PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-depend...
Saved in:
Published in | Molecular microbiology Vol. 74; no. 6; pp. 1314 - 1330 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.12.2009
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg²⁺ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg²⁺ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. |
---|---|
AbstractList | Summary
Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one‐third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq‐dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two‐component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild‐type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli , one‐third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro . A novel Hfq‐dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two‐component system; the PhoP response regulator is active under low Mg 2+ concentrations and is an important virulence regulator in Salmonella ; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB , involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild‐type cells to polymyxin B. Thus, lower Mg 2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg²⁺ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg²⁺ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. SummaryNon-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ-PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ-PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 small RNAs that have been identified in E. coli , one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro . A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg 2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB , involved in lipopolysaccharide (LPS) modification, and ygdQ , encoding a hypothetical protein. Cell sensitivity to the antimicrobial Polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild type cells to Polymyxin B. Thus, lower Mg 2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low ... concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower ... concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Gottesman, Susan Moon, Kyung |
Author_xml | – sequence: 1 fullname: Moon, Kyung – sequence: 2 fullname: Gottesman, Susan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19889087$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFvwAWC1glteP3AqSqaqFSC-VRiRWW4zgzHjnxECdt59-TMO0UWEC9seX73WPd47MHdtrYOgAgRjke18Eyx4SzrFBM5gVCKkdcUZrfPAKzbWEHzJBiKCOy-LYL9lJaIoQJ4uQJ2MVKSoWkmIHvF4v46eAi69x8CKZ3FUyNCQF-_nAI7-4STK5NvvdXvl_DWMPjZBeu83bhDbQxeNhHaNreN952sfQmwJVb9b5y6Sl4XJuQ3LPbfR9cnhx_PXqfnX18d3p0eJZZzgqaVaWjrCpoTQSvbVXVorRIGImcFNTRWjDMHaKqLpGkRDFcGoUsqrjAXNXSkn3wdqO7GsrGVda1fWeCXnW-Md1aR-P1n5XWL_Q8XulCUkwFHQVe3wp08cfgUq8bn6wLwbQuDkkLQrgUTKCRfPVPknLKuCL0v2CBC1UwNYEv_wKXceja0S-N1egPw1iO0PPfJ9yOdveVIyA3wPgHKXWuvkeQnlKjl3oKh57CoafU6F-p0Tf37m1bre9N7-PklQ8PEXizEbj2wa0f_LA-Pz-dTmP_i01_baI2884nffmlmOKKBSaYSfITvlPldQ |
CitedBy_id | crossref_primary_10_1016_j_mib_2009_12_011 crossref_primary_10_1038_s41429_022_00502_0 crossref_primary_10_1080_17460441_2019_1588880 crossref_primary_10_1007_s10482_016_0781_7 crossref_primary_10_1074_jbc_M116_757450 crossref_primary_10_1111_mmi_14143 crossref_primary_10_1128_JB_00746_12 crossref_primary_10_1128_AAC_02503_17 crossref_primary_10_1093_nar_gkz616 crossref_primary_10_1093_nar_gkz734 crossref_primary_10_3390_genes11101209 crossref_primary_10_5507_bp_2018_070 crossref_primary_10_3390_ijms23179706 crossref_primary_10_1111_j_1365_2958_2010_07161_x crossref_primary_10_1016_j_biochi_2012_01_016 crossref_primary_10_3389_fcimb_2024_1419989 crossref_primary_10_31857_S0132342323060088 crossref_primary_10_1128_microbiolspec_RWR_0022_2018 crossref_primary_10_1016_j_molcel_2021_02_019 crossref_primary_10_1016_j_tig_2020_08_016 crossref_primary_10_1128_mBio_03608_20 crossref_primary_10_1002_adma_202004655 crossref_primary_10_1128_mbio_01205_23 crossref_primary_10_1099_mic_0_000365 crossref_primary_10_3390_antiox10111774 crossref_primary_10_1093_nar_gkw358 crossref_primary_10_7554_eLife_62438 crossref_primary_10_1186_1475_2859_12_23 crossref_primary_10_1021_acsinfecdis_1c00002 crossref_primary_10_1002_jcp_22483 crossref_primary_10_3389_fmicb_2014_00643 crossref_primary_10_1186_1471_2164_15_414 crossref_primary_10_1021_acs_jproteome_0c00286 crossref_primary_10_3390_ijms20020356 crossref_primary_10_1128_JB_00345_21 crossref_primary_10_1155_2015_153561 crossref_primary_10_3390_ijms23031148 crossref_primary_10_3389_fcimb_2021_696533 crossref_primary_10_1016_j_micpath_2011_02_005 crossref_primary_10_1074_jbc_M112_445981 crossref_primary_10_1371_journal_pone_0092690 crossref_primary_10_3389_fcimb_2024_1287557 crossref_primary_10_1093_femsre_fuae028 crossref_primary_10_3390_membranes10080181 crossref_primary_10_1093_nar_gkt576 crossref_primary_10_1073_pnas_1613053113 crossref_primary_10_1111_j_1365_2958_2011_07907_x crossref_primary_10_1016_j_mib_2011_12_001 crossref_primary_10_1101_gr_119370_110 crossref_primary_10_2217_fmb_15_128 crossref_primary_10_1111_j_1365_2958_2011_07641_x crossref_primary_10_1016_j_molcel_2021_12_030 crossref_primary_10_3390_ijms22105099 crossref_primary_10_3389_fmicb_2021_625585 crossref_primary_10_1016_j_isci_2021_103096 crossref_primary_10_1146_annurev_biochem_070611_102400 crossref_primary_10_1128_mbio_03395_22 crossref_primary_10_1038_s41467_024_51213_z crossref_primary_10_1128_MMBR_00176_20 crossref_primary_10_1038_emboj_2010_179 crossref_primary_10_1126_sciadv_abi8228 crossref_primary_10_1038_emboj_2013_222 crossref_primary_10_1128_msystems_00964_24 crossref_primary_10_1134_S1068162023060031 crossref_primary_10_3389_fimmu_2018_00788 crossref_primary_10_1128_JB_01419_10 crossref_primary_10_1186_1475_2859_10_18 crossref_primary_10_3390_ijms24087498 crossref_primary_10_1101_cshperspect_a025288 crossref_primary_10_1093_femspd_ftw113 crossref_primary_10_1093_nar_gkx1086 crossref_primary_10_1016_j_tibs_2023_09_002 crossref_primary_10_1111_j_1365_2958_2010_07115_x crossref_primary_10_3390_pathogens11060698 crossref_primary_10_1093_nar_gkr1156 crossref_primary_10_1128_mBio_02470_20 crossref_primary_10_1128_microbiolspec_RWR_0014_2017 crossref_primary_10_1038_s41467_023_43632_1 crossref_primary_10_1016_j_bbrc_2018_10_084 crossref_primary_10_2147_IDR_S324303 crossref_primary_10_4161_rna_19317 crossref_primary_10_1111_nyas_14244 crossref_primary_10_1371_journal_pgen_1003156 crossref_primary_10_1111_febs_14719 crossref_primary_10_1146_annurev_biochem_060713_035600 crossref_primary_10_1093_jb_mvab142 crossref_primary_10_1016_j_molcel_2012_07_017 crossref_primary_10_1038_nrmicro3047 crossref_primary_10_1128_JB_00312_19 crossref_primary_10_1080_22221751_2024_2366354 crossref_primary_10_1016_j_molcel_2019_10_022 crossref_primary_10_1093_jac_dkv042 crossref_primary_10_1128_Spectrum_00044_21 crossref_primary_10_1111_j_1365_2958_2012_08036_x crossref_primary_10_1128_mbio_00634_24 crossref_primary_10_1016_j_mib_2010_01_001 crossref_primary_10_1093_femsre_fuab049 crossref_primary_10_1111_mmi_12796 crossref_primary_10_3389_fmicb_2016_01789 crossref_primary_10_3389_fmicb_2017_00803 crossref_primary_10_1371_journal_pone_0098813 crossref_primary_10_1099_mic_0_001099 crossref_primary_10_1111_j_1365_2958_2009_06943_x crossref_primary_10_1016_j_ymben_2016_11_008 crossref_primary_10_3389_fmicb_2024_1363955 crossref_primary_10_1371_journal_pone_0061308 crossref_primary_10_1074_jbc_M109_089755 crossref_primary_10_1128_ecosalplus_esp_0001_2018 crossref_primary_10_1261_rna_067777_118 crossref_primary_10_1007_s12038_021_00209_8 crossref_primary_10_1016_j_mib_2012_12_005 crossref_primary_10_1038_nature14020 crossref_primary_10_15252_embj_201591569 crossref_primary_10_1371_journal_pone_0016667 crossref_primary_10_1016_j_vetmic_2022_109552 crossref_primary_10_1177_1753425912460708 crossref_primary_10_1093_femsec_fix090 crossref_primary_10_1128_AAC_05009_11 crossref_primary_10_1038_emboj_2012_229 crossref_primary_10_1074_jbc_M111_291799 crossref_primary_10_3389_fcimb_2023_1282258 crossref_primary_10_1038_s41579_019_0201_x crossref_primary_10_1016_j_jmb_2025_169059 crossref_primary_10_1128_microbiolspec_RWR_0021_2018 crossref_primary_10_1128_mmbr_00193_23 crossref_primary_10_1093_jac_dkx204 crossref_primary_10_1128_spectrum_01537_24 crossref_primary_10_1111_mmi_12257 crossref_primary_10_1186_1471_2105_15_140 crossref_primary_10_1146_annurev_micro_092412_155751 crossref_primary_10_1073_pnas_1703415114 crossref_primary_10_1128_mBio_01526_17 crossref_primary_10_1016_j_chom_2010_06_008 crossref_primary_10_1128_mSystems_00021_15 crossref_primary_10_1111_mmi_13987 |
Cites_doi | 10.1016/j.mib.2007.03.015 10.1515/BC.2005.140 10.1111/j.1365-2958.2006.05489.x 10.1146/annurev.biochem.74.082803.133136 10.1073/pnas.0408238102 10.1128/JB.183.6.1835-1842.2001 10.1046/j.1365-2958.1999.01629.x 10.1016/S1369-5274(03)00027-4 10.1128/JB.186.13.4124-4133.2004 10.1046/j.1365-2958.2002.03170.x 10.1101/sqb.2006.71.016 10.1111/j.1365-2958.2004.04107.x 10.1016/j.jmb.2006.09.004 10.1128/JB.181.17.5516-5520.1999 10.1111/j.1365-2958.2006.05524.x 10.1128/jb.178.17.5092-5099.1996 10.1016/S1286-4579(01)01494-0 10.1128/jb.177.14.4121-4130.1995 10.1111/j.1365-2958.2006.05413.x 10.1111/j.1365-2958.2001.02329.x 10.1128/jb.170.7.3110-3114.1988 10.1093/nar/gkl1040 10.1111/j.1365-2958.2005.04929.x 10.1111/j.1365-2958.2008.06495.x 10.1093/emboj/19.19.5071 10.1111/j.1365-2958.2008.06146.x 10.1128/JB.187.16.5732-5741.2005 10.1073/pnas.95.21.12462 10.1046/j.1365-2958.2000.02051.x 10.1128/JB.01157-08 10.1146/annurev.micro.58.030603.123841 10.1111/j.1432-1033.1996.0272n.x 10.1016/j.tim.2008.03.007 10.1016/S0092-8674(02)00717-1 10.1016/j.cell.2005.05.030 10.1016/j.molcel.2008.10.027 10.1111/j.1365-2958.2003.03935.x 10.1126/science.2646710 10.1016/S0882-4010(03)00149-9 10.1016/j.mib.2007.03.001 10.1042/bj2600737 10.1128/JB.00229-07 10.1111/j.1365-2958.2009.06665.x 10.1371/journal.pbio.0040002 10.1128/JB.185.13.3696-3702.2003 10.1016/S0960-9822(01)00270-6 10.1016/S0378-1119(03)00728-5 10.1073/pnas.86.13.5054 10.1101/gad.1457506 10.1110/ps.03553804 10.1111/j.1462-5822.2007.01111.x 10.1073/pnas.0700025104 10.1371/journal.pgen.1000163 10.1016/j.mib.2006.10.006 10.1074/jbc.M500964200 10.1080/10409230590918702 10.1073/pnas.032066599 10.1016/S0092-8674(00)80312-8 10.1073/pnas.100127597 10.1046/j.1365-2958.2002.03203.x 10.1128/JB.00020-07 10.1099/13500872-145-2-367 10.1128/JB.187.20.6962-6971.2005 10.1016/0882-4010(89)90085-5 10.1128/IAI.00022-08 10.1101/gad.901001 10.1128/jb.177.15.4364-4371.1995 10.1016/j.cell.2006.01.043 10.1128/IAI.68.11.6139-6146.2000 10.1046/j.1365-2958.2003.03734.x |
ContentType | Journal Article |
Copyright | Journal compilation © 2009 Blackwell Publishing Ltd. No claim to original US government works Copyright Blackwell Publishing Ltd. Dec 2009 |
Copyright_xml | – notice: Journal compilation © 2009 Blackwell Publishing Ltd. No claim to original US government works – notice: Copyright Blackwell Publishing Ltd. Dec 2009 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7S9 L.6 7X8 5PM |
DOI | 10.1111/j.1365-2958.2009.06944.x |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA MEDLINE Technology Research Database Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 1330 |
ExternalDocumentID | PMC2841474 1921507131 19889087 10_1111_j_1365_2958_2009_06944_x MMI6944 US201301713158 |
Genre | article Journal Article Research Support, N.I.H., Intramural Feature |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 BC008714 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEQTP AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FBQ FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XFK XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c6524-dbe45d24f376fcddf7bc07a80e874e4f7516e049fb0843951ba90c0d67169f8c3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X 1365-2958 |
IngestDate | Thu Aug 21 18:14:25 EDT 2025 Fri Jul 11 01:23:59 EDT 2025 Thu Jul 10 23:55:12 EDT 2025 Fri Jul 11 03:31:35 EDT 2025 Fri Jul 25 10:50:48 EDT 2025 Mon Jul 21 05:59:13 EDT 2025 Tue Jul 01 03:38:08 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 16:41:12 EST 2025 Wed Dec 27 18:50:09 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6524-dbe45d24f376fcddf7bc07a80e874e4f7516e049fb0843951ba90c0d67169f8c3 |
Notes | http://dx.doi.org/10.1111/j.1365-2958.2009.06944.x SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2009.06944.x |
PMID | 19889087 |
PQID | 196525118 |
PQPubID | 35968 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2841474 proquest_miscellaneous_733687570 proquest_miscellaneous_46456934 proquest_miscellaneous_21292594 proquest_journals_196525118 pubmed_primary_19889087 crossref_primary_10_1111_j_1365_2958_2009_06944_x crossref_citationtrail_10_1111_j_1365_2958_2009_06944_x wiley_primary_10_1111_j_1365_2958_2009_06944_x_MMI6944 fao_agris_US201301713158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2009 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: December 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | 2006; 71 2007; 104 2007; 189 2001; 183 2003; 315 1989; 86 2002; 99 2008; 32 2008; 76 1995; 177 2008; 4 2003; 50 2008; 70 2007; 35 1997; 90 2000; 19 2006; 20 2006; 62 2005; 187 2005; 386 2005; 102 2003; 6 2002; 46 1999; 181 2000; 97 2005; 74 2008; 68 2001; 15 2007; 63 2002; 109 2001; 11 1998; 95 1996; 178 2006; 364 2006; 125 2004; 186 1988; 170 2000; 68 1989; 6 2008; 16 2006; 9 2006; 59 2005; 40 2003; 35 1989; 260 2008; 10 2006; 4 1999; 145 2007; 10 2005; 280 2004; 53 2004; 51 2005; 122 2009; 191 2000; 37 2009; 72 2004; 58 1989; 243 2004; 13 1999; 34 2001; 3 2001; 39 1996; 237 2003; 185 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 19906183 - Mol Microbiol. 2009 Dec;74(6):1289-94. doi: 10.1111/j.1365-2958.2009.06943.x. |
References_xml | – volume: 177 start-page: 4121 year: 1995 end-page: 4130 article-title: Tight regulation, modulation, and high‐level expression by vectors containing the arabinose PBAD promoter publication-title: J Bacteriol – volume: 10 start-page: 576 year: 2008 end-page: 582 article-title: The PhoQ sensor: mechanisms of detection of phagosome signals publication-title: Cell Microbiol – volume: 189 start-page: 4243 year: 2007 end-page: 4256 article-title: SigmaE regulates and is regulated by a small RNA in publication-title: J Bacteriol – volume: 58 start-page: 303 year: 2004 end-page: 328 article-title: The small RNA regulators of : roles and mechanisms publication-title: Annu Rev Microbiol – volume: 99 start-page: 4620 year: 2002 end-page: 4625 article-title: A small RNA regulates the expression of genes involved in iron metabolism in publication-title: Proc Natl Acad Sci USA – volume: 183 start-page: 1835 year: 2001 end-page: 1842 article-title: The pleiotropic two‐component regulatory system PhoP‐PhoQ publication-title: J Bacteriol – volume: 181 start-page: 5516 year: 1999 end-page: 5520 article-title: Molecular characterization of the PhoP‐PhoQ two‐component system in K‐12: identification of extracellular Mg2+‐responsive promoters publication-title: J Bacteriol – volume: 280 start-page: 21202 year: 2005 end-page: 21211 article-title: A phosphoethanolamine transferase specific for the outer 3‐deoxy‐D‐manno‐octulosonic acid residue of lipopolysaccharide. Identification of the gene and Ca2+ hypersensitivity of an deletion mutant publication-title: J Biol Chem – volume: 4 start-page: e2 year: 2006 article-title: Conserved and variable functions of the sigmaE stress response in related genomes publication-title: PLoS Biol – volume: 364 start-page: 1 year: 2006 end-page: 8 article-title: Conserved small non‐coding RNAs that belong to the sigmaE regulon: role in down‐regulation of outer membrane proteins publication-title: J Mol Biol – volume: 71 start-page: 1 year: 2006 end-page: 11 article-title: Small RNA regulators and the bacterial response to stress publication-title: Cold Spring Harb Symp Quant Biol – volume: 122 start-page: 461 year: 2005 end-page: 472 article-title: Recognition of antimicrobial peptides by a bacterial sensor kinase publication-title: Cell – volume: 9 start-page: 605 year: 2006 end-page: 611 article-title: Small non‐coding RNAs and the bacterial outer membrane publication-title: Curr Opin Microbiol – volume: 20 start-page: 2338 year: 2006 end-page: 2348 article-title: Modulating the outer membrane with small RNAs publication-title: Genes Dev – volume: 62 start-page: 1674 year: 2006 end-page: 1688 article-title: SigmaE‐dependent small RNAs of respond to membrane stress by accelerating global omp mRNA decay publication-title: Mol Microbiol – volume: 32 start-page: 827 year: 2008 end-page: 837 article-title: Small RNA binding to 5′ mRNA coding region inhibits translational initiation publication-title: Mol Cell – volume: 97 start-page: 5978 year: 2000 end-page: 5983 article-title: An efficient recombination system for chromosome engineering in publication-title: Proc Natl Acad Sci USA – volume: 191 start-page: 461 year: 2009 end-page: 476 article-title: The Crp‐activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior publication-title: J Bacteriol – volume: 3 start-page: 1327 year: 2001 end-page: 1334 article-title: outer membrane remodeling: role in resistance to host innate immunity publication-title: Microbes Infect – volume: 125 start-page: 71 year: 2006 end-page: 84 article-title: An RNA sensor for intracellular Mg(2+) publication-title: Cell – volume: 237 start-page: 272 year: 1996 end-page: 278 article-title: Characterization of lipopolysaccharides of polymyxin‐resistant and polymyxin‐sensitive O3 publication-title: Eur J Biochem – volume: 40 start-page: 93 year: 2005 end-page: 113 article-title: Bacterial small RNA regulators publication-title: Crit Rev Biochem Mol Biol – volume: 10 start-page: 152 year: 2007 end-page: 155 article-title: Small RNAs controlling outer membrane porins publication-title: Curr Opin Microbiol – volume: 51 start-page: 1525 year: 2004 end-page: 1533 article-title: The bacterial Sm‐like protein Hfq: a key player in RNA transactions publication-title: Mol Microbiol – volume: 34 start-page: 690 year: 1999 end-page: 700 article-title: The host factor I (HF‐I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice publication-title: Mol Microbiol – volume: 6 start-page: 120 year: 2003 end-page: 124 article-title: Regulatory roles for small RNAs in bacteria publication-title: Curr Opin Microbiol – volume: 186 start-page: 4124 year: 2004 end-page: 4133 article-title: The PmrA‐regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in publication-title: J Bacteriol – volume: 50 start-page: 1111 year: 2003 end-page: 1124 article-title: Global analysis of small RNA and mRNA targets of Hfq publication-title: Mol Microbiol – volume: 76 start-page: 3019 year: 2008 end-page: 3026 article-title: Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic publication-title: Infect Immun – volume: 145 start-page: 367 year: 1999 end-page: 378 article-title: The melittin resistance gene affects intracellular growth in PMA‐differentiated U937 cells, polymyxin B resistance and lipopolysaccharide publication-title: Microbiology – volume: 39 start-page: 1382 year: 2001 end-page: 1394 article-title: Regulation of RpoS by a novel small RNA: the characterization of RprA publication-title: Mol Microbiol – volume: 19 start-page: 5071 year: 2000 end-page: 5080 article-title: Transfer of palmitate from phospholipids to lipid A in outer membranes of gram‐negative bacteria publication-title: EMBO J – volume: 260 start-page: 737 year: 1989 end-page: 747 article-title: Overexpression and site‐directed mutagenesis of the succinyl‐CoA synthetase of and nucleotide sequence of a gene (g30) that is adjacent to the operon publication-title: Biochem J – volume: 187 start-page: 5732 year: 2005 end-page: 5741 article-title: Regulation of excision genes of the Bacteroides conjugative transposon CTnDOT publication-title: J Bacteriol – volume: 95 start-page: 12462 year: 1998 end-page: 12467 article-title: DsrA RNA regulates translation of RpoS message by an anti‐antisense mechanism, independent of its action as an antisilencer of transcription publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 125 year: 2007 end-page: 133 article-title: Hfq structure, function and ligand binding publication-title: Curr Opin Microbiol – volume: 86 start-page: 5054 year: 1989 end-page: 5058 article-title: A two‐component regulatory system ( ) controls virulence publication-title: Proc Natl Acad Sci USA – volume: 68 start-page: 6139 year: 2000 end-page: 6146 article-title: Genetic and functional analysis of a PmrA‐PmrB‐regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of serovar typhimurium publication-title: Infect Immun – volume: 62 start-page: 838 year: 2006 end-page: 852 article-title: Loss of Hfq activates the sigmaE‐dependent envelope stress response in publication-title: Mol Microbiol – volume: 102 start-page: 2862 year: 2005 end-page: 2867 article-title: Dissecting the PhoP regulatory network of and publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 281 year: 2002 end-page: 291 article-title: Transcriptome analysis of all two‐component regulatory system mutants of K‐12 publication-title: Mol Microbiol – volume: 6 start-page: 433 year: 1989 end-page: 443 article-title: Virulence and vaccine potential of mutants of publication-title: Microb Pathog – volume: 74 start-page: 199 year: 2005 end-page: 217 article-title: An abundance of RNA regulators publication-title: Annu Rev Biochem – volume: 11 start-page: 941 year: 2001 end-page: 950 article-title: Novel small RNA‐encoding genes in the intergenic regions of publication-title: Curr Biol – volume: 178 start-page: 5092 year: 1996 end-page: 5099 article-title: Molecular basis of the magnesium deprivation response in : identification of PhoP‐regulated genes publication-title: J Bacteriol – volume: 72 start-page: 551 year: 2009 end-page: 565 article-title: A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two‐component system publication-title: Mol Microbiol – volume: 4 start-page: e1000163 year: 2008 article-title: Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post‐transcriptional regulator, Hfq publication-title: PLoS Genet – volume: 189 start-page: 5534 year: 2007 end-page: 5541 article-title: PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in publication-title: J Bacteriol – volume: 63 start-page: 193 year: 2007 end-page: 217 article-title: The RNA chaperone Hfq is essential for the virulence of publication-title: Mol Microbiol – volume: 35 start-page: 217 year: 2003 end-page: 228 article-title: Reduced virulence of a mutant of O1 publication-title: Microb Pathog – volume: 15 start-page: 1637 year: 2001 end-page: 1651 article-title: Identification of novel small RNAs using comparative genomics and microarrays publication-title: Genes Dev – volume: 13 start-page: 937 year: 2004 end-page: 945 article-title: Experimentally based topology models for inner membrane proteins publication-title: Protein Sci – volume: 243 start-page: 1059 year: 1989 end-page: 1062 article-title: A locus that controls resistance to microbicidal proteins from phagocytic cells publication-title: Science – volume: 16 start-page: 284 year: 2008 end-page: 290 article-title: The PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more publication-title: Trends Microbiol – volume: 90 start-page: 43 year: 1997 end-page: 53 article-title: A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator publication-title: Cell – volume: 315 start-page: 63 year: 2003 end-page: 69 article-title: Mini‐lambda: a tractable system for chromosome and BAC engineering publication-title: Gene – volume: 35 start-page: 1018 year: 2007 end-page: 1037 article-title: Translational control and target recognition by small RNAs in vivo publication-title: Nucleic Acids Res – volume: 185 start-page: 3696 year: 2003 end-page: 3702 article-title: Identification and molecular characterization of the Mg2+ stimulon of publication-title: J Bacteriol – volume: 59 start-page: 231 year: 2006 end-page: 247 article-title: Remodelling of the outer membrane by two small regulatory RNAs publication-title: Mol Microbiol – volume: 104 start-page: 16305 year: 2007 end-page: 16310 article-title: Stimulus‐dependent differential regulation in the PhoQ PhoP system publication-title: Proc Natl Acad Sci USA – volume: 68 start-page: 298 year: 2008 end-page: 313 article-title: Multiple pathways for regulation of sigmaS (RpoS) stability in via the action of multiple anti‐adaptors publication-title: Mol Microbiol – volume: 53 start-page: 229 year: 2004 end-page: 241 article-title: PhoP‐regulated resistance to the antimicrobial peptides magainin 2 and polymyxin B publication-title: Mol Microbiol – volume: 187 start-page: 6962 year: 2005 end-page: 6971 article-title: Effect of RyhB small RNA on global iron use in publication-title: J Bacteriol – volume: 109 start-page: 141 year: 2002 end-page: 144 article-title: Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes publication-title: Cell – volume: 46 start-page: 813 year: 2002 end-page: 826 article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA publication-title: Mol Microbiol – volume: 37 start-page: 856 year: 2000 end-page: 868 article-title: The gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in publication-title: Mol Microbiol – volume: 170 start-page: 3110 year: 1988 end-page: 3114 article-title: Cyclic AMP‐cyclic AMP receptor protein as a repressor of transcription of the gene of publication-title: J Bacteriol – volume: 177 start-page: 4364 year: 1995 end-page: 4371 article-title: Transcriptional autoregulation of the operon publication-title: J Bacteriol – volume: 70 start-page: 1487 year: 2008 end-page: 1501 article-title: Small membrane proteins found by comparative genomics and ribosome binding site models publication-title: Mol Microbiol – volume: 386 start-page: 1219 year: 2005 end-page: 1238 article-title: How to find small non‐coding RNAs in bacteria publication-title: Biol Chem – ident: e_1_2_6_9_1 doi: 10.1016/j.mib.2007.03.015 – ident: e_1_2_6_66_1 doi: 10.1515/BC.2005.140 – ident: e_1_2_6_54_1 doi: 10.1111/j.1365-2958.2006.05489.x – ident: e_1_2_6_59_1 doi: 10.1146/annurev.biochem.74.082803.133136 – ident: e_1_2_6_71_1 doi: 10.1073/pnas.0408238102 – ident: e_1_2_6_20_1 doi: 10.1128/JB.183.6.1835-1842.2001 – ident: e_1_2_6_52_1 doi: 10.1046/j.1365-2958.1999.01629.x – ident: e_1_2_6_38_1 doi: 10.1016/S1369-5274(03)00027-4 – ident: e_1_2_6_31_1 doi: 10.1128/JB.186.13.4124-4133.2004 – ident: e_1_2_6_45_1 doi: 10.1046/j.1365-2958.2002.03170.x – ident: e_1_2_6_19_1 doi: 10.1101/sqb.2006.71.016 – ident: e_1_2_6_53_1 doi: 10.1111/j.1365-2958.2004.04107.x – ident: e_1_2_6_28_1 doi: 10.1016/j.jmb.2006.09.004 – ident: e_1_2_6_29_1 doi: 10.1128/JB.181.17.5516-5520.1999 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-2958.2006.05524.x – ident: e_1_2_6_57_1 doi: 10.1128/jb.178.17.5092-5099.1996 – ident: e_1_2_6_14_1 doi: 10.1016/S1286-4579(01)01494-0 – ident: e_1_2_6_25_1 doi: 10.1128/jb.177.14.4121-4130.1995 – ident: e_1_2_6_16_1 doi: 10.1111/j.1365-2958.2006.05413.x – ident: e_1_2_6_33_1 doi: 10.1111/j.1365-2958.2001.02329.x – ident: e_1_2_6_47_1 doi: 10.1128/jb.170.7.3110-3114.1988 – ident: e_1_2_6_61_1 doi: 10.1093/nar/gkl1040 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-2958.2005.04929.x – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-2958.2008.06495.x – ident: e_1_2_6_6_1 doi: 10.1093/emboj/19.19.5071 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-2958.2008.06146.x – ident: e_1_2_6_43_1 doi: 10.1128/JB.187.16.5732-5741.2005 – ident: e_1_2_6_32_1 doi: 10.1073/pnas.95.21.12462 – ident: e_1_2_6_62_1 doi: 10.1046/j.1365-2958.2000.02051.x – ident: e_1_2_6_13_1 doi: 10.1128/JB.01157-08 – ident: e_1_2_6_18_1 doi: 10.1146/annurev.micro.58.030603.123841 – ident: e_1_2_6_26_1 doi: 10.1111/j.1432-1033.1996.0272n.x – ident: e_1_2_6_23_1 doi: 10.1016/j.tim.2008.03.007 – ident: e_1_2_6_67_1 doi: 10.1016/S0092-8674(02)00717-1 – ident: e_1_2_6_4_1 doi: 10.1016/j.cell.2005.05.030 – ident: e_1_2_6_8_1 doi: 10.1016/j.molcel.2008.10.027 – ident: e_1_2_6_63_1 doi: 10.1111/j.1365-2958.2003.03935.x – ident: e_1_2_6_15_1 doi: 10.1126/science.2646710 – ident: e_1_2_6_58_1 doi: 10.1016/S0882-4010(03)00149-9 – ident: e_1_2_6_64_1 doi: 10.1016/j.mib.2007.03.001 – ident: e_1_2_6_10_1 doi: 10.1042/bj2600737 – ident: e_1_2_6_44_1 doi: 10.1128/JB.00229-07 – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-2958.2009.06665.x – ident: e_1_2_6_51_1 doi: 10.1371/journal.pbio.0040002 – ident: e_1_2_6_41_1 doi: 10.1128/JB.185.13.3696-3702.2003 – ident: e_1_2_6_3_1 doi: 10.1016/S0960-9822(01)00270-6 – ident: e_1_2_6_11_1 doi: 10.1016/S0378-1119(03)00728-5 – ident: e_1_2_6_40_1 doi: 10.1073/pnas.86.13.5054 – ident: e_1_2_6_22_1 doi: 10.1101/gad.1457506 – ident: e_1_2_6_49_1 doi: 10.1110/ps.03553804 – ident: e_1_2_6_48_1 doi: 10.1111/j.1462-5822.2007.01111.x – ident: e_1_2_6_42_1 doi: 10.1073/pnas.0700025104 – ident: e_1_2_6_55_1 doi: 10.1371/journal.pgen.1000163 – ident: e_1_2_6_65_1 doi: 10.1016/j.mib.2006.10.006 – ident: e_1_2_6_50_1 doi: 10.1074/jbc.M500964200 – ident: e_1_2_6_35_1 doi: 10.1080/10409230590918702 – ident: e_1_2_6_37_1 doi: 10.1073/pnas.032066599 – ident: e_1_2_6_2_1 doi: 10.1016/S0092-8674(00)80312-8 – ident: e_1_2_6_69_1 doi: 10.1073/pnas.100127597 – ident: e_1_2_6_34_1 doi: 10.1046/j.1365-2958.2002.03203.x – ident: e_1_2_6_60_1 doi: 10.1128/JB.00020-07 – ident: e_1_2_6_5_1 doi: 10.1099/13500872-145-2-367 – ident: e_1_2_6_39_1 doi: 10.1128/JB.187.20.6962-6971.2005 – ident: e_1_2_6_17_1 doi: 10.1016/0882-4010(89)90085-5 – ident: e_1_2_6_30_1 doi: 10.1128/IAI.00022-08 – ident: e_1_2_6_68_1 doi: 10.1101/gad.901001 – ident: e_1_2_6_56_1 doi: 10.1128/jb.177.15.4364-4371.1995 – ident: e_1_2_6_12_1 doi: 10.1016/j.cell.2006.01.043 – ident: e_1_2_6_24_1 doi: 10.1128/IAI.68.11.6139-6146.2000 – ident: e_1_2_6_70_1 doi: 10.1046/j.1365-2958.2003.03734.x – reference: 19906183 - Mol Microbiol. 2009 Dec;74(6):1289-94. doi: 10.1111/j.1365-2958.2009.06943.x. |
SSID | ssj0013063 |
Score | 2.3701417 |
Snippet | Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli,... Summary Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E.... Non‐coding small RNAs (sRNAs) play a major role in post‐transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli ,... SummaryNon-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E.... Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 small RNAs that have been identified in E.... |
SourceID | pubmedcentral proquest pubmed crossref wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1314 |
SubjectTerms | Anti-Bacterial Agents - pharmacology Bacterial proteins Bacterial Proteins - physiology Base Sequence Binding sites E coli Escherichia coli Escherichia coli - drug effects Escherichia coli - physiology Escherichia coli Proteins - metabolism Escherichia coli Proteins - physiology Gene Deletion Gene expression Gene Expression Profiling Gene Expression Regulation, Bacterial Host Factor 1 Protein - metabolism Microbial Sensitivity Tests Microbiology Molecular Sequence Data Oligonucleotide Array Sequence Analysis Peptides Polymyxin B - pharmacology Protein Binding Ribonucleic acid RNA RNA, Bacterial - biosynthesis RNA, Bacterial - genetics RNA, Untranslated - biosynthesis RNA, Untranslated - genetics Salmonella Salmonella - genetics Sequence Alignment |
Title | PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2009.06944.x https://www.ncbi.nlm.nih.gov/pubmed/19889087 https://www.proquest.com/docview/196525118 https://www.proquest.com/docview/21292594 https://www.proquest.com/docview/46456934 https://www.proquest.com/docview/733687570 https://pubmed.ncbi.nlm.nih.gov/PMC2841474 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagEhIXyrtLofjAdcM-_DxGqFVBalUKkXKz1rs2XTXdrbqJBJz4CfxGfgkz3k3aQCtViFsU21l58s3M53jyDSFvBM9F4hIX56yUMd4Egs_lEoicsJCxWFWUodriUOxP2Icpnw71T_hfmF4fYvWDG3pGiNfo4IXt1p08VGhprgbZSaEZGyGfxAHkR8fZ5YXC0FRNc5STzabrRT3XftBaprrri_Y6Evp3LeVVjhuS1N4mOV1ur69NOR0t5nZUfv9D-fH_7P8heTBwWTruwfeI3HHNY3Kv72757QmxY3p00n58e_Trx8-LvuW9q2h3Vsxm9PhwTJfvdbTDKvq-jQVtPd3tEEk1VmFTwGlN5y0FANRndVCNgkeeYy1O5bqnZLK3-_ndfjy0dIhLwTMWV9YxXmXMQ1zzZVV5actEFipxSjLHvOSpcHBo8TZRQJV4agudlEklUNTHqzJ_RjaatnFbhBas8jlT2gLBYk4IDemeYwCrpNLe5RGRy6_PlIPeObbdmJkr5x6woEELYjdObYIFzdeIpKuV573mxy3WbAFCTPEFQrOZfMoQcalM85SriGwvYWOGANEZFHIMp7uIvF6NgmfjdU3RuHbRGSAVGg6n7OYZeCstdA4z6A0zUOwSWxYkEXne4_RyR1opnSgJdlpD8GoCCo-vjzT1SRAgB0qTMgmPFQGgtzaSOTh4j69e_OvCbXI_G_p3JOlLsjG_WLhXQArndie4-w4mZv4bR-pSog |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYILb6gp0D1wdfBjvY9jhFql0ESlNFJuKz92W4vUrupEAk78BH4jv4SZtZPW0EoV4hbZu7E8_mZ2xjv-PkLe8iTmgQmMH7Nc-LgTCD4XC0jkeAYrFivS3HVbTPhoyj7MklknB4TfwrT8EOsXbugZLl6jg-ML6b6XuxYtlciOd5IrxgaQUN5BgW9XXx1GF1sKnayaSpBQNpr123qu_KfeWnXbpvVVaejf3ZSXs1y3TO0-JPPVDbbdKV8Gy0U2yL__wf34nyzwiDzo0lk6bPH3mNwy1RNytxW4_PaUZEN6cFJ_enfw68fP81b13hS0OU3nc3o4GdLVsYY22EjfKlnQ2tKdBsFUYiM2BaiWdFFTwEB5WjriKLjkGbbjFKZ5Rqa7O0fvR36n6uDnPImYX2SGJUXELIQ2mxeFFVkeiFQGRgpmmBVJyA3ULTYLJGRLSZilKsiDgiOvj5V5_JxsVHVlNglNWWFjJlUGORYznCtY8ROMYYWQyprYI2L1_HTeUZ6j8sZcXyp9wIIaLYiCnEo7C-qvHgnXM89a2o8bzNkEiOj0GKKznn6OEHKhCOMwkR7ZWuFGdzGi0cjl6Ao8j2yvz4Jz445NWpl62WjIKxTUp-z6EbgxzVUMI-g1I5DvElULAo-8aIF6cUdKShVIAXbqQXg9ALnH-2eq8sRxkENWEzIBl-UOoTc2kh6P9_DXy3-duE3ujY7G-3p_b_Jxi9yPOjmPIHxFNhbnS_MacsRF9sb5_m9h2lXX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgCMQL43tlg_mB1xYncfzxWLFVG7CqDCr1zUpim1XrkmppJeCJn8Bv5Jdwb5J2C2zShHirGrtRbs-9Pq5PzyXktYgjwRxz3YhnsosngZBzkQQiJ1JYsbhNskptMRQHY_5uEk8a_RP-F6b2h1j_4IaZUdVrTPC59e0krxRaOlaN7aTQnPeAT97hgilE-N5xeHGi0HRV0zH6yYaTtqrnyk9qLVW3fVJcxUL_FlNeJrnVKjXYJKer56vFKae95SLtZd__sH78PwF4SB40ZJb2a_Q9Irdc_pjcrdtbfntC0j4dnRQf34x-_fh5Xve8d5aWZ8lsRo-Hfbp6r6QlyujrPha08HS_RChNUYZNAahTuigoIGB6Nq1so-CWcxTjWFc-JePB_ue3B92mp0M3E3HIuzZ1PLYh91DYfGatl2nGZKKYU5I77mUcCAe7Fp8yBVwpDtJEs4xZga4-XmXRM7KRF7nbIjTh1kdc6RQYFndCaFjvY6xgVirtXdQhcvX1mawxPMe-GzNzaeMDETQYQWzHqU0VQfO1Q4L1zHlt-nGDOVuAEJN8gdpsxp9CRFwggyiIVYdsr2BjmgpRGnRyrLZ3HbK7vgqpjec1Se6KZWmAVWjYnfLrR-CxtNARjKDXjEC3S-xZwDrkeY3TiyfSSmmmJMSpheD1AHQeb1_JpyeVAzlwmoBLuK2oAHrjIJmjo0N89eJfJ-6Se6O9gflwOHy_Te6HTS8PFuyQjcX50r0EgrhIX1WZ_xsshFSP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PhoQ%2FP-Regulated+small+RNA+Regulates+Sensitivity+of+Escherichia+coli+to+Antimicrobial+Peptides&rft.jtitle=Molecular+microbiology&rft.au=Moon%2C+Kyung&rft.au=Gottesman%2C+Susan&rft.date=2009-12-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=74&rft.issue=6&rft.spage=1314&rft.epage=1330&rft_id=info:doi/10.1111%2Fj.1365-2958.2009.06944.x&rft_id=info%3Apmid%2F19889087&rft.externalDocID=PMC2841474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |