Detection and attribution of vegetation greening trend in China over the last 30 years

The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening tr...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 21; no. 4; pp. 1601 - 1609
Main Authors Piao, Shilong, Yin, Guodong, Tan, Jianguang, Cheng, Lei, Huang, Mengtian, Li, Yue, Liu, Ronggao, Mao, Jiafu, Myneni, Ranga B, Peng, Shushi, Poulter, Ben, Shi, Xiaoying, Xiao, Zhiqiang, Zeng, Ning, Zeng, ZhenZhong, Wang, Yingping
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.04.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite‐derived Leaf Area Index (LAI) datasets for detection as well as five different process‐based ecosystem models for attribution. Rising atmospheric CO₂concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing‐season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr⁻¹, ranging from 0.0035 yr⁻¹to 0.0127 yr⁻¹), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGSat the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS(P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGStrend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO₂concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
AbstractList The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite‐derived Leaf Area Index (LAI) datasets for detection as well as five different process‐based ecosystem models for attribution. Rising atmospheric CO₂concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing‐season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr⁻¹, ranging from 0.0035 yr⁻¹to 0.0127 yr⁻¹), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGSat the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS(P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGStrend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO₂concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr(-1), ranging from 0.0035 yr(-1) to 0.0127 yr(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr(-1), ranging from 0.0035 yr(-1) to 0.0127 yr(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite‐derived Leaf Area Index (LAI) datasets for detection as well as five different process‐based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing‐season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr−1, ranging from 0.0035 yr−1 to 0.0127 yr−1), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr(-1), ranging from 0.0035 yr(-1) to 0.0127 yr(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite‐derived Leaf Area Index ( LAI ) datasets for detection as well as five different process‐based ecosystem models for attribution. Rising atmospheric CO 2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing‐season LAI trend ( LAI GS ) estimated by satellite datasets (average trend of 0.0070 yr −1 , ranging from 0.0035 yr −1 to 0.0127 yr −1 ), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAI GS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAI GS ( P  < 0.05), and marginally significantly ( P  = 0.07) correlated with the residual of LAI GS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO 2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite‐derived Leaf Area Index (LAI) datasets for detection as well as five different process‐based ecosystem models for attribution. Rising atmospheric CO₂concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing‐season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr⁻¹, ranging from 0.0035 yr⁻¹to 0.0127 yr⁻¹), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGSat the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS(P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGStrend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO₂concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO sub(2) concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAI sub(GS)) estimated by satellite datasets (average trend of 0.0070 yr super(-1), ranging from 0.0035 yr super(-1) to 0.0127 yr super(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAI sub(GS) at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAI sub(GS) (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAI sub(GS) trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO sub(2) concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
Author Yin, Guodong
Shi, Xiaoying
Wang, Yingping
Myneni, Ranga B.
Cheng, Lei
Zeng, ZhenZhong
Huang, Mengtian
Poulter, Ben
Xiao, Zhiqiang
Peng, Shushi
Liu, Ronggao
Li, Yue
Mao, Jiafu
Piao, Shilong
Zeng, Ning
Tan, Jianguang
Author_xml – sequence: 1
  fullname: Piao, Shilong
– sequence: 2
  fullname: Yin, Guodong
– sequence: 3
  fullname: Tan, Jianguang
– sequence: 4
  fullname: Cheng, Lei
– sequence: 5
  fullname: Huang, Mengtian
– sequence: 6
  fullname: Li, Yue
– sequence: 7
  fullname: Liu, Ronggao
– sequence: 8
  fullname: Mao, Jiafu
– sequence: 9
  fullname: Myneni, Ranga B
– sequence: 10
  fullname: Peng, Shushi
– sequence: 11
  fullname: Poulter, Ben
– sequence: 12
  fullname: Shi, Xiaoying
– sequence: 13
  fullname: Xiao, Zhiqiang
– sequence: 14
  fullname: Zeng, Ning
– sequence: 15
  fullname: Zeng, ZhenZhong
– sequence: 16
  fullname: Wang, Yingping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25369401$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1u1DAQB3ALFdF24cALQCQu5ZDW33GOdOkuoIoPQdWj5WTHW5esU2ynsG_Ds_BkeDdtD5VA9cUe6Tdjjf77aMf3HhB6TvAhyedo2TaHhFa1eIT2CJOipFzJnc1b8JJgwnbRfoyXGGNGsXyCdqlgsuaY7KHzt5CgTa73hfGLwqQUXDNs694W17CEZLbVMgB455dFCpCh88X0wnlT9NcQinQBRWdiKhj-83sNJsSn6LE1XYRnN_cEnc1Ovk3flaef5u-nb07LVgoqSm4babixQgrV2AZTRbmtwcoKMwymBW6wWHDTSiWkVFLUpGmsghYbtZAE2AQdjHOvQv9jgJj0ysUWus546IeoSd6TKyJx9QAqFRU1pfwhlEpWSckyfXWPXvZD8HnnjcofE5x3maAXN2poVrDQV8GtTFjr2yAyeD2CNvQxBrB3hGC9CVnnkPU25GyP7tnWjSmlYFz3v46froP1v0fr-fT4tqMcO1xM8Ouuw4TvWlasEvr841x_-TD7jOfHSs-yfzl6a3ptlsFFffaVYiIwJnVOU7C_oq_OFA
CitedBy_id crossref_primary_10_1016_j_agrformet_2017_06_016
crossref_primary_10_3390_w16172440
crossref_primary_10_1111_1365_2435_13088
crossref_primary_10_3390_rs11232766
crossref_primary_10_5194_hess_20_935_2016
crossref_primary_10_1016_j_agrformet_2022_108842
crossref_primary_10_1007_s10980_015_0319_9
crossref_primary_10_3390_rs14122947
crossref_primary_10_1016_j_ecolind_2022_108835
crossref_primary_10_3390_rs10101525
crossref_primary_10_1016_j_scitotenv_2017_02_156
crossref_primary_10_3389_fpls_2023_1178485
crossref_primary_10_1002_ldr_4269
crossref_primary_10_1007_s10661_020_08593_8
crossref_primary_10_1016_j_rama_2019_06_001
crossref_primary_10_3390_rs13173531
crossref_primary_10_3390_rs9050425
crossref_primary_10_1016_j_scitotenv_2023_165288
crossref_primary_10_1016_j_scitotenv_2023_166133
crossref_primary_10_1088_1748_9326_ad107f
crossref_primary_10_3390_w12061692
crossref_primary_10_1007_s11356_022_21138_5
crossref_primary_10_3390_f14091880
crossref_primary_10_1002_ldr_4381
crossref_primary_10_1016_j_agrformet_2024_110124
crossref_primary_10_1080_15230430_2019_1605798
crossref_primary_10_1016_j_aosl_2022_100297
crossref_primary_10_1016_j_ecolind_2019_105892
crossref_primary_10_1371_journal_pone_0130143
crossref_primary_10_3390_f12060733
crossref_primary_10_3390_rs15194785
crossref_primary_10_1111_gcb_13787
crossref_primary_10_3390_f10010039
crossref_primary_10_3390_rs14205091
crossref_primary_10_1016_j_scitotenv_2020_142553
crossref_primary_10_1016_j_jenvman_2021_114304
crossref_primary_10_1109_TGRS_2017_2691542
crossref_primary_10_3390_rs15184621
crossref_primary_10_1016_j_jag_2021_102537
crossref_primary_10_3390_land12020413
crossref_primary_10_34133_remotesensing_0122
crossref_primary_10_1016_j_ecolind_2023_111039
crossref_primary_10_1002_eco_2420
crossref_primary_10_1038_s41597_022_01204_w
crossref_primary_10_3390_rs15194670
crossref_primary_10_1002_joc_8633
crossref_primary_10_1007_s11707_022_1075_1
crossref_primary_10_1109_ACCESS_2023_3325485
crossref_primary_10_1002_ldr_4129
crossref_primary_10_3390_land11081179
crossref_primary_10_3390_rs14122929
crossref_primary_10_1016_j_ecolind_2021_108336
crossref_primary_10_1038_srep26958
crossref_primary_10_1080_10095020_2024_2446293
crossref_primary_10_3390_rs11141656
crossref_primary_10_1016_j_palaeo_2023_111745
crossref_primary_10_3390_f16030460
crossref_primary_10_3390_rs8121032
crossref_primary_10_1016_j_ecoinf_2022_101776
crossref_primary_10_3390_rs14061328
crossref_primary_10_1007_s13201_020_01332_x
crossref_primary_10_3390_f14020425
crossref_primary_10_1088_1748_9326_abbde9
crossref_primary_10_1080_10106049_2022_2136257
crossref_primary_10_3390_rs12213567
crossref_primary_10_1016_j_jag_2024_104009
crossref_primary_10_1016_j_ecolind_2024_111553
crossref_primary_10_1038_s41598_024_61200_5
crossref_primary_10_1080_01431161_2020_1714781
crossref_primary_10_1093_forsci_fxac054
crossref_primary_10_3390_su14148402
crossref_primary_10_1016_j_ecolind_2021_108323
crossref_primary_10_1126_science_aaa9933
crossref_primary_10_1016_j_ecolind_2021_107479
crossref_primary_10_1016_j_forpol_2021_102516
crossref_primary_10_1016_j_pce_2022_103148
crossref_primary_10_1080_15324982_2023_2269883
crossref_primary_10_3390_f9070412
crossref_primary_10_1016_j_scitotenv_2020_140395
crossref_primary_10_1016_j_scitotenv_2023_165255
crossref_primary_10_5194_essd_15_4877_2023
crossref_primary_10_1016_j_agrformet_2020_108183
crossref_primary_10_1016_j_catena_2022_106530
crossref_primary_10_1111_bor_12589
crossref_primary_10_1093_jpe_rtab082
crossref_primary_10_1016_j_agee_2021_107719
crossref_primary_10_1080_15481603_2021_1872244
crossref_primary_10_3389_fpls_2023_1280126
crossref_primary_10_1016_j_ecolind_2023_111088
crossref_primary_10_3390_rs17030487
crossref_primary_10_1016_j_scitotenv_2024_176013
crossref_primary_10_1016_j_srs_2021_100027
crossref_primary_10_1080_10106049_2021_2017016
crossref_primary_10_1002_2016JG003640
crossref_primary_10_1016_j_isprsjprs_2023_10_017
crossref_primary_10_1016_j_jhydrol_2024_131731
crossref_primary_10_1093_nsr_nwz132
crossref_primary_10_3390_land11060894
crossref_primary_10_3390_rs15102675
crossref_primary_10_1029_2018JG004804
crossref_primary_10_1080_10106049_2022_2129820
crossref_primary_10_1007_s12665_022_10245_8
crossref_primary_10_1093_nsr_nwz021
crossref_primary_10_1016_j_gecco_2021_e01685
crossref_primary_10_1016_j_agrformet_2022_108809
crossref_primary_10_1016_j_biocon_2023_110424
crossref_primary_10_1007_s11430_023_1345_9
crossref_primary_10_3389_fenvs_2022_819277
crossref_primary_10_3390_ijerph20031874
crossref_primary_10_5194_essd_12_1037_2020
crossref_primary_10_1002_2017JD027597
crossref_primary_10_1002_2016JG003417
crossref_primary_10_1016_j_cosust_2020_11_006
crossref_primary_10_1016_j_ecolind_2024_112465
crossref_primary_10_1016_j_ecolind_2024_112101
crossref_primary_10_1016_j_scitotenv_2023_168464
crossref_primary_10_1016_j_agrformet_2020_108197
crossref_primary_10_3390_f9010024
crossref_primary_10_1007_s42452_020_2290_6
crossref_primary_10_1016_j_agrformet_2019_107701
crossref_primary_10_1080_19479832_2019_1601642
crossref_primary_10_1016_j_scitotenv_2020_141537
crossref_primary_10_3390_rs14040839
crossref_primary_10_1016_j_atmosres_2022_106308
crossref_primary_10_3390_su162210122
crossref_primary_10_1016_j_agrformet_2021_108384
crossref_primary_10_1088_1748_9326_ad5f43
crossref_primary_10_3390_atmos14091419
crossref_primary_10_3390_rs14246327
crossref_primary_10_1360_SSTe_2022_0011
crossref_primary_10_1016_j_ecolind_2020_106392
crossref_primary_10_1016_j_foreco_2019_05_065
crossref_primary_10_3390_rs14143320
crossref_primary_10_3390_rs15194736
crossref_primary_10_3390_su16031351
crossref_primary_10_3390_rs13183756
crossref_primary_10_1016_j_jhydrol_2025_133181
crossref_primary_10_1016_j_scitotenv_2021_147380
crossref_primary_10_1016_j_jenvman_2024_122967
crossref_primary_10_1016_j_ecolind_2023_111186
crossref_primary_10_1029_2018EF000890
crossref_primary_10_1038_srep35105
crossref_primary_10_3390_rs15235582
crossref_primary_10_26833_ijeg_1583206
crossref_primary_10_3390_rs13204063
crossref_primary_10_1016_j_ecolind_2018_08_031
crossref_primary_10_1002_ldr_3351
crossref_primary_10_1007_s00484_020_01913_0
crossref_primary_10_1175_JCLI_D_17_0848_1
crossref_primary_10_1016_j_envres_2021_111787
crossref_primary_10_3390_rs14143312
crossref_primary_10_3390_w15224010
crossref_primary_10_1002_eco_1748
crossref_primary_10_1002_ldr_4689
crossref_primary_10_1016_j_agrformet_2024_110229
crossref_primary_10_1016_j_accre_2024_08_003
crossref_primary_10_1016_j_ecolind_2024_112317
crossref_primary_10_1002_hyp_15055
crossref_primary_10_3389_fevo_2023_1177849
crossref_primary_10_1016_j_atmosres_2022_106450
crossref_primary_10_1007_s11442_024_2298_8
crossref_primary_10_1016_j_jclepro_2020_122487
crossref_primary_10_1016_j_jenvman_2024_120535
crossref_primary_10_2166_hydro_2019_003
crossref_primary_10_1002_2017GB005714
crossref_primary_10_1111_gcb_13762
crossref_primary_10_1016_j_geosus_2022_04_002
crossref_primary_10_1007_s10531_024_02789_x
crossref_primary_10_3390_rs11182110
crossref_primary_10_1016_j_ecolind_2023_111291
crossref_primary_10_1002_joc_7639
crossref_primary_10_1002_ldr_5408
crossref_primary_10_1016_j_scitotenv_2022_155086
crossref_primary_10_3390_f15071207
crossref_primary_10_1002_2016GL071743
crossref_primary_10_1175_JCLI_D_18_0772_1
crossref_primary_10_1016_j_foreco_2023_121668
crossref_primary_10_1002_ldr_3587
crossref_primary_10_1002_ldr_4675
crossref_primary_10_1002_ecm_70005
crossref_primary_10_1007_s11676_019_00999_6
crossref_primary_10_1016_j_jhydrol_2020_125689
crossref_primary_10_1080_01431161_2016_1142688
crossref_primary_10_1016_j_foreco_2022_120392
crossref_primary_10_1016_j_agrformet_2019_02_039
crossref_primary_10_1016_j_scitotenv_2021_147574
crossref_primary_10_1111_gcb_14369
crossref_primary_10_1111_gcb_15217
crossref_primary_10_1007_s10021_016_0068_x
crossref_primary_10_1016_j_scitotenv_2022_160943
crossref_primary_10_3390_rs15051238
crossref_primary_10_5194_acp_21_4825_2021
crossref_primary_10_1016_j_ecoinf_2022_101838
crossref_primary_10_1038_s41467_019_11035_w
crossref_primary_10_1038_s41598_017_07732_5
crossref_primary_10_1071_RJ18041
crossref_primary_10_1186_s13021_023_00239_9
crossref_primary_10_3390_f14081563
crossref_primary_10_1007_s11629_021_7110_y
crossref_primary_10_1016_j_envres_2025_121120
crossref_primary_10_1016_j_agwat_2023_108649
crossref_primary_10_1038_s41586_018_0411_9
crossref_primary_10_3390_rs13214326
crossref_primary_10_1016_j_ecolind_2015_09_041
crossref_primary_10_1007_s10661_015_4922_7
crossref_primary_10_1016_j_agrformet_2018_02_007
crossref_primary_10_1016_j_scitotenv_2021_145160
crossref_primary_10_3390_f9060329
crossref_primary_10_1029_2024GL111209
crossref_primary_10_1016_j_jenvman_2023_119963
crossref_primary_10_3390_rs71115517
crossref_primary_10_1016_j_ecolind_2024_112141
crossref_primary_10_3389_fevo_2023_1105832
crossref_primary_10_1016_j_ecolind_2024_112140
crossref_primary_10_1016_j_landusepol_2020_105084
crossref_primary_10_1016_j_scitotenv_2020_140649
crossref_primary_10_3390_atmos12121576
crossref_primary_10_1007_s00382_020_05563_1
crossref_primary_10_1038_s41598_024_69276_9
crossref_primary_10_1029_2019WR027019
crossref_primary_10_3390_rs15051233
crossref_primary_10_3390_rs16071296
crossref_primary_10_3390_rs13030496
crossref_primary_10_1016_j_gecco_2024_e02904
crossref_primary_10_1016_j_jhydrol_2022_128817
crossref_primary_10_1029_2022EF003057
crossref_primary_10_1016_j_scitotenv_2024_170055
crossref_primary_10_1126_sciadv_aar4182
crossref_primary_10_1175_BAMS_D_18_0341_1
crossref_primary_10_1016_j_scitotenv_2024_170053
crossref_primary_10_5194_hess_26_5291_2022
crossref_primary_10_1111_gcb_16569
crossref_primary_10_1016_j_agrformet_2023_109478
crossref_primary_10_3390_s19214693
crossref_primary_10_3390_ijerph19106239
crossref_primary_10_3390_rs12203355
crossref_primary_10_1016_j_catena_2019_104182
crossref_primary_10_1016_j_ecolind_2022_109429
crossref_primary_10_1016_j_scitotenv_2022_153270
crossref_primary_10_3390_w12071996
crossref_primary_10_1016_j_foreco_2021_119463
crossref_primary_10_1016_j_jag_2021_102378
crossref_primary_10_3390_rs13245081
crossref_primary_10_1007_s11104_021_05054_0
crossref_primary_10_1038_s41467_020_15881_x
crossref_primary_10_1016_j_rse_2023_113481
crossref_primary_10_3390_rs14194735
crossref_primary_10_3390_rs16214024
crossref_primary_10_3390_rs10030424
crossref_primary_10_1029_2020JG005735
crossref_primary_10_1007_s00484_023_02489_1
crossref_primary_10_1016_j_jhydrol_2022_128707
crossref_primary_10_34133_2021_9842830
crossref_primary_10_1111_gcb_16561
crossref_primary_10_1007_s11769_024_1477_y
crossref_primary_10_1016_j_jhydrol_2021_126231
crossref_primary_10_3390_land9100388
crossref_primary_10_1029_2023GL105489
crossref_primary_10_1080_15481603_2020_1751406
crossref_primary_10_3390_f14071415
crossref_primary_10_1029_2022WR032415
crossref_primary_10_3390_land12010235
crossref_primary_10_3390_su151410878
crossref_primary_10_1007_s40808_020_00896_6
crossref_primary_10_1016_j_ecoleng_2021_106504
crossref_primary_10_1088_1748_9326_ad122b
crossref_primary_10_1016_j_scitotenv_2022_159995
crossref_primary_10_1007_s11356_021_16664_7
crossref_primary_10_1016_j_ese_2020_100025
crossref_primary_10_1029_2024GL113403
crossref_primary_10_1016_j_jhydrol_2022_128714
crossref_primary_10_1016_j_catena_2024_108354
crossref_primary_10_1029_2018GB005922
crossref_primary_10_1016_j_habitatint_2022_102733
crossref_primary_10_1016_j_agrformet_2020_107950
crossref_primary_10_3389_fevo_2023_1067209
crossref_primary_10_3390_rs14174198
crossref_primary_10_1371_journal_pone_0202966
crossref_primary_10_1007_s12237_023_01216_8
crossref_primary_10_1016_j_ecolind_2018_12_039
crossref_primary_10_1007_s00484_024_02794_3
crossref_primary_10_1016_j_energy_2019_116215
crossref_primary_10_1038_s41467_025_57548_5
crossref_primary_10_1029_2023GL102809
crossref_primary_10_3390_ijgi5090158
crossref_primary_10_3390_ijerph192113916
crossref_primary_10_1002_ldr_4744
crossref_primary_10_1007_s12040_023_02200_3
crossref_primary_10_1016_j_jag_2022_102747
crossref_primary_10_1016_j_jhydrol_2023_130087
crossref_primary_10_1016_j_scitotenv_2023_167664
crossref_primary_10_3390_atmos14081217
crossref_primary_10_3390_rs70810243
crossref_primary_10_1016_j_jag_2020_102240
crossref_primary_10_1038_srep40092
crossref_primary_10_1007_s11356_023_31335_5
crossref_primary_10_1016_j_ecolind_2022_108883
crossref_primary_10_1111_geb_12411
crossref_primary_10_1029_2023JD039914
crossref_primary_10_1038_s41893_017_0004_x
crossref_primary_10_3390_rs12030353
crossref_primary_10_1038_nclimate3004
crossref_primary_10_1029_2018RG000608
crossref_primary_10_1016_j_jenvman_2021_112562
crossref_primary_10_1186_s13021_021_00186_3
crossref_primary_10_1029_2024GL110312
crossref_primary_10_1071_RJ18007
crossref_primary_10_1080_20964471_2023_2268322
crossref_primary_10_1007_s13157_020_01271_y
crossref_primary_10_1016_j_ecolind_2020_107081
crossref_primary_10_1016_j_envres_2022_113085
crossref_primary_10_1016_j_habitatint_2025_103286
crossref_primary_10_1175_JCLI_D_17_0236_1
crossref_primary_10_3389_feart_2023_1168384
crossref_primary_10_1002_joc_6137
crossref_primary_10_3390_rs13214380
crossref_primary_10_1007_s11430_024_1530_7
crossref_primary_10_1016_j_ecolind_2019_105607
crossref_primary_10_3390_su8040326
crossref_primary_10_1016_j_jhydrol_2024_131436
crossref_primary_10_1016_j_scitotenv_2018_10_058
crossref_primary_10_1029_2022JD036919
crossref_primary_10_3390_rs14102408
crossref_primary_10_1007_s11104_023_06430_8
crossref_primary_10_3390_f12010083
crossref_primary_10_1016_j_scitotenv_2021_148408
crossref_primary_10_1016_j_scitotenv_2022_155490
crossref_primary_10_1002_2015GL067162
crossref_primary_10_1071_RJ16032
crossref_primary_10_3390_f13050708
crossref_primary_10_1016_j_agrformet_2023_109561
crossref_primary_10_1016_j_envpol_2017_11_052
crossref_primary_10_1016_j_foreco_2021_120000
crossref_primary_10_3390_f12121710
crossref_primary_10_1029_2021JG006320
crossref_primary_10_1016_j_scib_2018_07_015
crossref_primary_10_1002_clt2_12116
crossref_primary_10_1016_j_scitotenv_2023_168842
crossref_primary_10_1016_j_ecolind_2021_108004
crossref_primary_10_1016_j_scitotenv_2020_140625
crossref_primary_10_1016_j_scitotenv_2017_02_073
crossref_primary_10_3390_rs11101224
crossref_primary_10_1007_s11356_018_2340_4
crossref_primary_10_5194_hess_21_295_2017
crossref_primary_10_3390_atmos13050738
crossref_primary_10_1016_j_agrformet_2019_107771
crossref_primary_10_3390_rs10030477
crossref_primary_10_3390_su16083251
crossref_primary_10_1016_j_agrformet_2019_107652
crossref_primary_10_1038_srep28435
crossref_primary_10_1016_j_envdev_2024_100991
crossref_primary_10_3390_rs10081270
crossref_primary_10_1038_s41893_019_0220_7
crossref_primary_10_1016_j_agrformet_2023_109653
crossref_primary_10_3390_su14127262
crossref_primary_10_3390_su11174531
crossref_primary_10_3390_rs16030475
crossref_primary_10_1007_s11356_021_16440_7
crossref_primary_10_1016_j_rse_2016_03_036
crossref_primary_10_1111_rec_13760
crossref_primary_10_1007_s11442_022_1948_y
crossref_primary_10_1029_2020JD032404
crossref_primary_10_1029_2023GL107182
crossref_primary_10_1016_j_rsase_2021_100466
crossref_primary_10_1109_TGRS_2024_3434366
crossref_primary_10_1029_2021EF002634
crossref_primary_10_1016_j_ecolind_2022_109373
crossref_primary_10_1016_j_jclepro_2024_143702
crossref_primary_10_3390_ijerph18020416
crossref_primary_10_3390_rs11202421
crossref_primary_10_3390_rs14010208
crossref_primary_10_1016_j_agrformet_2023_109546
crossref_primary_10_3390_su16083303
crossref_primary_10_1016_j_agrformet_2017_10_001
crossref_primary_10_1029_2019JD031467
crossref_primary_10_1029_2020GL089681
crossref_primary_10_1029_2022JG007300
crossref_primary_10_1016_j_agrformet_2018_04_020
crossref_primary_10_1080_01431161_2018_1519286
crossref_primary_10_1038_s41598_018_35108_w
crossref_primary_10_3390_f13101583
crossref_primary_10_1016_j_envres_2022_113976
crossref_primary_10_3390_su162310453
crossref_primary_10_1007_s10980_023_01679_x
crossref_primary_10_1088_1748_9326_11_10_104006
crossref_primary_10_1360_SSTe_2023_0106
crossref_primary_10_3390_f14071485
crossref_primary_10_1016_j_jhazmat_2020_124996
crossref_primary_10_1088_1748_9326_ac44c5
crossref_primary_10_1088_1748_9326_ac69fb
crossref_primary_10_1002_ldr_2985
crossref_primary_10_1007_s00704_018_2476_7
crossref_primary_10_1016_j_horiz_2022_100007
crossref_primary_10_1016_j_scitotenv_2021_147756
crossref_primary_10_1016_j_ecolmodel_2015_12_019
crossref_primary_10_1175_JHM_D_18_0259_1
crossref_primary_10_1016_j_agrformet_2023_109758
crossref_primary_10_1186_s12302_024_00852_6
crossref_primary_10_1016_j_agrformet_2022_109118
crossref_primary_10_1016_j_ecolind_2020_106545
crossref_primary_10_3390_rs12193150
crossref_primary_10_3390_rs14051092
crossref_primary_10_3390_su9101853
crossref_primary_10_1016_j_compag_2020_105238
crossref_primary_10_1080_15481603_2022_2139387
crossref_primary_10_1016_j_rama_2024_05_005
crossref_primary_10_1016_j_gloplacha_2024_104440
crossref_primary_10_1016_j_scitotenv_2022_157729
crossref_primary_10_1177_2754124X241240164
crossref_primary_10_3390_rs14163849
crossref_primary_10_1016_j_jenvman_2022_116576
crossref_primary_10_3390_rs15030727
crossref_primary_10_3390_rs16122121
crossref_primary_10_1016_j_rse_2017_12_024
crossref_primary_10_1016_j_scitotenv_2023_163626
crossref_primary_10_1016_j_geosus_2023_11_008
crossref_primary_10_5194_acp_22_2351_2022
crossref_primary_10_1016_j_ecoleng_2022_106768
crossref_primary_10_1111_gcb_15061
crossref_primary_10_3389_fpls_2023_1129665
crossref_primary_10_1016_j_gloplacha_2016_10_014
crossref_primary_10_1007_s00382_024_07317_9
crossref_primary_10_1016_j_rse_2024_114589
crossref_primary_10_3390_w14132019
crossref_primary_10_1111_gcb_16274
crossref_primary_10_1007_s11442_023_2093_y
crossref_primary_10_1016_j_scitotenv_2024_172758
crossref_primary_10_1038_s41598_017_08477_x
crossref_primary_10_1007_s11430_022_9926_6
crossref_primary_10_1016_j_scitotenv_2024_175845
crossref_primary_10_1029_2023EF004028
crossref_primary_10_3390_rs10010032
crossref_primary_10_1038_nclimate3092
crossref_primary_10_1029_2020JG005902
crossref_primary_10_1002_esp_5752
crossref_primary_10_1016_j_scitotenv_2022_154222
crossref_primary_10_1080_16742834_2020_1695515
crossref_primary_10_1016_j_oneear_2019_12_015
crossref_primary_10_1016_j_agrformet_2018_03_009
crossref_primary_10_1109_TGRS_2023_3343876
crossref_primary_10_3390_rs14133082
crossref_primary_10_1007_s11769_023_1355_z
crossref_primary_10_1016_j_jhydrol_2022_128968
crossref_primary_10_1029_2018JG004489
crossref_primary_10_1016_j_ecolind_2018_04_027
crossref_primary_10_1029_2023EF004395
crossref_primary_10_1360_N072024_0239
crossref_primary_10_1016_j_gecco_2022_e02016
crossref_primary_10_1016_j_ecolind_2018_04_041
crossref_primary_10_1016_j_rse_2022_112985
crossref_primary_10_3390_f8030060
crossref_primary_10_3390_rs10010149
crossref_primary_10_1007_s41976_023_00091_y
crossref_primary_10_1080_07038992_2018_1526064
crossref_primary_10_3390_land12010013
crossref_primary_10_3390_rs13061209
crossref_primary_10_3390_rs14215417
crossref_primary_10_1038_s43247_023_00814_5
crossref_primary_10_3390_f13091404
crossref_primary_10_1111_gcb_13180
crossref_primary_10_1016_j_rse_2016_12_018
crossref_primary_10_1016_j_agrformet_2018_05_025
crossref_primary_10_1016_j_jenvman_2020_110321
crossref_primary_10_1016_j_uclim_2022_101230
crossref_primary_10_3390_rs12193247
crossref_primary_10_1016_j_agwat_2021_106798
crossref_primary_10_1016_j_jclepro_2020_122705
crossref_primary_10_1016_j_geosus_2020_12_002
crossref_primary_10_1016_j_scs_2024_105977
crossref_primary_10_3390_f10050372
crossref_primary_10_34133_ehs_0284
crossref_primary_10_3390_agronomy14102235
crossref_primary_10_1109_TGRS_2020_2993641
crossref_primary_10_7717_peerj_7735
crossref_primary_10_3390_w15183305
crossref_primary_10_3390_rs14102485
crossref_primary_10_1016_j_rse_2021_112678
crossref_primary_10_1177_2754124X231204715
crossref_primary_10_2139_ssrn_3998978
crossref_primary_10_1088_1748_9326_ac6002
crossref_primary_10_1016_j_scitotenv_2024_172551
crossref_primary_10_1038_s41467_019_13798_8
crossref_primary_10_1016_j_ecolind_2022_109342
crossref_primary_10_1016_j_ecolind_2022_109101
crossref_primary_10_1016_j_agrformet_2020_108309
crossref_primary_10_1088_1748_9326_11_3_034021
crossref_primary_10_1016_j_ecoinf_2021_101413
crossref_primary_10_3390_rs13132446
crossref_primary_10_1007_s11629_019_5649_7
crossref_primary_10_3390_land9080274
crossref_primary_10_1002_fee_2077
crossref_primary_10_3390_w14182923
crossref_primary_10_1029_2020JD033637
crossref_primary_10_3390_rs14051298
crossref_primary_10_1016_j_agwat_2023_108662
crossref_primary_10_1016_j_rse_2020_112247
crossref_primary_10_1007_s11069_024_06540_1
crossref_primary_10_1111_csp2_13309
crossref_primary_10_1002_ird_2740
crossref_primary_10_3390_f15020231
crossref_primary_10_1002_joc_8046
crossref_primary_10_1016_j_jhydrol_2021_126037
crossref_primary_10_1016_j_rse_2021_112428
crossref_primary_10_3390_rs15122975
crossref_primary_10_3390_rs16203875
crossref_primary_10_1175_JCLI_D_18_0587_1
crossref_primary_10_1016_j_foreco_2020_117990
crossref_primary_10_1007_s00704_018_2519_0
crossref_primary_10_1016_j_catena_2018_12_007
crossref_primary_10_1016_j_scitotenv_2023_163792
crossref_primary_10_1016_j_catena_2021_105501
crossref_primary_10_1016_j_ecolind_2021_108091
crossref_primary_10_1088_1748_9326_ace83d
crossref_primary_10_1016_j_catena_2021_105500
crossref_primary_10_3389_fenvs_2022_892747
crossref_primary_10_3390_rs14102386
crossref_primary_10_3390_land12091692
crossref_primary_10_1016_j_scitotenv_2021_151153
crossref_primary_10_1016_j_ecolind_2018_03_029
crossref_primary_10_1016_j_envres_2024_118233
crossref_primary_10_1016_j_agrformet_2020_108207
crossref_primary_10_1016_j_agrformet_2020_108208
crossref_primary_10_1038_s43247_024_01962_y
crossref_primary_10_3390_land12061235
crossref_primary_10_1016_j_scitotenv_2022_161246
crossref_primary_10_5194_esd_10_9_2019
crossref_primary_10_1016_j_envdev_2019_100464
crossref_primary_10_3390_f15040668
crossref_primary_10_1088_2515_7620_ab9525
crossref_primary_10_3390_su151713089
crossref_primary_10_1134_S0001433821120148
crossref_primary_10_3390_s20143839
crossref_primary_10_1080_16742834_2020_1696650
crossref_primary_10_1029_2023EF004119
crossref_primary_10_1016_j_jhydrol_2022_128018
crossref_primary_10_3390_land9030090
crossref_primary_10_1016_j_resconrec_2023_106878
crossref_primary_10_1007_s11769_018_0952_8
crossref_primary_10_1007_s00484_016_1277_x
crossref_primary_10_1007_s00484_020_01978_x
crossref_primary_10_1016_j_jenvman_2024_122617
crossref_primary_10_3390_rs16203813
crossref_primary_10_1029_2022WR034142
crossref_primary_10_1029_2023JD040421
crossref_primary_10_1016_j_ecolind_2024_111739
crossref_primary_10_1016_j_scitotenv_2022_161250
crossref_primary_10_1016_j_rsase_2022_100695
crossref_primary_10_3390_s19020430
crossref_primary_10_3390_rs15092324
crossref_primary_10_1007_s11356_021_14988_y
crossref_primary_10_1088_1748_9326_ac37d2
crossref_primary_10_1177_0309133320979501
crossref_primary_10_3390_land13121980
crossref_primary_10_3390_su12051955
crossref_primary_10_5194_hess_24_515_2020
crossref_primary_10_3390_rs14174332
crossref_primary_10_3390_su17010306
crossref_primary_10_1007_s11356_022_19711_z
crossref_primary_10_1016_j_ecolind_2021_107648
crossref_primary_10_1016_j_srs_2022_100054
crossref_primary_10_1155_2017_8282353
crossref_primary_10_1007_s10661_022_10530_w
crossref_primary_10_1088_1748_9326_ab3012
crossref_primary_10_1007_s00267_020_01276_7
crossref_primary_10_1016_j_scitotenv_2024_171816
crossref_primary_10_3390_rs14010061
crossref_primary_10_1016_j_scitotenv_2020_137836
crossref_primary_10_1029_2022EF002674
crossref_primary_10_1016_j_catena_2024_107831
crossref_primary_10_1016_j_jenvman_2022_115509
crossref_primary_10_1111_gcb_13723
crossref_primary_10_1088_1748_9326_ac58a9
crossref_primary_10_3390_rs16234558
crossref_primary_10_1016_j_catena_2024_107819
crossref_primary_10_1002_joc_6620
crossref_primary_10_1007_s10661_022_10685_6
crossref_primary_10_3390_land11081349
crossref_primary_10_3390_rs15010221
crossref_primary_10_1007_s11442_025_2313_8
crossref_primary_10_1007_s12665_018_7252_6
crossref_primary_10_1109_TGRS_2024_3462099
crossref_primary_10_3390_rs12040718
crossref_primary_10_3390_f14030509
crossref_primary_10_1029_2020JG006154
crossref_primary_10_1016_j_agsy_2019_102679
crossref_primary_10_1016_j_rse_2024_114066
crossref_primary_10_3390_rs15184489
crossref_primary_10_1038_s41598_024_52863_1
crossref_primary_10_3390_rs13071305
crossref_primary_10_1016_j_catena_2020_104796
crossref_primary_10_3390_s19081832
crossref_primary_10_1016_j_agrformet_2021_108767
crossref_primary_10_1016_j_ecolind_2023_110277
crossref_primary_10_1016_j_jenvman_2024_123632
crossref_primary_10_1016_j_jhydrol_2022_128565
crossref_primary_10_1016_j_jhydrol_2022_128680
crossref_primary_10_3390_rs15071727
crossref_primary_10_1029_2023EF004309
crossref_primary_10_1007_s10021_023_00819_3
crossref_primary_10_1080_15481603_2021_2022426
crossref_primary_10_1016_j_scitotenv_2023_162771
crossref_primary_10_1016_j_jclepro_2022_130713
crossref_primary_10_1007_s10531_016_1214_7
crossref_primary_10_1016_j_gloplacha_2024_104586
crossref_primary_10_3390_su15043073
crossref_primary_10_1016_j_ecoinf_2022_101591
crossref_primary_10_1029_2021EF002553
crossref_primary_10_31497_zrzyxb_20210717
crossref_primary_10_3390_rs16234417
crossref_primary_10_1002_ece3_11467
crossref_primary_10_1029_2024WR038065
crossref_primary_10_3389_fpls_2022_1062691
crossref_primary_10_1016_j_scitotenv_2021_150152
crossref_primary_10_1016_j_foreco_2015_04_031
crossref_primary_10_1002_2016RG000550
crossref_primary_10_3390_rs14010015
crossref_primary_10_1002_ldr_5146
crossref_primary_10_1007_s11356_019_06378_2
crossref_primary_10_1038_s41467_023_36835_z
crossref_primary_10_3390_land11040535
crossref_primary_10_3390_rs15184544
crossref_primary_10_1016_j_agrformet_2018_07_016
crossref_primary_10_1016_j_wace_2023_100622
crossref_primary_10_1002_eco_1811
crossref_primary_10_3390_rs15184542
crossref_primary_10_3390_su142315941
crossref_primary_10_1016_j_scib_2023_01_014
crossref_primary_10_1007_s11676_024_01818_3
crossref_primary_10_1016_j_ecolind_2023_111101
crossref_primary_10_1016_j_ecolind_2023_111342
crossref_primary_10_1016_j_scitotenv_2021_149055
crossref_primary_10_1016_j_catena_2020_104879
crossref_primary_10_1016_j_jag_2022_103140
crossref_primary_10_1088_1748_9326_aaec95
crossref_primary_10_1016_j_apgeog_2018_03_013
crossref_primary_10_1088_1748_9326_acdaad
crossref_primary_10_3390_rs13173357
crossref_primary_10_5194_acp_24_3309_2024
crossref_primary_10_1016_j_resconrec_2022_106748
crossref_primary_10_3389_feart_2021_782287
crossref_primary_10_3390_rs11172044
crossref_primary_10_1002_ldr_5379
crossref_primary_10_1016_j_ancene_2023_100414
crossref_primary_10_3390_su16146188
crossref_primary_10_1016_j_jhydrol_2023_129519
crossref_primary_10_3390_rs12213525
crossref_primary_10_2139_ssrn_3902474
crossref_primary_10_1016_j_jhydrol_2023_129865
crossref_primary_10_1016_j_ecolind_2024_112720
crossref_primary_10_3390_rs13050951
crossref_primary_10_1016_j_ecolind_2019_106009
crossref_primary_10_5194_essd_16_15_2024
crossref_primary_10_1016_j_ecolind_2019_02_014
crossref_primary_10_3390_rs14235982
crossref_primary_10_1088_2515_7620_ad9144
crossref_primary_10_1155_2021_5169913
crossref_primary_10_1016_j_ecolind_2021_107831
crossref_primary_10_1016_j_scitotenv_2020_144669
crossref_primary_10_3390_rs12091355
crossref_primary_10_1002_lno_11968
crossref_primary_10_1016_j_agwat_2021_106854
crossref_primary_10_1007_s11676_022_01491_4
crossref_primary_10_3390_w8100458
crossref_primary_10_1029_2020EF001618
crossref_primary_10_3390_rs16173302
crossref_primary_10_1016_j_agrformet_2017_11_013
Cites_doi 10.1126/science.1074153
10.1038/nature06444
10.1126/science.1071828
10.1111/j.1365-2486.2008.01626.x
10.1029/2002JD002848
10.1890/11-1408.1
10.1029/2003GB002199
10.1111/j.1744-697X.2007.00085.x
10.1109/TGRS.2013.2237780
10.1073/pnas.0509478102
10.1029/2006GB002888
10.1029/2009JG001062
10.3334/CDIAC/atg.ndp001.2004
10.5194/bg-7-2261-2010
10.1109/36.649788
10.1111/gcb.12217
10.1126/science.1201609
10.1073/pnas.0611338104
10.1002/joc.3701
10.1029/2001JD001516
10.1658/1100-9233(2004)015[0219:VIASVI]2.0.CO;2
10.1038/ngeo230
10.1029/2010GL042430
10.1016/j.agrformet.2014.01.002
10.1029/2005GL024607
10.1046/j.1365-2486.2003.00569.x
10.1016/j.agrformet.2013.02.002
10.1038/srep03763
10.1088/1748-9326/6/4/044027
10.1038/ngeo721
10.1175/JCLI3800.1
10.1127/0941-2948/2005/0022
10.3390/rs5020927
10.5194/bgd-10-20113-2013
10.1029/2009GB003530
10.1029/2011MS000045
10.1029/2012JG002084
10.1038/ncomms6018
10.3390/rs5031484
10.1007/s11120-013-9874-6
10.5194/bgd-11-8861-2014
10.1002/gbc.20026
10.1088/1748-9326/7/1/014010
10.1073/pnas.1315126111
10.1111/gcb.12187
10.1146/annurev.pp.31.060180.002423
10.1038/ngeo844
10.1073/pnas.1317065111
10.1029/2001JD001389
10.1038/nature09364
10.1111/j.1365-2486.2008.01598.x
10.1038/nature07944
10.1029/2000JD000115
10.1890/05-1792
10.1038/nclimate1836
10.1038/nclimate1580
10.1007/s11427-013-4492-2
10.1038/nature10588
10.1126/science.1082750
10.1029/2006GL028205
10.1073/pnas.1006463107
10.1016/j.agrformet.2012.12.006
ContentType Journal Article
Copyright 2014 John Wiley & Sons Ltd
2014 John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: 2014 John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
7S9
L.6
DOI 10.1111/gcb.12795
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Ecology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 1609
ExternalDocumentID 3618861621
25369401
10_1111_gcb_12795
GCB12795
ark_67375_WNG_QJFP0GB8_F
US201500196705
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
China, People's Rep., Qinghai-Xizang Plateau
China, People's Rep., Inner Mongolia
China, People's Rep
GeographicLocations_xml – name: China
– name: China, People's Rep., Inner Mongolia
– name: China, People's Rep., Qinghai-Xizang Plateau
– name: China, People's Rep
GrantInformation_xml – fundername: National Youth Top‐notch Talent Support Program in China
  funderid: B14001
– fundername: Chinese Ministry of Environmental Protection
  funderid: 201209031
– fundername: National Basic Research Program of China
  funderid: 2013CB956303
– fundername: US Department of Energy
– fundername: Biological and Environmental Research
– fundername: Oak Ridge National Laboratory
  funderid: DE‐AC05‐00OR22725
– fundername: National Natural Science Foundation of China
  funderid: 41125004; 31321061
– fundername: US DOE Office of Science
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
7S9
L.6
ID FETCH-LOGICAL-c6525-4fb6a4af5658bfb02824f9ef67030eace4a05d4ac6856686591bbf8ec0a8d61e3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:31:22 EDT 2025
Thu Jul 10 23:15:07 EDT 2025
Fri Jul 11 04:03:08 EDT 2025
Fri Jul 25 11:01:42 EDT 2025
Wed Feb 19 01:52:39 EST 2025
Tue Jul 01 03:52:52 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Wed Jan 22 17:10:22 EST 2025
Wed Oct 30 09:51:34 EDT 2024
Wed Dec 27 19:15:08 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords greening trend
detection
afforestation
China
nitrogen deposition
attribution
CO2 fertilization effect
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6525-4fb6a4af5658bfb02824f9ef67030eace4a05d4ac6856686591bbf8ec0a8d61e3
Notes http://dx.doi.org/10.1111/gcb.12795
US Department of Energy
Chinese Ministry of Environmental Protection - No. 201209031
ArticleID:GCB12795
ark:/67375/WNG-QJFP0GB8-F
National Natural Science Foundation of China - No. 41125004; No. 31321061
Biological and Environmental Research
Office of Science
Figure S1. Spatial distribution of province administrations in China. Figure S2. Trend of three different satellite-derived LAIGS across different provinces during the period 1982-2009. (a), GIMMS LAI dataset; (b) GLOBMAP LAI dataset; (c) GLASS LAI dataset. Figure S3. Trend of process model-estimated LAIGS in response to change in climate, rising atmospheric CO2 concentration, and nitrogen deposition, across different provinces during the period 1982-2009.
National Youth Top-notch Talent Support Program in China - No. B14001
Oak Ridge National Laboratory - No. DE-AC05-00OR22725
istex:39FBD87BAFD53C9626CADBC2FF8E7F27B0A42F77
National Basic Research Program of China - No. 2013CB956303
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://ir.igsnrr.ac.cn/handle/311030/38801
PMID 25369401
PQID 1661601070
PQPubID 30327
PageCount 9
ParticipantIDs proquest_miscellaneous_1694481607
proquest_miscellaneous_1668259224
proquest_miscellaneous_1662637663
proquest_journals_1661601070
pubmed_primary_25369401
crossref_primary_10_1111_gcb_12795
crossref_citationtrail_10_1111_gcb_12795
wiley_primary_10_1111_gcb_12795_GCB12795
istex_primary_ark_67375_WNG_QJFP0GB8_F
fao_agris_US201500196705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2015
Publisher Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
References Peng S, Piao S, Shen Z et al. (2013) Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agricultural and Forest Meteorology, 178, 46-55.
Piao S, Ciais P, Huang Y et al. (2010) The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.
Piao S, Fang J, Zhou L et al. (2003) Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research: Atmospheres, 108, 4401.
Yu G, Chen Z, Piao S et al. (2014a) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 111, 4910-4915.
Niemand C, Köstner B, Prasse H , Grünwald T, Bernhofer C (2005) Relating tree phenology with annual carbon fluxes at Tharandt forest. Meteorologische Zeitschrift, 14, 197-202.
Friedlingstein P, Cox P, Betts R et al. (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353.
Myneni RB, Yang W, Nemani RR et al. (2007) Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences of the United States of America, 104, 4820-4823.
Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039.
Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543.
Chen B, Zhang X, Tao J et al. (2014) The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 189, 11-18.
Krinner G, Viovy N, de Noblet-Ducoudré N et al. (2005) A dynamic global vegetation model for studies of the coupled atmosphere biosphere system. Global Biogeochemical Cycles, 19, GB1015.
Kaufmann RK, Zhou L, Tucker CJ, Slayback D, Shabanov NV, Myneni RB. (2002) Reply to Comment on 'Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999' by JR Ahlbeck. Journal of Geophysical Research: Atmospheres (1984-2012), 107, ACL 7-1?ACL 7-3.
Thomas RQ, Canham CD, Weathers KC, Goodale CL (2009) Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13-17.
Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its effects on terrestrial carbon flux over the last two decades. Global Biogeochemical Cycles, 21, GB3018.
Lucht W, Prentice IC, Myneni RB et al. (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296, 1687-1689.
Nemani RR, Keeling CD, Hashimoto H et al. (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563.
Pan Y, Birdsey RA, Fang J et al. (2011) A large and persistent carbon sink in the world's forests. Science, 333, 988-993.
Peng S, Piao S, Zeng Z et al. (2014) Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 111, 2915-2919.
Wang S, Duan J, Xu G et al. (2012) Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376.
Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.
Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117.
Piao SL, Ciais P, Friedlingstein P et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
Tan K, Ciais P, Piao S et al. (2010) Application of the orchidee global vegetation model to evaluate biomass and soil carbon stocks of Qinghai Tibetan grasslands. Global Biogeochemical Cycles, 24, GB1013.
Hegerl GC, Hoegh-Guldberg O, Casassa G et al. (2010) Good Practice Guidance Paper on Detection and Attribution Related to Anthropogenic Climate Change. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change. IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland.
Hickler T, Smith B, Prentice Ic, Mjofors K, Miller P, Arneth A, Sykes Mt. (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology, 14, 1531-1542.
Peng S, Chen A, Xu L et al. (2011) Recent change of vegetation growth trend in China. Environmental Research Letters, 6, 044027.
Fleischer K, Rebel KT, Molen MK et al. (2013) The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochemical Cycles, 27, 187-199.
Ahlbeck JR (2002) Comment on 'Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999' by L. Zhou et al. Journal of Geophysical Research: Atmospheres, (1984-2012) 107, ACH 9-1?ACH 9-2.
Mao J, Shi X, Thornton PE, Piao S, Wang X (2012) Causes of spring vegetation growth trends in the northern mid-high latitudes from 1982 to 2004. Environmental Research Letters, 7, 014010.
Sitch S, Friedlingstein P, Gruber N et al. (2013) Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosciences Discussion, 10, 20113-20177.
Janssens IA, Dieleman W, Luyssaert S et al. (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
Zeng N, Qian H, Roedenbeck C, Heimann M (2005) Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32, L22709.
Piao S, Fang J, Ji W, Guo Q, Ke J, Tao S (2004) Variation in a satellite-based vegetation index in relation to climate in China. Journal of Vegetation Science, 15, 219-226.
Norby RJ, DeLucia EH, Gielen B et al. (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18052-18056.
Yao T, Thompson L, Yang W et al. (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2, 663-667.
Mao J, Shi X, Thornton PE, Hoffman FM, Zhu Z, Myneni RB (2013) Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009. Remote Sensing, 5, 1484-1497.
Xiao Z, Liang S, Wang J, Chen P, Yin X, Zhang L, Song J (2014) Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. Geoscience and Remote Sensing, IEEE Transactions on, 52, 209-223.
Bonan GB, Levis S (2010) Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophysical Research Letters, 37, L07401.
Myneni RB, Ramakrishna R, Nemani R, Running SW (1997) Estimation of global leaf area index and absorbed PAR using radiative transfer models. Geoscience and Remote Sensing, IEEE Transactions on, 35, 1380-1393.
Oleson KW, Bonan GB, Feddema J, Vertenstein M, Kluzek E (2010) Technical Description of an Urban Parameterization for the Community Land Model (CLMU). NCAR, Boulder.
Melillo JM, Steudler PA, Aber JD et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176.
Piao S, Fang J, Ciais P et al. (2009) The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
Huang Y, Zhang W, Sun W, Zheng X. (2007) Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 17, 692-701.
Zhou L, Tucker CJ, Kaufmann RK, Slayback D, shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres, 106, 20069-20083.
Guo ZD, Hu HF, Li P et al. (2013) Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008. Science China-Life Sciences, 56, 661-671.
Liu Y, Liu R, Chen JM (2012) Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data. Journal of Geophysical Research: Biogeosciences, 117, G04003.
Jia Y, Yu G, He N et al. (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 4, 3763.
Sitch S, Smith B, Prentice IC et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161-185.
Yu M, Li Q, Hayes MJ, Svoboda MD, Heim RR (2014b) Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010. International Journal of Climatology, 34, 545-558.
Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7, 2261-2282.
Poulter B, Pederson N, Liu H et al. (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agricultural and Forest Meteorology, 178, 31-45.
Piao S, Nan H, Huntingford C, et al. (2014) Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature communications, 5, 1-7.
Xu L, Myneni RB, Chapin FS III et al. (2013) Temperature and vegetation seasonality diminishment over
2011; 479
2007; 104
2013; 3
2013; 27
2010; 107
2006; 33
2010; 467
2008; 1
2013; 5
2001; 106
2013; 19
2014; 5
2014; 4
2010; 24
1980; 31
2013; 10
2013; 56
2005; 102
2010; 115
2003; 9
2002; 107
2005; 32
2010; 3
2014; 52
2007; 21
2010; 7
2014; 11
2007; 17
2014; 119
2011; 333
2010; 37
2002; 296
2012
2010
2002; 298
2008; 14
2006; 19
2014a; 111
2005
2007; 53
2011; 3
2014; 111
2011; 6
2009; 458
2012; 93
2005; 19
2003; 108
2012; 2
2014b; 34
2004; 15
1997; 35
2013; 178
2009; 3
2012; 7
2003; 300
2008; 451
2012; 117
2014; 189
2005; 14
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
Oleson KW (e_1_2_6_32_1) 2010
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Hegerl GC (e_1_2_6_10_1) 2010
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Tao F, Zhang Z (2010) Dynamic responses of terrestrial ecosystems structure and function to climate change in China. Journal of Geophysical Research: Biogeosciences, 115, G03003.
– reference: Xie Y, Becker U, Wittig R (2007) Vegetation of the Stipa loess steppe in Ningxia (northern China) in relation to grazing intensity. Grassland Science, 53, 143-154.
– reference: Mao J, Shi X, Thornton PE, Hoffman FM, Zhu Z, Myneni RB (2013) Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009. Remote Sensing, 5, 1484-1497.
– reference: Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7, 2261-2282.
– reference: Hegerl GC, Hoegh-Guldberg O, Casassa G et al. (2010) Good Practice Guidance Paper on Detection and Attribution Related to Anthropogenic Climate Change. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change. IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland.
– reference: Kaufmann RK, Zhou L, Tucker CJ, Slayback D, Shabanov NV, Myneni RB. (2002) Reply to Comment on 'Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999' by JR Ahlbeck. Journal of Geophysical Research: Atmospheres (1984-2012), 107, ACL 7-1?ACL 7-3.
– reference: Sitch S, Friedlingstein P, Gruber N et al. (2013) Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosciences Discussion, 10, 20113-20177.
– reference: Piao S, Friedlingstein P, Ciais P, Zhou L, Chen A (2006) Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 33, L23402.
– reference: Xu L, Myneni RB, Chapin FS III et al. (2013) Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 3, 581-586.
– reference: Yu G, Chen Z, Piao S et al. (2014a) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 111, 4910-4915.
– reference: Piao SL, Ciais P, Friedlingstein P et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
– reference: Zeng N, Qian H, Roedenbeck C, Heimann M (2005) Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32, L22709.
– reference: Piao S, Sitch S, Ciais P et al. (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19, 2117-2132.
– reference: Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039.
– reference: Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543.
– reference: Sitch S, Smith B, Prentice IC et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161-185.
– reference: Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its effects on terrestrial carbon flux over the last two decades. Global Biogeochemical Cycles, 21, GB3018.
– reference: Peng S, Chen A, Xu L et al. (2011) Recent change of vegetation growth trend in China. Environmental Research Letters, 6, 044027.
– reference: Friedlingstein P, Cox P, Betts R et al. (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353.
– reference: Liu H, Park Williams A, Allen CD et al. (2013) Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19, 2500-2510.
– reference: Piao S, Fang J, Ciais P et al. (2009) The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
– reference: Peng S, Piao S, Zeng Z et al. (2014) Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 111, 2915-2919.
– reference: Yao T, Thompson L, Yang W et al. (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2, 663-667.
– reference: Tan K, Ciais P, Piao S et al. (2010) Application of the orchidee global vegetation model to evaluate biomass and soil carbon stocks of Qinghai Tibetan grasslands. Global Biogeochemical Cycles, 24, GB1013.
– reference: Yu M, Li Q, Hayes MJ, Svoboda MD, Heim RR (2014b) Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010. International Journal of Climatology, 34, 545-558.
– reference: Nemani RR, Keeling CD, Hashimoto H et al. (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563.
– reference: Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117.
– reference: Oleson KW, Bonan GB, Feddema J, Vertenstein M, Kluzek E (2010) Technical Description of an Urban Parameterization for the Community Land Model (CLMU). NCAR, Boulder.
– reference: Huang Y, Zhang W, Sun W, Zheng X. (2007) Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 17, 692-701.
– reference: Niemand C, Köstner B, Prasse H , Grünwald T, Bernhofer C (2005) Relating tree phenology with annual carbon fluxes at Tharandt forest. Meteorologische Zeitschrift, 14, 197-202.
– reference: Liu Y, Liu R, Chen JM (2012) Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data. Journal of Geophysical Research: Biogeosciences, 117, G04003.
– reference: Peng S, Piao S, Shen Z et al. (2013) Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agricultural and Forest Meteorology, 178, 46-55.
– reference: Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nature Geoscience, 1, 430-437.
– reference: Fleischer K, Rebel KT, Molen MK et al. (2013) The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochemical Cycles, 27, 187-199.
– reference: Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.
– reference: Lee X, Goulden ML, Hollinger DY et al. (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384-387.
– reference: Lucht W, Prentice IC, Myneni RB et al. (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296, 1687-1689.
– reference: Piao S, Fang J, Ji W, Guo Q, Ke J, Tao S (2004) Variation in a satellite-based vegetation index in relation to climate in China. Journal of Vegetation Science, 15, 219-226.
– reference: Pan Y, Birdsey RA, Fang J et al. (2011) A large and persistent carbon sink in the world's forests. Science, 333, 988-993.
– reference: Zhu Z, Bi J, Pan Y et al. (2013) Global data sets of vegetation leaf area index (LAI) 3 g and Fraction of Photosynthetically Active Radiation (FPAR) 3 g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3 g) for the period 1981 to 2011. Remote Sensing, 5, 927-948.
– reference: Chen B, Zhang X, Tao J et al. (2014) The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 189, 11-18.
– reference: Lawrence DM, Oleson KW, Flanner MG et al. (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, M03001.
– reference: Mao J, Shi X, Thornton PE, Piao S, Wang X (2012) Causes of spring vegetation growth trends in the northern mid-high latitudes from 1982 to 2004. Environmental Research Letters, 7, 014010.
– reference: Melillo JM, Steudler PA, Aber JD et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176.
– reference: Wang S, Duan J, Xu G et al. (2012) Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376.
– reference: Ahlbeck JR (2002) Comment on 'Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999' by L. Zhou et al. Journal of Geophysical Research: Atmospheres, (1984-2012) 107, ACH 9-1?ACH 9-2.
– reference: Jia Y, Yu G, He N et al. (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 4, 3763.
– reference: Bonan GB, Levis S (2010) Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophysical Research Letters, 37, L07401.
– reference: Hickler T, Smith B, Prentice Ic, Mjofors K, Miller P, Arneth A, Sykes Mt. (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology, 14, 1531-1542.
– reference: Piao S, Ciais P, Huang Y et al. (2010) The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.
– reference: Poulter B, Pederson N, Liu H et al. (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agricultural and Forest Meteorology, 178, 31-45.
– reference: Janssens IA, Dieleman W, Luyssaert S et al. (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
– reference: Zhou L, Tucker CJ, Kaufmann RK, Slayback D, shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres, 106, 20069-20083.
– reference: Norby RJ, DeLucia EH, Gielen B et al. (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18052-18056.
– reference: Thomas RQ, Canham CD, Weathers KC, Goodale CL (2009) Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13-17.
– reference: Guo ZD, Hu HF, Li P et al. (2013) Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008. Science China-Life Sciences, 56, 661-671.
– reference: Piao S, Fang J, Zhou L et al. (2003) Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research: Atmospheres, 108, 4401.
– reference: Krinner G, Viovy N, de Noblet-Ducoudré N et al. (2005) A dynamic global vegetation model for studies of the coupled atmosphere biosphere system. Global Biogeochemical Cycles, 19, GB1015.
– reference: Myneni RB, Ramakrishna R, Nemani R, Running SW (1997) Estimation of global leaf area index and absorbed PAR using radiative transfer models. Geoscience and Remote Sensing, IEEE Transactions on, 35, 1380-1393.
– reference: Babel W, Biermann T, Coners H et al. (2014) Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences Discuss, 11, 8861-8923.
– reference: Piao S, Nan H, Huntingford C, et al. (2014) Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature communications, 5, 1-7.
– reference: Myneni RB, Yang W, Nemani RR et al. (2007) Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences of the United States of America, 104, 4820-4823.
– reference: Xiao Z, Liang S, Wang J, Chen P, Yin X, Zhang L, Song J (2014) Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. Geoscience and Remote Sensing, IEEE Transactions on, 52, 209-223.
– volume: 21
  start-page: GB3018
  year: 2007
  article-title: Growing season extension and its effects on terrestrial carbon flux over the last two decades
  publication-title: Global Biogeochemical Cycles
– volume: 33
  start-page: L23402
  year: 2006
  article-title: Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades
  publication-title: Geophysical Research Letters
– volume: 34
  start-page: 545
  year: 2014b
  end-page: 558
  article-title: Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010
  publication-title: International Journal of Climatology
– volume: 6
  start-page: 044027
  year: 2011
  article-title: Recent change of vegetation growth trend in China
  publication-title: Environmental Research Letters
– volume: 106
  start-page: 20069
  year: 2001
  end-page: 20083
  article-title: Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 7
  start-page: 2261
  year: 2010
  end-page: 2282
  article-title: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere
  publication-title: Biogeosciences
– volume: 111
  start-page: 2915
  year: 2014
  end-page: 2919
  article-title: Afforestation in China cools local land surface temperature
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 31
  start-page: 491
  year: 1980
  end-page: 543
  article-title: Photosynthetic response and adaptation to temperature in higher plants
  publication-title: Annual Review of Plant Physiology
– volume: 178
  start-page: 46
  year: 2013
  end-page: 55
  article-title: Precipitation amount, seasonality and frequency regulate carbon cycling of a semi‐arid grassland ecosystem in Inner Mongolia, China: a modeling analysis
  publication-title: Agricultural and Forest Meteorology
– year: 2005
  article-title: Atmospheric CO records from sites in the SIO air sampling network. Trends: a compendium of data on global change
– volume: 104
  start-page: 4820
  year: 2007
  end-page: 4823
  article-title: Large seasonal swings in leaf area of Amazon rainforests
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 1484
  year: 2013
  end-page: 1497
  article-title: Global latitudinal‐asymmetric vegetation growth trends and their driving mechanisms: 1982–2009
  publication-title: Remote Sensing
– volume: 1
  start-page: 430
  year: 2008
  end-page: 437
  article-title: Global nitrogen deposition and carbon sinks
  publication-title: Nature Geoscience
– volume: 93
  start-page: 2365
  year: 2012
  end-page: 2376
  article-title: Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow
  publication-title: Ecology
– volume: 19
  start-page: 2117
  year: 2013
  end-page: 2132
  article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO trends
  publication-title: Global Change Biology
– volume: 9
  start-page: 161
  year: 2003
  end-page: 185
  article-title: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model
  publication-title: Global Change Biology
– volume: 102
  start-page: 18052
  year: 2005
  end-page: 18056
  article-title: Forest response to elevated CO is conserved across a broad range of productivity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 927
  year: 2013
  end-page: 948
  article-title: Global data sets of vegetation leaf area index (LAI) 3 g and Fraction of Photosynthetically Active Radiation (FPAR) 3 g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3 g) for the period 1981 to 2011
  publication-title: Remote Sensing
– volume: 11
  start-page: 8861
  year: 2014
  end-page: 8923
  article-title: Pasture degradation modifies the water and carbon cycles of the Tibetan highlands
  publication-title: Biogeosciences Discuss
– volume: 27
  start-page: 187
  year: 2013
  end-page: 199
  article-title: The contribution of nitrogen deposition to the photosynthetic capacity of forests
  publication-title: Global Biogeochemical Cycles
– volume: 107
  year: 2002
  article-title: Reply to Comment on ‘Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999’ by JR Ahlbeck
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 115
  start-page: G03003
  year: 2010
  article-title: Dynamic responses of terrestrial ecosystems structure and function to climate change in China
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 56
  start-page: 661
  year: 2013
  end-page: 671
  article-title: Spatio‐temporal changes in biomass carbon sinks in China's forests from 1977 to 2008
  publication-title: Science China‐Life Sciences
– volume: 108
  start-page: 4401
  year: 2003
  article-title: Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 2
  start-page: 663
  year: 2012
  end-page: 667
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nature Climate Change
– volume: 14
  start-page: 1531
  year: 2008
  end-page: 1542
  article-title: CO fertilization in temperate FACE experiments not representative of boreal and tropical forests
  publication-title: Global Change Biology
– volume: 4
  start-page: 3763
  year: 2014
  article-title: Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity
  publication-title: Scientific Reports
– volume: 296
  start-page: 1687
  year: 2002
  end-page: 1689
  article-title: Climatic control of the high‐latitude vegetation greening trend and Pinatubo effect
  publication-title: Science
– volume: 14
  start-page: 2015
  year: 2008
  end-page: 2039
  article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)
  publication-title: Global Change Biology
– volume: 53
  start-page: 143
  year: 2007
  end-page: 154
  article-title: Vegetation of the Stipa loess steppe in Ningxia (northern China) in relation to grazing intensity
  publication-title: Grassland Science
– volume: 111
  start-page: 4910
  year: 2014a
  end-page: 4915
  article-title: High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 178
  start-page: 31
  year: 2013
  end-page: 45
  article-title: Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change
  publication-title: Agricultural and Forest Meteorology
– volume: 107
  year: 2002
  article-title: Comment on ‘Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999’ by L. Zhou et al.
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 467
  start-page: 43
  year: 2010
  end-page: 51
  article-title: The impacts of climate change on water resources and agriculture in China
  publication-title: Nature
– volume: 5
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity
  publication-title: Nature communications
– volume: 15
  start-page: 219
  year: 2004
  end-page: 226
  article-title: Variation in a satellite‐based vegetation index in relation to climate in China
  publication-title: Journal of Vegetation Science
– volume: 451
  start-page: 49
  year: 2008
  end-page: 52
  article-title: Net carbon dioxide losses of northern ecosystems in response to autumn warming
  publication-title: Nature
– volume: 479
  start-page: 384
  year: 2011
  end-page: 387
  article-title: Observed increase in local cooling effect of deforestation at higher latitudes
  publication-title: Nature
– volume: 17
  start-page: 692
  year: 2007
  end-page: 701
  article-title: Net primary production of Chinese croplands from 1950 to 1999
  publication-title: Ecological Applications
– volume: 458
  start-page: 1009
  year: 2009
  end-page: 1013
  article-title: The carbon balance of terrestrial ecosystems in China
  publication-title: Nature
– volume: 119
  start-page: 101
  year: 2014
  end-page: 117
  article-title: Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation
  publication-title: Photosynthesis Research
– volume: 3
  start-page: M03001
  year: 2011
  article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 14
  start-page: 197
  year: 2005
  end-page: 202
  article-title: Relating tree phenology with annual carbon fluxes at Tharandt forest
  publication-title: Meteorologische Zeitschrift
– volume: 189
  start-page: 11
  year: 2014
  end-page: 18
  article-title: The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai‐Tibet Plateau
  publication-title: Agricultural and Forest Meteorology
– volume: 19
  start-page: 3337
  year: 2006
  end-page: 3353
  article-title: Climate‐carbon cycle feedback analysis: results from the C4MIP model intercomparison
  publication-title: Journal of Climate
– volume: 3
  start-page: 581
  year: 2013
  end-page: 586
  article-title: Temperature and vegetation seasonality diminishment over northern lands
  publication-title: Nature Climate Change
– volume: 3
  start-page: 315
  year: 2010
  end-page: 322
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nature Geoscience
– volume: 52
  start-page: 209
  year: 2014
  end-page: 223
  article-title: Use of general regression neural networks for generating the GLASS leaf area index product from time‐series MODIS surface reflectance
  publication-title: Geoscience and Remote Sensing, IEEE Transactions on
– volume: 32
  start-page: L22709
  year: 2005
  article-title: Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle
  publication-title: Geophysical Research Letters
– year: 2010
– volume: 298
  start-page: 2173
  year: 2002
  end-page: 2176
  article-title: Soil warming and carbon‐cycle feedbacks to the climate system
  publication-title: Science
– volume: 300
  start-page: 1560
  year: 2003
  end-page: 1563
  article-title: Climate‐driven increases in global terrestrial net primary production from 1982 to 1999
  publication-title: Science
– year: 2012
– volume: 19
  start-page: 2500
  year: 2013
  end-page: 2510
  article-title: Rapid warming accelerates tree growth decline in semi‐arid forests of Inner Asia
  publication-title: Global Change Biology
– volume: 10
  start-page: 20113
  year: 2013
  end-page: 20177
  article-title: Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  publication-title: Biogeosciences Discussion
– volume: 24
  start-page: GB1013
  year: 2010
  article-title: Application of the orchidee global vegetation model to evaluate biomass and soil carbon stocks of Qinghai Tibetan grasslands
  publication-title: Global Biogeochemical Cycles
– volume: 37
  start-page: L07401
  year: 2010
  article-title: Quantifying carbon‐nitrogen feedbacks in the Community Land Model (CLM4)
  publication-title: Geophysical Research Letters
– volume: 107
  start-page: 19368
  year: 2010
  end-page: 19373
  article-title: CO enhancement of forest productivity constrained by limited nitrogen availability
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: GB1015
  year: 2005
  article-title: A dynamic global vegetation model for studies of the coupled atmosphere biosphere system
  publication-title: Global Biogeochemical Cycles
– volume: 35
  start-page: 1380
  year: 1997
  end-page: 1393
  article-title: Estimation of global leaf area index and absorbed PAR using radiative transfer models
  publication-title: Geoscience and Remote Sensing, IEEE Transactions on
– volume: 333
  start-page: 988
  year: 2011
  end-page: 993
  article-title: A large and persistent carbon sink in the world's forests
  publication-title: Science
– volume: 7
  start-page: 014010
  year: 2012
  article-title: Causes of spring vegetation growth trends in the northern mid–high latitudes from 1982 to 2004
  publication-title: Environmental Research Letters
– volume: 3
  start-page: 13
  year: 2009
  end-page: 17
  article-title: Increased tree carbon storage in response to nitrogen deposition in the US
  publication-title: Nature Geoscience
– volume: 117
  start-page: G04003
  year: 2012
  article-title: Retrospective retrieval of long‐term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data
  publication-title: Journal of Geophysical Research: Biogeosciences
– ident: e_1_2_6_25_1
  doi: 10.1126/science.1074153
– ident: e_1_2_6_42_1
  doi: 10.1038/nature06444
– ident: e_1_2_6_22_1
  doi: 10.1126/science.1071828
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-2486.2008.01626.x
– ident: e_1_2_6_38_1
  doi: 10.1029/2002JD002848
– ident: e_1_2_6_56_1
  doi: 10.1890/11-1408.1
– ident: e_1_2_6_17_1
  doi: 10.1029/2003GB002199
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1744-697X.2007.00085.x
– ident: e_1_2_6_57_1
  doi: 10.1109/TGRS.2013.2237780
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.0509478102
– ident: e_1_2_6_41_1
  doi: 10.1029/2006GB002888
– ident: e_1_2_6_53_1
  doi: 10.1029/2009JG001062
– ident: e_1_2_6_16_1
  doi: 10.3334/CDIAC/atg.ndp001.2004
– ident: e_1_2_6_55_1
  doi: 10.5194/bg-7-2261-2010
– ident: e_1_2_6_26_1
  doi: 10.1109/36.649788
– ident: e_1_2_6_21_1
  doi: 10.1111/gcb.12217
– ident: e_1_2_6_33_1
  doi: 10.1126/science.1201609
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.0611338104
– ident: e_1_2_6_63_1
  doi: 10.1002/joc.3701
– ident: e_1_2_6_15_1
  doi: 10.1029/2001JD001516
– ident: e_1_2_6_39_1
  doi: 10.1658/1100-9233(2004)015[0219:VIASVI]2.0.CO;2
– volume-title: Good Practice Guidance Paper on Detection and Attribution Related to Anthropogenic Climate Change
  year: 2010
  ident: e_1_2_6_10_1
– ident: e_1_2_6_48_1
  doi: 10.1038/ngeo230
– ident: e_1_2_6_5_1
  doi: 10.1029/2010GL042430
– ident: e_1_2_6_6_1
  doi: 10.1016/j.agrformet.2014.01.002
– ident: e_1_2_6_64_1
  doi: 10.1029/2005GL024607
– ident: e_1_2_6_49_1
  doi: 10.1046/j.1365-2486.2003.00569.x
– ident: e_1_2_6_36_1
  doi: 10.1016/j.agrformet.2013.02.002
– ident: e_1_2_6_34_1
– ident: e_1_2_6_14_1
  doi: 10.1038/srep03763
– ident: e_1_2_6_35_1
  doi: 10.1088/1748-9326/6/4/044027
– ident: e_1_2_6_54_1
  doi: 10.1038/ngeo721
– ident: e_1_2_6_8_1
  doi: 10.1175/JCLI3800.1
– ident: e_1_2_6_29_1
  doi: 10.1127/0941-2948/2005/0022
– ident: e_1_2_6_66_1
  doi: 10.3390/rs5020927
– ident: e_1_2_6_51_1
  doi: 10.5194/bgd-10-20113-2013
– ident: e_1_2_6_52_1
  doi: 10.1029/2009GB003530
– ident: e_1_2_6_18_1
  doi: 10.1029/2011MS000045
– ident: e_1_2_6_20_1
  doi: 10.1029/2012JG002084
– ident: e_1_2_6_46_1
  doi: 10.1038/ncomms6018
– ident: e_1_2_6_24_1
  doi: 10.3390/rs5031484
– ident: e_1_2_6_60_1
  doi: 10.1007/s11120-013-9874-6
– ident: e_1_2_6_3_1
  doi: 10.5194/bgd-11-8861-2014
– ident: e_1_2_6_7_1
  doi: 10.1002/gbc.20026
– ident: e_1_2_6_23_1
  doi: 10.1088/1748-9326/7/1/014010
– ident: e_1_2_6_37_1
  doi: 10.1073/pnas.1315126111
– ident: e_1_2_6_45_1
  doi: 10.1111/gcb.12187
– ident: e_1_2_6_4_1
  doi: 10.1146/annurev.pp.31.060180.002423
– ident: e_1_2_6_13_1
  doi: 10.1038/ngeo844
– ident: e_1_2_6_62_1
  doi: 10.1073/pnas.1317065111
– ident: e_1_2_6_2_1
  doi: 10.1029/2001JD001389
– volume-title: Technical Description of an Urban Parameterization for the Community Land Model (CLMU)
  year: 2010
  ident: e_1_2_6_32_1
– ident: e_1_2_6_44_1
  doi: 10.1038/nature09364
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1365-2486.2008.01598.x
– ident: e_1_2_6_43_1
  doi: 10.1038/nature07944
– ident: e_1_2_6_65_1
  doi: 10.1029/2000JD000115
– ident: e_1_2_6_12_1
  doi: 10.1890/05-1792
– ident: e_1_2_6_59_1
  doi: 10.1038/nclimate1836
– ident: e_1_2_6_61_1
  doi: 10.1038/nclimate1580
– ident: e_1_2_6_9_1
  doi: 10.1007/s11427-013-4492-2
– ident: e_1_2_6_19_1
  doi: 10.1038/nature10588
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1082750
– ident: e_1_2_6_40_1
  doi: 10.1029/2006GL028205
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.1006463107
– ident: e_1_2_6_47_1
  doi: 10.1016/j.agrformet.2012.12.006
SSID ssj0003206
Score 2.644782
Snippet The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1601
SubjectTerms afforestation
attribution
Biogeochemistry
Carbon dioxide
Carbon Dioxide - analysis
China
Climate Change
Climate effects
CO2 fertilization effect
Conservation of Natural Resources
data collection
detection
Development strategies
Ecosystem management
Ecosystem models
ecosystems
Environmental impact
Environmental Monitoring
Forests
Greenhouse gases
greening trend
growing season
leaf area index
Models, Theoretical
Nitrogen
Nitrogen - analysis
nitrogen deposition
Plant Development
plateaus
Remote Sensing Technology
Spacecraft
Sustainability management
Temperature
Vegetation
Title Detection and attribution of vegetation greening trend in China over the last 30 years
URI https://api.istex.fr/ark:/67375/WNG-QJFP0GB8-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12795
https://www.ncbi.nlm.nih.gov/pubmed/25369401
https://www.proquest.com/docview/1661601070
https://www.proquest.com/docview/1662637663
https://www.proquest.com/docview/1668259224
https://www.proquest.com/docview/1694481607
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEA61IPjF6mntapUoUvyyx74k2Sx-smfvSqHFt6P9IIRkLzlKy67c7Yn11_hb_GXOZF9qpRbx2x2Zhb25mckzu0-eIeQlc1Izq3kYyTwLmY5FmLtChJw7A3AklZrjeefDI7E_ZQcn_GSNvO7OwjT6EP0DN8wMX68xwbVZ_pbk88IM4yTL8YA5crUQEH24lI5KEz9XM045g1ITp62qELJ4-iuv7EW3nK4AoaJzv10HN6-iV7_9jDfI5-7GG9bJ2XBVm2Hx_Q9Nx__8ZffI3RaW0jdNHN0na7YckNvNoMqLAdncuzwPB2ZtQVgOSHAIoLtaeDO6Q0fnp4CA_bcH5PitrT3Rq6S6nFFd98O1aOXoVztvmY50jtwf2EJpjQRdelpSP9WbIruUAkClgPBrmkY_f1xAXi4fkul479NoP2znOISF4AkPmTNCM-0AO0rjDHZ5zOXWCaw2UPgt0xGfMV0ICeBSCp7Hxjhpi0jLmYhtuknWy6q0W4RGmYntLMm0BmyBOkM8Si2AkLzIs0RoGZBX3T-qilbkHGdtnKuu2QHnKu_cgLzoTb80yh7XGW1BWCg9h4qrph8TfD6EikJZBEs7Plb6i_XiDFlyGVfHRxP1_mD8LprsSjUOyHYXTKotEEsVAy7CXjiLAvK8X4bUxvc1urTVytskAjYAkd5oAz1-DkDsJpscmnBUEgzIoyaY-5tOeAqrUQyO8yH5d1eoyWjXf3j876ZPyB10WcN02ibr9WJlnwKIq80zn62_AAvGPjo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLXaIgQbHoHSgQIGQdXNRPOwPZ4FC5o0SR-JeDRqd8YzsaOq1QQlEyB8DR_AV7Dnn7j2PEpRqdh0wS6Rb6LRte_1uZ7jcxF6QTSXREnqejyOXCJ95sY6ZS6lOgE4EnJJzX3n_oD1hmT3iB4toe_VXZhCH6I-cDORYfO1CXBzIP1blI_TpOkHUVxRKvfU4jMUbLNXO22Y3ZdB0Nk-aPXcsqeAmzIaUJfohEkiNeAYnujEVBxEx0ozs_IhCSkiPToiMmUcgA5nNPaTRHOVepKPmK9C-N9ldM10EDdK_e13Z2JVYWA7efohJZDc_LDUMTK8ofpRz-1-y1pOABOb6fxyEcA9j5fthte5jX5Wrip4LifNeZ40069_qEj-L768g26VyBu_LkLlLlpSWQNdL3pxLhpodfvsyh-YlTlv1kBOH-qKydSa4Q3cOj0GkG-_3UOHbZVbLluGZTbCMq_7h-GJxp_UuCRz4rGhNwFKwLnhIOPjDNvG5dgQaDFgcAxFTI5D78e3BXhmdh8Nr8QVq2glm2RqDWEvSnw1CiIpAT4ZKSXqhQpwVpzGUcAkd9BmtYREWuq4m3Yip6Kq52AyhZ1MBz2vTT8W4iUXGa3BOhRyDJuKGL4PzBGYEU2KPBjasIuz_rGcnhgiYETF4aAr3u523njdLS46DlqvVq8oc-BM-AD9TLkfeQ56Vg9D9jKvpGSmJnNrEzDY41h4qQ2HIh2w5mU2MSHciCU66EERPfVDBzSEUc8Hx9kY-LsrRLe1ZT88_HfTp-hG76C_L_Z3BnuP0E3jvoLYtY5W8ulcPQbMmidPbKrA6MNVx9MvtgWdRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbaIhAXHgulgQIGQcUlqzxsxzlwoLvd7YOuCnTV3oyT2KuqVbbazQLLr-HOv-DMj2LsPEpRqbj0wC2RJ1E0nhl_43yeQegF0VwSJanr8ThyifSZG-uUuZTqBOBIyCU15513B2xzSLYP6eEC-l6fhSnrQzQbbsYzbLw2Dn6a6d-cfJQmbT-I4ppRuaPmnyFfm77e6sLkvgyC3sZ-Z9OtWgq4KaMBdYlOmCRSA4zhiU5MwkF0rDQzhg8xSBHp0YzIlHHAOZzR2E8SzVXqSZ4xX4Xw3kV0jTAvNn0iuu_PalWFgW3k6YeUQGzzw6qMkaENNZ96bvFb1HIMkNjM5peL8O15uGzXu95t9LPWVElzOW7PiqSdfv2jiOR_oso76FaFu_Gb0lHuogWVt9D1shPnvIWWN84O_IFYFfGmLeTsQlYxnlgxvIY7J0cA8e3dPXTQVYVlsuVY5hmWRdM9DI81_qRGFZUTjwy5CTACLgwDGR_l2LYtx4Y-iwGBY0hhChx6P77NQTPT-2h4JapYRkv5OFcrCHtR4qssiKQE8GQKKVEvVICy4jSOAia5g17VFiTSqoq7aSZyIupsDiZT2Ml00PNG9LQsXXKR0AqYoZAjWFLE8ENgNsBMyaTIg6E1a5vNw3JybGiAERUHg754t93b8_rrXPQctFobr6gi4FT4APxMsh95DnrWDEPsMj-kZK7GMysTMFjhWHipDIcUHZDmZTIxIdyUSnTQg9J5mo8OaAijng-Ksy7wd1WIfmfdXjz8d9Gn6MZetyfebg12HqGbRnslq2sVLRWTmXoMgLVInthAgdHHq3anXy1Lm_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+attribution+of+vegetation+greening+trend+in+China+over+the+last+30%C2%A0years&rft.jtitle=Global+change+biology&rft.au=Piao%2C+Shilong&rft.au=Yin%2C+Guodong&rft.au=Tan%2C+Jianguang&rft.au=Cheng%2C+Lei&rft.date=2015-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=21&rft.issue=4&rft.spage=1601&rft.epage=1609&rft_id=info:doi/10.1111%2Fgcb.12795&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_QJFP0GB8_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon