shRNA-mediated AMBRA1 knockdown reduces the cisplatin-induced autophagy and sensitizes ovarian cancer cells to cisplatin
Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important...
Saved in:
Published in | Journal of toxicological sciences Vol. 41; no. 1; pp. 45 - 53 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Society of Toxicology
01.02.2016
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important role in the autophagy pathway in ovarian cancer cells is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in ovarian cancer cells. We firstly confirmed autophagic activity in ovarian cancer OVCAR-3 cells which were treated with cisplatin by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization and the presence of autophagosomes and LC3 protein levels in OVCAR-3 cells. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We then knocked down Ambra1 expression with transfection with the plasmid expressing the small hairpin RNA (shRNA) targeting AMBRA1, then re-evaluated autophagy in the OVCAR-3 cells subject to cisplatin treatment, and re-determined the sensitivity of OVCAR-3 cells to cisplatin. Results demonstrated that cisplatin treatment induced autophagy in OVCAR-3 cells in association with Ambra1 upregulation in the ovarian cancer cells. When Ambra1 expression was reduced by shRNA, the ovarian cancer cells were more sensitive to cisplatin. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis in ovarian cancer cells subject to cisplatin to maintain the balance between autophagy and apoptosis. And the Ambra1-targeting inhibition might be an effective method to sensitize ovarian cancer cells to chemotherapy. |
---|---|
AbstractList | Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important role in the autophagy pathway in ovarian cancer cells is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in ovarian cancer cells. We firstly confirmed autophagic activity in ovarian cancer OVCAR-3 cells which were treated with cisplatin by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization and the presence of autophagosomes and LC3 protein levels in OVCAR-3 cells. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We then knocked down Ambra1 expression with transfection with the plasmid expressing the small hairpin RNA (shRNA) targeting AMBRA1, then re-evaluated autophagy in the OVCAR-3 cells subject to cisplatin treatment, and re-determined the sensitivity of OVCAR-3 cells to cisplatin. Results demonstrated that cisplatin treatment induced autophagy in OVCAR-3 cells in association with Ambra1 upregulation in the ovarian cancer cells. When Ambra1 expression was reduced by shRNA, the ovarian cancer cells were more sensitive to cisplatin. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis in ovarian cancer cells subject to cisplatin to maintain the balance between autophagy and apoptosis. And the Ambra1-targeting inhibition might be an effective method to sensitize ovarian cancer cells to chemotherapy. |
Author | Lin, Xueyan Yu, Lili Wei, Wei Zhang, Lijuan Hou, Xiaoman Tian, Yongjie Li, Xiaoyan |
Author_xml | – sequence: 1 fullname: Hou, Xiaoman organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University – sequence: 1 fullname: Tian, Yongjie organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University – sequence: 1 fullname: Lin, Xueyan organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University – sequence: 1 fullname: Zhang, Lijuan organization: Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University – sequence: 1 fullname: Yu, Lili organization: Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University – sequence: 1 fullname: Wei, Wei organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University – sequence: 1 fullname: Li, Xiaoyan organization: Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26763392$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0d9rFDEQB_AgFXutPvgPSMAX-7DXTLKb7IIvZ6k_oCoUfQ657Gwv173kTLJq_evNce0JxbwEhs98GWZOyJEPHgl5CWzOQcD5Oqd5DfO6eUJm0LasEl3bHZEZE21bgWjYMTlJac0YV6ypn5FjLpUUouMz8jutrr8sqg32zmTs6eLzu-sF0Fsf7G0ffnkasZ8sJppXSK1L29Fk5yvnd9WemimH7crc3FHje5rQJ5fdn8LDTxOd8dQabzFSi-NYMsK_iOfk6WDGhC_u_1Py_f3lt4uP1dXXD58uFleVlQ3PFXSAhiuDUjFsFVcNLNUAQ484WNFa4CAFB8M4k6pfWlWelUsmlK3rXlpxSt7sc7cx_JgwZb1xaTeO8RimpEHJputKRFvo60d0Haboy3Q7xZWU0PCiXt2raVnWprfRbUy80w87LeBsD2wMKUUcDgSY3t1Ll3vpGnTdFHv-yFqXy3qCz9G48b8db_cd65TNDR6yTczOjvggYc8PZbsyUaMXfwEQ165l |
CitedBy_id | crossref_primary_10_1186_s12943_016_0546_y crossref_primary_10_3390_ijms21031172 crossref_primary_10_1038_s41467_023_43174_6 crossref_primary_10_32604_biocell_2021_011827 crossref_primary_10_3390_cancers13174299 crossref_primary_10_1242_jcs_258910 crossref_primary_10_3389_fonc_2022_946086 crossref_primary_10_3390_biom12030463 crossref_primary_10_3390_cancers11111775 crossref_primary_10_1016_j_canlet_2024_216659 crossref_primary_10_1007_s11010_024_04946_w crossref_primary_10_1016_j_advms_2025_01_005 crossref_primary_10_1016_j_ymeth_2017_07_007 crossref_primary_10_1007_s10495_022_01762_9 crossref_primary_10_1016_j_lfs_2019_116709 crossref_primary_10_1080_14737159_2016_1188692 crossref_primary_10_1002_mco2_583 |
Cites_doi | 10.1093/abbs/gmt150 10.1074/jbc.M114.558288 10.3322/caac.20107 10.1007/s00404-010-1462-9 10.1101/gad.1599207 10.1042/CS20140336 10.4161/auto.7.1.14071 10.3109/00016489.2013.844365 10.1038/srep12291 10.1038/sj.emboj.7601689 10.1111/IGC.0b013e31819d7d10 10.1128/MCB.06159-11 10.1242/jcs.123075 10.1186/1756-9966-31-14 10.1111/bpa.12297 10.7314/APJCP.2015.16.7.2785 10.1042/BSR20140141 10.1152/ajpregu.00304.2010 10.1038/nprot.2008.73 10.1038/ncb3072 10.1093/carcin/bgs266 10.1038/nrm2245 10.1038/sj.onc.1206933 10.1146/annurev.pathol.4.110807.092246 10.1038/emboj.2011.49 10.3892/mmr.2014.2671 10.1080/15384101.2015.1021526 10.1515/hsz-2015-0147 10.1038/nature05925 10.1038/emboj.2011.75 10.3892/or.2015.4005 10.1016/j.humpath.2015.07.016 10.1038/onc.2011.384 10.1007/978-1-4615-1173-1_13 |
ContentType | Journal Article |
Copyright | 2016 The Japanese Society of Toxicology Copyright Japan Science and Technology Agency 2016 |
Copyright_xml | – notice: 2016 The Japanese Society of Toxicology – notice: Copyright Japan Science and Technology Agency 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7U7 C1K SOI |
DOI | 10.2131/jts.41.45 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Toxicology Abstracts MEDLINE Toxicology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1880-3989 |
EndPage | 53 |
ExternalDocumentID | 3944236311 26763392 10_2131_jts_41_45 article_jts_41_1_41_45_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | .55 123 29L 2WC 36B 53G ABDBF ACPRK ACUHS ADBBV AEGXH AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN ESX F5P GX1 HH5 JSF JSH KQ8 OK1 OVT RJT RNS RZJ SV3 TR2 TUS X7M XSB ~8M 3O- AAYXX AL- CITATION TKC CGR CUY CVF ECM EIF NPM 7ST 7U7 C1K SOI |
ID | FETCH-LOGICAL-c652t-191ea27ae670e872751b7f1fdeefc38c1216321a02067dbc7777c6b037c44d6c3 |
ISSN | 0388-1350 |
IngestDate | Fri Jul 11 07:52:55 EDT 2025 Sun Jun 29 16:46:50 EDT 2025 Mon Jul 21 06:07:34 EDT 2025 Tue Jul 01 01:36:56 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Wed Sep 03 06:30:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c652t-191ea27ae670e872751b7f1fdeefc38c1216321a02067dbc7777c6b037c44d6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jts/41/1/41_45/_article/-char/en |
PMID | 26763392 |
PQID | 1762766152 |
PQPubID | 2029103 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1765993218 proquest_journals_1762766152 pubmed_primary_26763392 crossref_primary_10_2131_jts_41_45 crossref_citationtrail_10_2131_jts_41_45 jstage_primary_article_jts_41_1_41_45_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Suita |
PublicationTitle | Journal of toxicological sciences |
PublicationTitleAlternate | J Toxicol Sci |
PublicationYear | 2016 |
Publisher | The Japanese Society of Toxicology Japan Science and Technology Agency |
Publisher_xml | – name: The Japanese Society of Toxicology – name: Japan Science and Technology Agency |
References | Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., Hickman, J.A., Geneste, O. and Kroemer, G. (2007): Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J., 26, 2527-2539. Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M. and Kroemer, G. (2012): Molecular mechanisms of cisplatin resistance. Oncogene, 31, 1869-1883. Miki, Y., Tanji, K., Mori, F., Utsumi, J., Sasaki, H., Kakita, A., Takahashi, H. and Wakabayashi, K. (2015): Alteration of Upstream Autophagy-Related Proteins (ULK1, ULK2, Beclin1, VPS34 and AMBRA1) in Lewy Body Disease. Brain Pathol. [Epub ahead of print] Zhou, Y.Y., Li, Y., Jiang, W.Q. and Zhou, L.F. (2015): MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci. Rep., 35. Bryant, C.S., Kumar, S., Spannuth, W., Shah, J.P., Munkarah, A.R., Deppe, G., Alvarez, R.D. and Morris, R.T. (2011): Feasibility of extension of platinum-free interval with weekly bolus topotecan and subsequent platinum retreatment outcomes in recurrent ovarian cancer. Arch. Gynecol. Obstet., 283, 361-367. Siddik, Z.H. (2003): Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265-7279. Tooze, S.A. and Codogno, P. (2011): Compartmentalized regulation of autophagy regulators: fine-tuning AMBRA1 by Bcl-2. Embo J., 30, 1185-1186. Tummala, M.K. and McGuire, W.P. (2005): Recurrent ovarian cancer. Clin. Adv. Hematol. Oncol., 3, 723-736. Wu, H.M., Jiang, Z.F., Ding, P.S., Shao, L.J. and Liu, R.Y. (2015): Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci. Rep., 5, 12291. Beljanski, V., Chiang, C. and Hiscotta, J. (2015): The intersection between viral oncolysis, drug resistance, and autophagy. Biol. Chem. [Epub ahead of print] Kim, A., Ueda, Y., Naka, T. and Enomoto, T. (2012): Therapeutic strategies in epithelial ovarian cancer. J. Exp. Clin. Cancer Res., 31, 14. Schmittgen, T.D. and Livak, K.J. (2008): Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 3, 1101-1108. Klionsky, D.J. (2007): Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8, 931-937. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D.(2011): Global cancer statistics. CA Cancer J. Clin., 61, 69-90. Wang, Y., Yin, W. and Zhu, X. (2014): Blocked autophagy enhances radiosensitivity of nasopharyngeal carcinoma cell line CNE-2 in vitro. Acta Otolaryngol, 134, 105-110. Bento, C.F., Puri, C., Moreau, K. and Rubinsztein, D.C. (2013): The role of membrane-trafficking small GTPases in the regulation of autophagy. J. Cell Sci., 126, 1059-1069. Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury, K. and Cecconi, F. (2007): Ambra1 regulates autophagy and development of the nervous system. Nature, 447, 1121-1125. Cianfanelli, V., Fuoco, C., Lorente, M., Salazar, M., Quondamatteo, F., Gherardini, P.F., De Zio, D., Nazio, F., Antonioli, M., D’Orazio, M., Skobo, T., Bordi, M., Rohde, M., Dalla Valle, L., Helmer-Citterich, M., Gretzmeier, C., Dengjel, J., Fimia, G.M., Piacentini, M., Di Bartolomeo, S., Velasco, G. and Cecconi, F. (2015a): AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat. Cell Biol., 17, 20-30. Siddik, Z.H. (2002): Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treat. Res., 112, 263-284. Wang, J. and Wu, G.S. (2014): Role of autophagy in cisplatin resistance in ovarian cancer cells. J. Biol. Chem., 289, 17163-17173. Sciarretta, S., Yee, D., Ammann, P., Nagarajan, N., Volpe, M., Frati, G. and Sadoshima, J. (2015): Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes. Clin. Sci. (Lond), 128, 387-403. Shuhua, W., Chenbo, S., Yangyang, L., Xiangqian, G., Shuang, H., Tangyue, L. and Dong, T. (2015): Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma. Hum. Pathol. [Epub ahead of print] Frankel, L.B. and Lund, A.H. (2012): MicroRNA regulation of autophagy. Carcinogenesis, 33, 2018-2025. Bao, L.J., Jaramillo, M.C., Zhang, Z.B., Zheng, Y.X., Yao, M., Zhang, D.D. and Yi, X.F. (2014): Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int. J. Clin. Exp. Pathol., 7, 1502-1513. Sun, Y., Zhang, J. and Peng, Z.L. (2009): Beclin1 induces autophagy and its potential contributions to sensitizes SiHa cells to carboplatin therapy. Int. J. Gynecol. Cancer, 19, 772-776. Alers, S., Löffler, A.S., Wesselborg, S. and Stork, B. (2012): Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol., 32, 2-11. Mizushima, N. (2007): Autophagy: process and function. Genes Dev., 21, 2861-2873. Cianfanelli, V., D'Orazio, M. and Cecconi, F. (2015b): AMBRA1 and BECLIN 1 interplay in the crosstalk between autophagy and cell proliferation. Cell Cycle, 14, 959-963. Cho, K.R. and Shih, I. (2009): Ovarian cancer. Annu. Rev. Pathol., 4, 287-313. Strappazzon, F., Vietri-Rudan, M., Campello, S., Nazio, F., Florenzano, F., Fimia, G.M., Piacentini, M., Levine, B. and Cecconi, F. (2011): Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. Embo J., 30, 1195-1208. Shen, M., Duan, W.M., Wu, M.Y., Wang, W.J., Liu, L., Xu, M.D., Zhu, J., Li, D.M., Gui, Q., Lian, L., Gong, F.R., Chen, K., Li, W. and Tao, M. (2015): Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol. Rep., 34, 359-367. Fimia, G.M., Di Bartolomeo, S., Piacentini, M. and Cecconi, F. (2011): Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy, 7, 115-117. Rosanò, L., Spinella, F. and Bagnato, A. (2010): The importance of endothelin axis in initiation, progression, and therapy of ovarian cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R395-R404. Sun, Y., Liu, J.H., Jin, L., Sui, Y.X., Han, L.L. and Huang, Y. (2015): Effect of autophagy-related beclin1 on sensitivity of cisplatin-resistant ovarian cancer cells to chemotherapeutic agents. Asian Pac. J. Cancer Prev., 16, 2785-2791. Bao, L., Jaramillo, M.C., Zhang, Z., Zheng, Y., Yao, M., Zhang, D.D. and Yi, X. (2015): Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol. Med. Rep., 11, 91-98. Lee, Y., Ma, J., Lyu, H., Huang, J., Kim, A. and Liu, B. (2014): Role of erbB3 receptors in cancer therapeutic resistance. Acta. Biochim. Biophys. Sin. (Shanghai), 46, 190-198. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M. and Kroemer, G. (2012): Molecular mechanisms of cisplatin resistance. Oncogene, 31, 1869-1883. – reference: Tummala, M.K. and McGuire, W.P. (2005): Recurrent ovarian cancer. Clin. Adv. Hematol. Oncol., 3, 723-736. – reference: Shuhua, W., Chenbo, S., Yangyang, L., Xiangqian, G., Shuang, H., Tangyue, L. and Dong, T. (2015): Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma. Hum. Pathol. [Epub ahead of print] – reference: Cho, K.R. and Shih, I. (2009): Ovarian cancer. Annu. Rev. Pathol., 4, 287-313. – reference: Rosanò, L., Spinella, F. and Bagnato, A. (2010): The importance of endothelin axis in initiation, progression, and therapy of ovarian cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R395-R404. – reference: Cianfanelli, V., Fuoco, C., Lorente, M., Salazar, M., Quondamatteo, F., Gherardini, P.F., De Zio, D., Nazio, F., Antonioli, M., D’Orazio, M., Skobo, T., Bordi, M., Rohde, M., Dalla Valle, L., Helmer-Citterich, M., Gretzmeier, C., Dengjel, J., Fimia, G.M., Piacentini, M., Di Bartolomeo, S., Velasco, G. and Cecconi, F. (2015a): AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat. Cell Biol., 17, 20-30. – reference: Siddik, Z.H. (2003): Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265-7279. – reference: Wu, H.M., Jiang, Z.F., Ding, P.S., Shao, L.J. and Liu, R.Y. (2015): Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci. Rep., 5, 12291. – reference: Alers, S., Löffler, A.S., Wesselborg, S. and Stork, B. (2012): Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol., 32, 2-11. – reference: Zhou, Y.Y., Li, Y., Jiang, W.Q. and Zhou, L.F. (2015): MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci. Rep., 35. – reference: Bao, L.J., Jaramillo, M.C., Zhang, Z.B., Zheng, Y.X., Yao, M., Zhang, D.D. and Yi, X.F. (2014): Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int. J. Clin. Exp. Pathol., 7, 1502-1513. – reference: Sciarretta, S., Yee, D., Ammann, P., Nagarajan, N., Volpe, M., Frati, G. and Sadoshima, J. (2015): Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes. Clin. Sci. (Lond), 128, 387-403. – reference: Strappazzon, F., Vietri-Rudan, M., Campello, S., Nazio, F., Florenzano, F., Fimia, G.M., Piacentini, M., Levine, B. and Cecconi, F. (2011): Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. Embo J., 30, 1195-1208. – reference: Bento, C.F., Puri, C., Moreau, K. and Rubinsztein, D.C. (2013): The role of membrane-trafficking small GTPases in the regulation of autophagy. J. Cell Sci., 126, 1059-1069. – reference: Bao, L., Jaramillo, M.C., Zhang, Z., Zheng, Y., Yao, M., Zhang, D.D. and Yi, X. (2015): Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol. Med. Rep., 11, 91-98. – reference: Fimia, G.M., Di Bartolomeo, S., Piacentini, M. and Cecconi, F. (2011): Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy, 7, 115-117. – reference: Wang, Y., Yin, W. and Zhu, X. (2014): Blocked autophagy enhances radiosensitivity of nasopharyngeal carcinoma cell line CNE-2 in vitro. Acta Otolaryngol, 134, 105-110. – reference: Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury, K. and Cecconi, F. (2007): Ambra1 regulates autophagy and development of the nervous system. Nature, 447, 1121-1125. – reference: Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., Hickman, J.A., Geneste, O. and Kroemer, G. (2007): Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J., 26, 2527-2539. – reference: Bryant, C.S., Kumar, S., Spannuth, W., Shah, J.P., Munkarah, A.R., Deppe, G., Alvarez, R.D. and Morris, R.T. (2011): Feasibility of extension of platinum-free interval with weekly bolus topotecan and subsequent platinum retreatment outcomes in recurrent ovarian cancer. Arch. Gynecol. Obstet., 283, 361-367. – reference: Shen, M., Duan, W.M., Wu, M.Y., Wang, W.J., Liu, L., Xu, M.D., Zhu, J., Li, D.M., Gui, Q., Lian, L., Gong, F.R., Chen, K., Li, W. and Tao, M. (2015): Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol. Rep., 34, 359-367. – reference: Miki, Y., Tanji, K., Mori, F., Utsumi, J., Sasaki, H., Kakita, A., Takahashi, H. and Wakabayashi, K. (2015): Alteration of Upstream Autophagy-Related Proteins (ULK1, ULK2, Beclin1, VPS34 and AMBRA1) in Lewy Body Disease. Brain Pathol. [Epub ahead of print] – reference: Schmittgen, T.D. and Livak, K.J. (2008): Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 3, 1101-1108. – reference: Siddik, Z.H. (2002): Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treat. Res., 112, 263-284. – reference: Sun, Y., Zhang, J. and Peng, Z.L. (2009): Beclin1 induces autophagy and its potential contributions to sensitizes SiHa cells to carboplatin therapy. Int. J. Gynecol. Cancer, 19, 772-776. – reference: Tooze, S.A. and Codogno, P. (2011): Compartmentalized regulation of autophagy regulators: fine-tuning AMBRA1 by Bcl-2. Embo J., 30, 1185-1186. – reference: Sun, Y., Liu, J.H., Jin, L., Sui, Y.X., Han, L.L. and Huang, Y. (2015): Effect of autophagy-related beclin1 on sensitivity of cisplatin-resistant ovarian cancer cells to chemotherapeutic agents. Asian Pac. J. Cancer Prev., 16, 2785-2791. – reference: Wang, J. and Wu, G.S. (2014): Role of autophagy in cisplatin resistance in ovarian cancer cells. J. Biol. Chem., 289, 17163-17173. – reference: Cianfanelli, V., D'Orazio, M. and Cecconi, F. (2015b): AMBRA1 and BECLIN 1 interplay in the crosstalk between autophagy and cell proliferation. Cell Cycle, 14, 959-963. – reference: Lee, Y., Ma, J., Lyu, H., Huang, J., Kim, A. and Liu, B. (2014): Role of erbB3 receptors in cancer therapeutic resistance. Acta. Biochim. Biophys. Sin. (Shanghai), 46, 190-198. – reference: Mizushima, N. (2007): Autophagy: process and function. Genes Dev., 21, 2861-2873. – reference: Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D.(2011): Global cancer statistics. CA Cancer J. Clin., 61, 69-90. – reference: Beljanski, V., Chiang, C. and Hiscotta, J. (2015): The intersection between viral oncolysis, drug resistance, and autophagy. Biol. Chem. [Epub ahead of print] – reference: Frankel, L.B. and Lund, A.H. (2012): MicroRNA regulation of autophagy. Carcinogenesis, 33, 2018-2025. – reference: Klionsky, D.J. (2007): Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8, 931-937. – reference: Kim, A., Ueda, Y., Naka, T. and Enomoto, T. (2012): Therapeutic strategies in epithelial ovarian cancer. J. Exp. Clin. Cancer Res., 31, 14. – ident: 17 doi: 10.1093/abbs/gmt150 – ident: 33 doi: 10.1074/jbc.M114.558288 – ident: 14 doi: 10.3322/caac.20107 – ident: 6 doi: 10.1007/s00404-010-1462-9 – ident: 20 doi: 10.1101/gad.1599207 – ident: 23 doi: 10.1042/CS20140336 – ident: 10 doi: 10.4161/auto.7.1.14071 – ident: 34 doi: 10.3109/00016489.2013.844365 – ident: 35 doi: 10.1038/srep12291 – ident: 18 doi: 10.1038/sj.emboj.7601689 – ident: 30 doi: 10.1111/IGC.0b013e31819d7d10 – ident: 1 doi: 10.1128/MCB.06159-11 – ident: 5 doi: 10.1242/jcs.123075 – ident: 15 doi: 10.1186/1756-9966-31-14 – ident: 19 doi: 10.1111/bpa.12297 – ident: 29 doi: 10.7314/APJCP.2015.16.7.2785 – ident: 36 doi: 10.1042/BSR20140141 – ident: 21 doi: 10.1152/ajpregu.00304.2010 – ident: 22 doi: 10.1038/nprot.2008.73 – ident: 8 doi: 10.1038/ncb3072 – ident: 12 doi: 10.1093/carcin/bgs266 – ident: 16 doi: 10.1038/nrm2245 – ident: 27 doi: 10.1038/sj.onc.1206933 – ident: 3 – ident: 7 doi: 10.1146/annurev.pathol.4.110807.092246 – ident: 28 doi: 10.1038/emboj.2011.49 – ident: 2 doi: 10.3892/mmr.2014.2671 – ident: 9 doi: 10.1080/15384101.2015.1021526 – ident: 4 doi: 10.1515/hsz-2015-0147 – ident: 11 doi: 10.1038/nature05925 – ident: 31 doi: 10.1038/emboj.2011.75 – ident: 24 doi: 10.3892/or.2015.4005 – ident: 32 – ident: 25 doi: 10.1016/j.humpath.2015.07.016 – ident: 13 doi: 10.1038/onc.2011.384 – ident: 26 doi: 10.1007/978-1-4615-1173-1_13 |
SSID | ssj0027054 |
Score | 2.1633613 |
Snippet | Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 45 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - physiology Ambra1 Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis - drug effects Apoptosis - genetics Autophagy Autophagy - drug effects Autophagy - genetics Cell Line, Tumor Cisplatin Cisplatin - pharmacology Cisplatin - therapeutic use Cisplatin sensitivity Drug Resistance, Neoplasm - drug effects Drug Resistance, Neoplasm - genetics Female Gene Knockdown Techniques Humans Microtubule-Associated Proteins - metabolism Molecular Targeted Therapy Ovarian cancer Ovarian Neoplasms - drug therapy Ovarian Neoplasms - genetics Ovarian Neoplasms - metabolism Ovarian Neoplasms - pathology Phagosomes - metabolism RNA, Small Interfering - genetics RNA, Small Interfering - physiology Transfection |
Title | shRNA-mediated AMBRA1 knockdown reduces the cisplatin-induced autophagy and sensitizes ovarian cancer cells to cisplatin |
URI | https://www.jstage.jst.go.jp/article/jts/41/1/41_45/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/26763392 https://www.proquest.com/docview/1762766152 https://www.proquest.com/docview/1765993218 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of Toxicological Sciences, 2016/02/01, Vol.41(1), pp.45-53 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK4AEJIb4pDGQQD0hTSh07cfdY8aEBYw9ok8pT5DguZEzp1CZo7GfwizmOXadbN2nQh7Ry7aTNPb4-17k-JuQVT-zAVOiogIuMxEhJdCkJIheLROWKp7mw652_7KU7B-LTJJn0en9WspaaOh_o0wvXlfyPVVEGu9pVsv9g2XBSFOAz7IsjLIzjlWy8-PF1bxy1iz8scbSpMmO29bOCjysQXW_NrS6r1XAAFnS5OLZ5b1WEKLyxT_1VY0UFlFdgWthM9ro8tSK0vxBAo99ri4j5lp3bb3UgwikuYbT17KTUwZn6sTVw9t02b2BSqtnvDpFhvnq3PGy64m-NKzsquydHbXO8rc5TsJDaHNwZh_UYdzKzA-PcLbxHxLfdJkJLfyzYGu6cc3W6k36YdhLD5weAmPF2AKgXA8EGywarItvnBr-QkohgyDbO0DQTLBPJNXI9Ruhhd8V49_FzF8QPEydJ5v-NU6uyTd-Eq57hODcOQfO_m8sjmJbJ7N8ht73B6Njh6S7pmeoeueXmb6lblnafnJzFFnXYogFb1GOLAlt0DVs0YIsCW7TDFvXYog5btMUWrWfdKR6Qgw_v99_uRH6XjkinSVxHCPiNiqUyqRyaEehwwnI5ZdPCmKnmI81iUP6YqaHdKKDItcRLp_mQSy1EkWr-kGxUs8o8JpTj5sYjpdNCGrgKhOJyewRGLKTSwylP-uT18r5m2kvY251UjrI16_XJy1D12Om2XFQpccYJVXxXXlZhrl4otish4Xj6ZHNpy8y7g0XGQCsk2G4S98mL8DWctb2TqjKzpq2TICAAre6TRw4D4dJxiqEe0cqTq_zyp-Rm18c2yUY9b8wzsOM6f97C9S_WKL_R |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=shRNA-mediated+AMBRA1+knockdown+reduces+the+cisplatin-induced+autophagy+and+sensitizes+ovarian+cancer+cells+to+cisplatin&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Li%2C+Xiaoyan&rft.au=Zhang%2C+Lijuan&rft.au=Yu%2C+Lili&rft.au=Wei%2C+Wei&rft.date=2016-02-01&rft.issn=0388-1350&rft.eissn=1880-3989&rft.volume=41&rft.issue=1&rft.spage=45&rft.epage=53&rft_id=info:doi/10.2131%2Fjts.41.45&rft.externalDBID=n%2Fa&rft.externalDocID=10_2131_jts_41_45 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon |