PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides

Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-depend...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 74; no. 6; pp. 1314 - 1330
Main Authors Moon, Kyung, Gottesman, Susan
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.12.2009
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg²⁺ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg²⁺ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
AbstractList Summary Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one‐third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq‐dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two‐component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild‐type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli , one‐third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro . A novel Hfq‐dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two‐component system; the PhoP response regulator is active under low Mg 2+ concentrations and is an important virulence regulator in Salmonella ; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB , involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild‐type cells to polymyxin B. Thus, lower Mg 2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg²⁺ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg²⁺ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
SummaryNon-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ-PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ-PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 small RNAs that have been identified in E. coli , one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro . A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg 2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB , involved in lipopolysaccharide (LPS) modification, and ygdQ , encoding a hypothetical protein. Cell sensitivity to the antimicrobial Polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild type cells to Polymyxin B. Thus, lower Mg 2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low ... concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower ... concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. (ProQuest: ... denotes formulae/symbols omitted.)
Author Gottesman, Susan
Moon, Kyung
Author_xml – sequence: 1
  fullname: Moon, Kyung
– sequence: 2
  fullname: Gottesman, Susan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19889087$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFvwAWC1glteP3AqSqaqFSC-VRiRWW4zgzHjnxECdt59-TMO0UWEC9seX73WPd47MHdtrYOgAgRjke18Eyx4SzrFBM5gVCKkdcUZrfPAKzbWEHzJBiKCOy-LYL9lJaIoQJ4uQJ2MVKSoWkmIHvF4v46eAi69x8CKZ3FUyNCQF-_nAI7-4STK5NvvdXvl_DWMPjZBeu83bhDbQxeNhHaNreN952sfQmwJVb9b5y6Sl4XJuQ3LPbfR9cnhx_PXqfnX18d3p0eJZZzgqaVaWjrCpoTQSvbVXVorRIGImcFNTRWjDMHaKqLpGkRDFcGoUsqrjAXNXSkn3wdqO7GsrGVda1fWeCXnW-Md1aR-P1n5XWL_Q8XulCUkwFHQVe3wp08cfgUq8bn6wLwbQuDkkLQrgUTKCRfPVPknLKuCL0v2CBC1UwNYEv_wKXceja0S-N1egPw1iO0PPfJ9yOdveVIyA3wPgHKXWuvkeQnlKjl3oKh57CoafU6F-p0Tf37m1bre9N7-PklQ8PEXizEbj2wa0f_LA-Pz-dTmP_i01_baI2884nffmlmOKKBSaYSfITvlPldQ
CitedBy_id crossref_primary_10_1016_j_mib_2009_12_011
crossref_primary_10_1038_s41429_022_00502_0
crossref_primary_10_1080_17460441_2019_1588880
crossref_primary_10_1007_s10482_016_0781_7
crossref_primary_10_1074_jbc_M116_757450
crossref_primary_10_1111_mmi_14143
crossref_primary_10_1128_JB_00746_12
crossref_primary_10_1128_AAC_02503_17
crossref_primary_10_1093_nar_gkz616
crossref_primary_10_1093_nar_gkz734
crossref_primary_10_3390_genes11101209
crossref_primary_10_5507_bp_2018_070
crossref_primary_10_3390_ijms23179706
crossref_primary_10_1111_j_1365_2958_2010_07161_x
crossref_primary_10_1016_j_biochi_2012_01_016
crossref_primary_10_3389_fcimb_2024_1419989
crossref_primary_10_31857_S0132342323060088
crossref_primary_10_1128_microbiolspec_RWR_0022_2018
crossref_primary_10_1016_j_molcel_2021_02_019
crossref_primary_10_1016_j_tig_2020_08_016
crossref_primary_10_1128_mBio_03608_20
crossref_primary_10_1002_adma_202004655
crossref_primary_10_1128_mbio_01205_23
crossref_primary_10_1099_mic_0_000365
crossref_primary_10_3390_antiox10111774
crossref_primary_10_1093_nar_gkw358
crossref_primary_10_7554_eLife_62438
crossref_primary_10_1186_1475_2859_12_23
crossref_primary_10_1021_acsinfecdis_1c00002
crossref_primary_10_1002_jcp_22483
crossref_primary_10_3389_fmicb_2014_00643
crossref_primary_10_1186_1471_2164_15_414
crossref_primary_10_1021_acs_jproteome_0c00286
crossref_primary_10_3390_ijms20020356
crossref_primary_10_1128_JB_00345_21
crossref_primary_10_1155_2015_153561
crossref_primary_10_3390_ijms23031148
crossref_primary_10_3389_fcimb_2021_696533
crossref_primary_10_1016_j_micpath_2011_02_005
crossref_primary_10_1074_jbc_M112_445981
crossref_primary_10_1371_journal_pone_0092690
crossref_primary_10_3389_fcimb_2024_1287557
crossref_primary_10_1093_femsre_fuae028
crossref_primary_10_3390_membranes10080181
crossref_primary_10_1093_nar_gkt576
crossref_primary_10_1073_pnas_1613053113
crossref_primary_10_1111_j_1365_2958_2011_07907_x
crossref_primary_10_1016_j_mib_2011_12_001
crossref_primary_10_1101_gr_119370_110
crossref_primary_10_2217_fmb_15_128
crossref_primary_10_1111_j_1365_2958_2011_07641_x
crossref_primary_10_1016_j_molcel_2021_12_030
crossref_primary_10_3390_ijms22105099
crossref_primary_10_3389_fmicb_2021_625585
crossref_primary_10_1016_j_isci_2021_103096
crossref_primary_10_1146_annurev_biochem_070611_102400
crossref_primary_10_1128_mbio_03395_22
crossref_primary_10_1038_s41467_024_51213_z
crossref_primary_10_1128_MMBR_00176_20
crossref_primary_10_1038_emboj_2010_179
crossref_primary_10_1126_sciadv_abi8228
crossref_primary_10_1038_emboj_2013_222
crossref_primary_10_1128_msystems_00964_24
crossref_primary_10_1134_S1068162023060031
crossref_primary_10_3389_fimmu_2018_00788
crossref_primary_10_1128_JB_01419_10
crossref_primary_10_1186_1475_2859_10_18
crossref_primary_10_3390_ijms24087498
crossref_primary_10_1101_cshperspect_a025288
crossref_primary_10_1093_femspd_ftw113
crossref_primary_10_1093_nar_gkx1086
crossref_primary_10_1016_j_tibs_2023_09_002
crossref_primary_10_1111_j_1365_2958_2010_07115_x
crossref_primary_10_3390_pathogens11060698
crossref_primary_10_1093_nar_gkr1156
crossref_primary_10_1128_mBio_02470_20
crossref_primary_10_1128_microbiolspec_RWR_0014_2017
crossref_primary_10_1038_s41467_023_43632_1
crossref_primary_10_1016_j_bbrc_2018_10_084
crossref_primary_10_2147_IDR_S324303
crossref_primary_10_4161_rna_19317
crossref_primary_10_1111_nyas_14244
crossref_primary_10_1371_journal_pgen_1003156
crossref_primary_10_1111_febs_14719
crossref_primary_10_1146_annurev_biochem_060713_035600
crossref_primary_10_1093_jb_mvab142
crossref_primary_10_1016_j_molcel_2012_07_017
crossref_primary_10_1038_nrmicro3047
crossref_primary_10_1128_JB_00312_19
crossref_primary_10_1080_22221751_2024_2366354
crossref_primary_10_1016_j_molcel_2019_10_022
crossref_primary_10_1093_jac_dkv042
crossref_primary_10_1128_Spectrum_00044_21
crossref_primary_10_1111_j_1365_2958_2012_08036_x
crossref_primary_10_1128_mbio_00634_24
crossref_primary_10_1016_j_mib_2010_01_001
crossref_primary_10_1093_femsre_fuab049
crossref_primary_10_1111_mmi_12796
crossref_primary_10_3389_fmicb_2016_01789
crossref_primary_10_3389_fmicb_2017_00803
crossref_primary_10_1371_journal_pone_0098813
crossref_primary_10_1099_mic_0_001099
crossref_primary_10_1111_j_1365_2958_2009_06943_x
crossref_primary_10_1016_j_ymben_2016_11_008
crossref_primary_10_3389_fmicb_2024_1363955
crossref_primary_10_1371_journal_pone_0061308
crossref_primary_10_1074_jbc_M109_089755
crossref_primary_10_1128_ecosalplus_esp_0001_2018
crossref_primary_10_1261_rna_067777_118
crossref_primary_10_1007_s12038_021_00209_8
crossref_primary_10_1016_j_mib_2012_12_005
crossref_primary_10_1038_nature14020
crossref_primary_10_15252_embj_201591569
crossref_primary_10_1371_journal_pone_0016667
crossref_primary_10_1016_j_vetmic_2022_109552
crossref_primary_10_1177_1753425912460708
crossref_primary_10_1093_femsec_fix090
crossref_primary_10_1128_AAC_05009_11
crossref_primary_10_1038_emboj_2012_229
crossref_primary_10_1074_jbc_M111_291799
crossref_primary_10_3389_fcimb_2023_1282258
crossref_primary_10_1038_s41579_019_0201_x
crossref_primary_10_1016_j_jmb_2025_169059
crossref_primary_10_1128_microbiolspec_RWR_0021_2018
crossref_primary_10_1128_mmbr_00193_23
crossref_primary_10_1093_jac_dkx204
crossref_primary_10_1128_spectrum_01537_24
crossref_primary_10_1111_mmi_12257
crossref_primary_10_1186_1471_2105_15_140
crossref_primary_10_1146_annurev_micro_092412_155751
crossref_primary_10_1073_pnas_1703415114
crossref_primary_10_1128_mBio_01526_17
crossref_primary_10_1016_j_chom_2010_06_008
crossref_primary_10_1128_mSystems_00021_15
crossref_primary_10_1111_mmi_13987
Cites_doi 10.1016/j.mib.2007.03.015
10.1515/BC.2005.140
10.1111/j.1365-2958.2006.05489.x
10.1146/annurev.biochem.74.082803.133136
10.1073/pnas.0408238102
10.1128/JB.183.6.1835-1842.2001
10.1046/j.1365-2958.1999.01629.x
10.1016/S1369-5274(03)00027-4
10.1128/JB.186.13.4124-4133.2004
10.1046/j.1365-2958.2002.03170.x
10.1101/sqb.2006.71.016
10.1111/j.1365-2958.2004.04107.x
10.1016/j.jmb.2006.09.004
10.1128/JB.181.17.5516-5520.1999
10.1111/j.1365-2958.2006.05524.x
10.1128/jb.178.17.5092-5099.1996
10.1016/S1286-4579(01)01494-0
10.1128/jb.177.14.4121-4130.1995
10.1111/j.1365-2958.2006.05413.x
10.1111/j.1365-2958.2001.02329.x
10.1128/jb.170.7.3110-3114.1988
10.1093/nar/gkl1040
10.1111/j.1365-2958.2005.04929.x
10.1111/j.1365-2958.2008.06495.x
10.1093/emboj/19.19.5071
10.1111/j.1365-2958.2008.06146.x
10.1128/JB.187.16.5732-5741.2005
10.1073/pnas.95.21.12462
10.1046/j.1365-2958.2000.02051.x
10.1128/JB.01157-08
10.1146/annurev.micro.58.030603.123841
10.1111/j.1432-1033.1996.0272n.x
10.1016/j.tim.2008.03.007
10.1016/S0092-8674(02)00717-1
10.1016/j.cell.2005.05.030
10.1016/j.molcel.2008.10.027
10.1111/j.1365-2958.2003.03935.x
10.1126/science.2646710
10.1016/S0882-4010(03)00149-9
10.1016/j.mib.2007.03.001
10.1042/bj2600737
10.1128/JB.00229-07
10.1111/j.1365-2958.2009.06665.x
10.1371/journal.pbio.0040002
10.1128/JB.185.13.3696-3702.2003
10.1016/S0960-9822(01)00270-6
10.1016/S0378-1119(03)00728-5
10.1073/pnas.86.13.5054
10.1101/gad.1457506
10.1110/ps.03553804
10.1111/j.1462-5822.2007.01111.x
10.1073/pnas.0700025104
10.1371/journal.pgen.1000163
10.1016/j.mib.2006.10.006
10.1074/jbc.M500964200
10.1080/10409230590918702
10.1073/pnas.032066599
10.1016/S0092-8674(00)80312-8
10.1073/pnas.100127597
10.1046/j.1365-2958.2002.03203.x
10.1128/JB.00020-07
10.1099/13500872-145-2-367
10.1128/JB.187.20.6962-6971.2005
10.1016/0882-4010(89)90085-5
10.1128/IAI.00022-08
10.1101/gad.901001
10.1128/jb.177.15.4364-4371.1995
10.1016/j.cell.2006.01.043
10.1128/IAI.68.11.6139-6146.2000
10.1046/j.1365-2958.2003.03734.x
ContentType Journal Article
Copyright Journal compilation © 2009 Blackwell Publishing Ltd. No claim to original US government works
Copyright Blackwell Publishing Ltd. Dec 2009
Copyright_xml – notice: Journal compilation © 2009 Blackwell Publishing Ltd. No claim to original US government works
– notice: Copyright Blackwell Publishing Ltd. Dec 2009
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
7S9
L.6
7X8
5PM
DOI 10.1111/j.1365-2958.2009.06944.x
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
AGRICOLA
MEDLINE
Technology Research Database

Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1330
ExternalDocumentID PMC2841474
1921507131
19889087
10_1111_j_1365_2958_2009_06944_x
MMI6944
US201301713158
Genre article
Journal Article
Research Support, N.I.H., Intramural
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 BC008714
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XFK
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c6524-dbe45d24f376fcddf7bc07a80e874e4f7516e049fb0843951ba90c0d67169f8c3
IEDL.DBID DR2
ISSN 0950-382X
1365-2958
IngestDate Thu Aug 21 18:14:25 EDT 2025
Fri Jul 11 01:23:59 EDT 2025
Thu Jul 10 23:55:12 EDT 2025
Fri Jul 11 03:31:35 EDT 2025
Fri Jul 25 10:50:48 EDT 2025
Mon Jul 21 05:59:13 EDT 2025
Tue Jul 01 03:38:08 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 16:41:12 EST 2025
Wed Dec 27 18:50:09 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6524-dbe45d24f376fcddf7bc07a80e874e4f7516e049fb0843951ba90c0d67169f8c3
Notes http://dx.doi.org/10.1111/j.1365-2958.2009.06944.x
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2009.06944.x
PMID 19889087
PQID 196525118
PQPubID 35968
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2841474
proquest_miscellaneous_733687570
proquest_miscellaneous_46456934
proquest_miscellaneous_21292594
proquest_journals_196525118
pubmed_primary_19889087
crossref_primary_10_1111_j_1365_2958_2009_06944_x
crossref_citationtrail_10_1111_j_1365_2958_2009_06944_x
wiley_primary_10_1111_j_1365_2958_2009_06944_x_MMI6944
fao_agris_US201301713158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2009
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: December 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References 2006; 71
2007; 104
2007; 189
2001; 183
2003; 315
1989; 86
2002; 99
2008; 32
2008; 76
1995; 177
2008; 4
2003; 50
2008; 70
2007; 35
1997; 90
2000; 19
2006; 20
2006; 62
2005; 187
2005; 386
2005; 102
2003; 6
2002; 46
1999; 181
2000; 97
2005; 74
2008; 68
2001; 15
2007; 63
2002; 109
2001; 11
1998; 95
1996; 178
2006; 364
2006; 125
2004; 186
1988; 170
2000; 68
1989; 6
2008; 16
2006; 9
2006; 59
2005; 40
2003; 35
1989; 260
2008; 10
2006; 4
1999; 145
2007; 10
2005; 280
2004; 53
2004; 51
2005; 122
2009; 191
2000; 37
2009; 72
2004; 58
1989; 243
2004; 13
1999; 34
2001; 3
2001; 39
1996; 237
2003; 185
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
19906183 - Mol Microbiol. 2009 Dec;74(6):1289-94. doi: 10.1111/j.1365-2958.2009.06943.x.
References_xml – volume: 177
  start-page: 4121
  year: 1995
  end-page: 4130
  article-title: Tight regulation, modulation, and high‐level expression by vectors containing the arabinose PBAD promoter
  publication-title: J Bacteriol
– volume: 10
  start-page: 576
  year: 2008
  end-page: 582
  article-title: The PhoQ sensor: mechanisms of detection of phagosome signals
  publication-title: Cell Microbiol
– volume: 189
  start-page: 4243
  year: 2007
  end-page: 4256
  article-title: SigmaE regulates and is regulated by a small RNA in
  publication-title: J Bacteriol
– volume: 58
  start-page: 303
  year: 2004
  end-page: 328
  article-title: The small RNA regulators of : roles and mechanisms
  publication-title: Annu Rev Microbiol
– volume: 99
  start-page: 4620
  year: 2002
  end-page: 4625
  article-title: A small RNA regulates the expression of genes involved in iron metabolism in
  publication-title: Proc Natl Acad Sci USA
– volume: 183
  start-page: 1835
  year: 2001
  end-page: 1842
  article-title: The pleiotropic two‐component regulatory system PhoP‐PhoQ
  publication-title: J Bacteriol
– volume: 181
  start-page: 5516
  year: 1999
  end-page: 5520
  article-title: Molecular characterization of the PhoP‐PhoQ two‐component system in K‐12: identification of extracellular Mg2+‐responsive promoters
  publication-title: J Bacteriol
– volume: 280
  start-page: 21202
  year: 2005
  end-page: 21211
  article-title: A phosphoethanolamine transferase specific for the outer 3‐deoxy‐D‐manno‐octulosonic acid residue of lipopolysaccharide. Identification of the gene and Ca2+ hypersensitivity of an deletion mutant
  publication-title: J Biol Chem
– volume: 4
  start-page: e2
  year: 2006
  article-title: Conserved and variable functions of the sigmaE stress response in related genomes
  publication-title: PLoS Biol
– volume: 364
  start-page: 1
  year: 2006
  end-page: 8
  article-title: Conserved small non‐coding RNAs that belong to the sigmaE regulon: role in down‐regulation of outer membrane proteins
  publication-title: J Mol Biol
– volume: 71
  start-page: 1
  year: 2006
  end-page: 11
  article-title: Small RNA regulators and the bacterial response to stress
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 122
  start-page: 461
  year: 2005
  end-page: 472
  article-title: Recognition of antimicrobial peptides by a bacterial sensor kinase
  publication-title: Cell
– volume: 9
  start-page: 605
  year: 2006
  end-page: 611
  article-title: Small non‐coding RNAs and the bacterial outer membrane
  publication-title: Curr Opin Microbiol
– volume: 20
  start-page: 2338
  year: 2006
  end-page: 2348
  article-title: Modulating the outer membrane with small RNAs
  publication-title: Genes Dev
– volume: 62
  start-page: 1674
  year: 2006
  end-page: 1688
  article-title: SigmaE‐dependent small RNAs of respond to membrane stress by accelerating global omp mRNA decay
  publication-title: Mol Microbiol
– volume: 32
  start-page: 827
  year: 2008
  end-page: 837
  article-title: Small RNA binding to 5′ mRNA coding region inhibits translational initiation
  publication-title: Mol Cell
– volume: 97
  start-page: 5978
  year: 2000
  end-page: 5983
  article-title: An efficient recombination system for chromosome engineering in
  publication-title: Proc Natl Acad Sci USA
– volume: 191
  start-page: 461
  year: 2009
  end-page: 476
  article-title: The Crp‐activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior
  publication-title: J Bacteriol
– volume: 3
  start-page: 1327
  year: 2001
  end-page: 1334
  article-title: outer membrane remodeling: role in resistance to host innate immunity
  publication-title: Microbes Infect
– volume: 125
  start-page: 71
  year: 2006
  end-page: 84
  article-title: An RNA sensor for intracellular Mg(2+)
  publication-title: Cell
– volume: 237
  start-page: 272
  year: 1996
  end-page: 278
  article-title: Characterization of lipopolysaccharides of polymyxin‐resistant and polymyxin‐sensitive O3
  publication-title: Eur J Biochem
– volume: 40
  start-page: 93
  year: 2005
  end-page: 113
  article-title: Bacterial small RNA regulators
  publication-title: Crit Rev Biochem Mol Biol
– volume: 10
  start-page: 152
  year: 2007
  end-page: 155
  article-title: Small RNAs controlling outer membrane porins
  publication-title: Curr Opin Microbiol
– volume: 51
  start-page: 1525
  year: 2004
  end-page: 1533
  article-title: The bacterial Sm‐like protein Hfq: a key player in RNA transactions
  publication-title: Mol Microbiol
– volume: 34
  start-page: 690
  year: 1999
  end-page: 700
  article-title: The host factor I (HF‐I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice
  publication-title: Mol Microbiol
– volume: 6
  start-page: 120
  year: 2003
  end-page: 124
  article-title: Regulatory roles for small RNAs in bacteria
  publication-title: Curr Opin Microbiol
– volume: 186
  start-page: 4124
  year: 2004
  end-page: 4133
  article-title: The PmrA‐regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in
  publication-title: J Bacteriol
– volume: 50
  start-page: 1111
  year: 2003
  end-page: 1124
  article-title: Global analysis of small RNA and mRNA targets of Hfq
  publication-title: Mol Microbiol
– volume: 76
  start-page: 3019
  year: 2008
  end-page: 3026
  article-title: Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic
  publication-title: Infect Immun
– volume: 145
  start-page: 367
  year: 1999
  end-page: 378
  article-title: The melittin resistance gene affects intracellular growth in PMA‐differentiated U937 cells, polymyxin B resistance and lipopolysaccharide
  publication-title: Microbiology
– volume: 39
  start-page: 1382
  year: 2001
  end-page: 1394
  article-title: Regulation of RpoS by a novel small RNA: the characterization of RprA
  publication-title: Mol Microbiol
– volume: 19
  start-page: 5071
  year: 2000
  end-page: 5080
  article-title: Transfer of palmitate from phospholipids to lipid A in outer membranes of gram‐negative bacteria
  publication-title: EMBO J
– volume: 260
  start-page: 737
  year: 1989
  end-page: 747
  article-title: Overexpression and site‐directed mutagenesis of the succinyl‐CoA synthetase of and nucleotide sequence of a gene (g30) that is adjacent to the operon
  publication-title: Biochem J
– volume: 187
  start-page: 5732
  year: 2005
  end-page: 5741
  article-title: Regulation of excision genes of the Bacteroides conjugative transposon CTnDOT
  publication-title: J Bacteriol
– volume: 95
  start-page: 12462
  year: 1998
  end-page: 12467
  article-title: DsrA RNA regulates translation of RpoS message by an anti‐antisense mechanism, independent of its action as an antisilencer of transcription
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 125
  year: 2007
  end-page: 133
  article-title: Hfq structure, function and ligand binding
  publication-title: Curr Opin Microbiol
– volume: 86
  start-page: 5054
  year: 1989
  end-page: 5058
  article-title: A two‐component regulatory system ( ) controls virulence
  publication-title: Proc Natl Acad Sci USA
– volume: 68
  start-page: 6139
  year: 2000
  end-page: 6146
  article-title: Genetic and functional analysis of a PmrA‐PmrB‐regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of serovar typhimurium
  publication-title: Infect Immun
– volume: 62
  start-page: 838
  year: 2006
  end-page: 852
  article-title: Loss of Hfq activates the sigmaE‐dependent envelope stress response in
  publication-title: Mol Microbiol
– volume: 102
  start-page: 2862
  year: 2005
  end-page: 2867
  article-title: Dissecting the PhoP regulatory network of and
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 281
  year: 2002
  end-page: 291
  article-title: Transcriptome analysis of all two‐component regulatory system mutants of K‐12
  publication-title: Mol Microbiol
– volume: 6
  start-page: 433
  year: 1989
  end-page: 443
  article-title: Virulence and vaccine potential of mutants of
  publication-title: Microb Pathog
– volume: 74
  start-page: 199
  year: 2005
  end-page: 217
  article-title: An abundance of RNA regulators
  publication-title: Annu Rev Biochem
– volume: 11
  start-page: 941
  year: 2001
  end-page: 950
  article-title: Novel small RNA‐encoding genes in the intergenic regions of
  publication-title: Curr Biol
– volume: 178
  start-page: 5092
  year: 1996
  end-page: 5099
  article-title: Molecular basis of the magnesium deprivation response in : identification of PhoP‐regulated genes
  publication-title: J Bacteriol
– volume: 72
  start-page: 551
  year: 2009
  end-page: 565
  article-title: A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two‐component system
  publication-title: Mol Microbiol
– volume: 4
  start-page: e1000163
  year: 2008
  article-title: Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post‐transcriptional regulator, Hfq
  publication-title: PLoS Genet
– volume: 189
  start-page: 5534
  year: 2007
  end-page: 5541
  article-title: PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in
  publication-title: J Bacteriol
– volume: 63
  start-page: 193
  year: 2007
  end-page: 217
  article-title: The RNA chaperone Hfq is essential for the virulence of
  publication-title: Mol Microbiol
– volume: 35
  start-page: 217
  year: 2003
  end-page: 228
  article-title: Reduced virulence of a mutant of O1
  publication-title: Microb Pathog
– volume: 15
  start-page: 1637
  year: 2001
  end-page: 1651
  article-title: Identification of novel small RNAs using comparative genomics and microarrays
  publication-title: Genes Dev
– volume: 13
  start-page: 937
  year: 2004
  end-page: 945
  article-title: Experimentally based topology models for inner membrane proteins
  publication-title: Protein Sci
– volume: 243
  start-page: 1059
  year: 1989
  end-page: 1062
  article-title: A locus that controls resistance to microbicidal proteins from phagocytic cells
  publication-title: Science
– volume: 16
  start-page: 284
  year: 2008
  end-page: 290
  article-title: The PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more
  publication-title: Trends Microbiol
– volume: 90
  start-page: 43
  year: 1997
  end-page: 53
  article-title: A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator
  publication-title: Cell
– volume: 315
  start-page: 63
  year: 2003
  end-page: 69
  article-title: Mini‐lambda: a tractable system for chromosome and BAC engineering
  publication-title: Gene
– volume: 35
  start-page: 1018
  year: 2007
  end-page: 1037
  article-title: Translational control and target recognition by small RNAs in vivo
  publication-title: Nucleic Acids Res
– volume: 185
  start-page: 3696
  year: 2003
  end-page: 3702
  article-title: Identification and molecular characterization of the Mg2+ stimulon of
  publication-title: J Bacteriol
– volume: 59
  start-page: 231
  year: 2006
  end-page: 247
  article-title: Remodelling of the outer membrane by two small regulatory RNAs
  publication-title: Mol Microbiol
– volume: 104
  start-page: 16305
  year: 2007
  end-page: 16310
  article-title: Stimulus‐dependent differential regulation in the PhoQ PhoP system
  publication-title: Proc Natl Acad Sci USA
– volume: 68
  start-page: 298
  year: 2008
  end-page: 313
  article-title: Multiple pathways for regulation of sigmaS (RpoS) stability in via the action of multiple anti‐adaptors
  publication-title: Mol Microbiol
– volume: 53
  start-page: 229
  year: 2004
  end-page: 241
  article-title: PhoP‐regulated resistance to the antimicrobial peptides magainin 2 and polymyxin B
  publication-title: Mol Microbiol
– volume: 187
  start-page: 6962
  year: 2005
  end-page: 6971
  article-title: Effect of RyhB small RNA on global iron use in
  publication-title: J Bacteriol
– volume: 109
  start-page: 141
  year: 2002
  end-page: 144
  article-title: Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes
  publication-title: Cell
– volume: 46
  start-page: 813
  year: 2002
  end-page: 826
  article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA
  publication-title: Mol Microbiol
– volume: 37
  start-page: 856
  year: 2000
  end-page: 868
  article-title: The gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in
  publication-title: Mol Microbiol
– volume: 170
  start-page: 3110
  year: 1988
  end-page: 3114
  article-title: Cyclic AMP‐cyclic AMP receptor protein as a repressor of transcription of the gene of
  publication-title: J Bacteriol
– volume: 177
  start-page: 4364
  year: 1995
  end-page: 4371
  article-title: Transcriptional autoregulation of the operon
  publication-title: J Bacteriol
– volume: 70
  start-page: 1487
  year: 2008
  end-page: 1501
  article-title: Small membrane proteins found by comparative genomics and ribosome binding site models
  publication-title: Mol Microbiol
– volume: 386
  start-page: 1219
  year: 2005
  end-page: 1238
  article-title: How to find small non‐coding RNAs in bacteria
  publication-title: Biol Chem
– ident: e_1_2_6_9_1
  doi: 10.1016/j.mib.2007.03.015
– ident: e_1_2_6_66_1
  doi: 10.1515/BC.2005.140
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1365-2958.2006.05489.x
– ident: e_1_2_6_59_1
  doi: 10.1146/annurev.biochem.74.082803.133136
– ident: e_1_2_6_71_1
  doi: 10.1073/pnas.0408238102
– ident: e_1_2_6_20_1
  doi: 10.1128/JB.183.6.1835-1842.2001
– ident: e_1_2_6_52_1
  doi: 10.1046/j.1365-2958.1999.01629.x
– ident: e_1_2_6_38_1
  doi: 10.1016/S1369-5274(03)00027-4
– ident: e_1_2_6_31_1
  doi: 10.1128/JB.186.13.4124-4133.2004
– ident: e_1_2_6_45_1
  doi: 10.1046/j.1365-2958.2002.03170.x
– ident: e_1_2_6_19_1
  doi: 10.1101/sqb.2006.71.016
– ident: e_1_2_6_53_1
  doi: 10.1111/j.1365-2958.2004.04107.x
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jmb.2006.09.004
– ident: e_1_2_6_29_1
  doi: 10.1128/JB.181.17.5516-5520.1999
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-2958.2006.05524.x
– ident: e_1_2_6_57_1
  doi: 10.1128/jb.178.17.5092-5099.1996
– ident: e_1_2_6_14_1
  doi: 10.1016/S1286-4579(01)01494-0
– ident: e_1_2_6_25_1
  doi: 10.1128/jb.177.14.4121-4130.1995
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1365-2958.2006.05413.x
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1365-2958.2001.02329.x
– ident: e_1_2_6_47_1
  doi: 10.1128/jb.170.7.3110-3114.1988
– ident: e_1_2_6_61_1
  doi: 10.1093/nar/gkl1040
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-2958.2005.04929.x
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-2958.2008.06495.x
– ident: e_1_2_6_6_1
  doi: 10.1093/emboj/19.19.5071
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-2958.2008.06146.x
– ident: e_1_2_6_43_1
  doi: 10.1128/JB.187.16.5732-5741.2005
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.95.21.12462
– ident: e_1_2_6_62_1
  doi: 10.1046/j.1365-2958.2000.02051.x
– ident: e_1_2_6_13_1
  doi: 10.1128/JB.01157-08
– ident: e_1_2_6_18_1
  doi: 10.1146/annurev.micro.58.030603.123841
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1432-1033.1996.0272n.x
– ident: e_1_2_6_23_1
  doi: 10.1016/j.tim.2008.03.007
– ident: e_1_2_6_67_1
  doi: 10.1016/S0092-8674(02)00717-1
– ident: e_1_2_6_4_1
  doi: 10.1016/j.cell.2005.05.030
– ident: e_1_2_6_8_1
  doi: 10.1016/j.molcel.2008.10.027
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1365-2958.2003.03935.x
– ident: e_1_2_6_15_1
  doi: 10.1126/science.2646710
– ident: e_1_2_6_58_1
  doi: 10.1016/S0882-4010(03)00149-9
– ident: e_1_2_6_64_1
  doi: 10.1016/j.mib.2007.03.001
– ident: e_1_2_6_10_1
  doi: 10.1042/bj2600737
– ident: e_1_2_6_44_1
  doi: 10.1128/JB.00229-07
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-2958.2009.06665.x
– ident: e_1_2_6_51_1
  doi: 10.1371/journal.pbio.0040002
– ident: e_1_2_6_41_1
  doi: 10.1128/JB.185.13.3696-3702.2003
– ident: e_1_2_6_3_1
  doi: 10.1016/S0960-9822(01)00270-6
– ident: e_1_2_6_11_1
  doi: 10.1016/S0378-1119(03)00728-5
– ident: e_1_2_6_40_1
  doi: 10.1073/pnas.86.13.5054
– ident: e_1_2_6_22_1
  doi: 10.1101/gad.1457506
– ident: e_1_2_6_49_1
  doi: 10.1110/ps.03553804
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1462-5822.2007.01111.x
– ident: e_1_2_6_42_1
  doi: 10.1073/pnas.0700025104
– ident: e_1_2_6_55_1
  doi: 10.1371/journal.pgen.1000163
– ident: e_1_2_6_65_1
  doi: 10.1016/j.mib.2006.10.006
– ident: e_1_2_6_50_1
  doi: 10.1074/jbc.M500964200
– ident: e_1_2_6_35_1
  doi: 10.1080/10409230590918702
– ident: e_1_2_6_37_1
  doi: 10.1073/pnas.032066599
– ident: e_1_2_6_2_1
  doi: 10.1016/S0092-8674(00)80312-8
– ident: e_1_2_6_69_1
  doi: 10.1073/pnas.100127597
– ident: e_1_2_6_34_1
  doi: 10.1046/j.1365-2958.2002.03203.x
– ident: e_1_2_6_60_1
  doi: 10.1128/JB.00020-07
– ident: e_1_2_6_5_1
  doi: 10.1099/13500872-145-2-367
– ident: e_1_2_6_39_1
  doi: 10.1128/JB.187.20.6962-6971.2005
– ident: e_1_2_6_17_1
  doi: 10.1016/0882-4010(89)90085-5
– ident: e_1_2_6_30_1
  doi: 10.1128/IAI.00022-08
– ident: e_1_2_6_68_1
  doi: 10.1101/gad.901001
– ident: e_1_2_6_56_1
  doi: 10.1128/jb.177.15.4364-4371.1995
– ident: e_1_2_6_12_1
  doi: 10.1016/j.cell.2006.01.043
– ident: e_1_2_6_24_1
  doi: 10.1128/IAI.68.11.6139-6146.2000
– ident: e_1_2_6_70_1
  doi: 10.1046/j.1365-2958.2003.03734.x
– reference: 19906183 - Mol Microbiol. 2009 Dec;74(6):1289-94. doi: 10.1111/j.1365-2958.2009.06943.x.
SSID ssj0013063
Score 2.3701417
Snippet Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli,...
Summary Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E....
Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli ,...
SummaryNon-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E....
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 small RNAs that have been identified in E....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1314
SubjectTerms Anti-Bacterial Agents - pharmacology
Bacterial proteins
Bacterial Proteins - physiology
Base Sequence
Binding sites
E coli
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - physiology
Escherichia coli Proteins - metabolism
Escherichia coli Proteins - physiology
Gene Deletion
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Host Factor 1 Protein - metabolism
Microbial Sensitivity Tests
Microbiology
Molecular Sequence Data
Oligonucleotide Array Sequence Analysis
Peptides
Polymyxin B - pharmacology
Protein Binding
Ribonucleic acid
RNA
RNA, Bacterial - biosynthesis
RNA, Bacterial - genetics
RNA, Untranslated - biosynthesis
RNA, Untranslated - genetics
Salmonella
Salmonella - genetics
Sequence Alignment
Title PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2009.06944.x
https://www.ncbi.nlm.nih.gov/pubmed/19889087
https://www.proquest.com/docview/196525118
https://www.proquest.com/docview/21292594
https://www.proquest.com/docview/46456934
https://www.proquest.com/docview/733687570
https://pubmed.ncbi.nlm.nih.gov/PMC2841474
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagEhIXyrtLofjAdcM-_DxGqFVBalUKkXKz1rs2XTXdrbqJBJz4CfxGfgkz3k3aQCtViFsU21l58s3M53jyDSFvBM9F4hIX56yUMd4Egs_lEoicsJCxWFWUodriUOxP2Icpnw71T_hfmF4fYvWDG3pGiNfo4IXt1p08VGhprgbZSaEZGyGfxAHkR8fZ5YXC0FRNc5STzabrRT3XftBaprrri_Y6Evp3LeVVjhuS1N4mOV1ur69NOR0t5nZUfv9D-fH_7P8heTBwWTruwfeI3HHNY3Kv72757QmxY3p00n58e_Trx8-LvuW9q2h3Vsxm9PhwTJfvdbTDKvq-jQVtPd3tEEk1VmFTwGlN5y0FANRndVCNgkeeYy1O5bqnZLK3-_ndfjy0dIhLwTMWV9YxXmXMQ1zzZVV5actEFipxSjLHvOSpcHBo8TZRQJV4agudlEklUNTHqzJ_RjaatnFbhBas8jlT2gLBYk4IDemeYwCrpNLe5RGRy6_PlIPeObbdmJkr5x6woEELYjdObYIFzdeIpKuV573mxy3WbAFCTPEFQrOZfMoQcalM85SriGwvYWOGANEZFHIMp7uIvF6NgmfjdU3RuHbRGSAVGg6n7OYZeCstdA4z6A0zUOwSWxYkEXne4_RyR1opnSgJdlpD8GoCCo-vjzT1SRAgB0qTMgmPFQGgtzaSOTh4j69e_OvCbXI_G_p3JOlLsjG_WLhXQArndie4-w4mZv4bR-pSog
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYILb6gp0D1wdfBjvY9jhFql0ESlNFJuKz92W4vUrupEAk78BH4jv4SZtZPW0EoV4hbZu7E8_mZ2xjv-PkLe8iTmgQmMH7Nc-LgTCD4XC0jkeAYrFivS3HVbTPhoyj7MklknB4TfwrT8EOsXbugZLl6jg-ML6b6XuxYtlciOd5IrxgaQUN5BgW9XXx1GF1sKnayaSpBQNpr123qu_KfeWnXbpvVVaejf3ZSXs1y3TO0-JPPVDbbdKV8Gy0U2yL__wf34nyzwiDzo0lk6bPH3mNwy1RNytxW4_PaUZEN6cFJ_enfw68fP81b13hS0OU3nc3o4GdLVsYY22EjfKlnQ2tKdBsFUYiM2BaiWdFFTwEB5WjriKLjkGbbjFKZ5Rqa7O0fvR36n6uDnPImYX2SGJUXELIQ2mxeFFVkeiFQGRgpmmBVJyA3ULTYLJGRLSZilKsiDgiOvj5V5_JxsVHVlNglNWWFjJlUGORYznCtY8ROMYYWQyprYI2L1_HTeUZ6j8sZcXyp9wIIaLYiCnEo7C-qvHgnXM89a2o8bzNkEiOj0GKKznn6OEHKhCOMwkR7ZWuFGdzGi0cjl6Ao8j2yvz4Jz445NWpl62WjIKxTUp-z6EbgxzVUMI-g1I5DvElULAo-8aIF6cUdKShVIAXbqQXg9ALnH-2eq8sRxkENWEzIBl-UOoTc2kh6P9_DXy3-duE3ujY7G-3p_b_Jxi9yPOjmPIHxFNhbnS_MacsRF9sb5_m9h2lXX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgCMQL43tlg_mB1xYncfzxWLFVG7CqDCr1zUpim1XrkmppJeCJn8Bv5Jdwb5J2C2zShHirGrtRbs-9Pq5PzyXktYgjwRxz3YhnsosngZBzkQQiJ1JYsbhNskptMRQHY_5uEk8a_RP-F6b2h1j_4IaZUdVrTPC59e0krxRaOlaN7aTQnPeAT97hgilE-N5xeHGi0HRV0zH6yYaTtqrnyk9qLVW3fVJcxUL_FlNeJrnVKjXYJKer56vFKae95SLtZd__sH78PwF4SB40ZJb2a_Q9Irdc_pjcrdtbfntC0j4dnRQf34x-_fh5Xve8d5aWZ8lsRo-Hfbp6r6QlyujrPha08HS_RChNUYZNAahTuigoIGB6Nq1so-CWcxTjWFc-JePB_ue3B92mp0M3E3HIuzZ1PLYh91DYfGatl2nGZKKYU5I77mUcCAe7Fp8yBVwpDtJEs4xZga4-XmXRM7KRF7nbIjTh1kdc6RQYFndCaFjvY6xgVirtXdQhcvX1mawxPMe-GzNzaeMDETQYQWzHqU0VQfO1Q4L1zHlt-nGDOVuAEJN8gdpsxp9CRFwggyiIVYdsr2BjmgpRGnRyrLZ3HbK7vgqpjec1Se6KZWmAVWjYnfLrR-CxtNARjKDXjEC3S-xZwDrkeY3TiyfSSmmmJMSpheD1AHQeb1_JpyeVAzlwmoBLuK2oAHrjIJmjo0N89eJfJ-6Se6O9gflwOHy_Te6HTS8PFuyQjcX50r0EgrhIX1WZ_xsshFSP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PhoQ%2FP-Regulated+small+RNA+Regulates+Sensitivity+of+Escherichia+coli+to+Antimicrobial+Peptides&rft.jtitle=Molecular+microbiology&rft.au=Moon%2C+Kyung&rft.au=Gottesman%2C+Susan&rft.date=2009-12-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=74&rft.issue=6&rft.spage=1314&rft.epage=1330&rft_id=info:doi/10.1111%2Fj.1365-2958.2009.06944.x&rft_id=info%3Apmid%2F19889087&rft.externalDocID=PMC2841474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon