFAdkLpHcheFRC6gkWTmxBG0GJWFIr7lMrltRGy4f_LI_UZ8T_AB_17tY |
CitedBy_id | crossref_primary_10_1159_000512634 crossref_primary_10_3390_diagnostics14010105 crossref_primary_10_1167_tvst_13_2_1 crossref_primary_10_1038_s41433_021_01715_7 crossref_primary_10_1097_ICO_0000000000002279 crossref_primary_10_1038_s41746_020_00350_y crossref_primary_10_4103_IJO_IJO_1895_24 crossref_primary_10_1080_13816810_2025_2455576 crossref_primary_10_1007_s00417_023_06101_5 crossref_primary_10_1007_s00417_021_05078_3 crossref_primary_10_1007_s00417_022_05741_3 crossref_primary_10_1007_s11517_021_02321_1 crossref_primary_10_1136_bjophthalmol_2021_319030 crossref_primary_10_1001_jamaophthalmol_2020_5900 crossref_primary_10_1186_s40942_025_00630_3 crossref_primary_10_7717_peerj_7256 crossref_primary_10_1371_journal_pone_0227240 crossref_primary_10_1016_j_survophthal_2024_09_003 crossref_primary_10_1007_s40123_022_00627_3 crossref_primary_10_1007_s00417_021_05105_3 crossref_primary_10_1038_s42256_022_00566_5 crossref_primary_10_1001_jamaophthalmol_2022_6393 crossref_primary_10_1136_bjophthalmol_2021_318844 crossref_primary_10_1038_s41598_020_76513_4 crossref_primary_10_1186_s40942_024_00526_8 crossref_primary_10_7717_peerj_6900 |
Cites_doi | 10.1097/IAE.0000000000000937 10.1016/j.ajo.2014.07.021 10.1038/s41551-018-0195-0 10.1097/IAE.0b013e3182278b64 10.1111/aos.13618 10.1038/s41598-017-09891-x 10.1109/TBME.2014.2372011 10.1111/j.1442-9071.1995.tb00136.x 10.1016/j.ophtha.2009.09.019 10.1001/archopht.1988.01060130683026 10.1016/S0002-9394(00)00383-4 10.1001/jama.2016.17216 10.1016/S0002-9394(14)72781-3 10.1038/nature14539 10.1001/archopht.1991.01080050068031 10.1038/nature22985 10.1038/srep26286 10.1136/bjophthalmol-2011-301378 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 PeerJ. Ltd. 2018 Nagasawa et al. 2018 Nagasawa et al. |
Copyright_xml | – notice: COPYRIGHT 2018 PeerJ. Ltd. – notice: 2018 Nagasawa et al. 2018 Nagasawa et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.7717/peerj.5696 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2167-8359 |
ExternalDocumentID | oai_doaj_org_article_464f21c10a1a447e8692763f77166131 PMC6201738 A560361050 30370184 10_7717_peerj_5696 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 88I 8FE 8FH AAFWJ AAYXX ABUWG ADBBV ADRAZ AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO ECGQY GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IEA IHR IHW ITC KQ8 LK8 M2P M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RPM W2D YAO 3V. NPM PMFND 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c652t-27a976e7e8ccd951c644d1780aa0903b10becf2efe31b0bac9698e6b0f41ec743 |
IEDL.DBID | M48 |
ISSN | 2167-8359 |
IngestDate | Wed Aug 27 01:14:10 EDT 2025 Thu Aug 21 13:52:38 EDT 2025 Fri Jul 11 07:27:18 EDT 2025 Tue Jun 17 22:04:46 EDT 2025 Tue Jun 10 21:03:05 EDT 2025 Thu May 22 21:24:11 EDT 2025 Wed Feb 19 02:43:59 EST 2025 Tue Jul 01 00:34:11 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Macular holes Wide-angle ocular fundus camera Convolutional neural network Wide- angle camera Optos Algorithm |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c652t-27a976e7e8ccd951c644d1780aa0903b10becf2efe31b0bac9698e6b0f41ec743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.5696 |
PMID | 30370184 |
PQID | 2126907884 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_464f21c10a1a447e8692763f77166131 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6201738 proquest_miscellaneous_2126907884 gale_infotracmisc_A560361050 gale_infotracacademiconefile_A560361050 gale_healthsolutions_A560361050 pubmed_primary_30370184 crossref_citationtrail_10_7717_peerj_5696 crossref_primary_10_7717_peerj_5696 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-22 |
PublicationDateYYYYMMDD | 2018-10-22 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego, USA |
PublicationTitle | PeerJ (San Francisco, CA) |
PublicationTitleAlternate | PeerJ |
PublicationYear | 2018 |
Publisher | PeerJ. Ltd PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
References | Ogura (10.7717/peerj.5696/ref-13) 2014; 158 Selvaraju (10.7717/peerj.5696/ref-18) 2016 Gulshan (10.7717/peerj.5696/ref-5) 2016; 316 Kelly (10.7717/peerj.5696/ref-6) 1991; 109 Resnikoff (10.7717/peerj.5696/ref-16) 2012; 96 Prasad (10.7717/peerj.5696/ref-15) 2010; 117 Wessel (10.7717/peerj.5696/ref-19) 2012; 32 Ohsugi (10.7717/peerj.5696/ref-14) 2017; 7 Ryan (10.7717/peerj.5696/ref-17) 2018; 2 Gass (10.7717/peerj.5696/ref-3) 1988; 106 Gass (10.7717/peerj.5696/ref-4) 1995; 119 Litjens (10.7717/peerj.5696/ref-9) 2016; 6 Esteva (10.7717/peerj.5696/ref-1) 2017; 542 Liu (10.7717/peerj.5696/ref-10) 2015; 62 Nagiel (10.7717/peerj.5696/ref-12) 2016; 36 Forsaa (10.7717/peerj.5696/ref-2) 2017 Kishi (10.7717/peerj.5696/ref-7) 2000; 130 Luckie (10.7717/peerj.5696/ref-11) 1995; 23 LeCun (10.7717/peerj.5696/ref-8) 2015; 521 2025167 - Arch Ophthalmol. 1991 May;109(5):654-9 27212078 - Sci Rep. 2016 May 23;6:26286 25062603 - Am J Ophthalmol. 2014 Nov;158(5):1093-8 28842613 - Sci Rep. 2017 Aug 25;7(1):9425 25423647 - IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40 29197164 - Acta Ophthalmol. 2018 Jun;96(4):397-404 27014860 - Retina. 2016 Apr;36(4):660-78 28117445 - Nature. 2017 Feb 2;542(7639):115-118 22080911 - Retina. 2012 Apr;32(4):785-91 27898976 - JAMA. 2016 Dec 13;316(22):2402-2410 7546697 - Aust N Z J Ophthalmol. 1995 May;23(2):93-100 22452836 - Br J Ophthalmol. 2012 Jun;96(6):783-7 11004261 - Am J Ophthalmol. 2000 Jul;130(1):65-75 3358729 - Arch Ophthalmol. 1988 May;106(5):629-39 26017442 - Nature. 2015 May 28;521(7553):436-44 7785690 - Am J Ophthalmol. 1995 Jun;119(6):752-9 20045570 - Ophthalmology. 2010 Apr;117(4):780-4 |
References_xml | – volume: 36 start-page: 660 year: 2016 ident: 10.7717/peerj.5696/ref-12 article-title: Ultra-widefield fundus imaging: a review of clinical applications and future trends publication-title: Retina doi: 10.1097/IAE.0000000000000937 – volume: 158 start-page: 1093 year: 2014 ident: 10.7717/peerj.5696/ref-13 article-title: Wide-field fundus autofluorescence imaging to evaluate retinal function in patients with retinitis pigmentosa publication-title: American Journal of Ophthalmology doi: 10.1016/j.ajo.2014.07.021 – volume: 2 start-page: 158 year: 2018 ident: 10.7717/peerj.5696/ref-17 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-018-0195-0 – volume: 32 start-page: 785 year: 2012 ident: 10.7717/peerj.5696/ref-19 article-title: Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy publication-title: Retina doi: 10.1097/IAE.0b013e3182278b64 – year: 2017 ident: 10.7717/peerj.5696/ref-2 article-title: Epidemiology and morphology of full-thickness macular holes publication-title: Acta Ophthalmologica doi: 10.1111/aos.13618 – volume: 7 start-page: 9425 year: 2017 ident: 10.7717/peerj.5696/ref-14 article-title: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment publication-title: Scientific Reports doi: 10.1038/s41598-017-09891-x – volume: 62 start-page: 1132 year: 2015 ident: 10.7717/peerj.5696/ref-10 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2014.2372011 – volume: 23 start-page: 93 year: 1995 ident: 10.7717/peerj.5696/ref-11 article-title: Macular holes. Pathogenesis, natural history and surgical outcomes publication-title: Australian and New Zealand Journal of Ophthalomology doi: 10.1111/j.1442-9071.1995.tb00136.x – volume: 117 start-page: 780 year: 2010 ident: 10.7717/peerj.5696/ref-15 article-title: Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.09.019 – volume: 106 start-page: 629 year: 1988 ident: 10.7717/peerj.5696/ref-3 article-title: Idiopathic senile macular hole: its early stages and pathogenesis publication-title: Archives of Ophthalmology doi: 10.1001/archopht.1988.01060130683026 – year: 2016 ident: 10.7717/peerj.5696/ref-18 article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization – volume: 130 start-page: 65 year: 2000 ident: 10.7717/peerj.5696/ref-7 article-title: Three-dimensional observations of developing macular holes publication-title: American Journal of Ophthalmology doi: 10.1016/S0002-9394(00)00383-4 – volume: 316 start-page: 2402 year: 2016 ident: 10.7717/peerj.5696/ref-5 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Journal of the American Medical Association doi: 10.1001/jama.2016.17216 – volume: 119 start-page: 752 year: 1995 ident: 10.7717/peerj.5696/ref-4 article-title: Reappraisal of biomicroscopic classification of stages of development of a macular hole publication-title: American Journal of Ophthalmology doi: 10.1016/S0002-9394(14)72781-3 – volume: 521 start-page: 436 year: 2015 ident: 10.7717/peerj.5696/ref-8 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 109 start-page: 654 year: 1991 ident: 10.7717/peerj.5696/ref-6 article-title: Vitreous surgery for idiopathic macular holes: results of a pilot study publication-title: Archives of Ophthalmology doi: 10.1001/archopht.1991.01080050068031 – volume: 542 start-page: 115 year: 2017 ident: 10.7717/peerj.5696/ref-1 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature22985 – volume: 6 start-page: 26286 year: 2016 ident: 10.7717/peerj.5696/ref-9 article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis publication-title: Scientific Reports doi: 10.1038/srep26286 – volume: 96 start-page: 783 year: 2012 ident: 10.7717/peerj.5696/ref-16 article-title: The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200,000 practitioners publication-title: British Journal Ophthalmology doi: 10.1136/bjophthalmol-2011-301378 – reference: 11004261 - Am J Ophthalmol. 2000 Jul;130(1):65-75 – reference: 27014860 - Retina. 2016 Apr;36(4):660-78 – reference: 28117445 - Nature. 2017 Feb 2;542(7639):115-118 – reference: 25423647 - IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40 – reference: 22080911 - Retina. 2012 Apr;32(4):785-91 – reference: 3358729 - Arch Ophthalmol. 1988 May;106(5):629-39 – reference: 28842613 - Sci Rep. 2017 Aug 25;7(1):9425 – reference: 25062603 - Am J Ophthalmol. 2014 Nov;158(5):1093-8 – reference: 27212078 - Sci Rep. 2016 May 23;6:26286 – reference: 27898976 - JAMA. 2016 Dec 13;316(22):2402-2410 – reference: 29197164 - Acta Ophthalmol. 2018 Jun;96(4):397-404 – reference: 2025167 - Arch Ophthalmol. 1991 May;109(5):654-9 – reference: 7546697 - Aust N Z J Ophthalmol. 1995 May;23(2):93-100 – reference: 26017442 - Nature. 2015 May 28;521(7553):436-44 – reference: 20045570 - Ophthalmology. 2010 Apr;117(4):780-4 – reference: 22452836 - Br J Ophthalmol. 2012 Jun;96(6):783-7 – reference: 7785690 - Am J Ophthalmol. 1995 Jun;119(6):752-9 |
SSID | ssj0000826083 |
Score | 2.3004544 |
Snippet | We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e5696 |
SubjectTerms | Algorithm Computational Science Convolutional neural network Deep learning Diagnosis Machine learning Macular degeneration Macular holes Neural networks Ophthalmology Ophthalmoscope and ophthalmoscopy Optos Wide-angle ocular fundus camera |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXBJRHoBQjkBBSQ23HsZPjUlFVSOVEpd4sx3G6W22T1W4i1B_Bf2bGSaNEIHHhak8e9sxkPjvjbwj5kDDw5gI8zeZWxNIKGee5V7HXqvKVciUL1RsuvqvzS_ntKr2alPrCnLCeHrifuBOpZCW448xyK6X2mcoF-ESlAehDKAoLH4h5k8VU-AYDagZw0fORgqg-2Xi_vfmcKmTnn0SgQNT_5-d4Eo_muZKT4HP2mDwaUCNd9G_7hDzw9VOyfzH8Fz8gvxbOdVvr7mhT0dL7DR2qQVwfU0tvQ8KkH9toO-6nH1NMfL-m3RoeG_9clT4OOW0U4l3Z7WizWbZLu75t8PTKHQWEC7fH_w540apcNaGiscNHYD4rxWq7u2fk8uzrj9PzeCi0EDuVijYW2gIq8TC5zpUAuRyApJLrjFmL2zgFZ6DpSvjKJ7xghXW5yjOvClZJ7h1gkOdkr25q_5JQKQrOLay4FbSXhcgLjZhLi1RYZhMVkU_3k2_cwEKOxTDWBlYjqCgTFGVQURF5P8pueu6Nv0p9QR2OEsiXHRrAisxgReZfVhSRt2gBpj98Onq9WQAgTABhpiwiH4ME-j28sLPD8QUYNjJozSQPZ5Lgr27W_e7eygx2YZJb7ZtuZwBF4F5FlsmIvOitbhwVIA3NOPbomT3Ohj3vqVfLQBeuAOPpJHv1P-bpNXkIdwuEwEIckr122_k3gMra4ig44G9WGzad priority: 102 providerName: Directory of Open Access Journals |
Title | Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30370184 https://www.proquest.com/docview/2126907884 https://pubmed.ncbi.nlm.nih.gov/PMC6201738 https://doaj.org/article/464f21c10a1a447e8692763f77166131 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZr2gvgmMIoRSAhpKbHj2skT6tDGhNQJISrtLXIcpy3qmtIPQf8I_mfu3DRaYE-8VJV9TuLc18_O-Q7gTRyhNueoaSY1IpRGyDBNnQqdVqUrlS0iX71hcKkuhvLzVe9qD3b1O-sXuLx1aUf1pIaLaffXj80HVHjEr12Nq5H3c-cW37s9lao7cIAeSZOCDmqY7y0yYmiEGtvspH8NOYJDtOI64olsuSafwf9fO33DUbWDKG94pfN7cLeGk6y_5f992HOzB3A4qD-YP4TffWvXC2M3rCpZ4dyc1WUiRifMsGsfSemaNrZqNtpPGEXEj9h6ircNf04KF_pgN4aOsFgvWTUfr8Zmel3RsZYNQ-iLl6cPEjRoUkwqX-rY0i0o0JVRGd7lIxien337eBHWFRhCq3piFQptEK447RJrC8RiFtFTwXUSGUP7OzmPUARK4UoX8zzKjU1VmjiVR6XkziI4eQz7s2rmngKTIufc4FJcYXuRizTXBMa06AkTmVgF8G738jNbpyenKhnTDJcpxLPM8ywjngXwuqGdb5Ny3Ep1SjxsKCiRtm-oFqOs1stMKlkKbnlkuJESJ6pSgSa3xGshcol5AC9JArLtqdTGHGR9RIoxQs9eFMBbT0Eiig9sTX2uAadNqbValMctSlRk2-p-tZOyjLoo-m3mqvUyQ3hBmxhJIgN4spW6ZlY74Q1At-SxNe12z2wy9nnEFYI_HSfP_nvkczjCPz49sBDHsL9arN0LxGirvAMHp2eXX752_B4H_n664h2vlH8AWFxDjQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+deep+learning%2C+a+machine+learning+technology%2C+using+ultra-wide-field+fundus+ophthalmoscopy+for+detecting+idiopathic+macular+holes&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Nagasawa%2C+Toshihiko&rft.au=Tabuchi%2C+Hitoshi&rft.au=Masumoto%2C+Hiroki&rft.au=Enno%2C+Hiroki&rft.date=2018-10-22&rft.pub=PeerJ+Inc&rft.eissn=2167-8359&rft.volume=6&rft_id=info:doi/10.7717%2Fpeerj.5696&rft_id=info%3Apmid%2F30370184&rft.externalDocID=PMC6201738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon |