shRNA-mediated AMBRA1 knockdown reduces the cisplatin-induced autophagy and sensitizes ovarian cancer cells to cisplatin

Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important...

Full description

Saved in:
Bibliographic Details
Published inJournal of toxicological sciences Vol. 41; no. 1; pp. 45 - 53
Main Authors Hou, Xiaoman, Tian, Yongjie, Lin, Xueyan, Zhang, Lijuan, Yu, Lili, Wei, Wei, Li, Xiaoyan
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Toxicology 01.02.2016
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important role in the autophagy pathway in ovarian cancer cells is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in ovarian cancer cells. We firstly confirmed autophagic activity in ovarian cancer OVCAR-3 cells which were treated with cisplatin by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization and the presence of autophagosomes and LC3 protein levels in OVCAR-3 cells. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We then knocked down Ambra1 expression with transfection with the plasmid expressing the small hairpin RNA (shRNA) targeting AMBRA1, then re-evaluated autophagy in the OVCAR-3 cells subject to cisplatin treatment, and re-determined the sensitivity of OVCAR-3 cells to cisplatin. Results demonstrated that cisplatin treatment induced autophagy in OVCAR-3 cells in association with Ambra1 upregulation in the ovarian cancer cells. When Ambra1 expression was reduced by shRNA, the ovarian cancer cells were more sensitive to cisplatin. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis in ovarian cancer cells subject to cisplatin to maintain the balance between autophagy and apoptosis. And the Ambra1-targeting inhibition might be an effective method to sensitize ovarian cancer cells to chemotherapy.
AbstractList Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important role in the autophagy pathway in ovarian cancer cells is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in ovarian cancer cells. We firstly confirmed autophagic activity in ovarian cancer OVCAR-3 cells which were treated with cisplatin by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization and the presence of autophagosomes and LC3 protein levels in OVCAR-3 cells. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We then knocked down Ambra1 expression with transfection with the plasmid expressing the small hairpin RNA (shRNA) targeting AMBRA1, then re-evaluated autophagy in the OVCAR-3 cells subject to cisplatin treatment, and re-determined the sensitivity of OVCAR-3 cells to cisplatin. Results demonstrated that cisplatin treatment induced autophagy in OVCAR-3 cells in association with Ambra1 upregulation in the ovarian cancer cells. When Ambra1 expression was reduced by shRNA, the ovarian cancer cells were more sensitive to cisplatin. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis in ovarian cancer cells subject to cisplatin to maintain the balance between autophagy and apoptosis. And the Ambra1-targeting inhibition might be an effective method to sensitize ovarian cancer cells to chemotherapy.
Author Lin, Xueyan
Yu, Lili
Wei, Wei
Zhang, Lijuan
Hou, Xiaoman
Tian, Yongjie
Li, Xiaoyan
Author_xml – sequence: 1
  fullname: Hou, Xiaoman
  organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
– sequence: 1
  fullname: Tian, Yongjie
  organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
– sequence: 1
  fullname: Lin, Xueyan
  organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
– sequence: 1
  fullname: Zhang, Lijuan
  organization: Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University
– sequence: 1
  fullname: Yu, Lili
  organization: Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University
– sequence: 1
  fullname: Wei, Wei
  organization: Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
– sequence: 1
  fullname: Li, Xiaoyan
  organization: Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26763392$$D View this record in MEDLINE/PubMed
BookMark eNpt0d9rFDEQB_AgFXutPvgPSMAX-7DXTLKb7IIvZ6k_oCoUfQ657Gwv173kTLJq_evNce0JxbwEhs98GWZOyJEPHgl5CWzOQcD5Oqd5DfO6eUJm0LasEl3bHZEZE21bgWjYMTlJac0YV6ypn5FjLpUUouMz8jutrr8sqg32zmTs6eLzu-sF0Fsf7G0ffnkasZ8sJppXSK1L29Fk5yvnd9WemimH7crc3FHje5rQJ5fdn8LDTxOd8dQabzFSi-NYMsK_iOfk6WDGhC_u_1Py_f3lt4uP1dXXD58uFleVlQ3PFXSAhiuDUjFsFVcNLNUAQ484WNFa4CAFB8M4k6pfWlWelUsmlK3rXlpxSt7sc7cx_JgwZb1xaTeO8RimpEHJputKRFvo60d0Haboy3Q7xZWU0PCiXt2raVnWprfRbUy80w87LeBsD2wMKUUcDgSY3t1Ll3vpGnTdFHv-yFqXy3qCz9G48b8db_cd65TNDR6yTczOjvggYc8PZbsyUaMXfwEQ165l
CitedBy_id crossref_primary_10_1186_s12943_016_0546_y
crossref_primary_10_3390_ijms21031172
crossref_primary_10_1038_s41467_023_43174_6
crossref_primary_10_32604_biocell_2021_011827
crossref_primary_10_3390_cancers13174299
crossref_primary_10_1242_jcs_258910
crossref_primary_10_3389_fonc_2022_946086
crossref_primary_10_3390_biom12030463
crossref_primary_10_3390_cancers11111775
crossref_primary_10_1016_j_canlet_2024_216659
crossref_primary_10_1007_s11010_024_04946_w
crossref_primary_10_1016_j_advms_2025_01_005
crossref_primary_10_1016_j_ymeth_2017_07_007
crossref_primary_10_1007_s10495_022_01762_9
crossref_primary_10_1016_j_lfs_2019_116709
crossref_primary_10_1080_14737159_2016_1188692
crossref_primary_10_1002_mco2_583
Cites_doi 10.1093/abbs/gmt150
10.1074/jbc.M114.558288
10.3322/caac.20107
10.1007/s00404-010-1462-9
10.1101/gad.1599207
10.1042/CS20140336
10.4161/auto.7.1.14071
10.3109/00016489.2013.844365
10.1038/srep12291
10.1038/sj.emboj.7601689
10.1111/IGC.0b013e31819d7d10
10.1128/MCB.06159-11
10.1242/jcs.123075
10.1186/1756-9966-31-14
10.1111/bpa.12297
10.7314/APJCP.2015.16.7.2785
10.1042/BSR20140141
10.1152/ajpregu.00304.2010
10.1038/nprot.2008.73
10.1038/ncb3072
10.1093/carcin/bgs266
10.1038/nrm2245
10.1038/sj.onc.1206933
10.1146/annurev.pathol.4.110807.092246
10.1038/emboj.2011.49
10.3892/mmr.2014.2671
10.1080/15384101.2015.1021526
10.1515/hsz-2015-0147
10.1038/nature05925
10.1038/emboj.2011.75
10.3892/or.2015.4005
10.1016/j.humpath.2015.07.016
10.1038/onc.2011.384
10.1007/978-1-4615-1173-1_13
ContentType Journal Article
Copyright 2016 The Japanese Society of Toxicology
Copyright Japan Science and Technology Agency 2016
Copyright_xml – notice: 2016 The Japanese Society of Toxicology
– notice: Copyright Japan Science and Technology Agency 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7U7
C1K
SOI
DOI 10.2131/jts.41.45
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Toxicology Abstracts
MEDLINE
Toxicology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1880-3989
EndPage 53
ExternalDocumentID 3944236311
26763392
10_2131_jts_41_45
article_jts_41_1_41_45_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .55
123
29L
2WC
36B
53G
ABDBF
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
GX1
HH5
JSF
JSH
KQ8
OK1
OVT
RJT
RNS
RZJ
SV3
TR2
TUS
X7M
XSB
~8M
3O-
AAYXX
AL-
CITATION
TKC
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7U7
C1K
SOI
ID FETCH-LOGICAL-c652t-191ea27ae670e872751b7f1fdeefc38c1216321a02067dbc7777c6b037c44d6c3
ISSN 0388-1350
IngestDate Fri Jul 11 07:52:55 EDT 2025
Sun Jun 29 16:46:50 EDT 2025
Mon Jul 21 06:07:34 EDT 2025
Tue Jul 01 01:36:56 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Sep 03 06:30:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c652t-191ea27ae670e872751b7f1fdeefc38c1216321a02067dbc7777c6b037c44d6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jts/41/1/41_45/_article/-char/en
PMID 26763392
PQID 1762766152
PQPubID 2029103
PageCount 9
ParticipantIDs proquest_miscellaneous_1765993218
proquest_journals_1762766152
pubmed_primary_26763392
crossref_primary_10_2131_jts_41_45
crossref_citationtrail_10_2131_jts_41_45
jstage_primary_article_jts_41_1_41_45_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Suita
PublicationTitle Journal of toxicological sciences
PublicationTitleAlternate J Toxicol Sci
PublicationYear 2016
Publisher The Japanese Society of Toxicology
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society of Toxicology
– name: Japan Science and Technology Agency
References Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., Hickman, J.A., Geneste, O. and Kroemer, G. (2007): Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J., 26, 2527-2539.
Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M. and Kroemer, G. (2012): Molecular mechanisms of cisplatin resistance. Oncogene, 31, 1869-1883.
Miki, Y., Tanji, K., Mori, F., Utsumi, J., Sasaki, H., Kakita, A., Takahashi, H. and Wakabayashi, K. (2015): Alteration of Upstream Autophagy-Related Proteins (ULK1, ULK2, Beclin1, VPS34 and AMBRA1) in Lewy Body Disease. Brain Pathol. [Epub ahead of print]
Zhou, Y.Y., Li, Y., Jiang, W.Q. and Zhou, L.F. (2015): MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci. Rep., 35.
Bryant, C.S., Kumar, S., Spannuth, W., Shah, J.P., Munkarah, A.R., Deppe, G., Alvarez, R.D. and Morris, R.T. (2011): Feasibility of extension of platinum-free interval with weekly bolus topotecan and subsequent platinum retreatment outcomes in recurrent ovarian cancer. Arch. Gynecol. Obstet., 283, 361-367.
Siddik, Z.H. (2003): Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265-7279.
Tooze, S.A. and Codogno, P. (2011): Compartmentalized regulation of autophagy regulators: fine-tuning AMBRA1 by Bcl-2. Embo J., 30, 1185-1186.
Tummala, M.K. and McGuire, W.P. (2005): Recurrent ovarian cancer. Clin. Adv. Hematol. Oncol., 3, 723-736.
Wu, H.M., Jiang, Z.F., Ding, P.S., Shao, L.J. and Liu, R.Y. (2015): Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci. Rep., 5, 12291.
Beljanski, V., Chiang, C. and Hiscotta, J. (2015): The intersection between viral oncolysis, drug resistance, and autophagy. Biol. Chem. [Epub ahead of print]
Kim, A., Ueda, Y., Naka, T. and Enomoto, T. (2012): Therapeutic strategies in epithelial ovarian cancer. J. Exp. Clin. Cancer Res., 31, 14.
Schmittgen, T.D. and Livak, K.J. (2008): Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 3, 1101-1108.
Klionsky, D.J. (2007): Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8, 931-937.
Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D.(2011): Global cancer statistics. CA Cancer J. Clin., 61, 69-90.
Wang, Y., Yin, W. and Zhu, X. (2014): Blocked autophagy enhances radiosensitivity of nasopharyngeal carcinoma cell line CNE-2 in vitro. Acta Otolaryngol, 134, 105-110.
Bento, C.F., Puri, C., Moreau, K. and Rubinsztein, D.C. (2013): The role of membrane-trafficking small GTPases in the regulation of autophagy. J. Cell Sci., 126, 1059-1069.
Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury, K. and Cecconi, F. (2007): Ambra1 regulates autophagy and development of the nervous system. Nature, 447, 1121-1125.
Cianfanelli, V., Fuoco, C., Lorente, M., Salazar, M., Quondamatteo, F., Gherardini, P.F., De Zio, D., Nazio, F., Antonioli, M., D’Orazio, M., Skobo, T., Bordi, M., Rohde, M., Dalla Valle, L., Helmer-Citterich, M., Gretzmeier, C., Dengjel, J., Fimia, G.M., Piacentini, M., Di Bartolomeo, S., Velasco, G. and Cecconi, F. (2015a): AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat. Cell Biol., 17, 20-30.
Siddik, Z.H. (2002): Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treat. Res., 112, 263-284.
Wang, J. and Wu, G.S. (2014): Role of autophagy in cisplatin resistance in ovarian cancer cells. J. Biol. Chem., 289, 17163-17173.
Sciarretta, S., Yee, D., Ammann, P., Nagarajan, N., Volpe, M., Frati, G. and Sadoshima, J. (2015): Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes. Clin. Sci. (Lond), 128, 387-403.
Shuhua, W., Chenbo, S., Yangyang, L., Xiangqian, G., Shuang, H., Tangyue, L. and Dong, T. (2015): Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma. Hum. Pathol. [Epub ahead of print]
Frankel, L.B. and Lund, A.H. (2012): MicroRNA regulation of autophagy. Carcinogenesis, 33, 2018-2025.
Bao, L.J., Jaramillo, M.C., Zhang, Z.B., Zheng, Y.X., Yao, M., Zhang, D.D. and Yi, X.F. (2014): Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int. J. Clin. Exp. Pathol., 7, 1502-1513.
Sun, Y., Zhang, J. and Peng, Z.L. (2009): Beclin1 induces autophagy and its potential contributions to sensitizes SiHa cells to carboplatin therapy. Int. J. Gynecol. Cancer, 19, 772-776.
Alers, S., Löffler, A.S., Wesselborg, S. and Stork, B. (2012): Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol., 32, 2-11.
Mizushima, N. (2007): Autophagy: process and function. Genes Dev., 21, 2861-2873.
Cianfanelli, V., D'Orazio, M. and Cecconi, F. (2015b): AMBRA1 and BECLIN 1 interplay in the crosstalk between autophagy and cell proliferation. Cell Cycle, 14, 959-963.
Cho, K.R. and Shih, I. (2009): Ovarian cancer. Annu. Rev. Pathol., 4, 287-313.
Strappazzon, F., Vietri-Rudan, M., Campello, S., Nazio, F., Florenzano, F., Fimia, G.M., Piacentini, M., Levine, B. and Cecconi, F. (2011): Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. Embo J., 30, 1195-1208.
Shen, M., Duan, W.M., Wu, M.Y., Wang, W.J., Liu, L., Xu, M.D., Zhu, J., Li, D.M., Gui, Q., Lian, L., Gong, F.R., Chen, K., Li, W. and Tao, M. (2015): Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol. Rep., 34, 359-367.
Fimia, G.M., Di Bartolomeo, S., Piacentini, M. and Cecconi, F. (2011): Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy, 7, 115-117.
Rosanò, L., Spinella, F. and Bagnato, A. (2010): The importance of endothelin axis in initiation, progression, and therapy of ovarian cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R395-R404.
Sun, Y., Liu, J.H., Jin, L., Sui, Y.X., Han, L.L. and Huang, Y. (2015): Effect of autophagy-related beclin1 on sensitivity of cisplatin-resistant ovarian cancer cells to chemotherapeutic agents. Asian Pac. J. Cancer Prev., 16, 2785-2791.
Bao, L., Jaramillo, M.C., Zhang, Z., Zheng, Y., Yao, M., Zhang, D.D. and Yi, X. (2015): Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol. Med. Rep., 11, 91-98.
Lee, Y., Ma, J., Lyu, H., Huang, J., Kim, A. and Liu, B. (2014): Role of erbB3 receptors in cancer therapeutic resistance. Acta. Biochim. Biophys. Sin. (Shanghai), 46, 190-198.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M. and Kroemer, G. (2012): Molecular mechanisms of cisplatin resistance. Oncogene, 31, 1869-1883.
– reference: Tummala, M.K. and McGuire, W.P. (2005): Recurrent ovarian cancer. Clin. Adv. Hematol. Oncol., 3, 723-736.
– reference: Shuhua, W., Chenbo, S., Yangyang, L., Xiangqian, G., Shuang, H., Tangyue, L. and Dong, T. (2015): Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma. Hum. Pathol. [Epub ahead of print]
– reference: Cho, K.R. and Shih, I. (2009): Ovarian cancer. Annu. Rev. Pathol., 4, 287-313.
– reference: Rosanò, L., Spinella, F. and Bagnato, A. (2010): The importance of endothelin axis in initiation, progression, and therapy of ovarian cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R395-R404.
– reference: Cianfanelli, V., Fuoco, C., Lorente, M., Salazar, M., Quondamatteo, F., Gherardini, P.F., De Zio, D., Nazio, F., Antonioli, M., D’Orazio, M., Skobo, T., Bordi, M., Rohde, M., Dalla Valle, L., Helmer-Citterich, M., Gretzmeier, C., Dengjel, J., Fimia, G.M., Piacentini, M., Di Bartolomeo, S., Velasco, G. and Cecconi, F. (2015a): AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat. Cell Biol., 17, 20-30.
– reference: Siddik, Z.H. (2003): Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265-7279.
– reference: Wu, H.M., Jiang, Z.F., Ding, P.S., Shao, L.J. and Liu, R.Y. (2015): Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci. Rep., 5, 12291.
– reference: Alers, S., Löffler, A.S., Wesselborg, S. and Stork, B. (2012): Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol., 32, 2-11.
– reference: Zhou, Y.Y., Li, Y., Jiang, W.Q. and Zhou, L.F. (2015): MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci. Rep., 35.
– reference: Bao, L.J., Jaramillo, M.C., Zhang, Z.B., Zheng, Y.X., Yao, M., Zhang, D.D. and Yi, X.F. (2014): Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int. J. Clin. Exp. Pathol., 7, 1502-1513.
– reference: Sciarretta, S., Yee, D., Ammann, P., Nagarajan, N., Volpe, M., Frati, G. and Sadoshima, J. (2015): Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes. Clin. Sci. (Lond), 128, 387-403.
– reference: Strappazzon, F., Vietri-Rudan, M., Campello, S., Nazio, F., Florenzano, F., Fimia, G.M., Piacentini, M., Levine, B. and Cecconi, F. (2011): Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. Embo J., 30, 1195-1208.
– reference: Bento, C.F., Puri, C., Moreau, K. and Rubinsztein, D.C. (2013): The role of membrane-trafficking small GTPases in the regulation of autophagy. J. Cell Sci., 126, 1059-1069.
– reference: Bao, L., Jaramillo, M.C., Zhang, Z., Zheng, Y., Yao, M., Zhang, D.D. and Yi, X. (2015): Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol. Med. Rep., 11, 91-98.
– reference: Fimia, G.M., Di Bartolomeo, S., Piacentini, M. and Cecconi, F. (2011): Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy, 7, 115-117.
– reference: Wang, Y., Yin, W. and Zhu, X. (2014): Blocked autophagy enhances radiosensitivity of nasopharyngeal carcinoma cell line CNE-2 in vitro. Acta Otolaryngol, 134, 105-110.
– reference: Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury, K. and Cecconi, F. (2007): Ambra1 regulates autophagy and development of the nervous system. Nature, 447, 1121-1125.
– reference: Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., Hickman, J.A., Geneste, O. and Kroemer, G. (2007): Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J., 26, 2527-2539.
– reference: Bryant, C.S., Kumar, S., Spannuth, W., Shah, J.P., Munkarah, A.R., Deppe, G., Alvarez, R.D. and Morris, R.T. (2011): Feasibility of extension of platinum-free interval with weekly bolus topotecan and subsequent platinum retreatment outcomes in recurrent ovarian cancer. Arch. Gynecol. Obstet., 283, 361-367.
– reference: Shen, M., Duan, W.M., Wu, M.Y., Wang, W.J., Liu, L., Xu, M.D., Zhu, J., Li, D.M., Gui, Q., Lian, L., Gong, F.R., Chen, K., Li, W. and Tao, M. (2015): Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol. Rep., 34, 359-367.
– reference: Miki, Y., Tanji, K., Mori, F., Utsumi, J., Sasaki, H., Kakita, A., Takahashi, H. and Wakabayashi, K. (2015): Alteration of Upstream Autophagy-Related Proteins (ULK1, ULK2, Beclin1, VPS34 and AMBRA1) in Lewy Body Disease. Brain Pathol. [Epub ahead of print]
– reference: Schmittgen, T.D. and Livak, K.J. (2008): Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 3, 1101-1108.
– reference: Siddik, Z.H. (2002): Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treat. Res., 112, 263-284.
– reference: Sun, Y., Zhang, J. and Peng, Z.L. (2009): Beclin1 induces autophagy and its potential contributions to sensitizes SiHa cells to carboplatin therapy. Int. J. Gynecol. Cancer, 19, 772-776.
– reference: Tooze, S.A. and Codogno, P. (2011): Compartmentalized regulation of autophagy regulators: fine-tuning AMBRA1 by Bcl-2. Embo J., 30, 1185-1186.
– reference: Sun, Y., Liu, J.H., Jin, L., Sui, Y.X., Han, L.L. and Huang, Y. (2015): Effect of autophagy-related beclin1 on sensitivity of cisplatin-resistant ovarian cancer cells to chemotherapeutic agents. Asian Pac. J. Cancer Prev., 16, 2785-2791.
– reference: Wang, J. and Wu, G.S. (2014): Role of autophagy in cisplatin resistance in ovarian cancer cells. J. Biol. Chem., 289, 17163-17173.
– reference: Cianfanelli, V., D'Orazio, M. and Cecconi, F. (2015b): AMBRA1 and BECLIN 1 interplay in the crosstalk between autophagy and cell proliferation. Cell Cycle, 14, 959-963.
– reference: Lee, Y., Ma, J., Lyu, H., Huang, J., Kim, A. and Liu, B. (2014): Role of erbB3 receptors in cancer therapeutic resistance. Acta. Biochim. Biophys. Sin. (Shanghai), 46, 190-198.
– reference: Mizushima, N. (2007): Autophagy: process and function. Genes Dev., 21, 2861-2873.
– reference: Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D.(2011): Global cancer statistics. CA Cancer J. Clin., 61, 69-90.
– reference: Beljanski, V., Chiang, C. and Hiscotta, J. (2015): The intersection between viral oncolysis, drug resistance, and autophagy. Biol. Chem. [Epub ahead of print]
– reference: Frankel, L.B. and Lund, A.H. (2012): MicroRNA regulation of autophagy. Carcinogenesis, 33, 2018-2025.
– reference: Klionsky, D.J. (2007): Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8, 931-937.
– reference: Kim, A., Ueda, Y., Naka, T. and Enomoto, T. (2012): Therapeutic strategies in epithelial ovarian cancer. J. Exp. Clin. Cancer Res., 31, 14.
– ident: 17
  doi: 10.1093/abbs/gmt150
– ident: 33
  doi: 10.1074/jbc.M114.558288
– ident: 14
  doi: 10.3322/caac.20107
– ident: 6
  doi: 10.1007/s00404-010-1462-9
– ident: 20
  doi: 10.1101/gad.1599207
– ident: 23
  doi: 10.1042/CS20140336
– ident: 10
  doi: 10.4161/auto.7.1.14071
– ident: 34
  doi: 10.3109/00016489.2013.844365
– ident: 35
  doi: 10.1038/srep12291
– ident: 18
  doi: 10.1038/sj.emboj.7601689
– ident: 30
  doi: 10.1111/IGC.0b013e31819d7d10
– ident: 1
  doi: 10.1128/MCB.06159-11
– ident: 5
  doi: 10.1242/jcs.123075
– ident: 15
  doi: 10.1186/1756-9966-31-14
– ident: 19
  doi: 10.1111/bpa.12297
– ident: 29
  doi: 10.7314/APJCP.2015.16.7.2785
– ident: 36
  doi: 10.1042/BSR20140141
– ident: 21
  doi: 10.1152/ajpregu.00304.2010
– ident: 22
  doi: 10.1038/nprot.2008.73
– ident: 8
  doi: 10.1038/ncb3072
– ident: 12
  doi: 10.1093/carcin/bgs266
– ident: 16
  doi: 10.1038/nrm2245
– ident: 27
  doi: 10.1038/sj.onc.1206933
– ident: 3
– ident: 7
  doi: 10.1146/annurev.pathol.4.110807.092246
– ident: 28
  doi: 10.1038/emboj.2011.49
– ident: 2
  doi: 10.3892/mmr.2014.2671
– ident: 9
  doi: 10.1080/15384101.2015.1021526
– ident: 4
  doi: 10.1515/hsz-2015-0147
– ident: 11
  doi: 10.1038/nature05925
– ident: 31
  doi: 10.1038/emboj.2011.75
– ident: 24
  doi: 10.3892/or.2015.4005
– ident: 32
– ident: 25
  doi: 10.1016/j.humpath.2015.07.016
– ident: 13
  doi: 10.1038/onc.2011.384
– ident: 26
  doi: 10.1007/978-1-4615-1173-1_13
SSID ssj0027054
Score 2.1633613
Snippet Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - physiology
Ambra1
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis - drug effects
Apoptosis - genetics
Autophagy
Autophagy - drug effects
Autophagy - genetics
Cell Line, Tumor
Cisplatin
Cisplatin - pharmacology
Cisplatin - therapeutic use
Cisplatin sensitivity
Drug Resistance, Neoplasm - drug effects
Drug Resistance, Neoplasm - genetics
Female
Gene Knockdown Techniques
Humans
Microtubule-Associated Proteins - metabolism
Molecular Targeted Therapy
Ovarian cancer
Ovarian Neoplasms - drug therapy
Ovarian Neoplasms - genetics
Ovarian Neoplasms - metabolism
Ovarian Neoplasms - pathology
Phagosomes - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - physiology
Transfection
Title shRNA-mediated AMBRA1 knockdown reduces the cisplatin-induced autophagy and sensitizes ovarian cancer cells to cisplatin
URI https://www.jstage.jst.go.jp/article/jts/41/1/41_45/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/26763392
https://www.proquest.com/docview/1762766152
https://www.proquest.com/docview/1765993218
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of Toxicological Sciences, 2016/02/01, Vol.41(1), pp.45-53
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK4AEJIb4pDGQQD0hTSh07cfdY8aEBYw9ok8pT5DguZEzp1CZo7GfwizmOXadbN2nQh7Ry7aTNPb4-17k-JuQVT-zAVOiogIuMxEhJdCkJIheLROWKp7mw652_7KU7B-LTJJn0en9WspaaOh_o0wvXlfyPVVEGu9pVsv9g2XBSFOAz7IsjLIzjlWy8-PF1bxy1iz8scbSpMmO29bOCjysQXW_NrS6r1XAAFnS5OLZ5b1WEKLyxT_1VY0UFlFdgWthM9ro8tSK0vxBAo99ri4j5lp3bb3UgwikuYbT17KTUwZn6sTVw9t02b2BSqtnvDpFhvnq3PGy64m-NKzsquydHbXO8rc5TsJDaHNwZh_UYdzKzA-PcLbxHxLfdJkJLfyzYGu6cc3W6k36YdhLD5weAmPF2AKgXA8EGywarItvnBr-QkohgyDbO0DQTLBPJNXI9Ruhhd8V49_FzF8QPEydJ5v-NU6uyTd-Eq57hODcOQfO_m8sjmJbJ7N8ht73B6Njh6S7pmeoeueXmb6lblnafnJzFFnXYogFb1GOLAlt0DVs0YIsCW7TDFvXYog5btMUWrWfdKR6Qgw_v99_uRH6XjkinSVxHCPiNiqUyqRyaEehwwnI5ZdPCmKnmI81iUP6YqaHdKKDItcRLp_mQSy1EkWr-kGxUs8o8JpTj5sYjpdNCGrgKhOJyewRGLKTSwylP-uT18r5m2kvY251UjrI16_XJy1D12Om2XFQpccYJVXxXXlZhrl4otish4Xj6ZHNpy8y7g0XGQCsk2G4S98mL8DWctb2TqjKzpq2TICAAre6TRw4D4dJxiqEe0cqTq_zyp-Rm18c2yUY9b8wzsOM6f97C9S_WKL_R
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=shRNA-mediated+AMBRA1+knockdown+reduces+the+cisplatin-induced+autophagy+and+sensitizes+ovarian+cancer+cells+to+cisplatin&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Li%2C+Xiaoyan&rft.au=Zhang%2C+Lijuan&rft.au=Yu%2C+Lili&rft.au=Wei%2C+Wei&rft.date=2016-02-01&rft.issn=0388-1350&rft.eissn=1880-3989&rft.volume=41&rft.issue=1&rft.spage=45&rft.epage=53&rft_id=info:doi/10.2131%2Fjts.41.45&rft.externalDBID=n%2Fa&rft.externalDocID=10_2131_jts_41_45
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon