Riparian plant community responses to increased flooding: a meta‐analysis

A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evide...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 21; no. 8; pp. 2881 - 2890
Main Authors Garssen, Annemarie G, Baattrup‐Pedersen, Annette, Voesenek, Laurentius A. C. J, Verhoeven, Jos T. A, Soons, Merel B
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.08.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams).
AbstractList A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams).
A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams).
A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams).
Author Garssen, Annemarie G
Verhoeven, Jos T. A
Voesenek, Laurentius A. C. J
Baattrup‐Pedersen, Annette
Soons, Merel B
Author_xml – sequence: 1
  fullname: Garssen, Annemarie G
– sequence: 2
  fullname: Baattrup‐Pedersen, Annette
– sequence: 3
  fullname: Voesenek, Laurentius A. C. J
– sequence: 4
  fullname: Verhoeven, Jos T. A
– sequence: 5
  fullname: Soons, Merel B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25752818$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1u1DAQB3ALtaIfcOAFIBIXekjrj9hOeqMruosoIBWqHi0nGa9cEjvYiWBvPALPyJPUy-5yqEDCl7Gs33-k8RyhPecdIPSM4FOSztmyqU8JrSh5hA4JEzynRSn21nde5AQTdoCOYrzDGDOKxWN0QLnktCTlIXp3bQcdrHbZ0Gk3Zo3v-8nZcZUFiIN3EWI2-sy6JoCO0Gam8761bnme6ayHUf_68VM73a2ijU_QvtFdhKfbeoxuLt98ni3yq4_zt7PXV3kjOCU5cFHrQjRU1pjJipalKUBgKNr1M2e8laQBoyVgna6Cg2F13RoojWSladkxerXpOwT_dYI4qt7GBro0APgpKiI5K0iBi-I_KOZYSlqKRF8-oHd-Cmm0pEQlWVVWnCX1fKumuodWDcH2OqzU7kcTONuAJvgYAxjV2FGP1rsxaNspgtV6ZyrtTP3eWUqcPEjsmv7Nbrt_sx2s_g3VfHaxS-SbhI0jfP-T0OGLEpJJrm4_zNXtonov5tcXapH8i4032iu9DDaqm08UE44xJakydg-vLL1p
CitedBy_id crossref_primary_10_3389_fpls_2025_1503627
crossref_primary_10_1007_s10750_020_04401_z
crossref_primary_10_1016_j_rama_2021_10_002
crossref_primary_10_3389_ffgc_2021_723553
crossref_primary_10_3390_w15020341
crossref_primary_10_1016_j_scitotenv_2024_173185
crossref_primary_10_1111_ddi_12448
crossref_primary_10_1016_j_scitotenv_2019_01_357
crossref_primary_10_3390_land11091512
crossref_primary_10_1016_j_agwat_2024_108800
crossref_primary_10_1002_ecy_3205
crossref_primary_10_1016_j_agrformet_2019_02_002
crossref_primary_10_1007_s11273_021_09815_7
crossref_primary_10_1007_s42974_023_00180_4
crossref_primary_10_1016_j_ecoleng_2021_106459
crossref_primary_10_1016_j_geomorph_2024_109193
crossref_primary_10_1139_cjfr_2016_0202
crossref_primary_10_1111_1365_2745_70030
crossref_primary_10_1007_s11104_020_04612_2
crossref_primary_10_1111_nph_14185
crossref_primary_10_1016_j_scitotenv_2019_134092
crossref_primary_10_1016_j_jprot_2018_04_031
crossref_primary_10_1111_1365_2435_12441
crossref_primary_10_1016_j_ecolind_2024_111570
crossref_primary_10_1080_02705060_2018_1550022
crossref_primary_10_3375_2162_4399_44_2_76
crossref_primary_10_3390_su142214911
crossref_primary_10_1111_jvs_12352
crossref_primary_10_1139_er_2016_0085
crossref_primary_10_3390_f12020203
crossref_primary_10_1016_j_catena_2025_108757
crossref_primary_10_1016_j_advwatres_2017_09_028
crossref_primary_10_1111_avsc_12494
crossref_primary_10_1016_j_ecolind_2023_110505
crossref_primary_10_1371_journal_pone_0220231
crossref_primary_10_1093_jpe_rty027
crossref_primary_10_1016_j_ecolind_2024_111733
crossref_primary_10_3390_w15183228
crossref_primary_10_1002_agj2_20096
crossref_primary_10_1016_j_scitotenv_2016_08_046
crossref_primary_10_1134_S1067413620010051
crossref_primary_10_1093_biosci_biae038
crossref_primary_10_1002_ece3_4494
crossref_primary_10_1016_j_ecolind_2022_108730
crossref_primary_10_1016_j_scitotenv_2018_09_327
crossref_primary_10_1016_j_ecolind_2022_109269
crossref_primary_10_3389_fpls_2021_634898
crossref_primary_10_1093_treephys_tpaa031
crossref_primary_10_1002_eco_2359
crossref_primary_10_1007_s10750_021_04785_6
crossref_primary_10_1111_jvs_12800
crossref_primary_10_1016_j_jenvman_2022_115467
crossref_primary_10_1016_j_gecco_2022_e02118
crossref_primary_10_1007_s11629_022_7691_0
crossref_primary_10_1016_j_jhydrol_2019_03_049
crossref_primary_10_1007_s10452_021_09927_5
crossref_primary_10_1007_s13157_020_01375_5
crossref_primary_10_1016_j_flora_2021_151960
crossref_primary_10_1016_j_tplants_2022_12_013
crossref_primary_10_1002_rra_3938
crossref_primary_10_3390_su12072921
crossref_primary_10_1016_j_envexpbot_2018_08_015
crossref_primary_10_1111_gcb_13687
crossref_primary_10_1016_j_scitotenv_2021_149827
crossref_primary_10_1088_1748_9326_abfc78
crossref_primary_10_1002_ece3_7019
crossref_primary_10_1002_ece3_3973
crossref_primary_10_1016_j_flora_2023_152296
crossref_primary_10_1111_jvs_13186
crossref_primary_10_1016_j_agrformet_2022_109071
crossref_primary_10_1002_eco_1950
crossref_primary_10_1016_j_jaridenv_2016_12_004
crossref_primary_10_18343_jipi_30_1_55
crossref_primary_10_1111_jac_12394
crossref_primary_10_1098_rspb_2019_1755
crossref_primary_10_1002_ecm_1645
crossref_primary_10_3389_fenvs_2019_00124
crossref_primary_10_1016_j_geomorph_2023_108672
crossref_primary_10_1111_gcb_14569
crossref_primary_10_3354_meps14091
crossref_primary_10_1016_j_earscirev_2018_04_007
crossref_primary_10_3390_w8120566
crossref_primary_10_3390_f12010022
crossref_primary_10_3390_su16083217
crossref_primary_10_1007_s11056_021_09861_2
crossref_primary_10_1016_j_ecohyd_2021_02_004
crossref_primary_10_1007_s00468_018_1751_7
crossref_primary_10_1007_s11368_019_02533_x
crossref_primary_10_3390_w14172622
crossref_primary_10_1007_s10661_023_11121_z
crossref_primary_10_1016_j_gloplacha_2016_08_012
crossref_primary_10_3390_agronomy14091899
crossref_primary_10_1002_aqc_70023
crossref_primary_10_1002_ece3_5926
crossref_primary_10_1093_aob_mcac031
crossref_primary_10_1016_j_jenvman_2024_121188
crossref_primary_10_1111_ppl_13594
crossref_primary_10_1111_fwb_13630
crossref_primary_10_1002_ecs2_1548
crossref_primary_10_1016_j_ecolind_2024_113039
crossref_primary_10_1371_journal_pone_0294359
crossref_primary_10_3389_fenvs_2022_1019695
crossref_primary_10_1111_nph_13693
crossref_primary_10_1007_s00027_019_0640_5
crossref_primary_10_1093_forestry_cpad014
crossref_primary_10_1016_j_scitotenv_2018_05_321
crossref_primary_10_1007_s13157_021_01524_4
crossref_primary_10_1016_j_hisbio_2025_100018
crossref_primary_10_1016_j_foreco_2020_117962
crossref_primary_10_2478_jengeo_2018_0008
crossref_primary_10_1016_j_ecolind_2018_04_040
crossref_primary_10_1016_j_scitotenv_2020_144654
crossref_primary_10_3389_fmicb_2023_1108025
crossref_primary_10_1016_j_ecolind_2020_106797
crossref_primary_10_3390_f11050518
crossref_primary_10_1007_s10750_019_04159_z
crossref_primary_10_1111_avsc_12297
crossref_primary_10_3390_w16101339
crossref_primary_10_1007_s11120_020_00791_2
crossref_primary_10_1086_699481
crossref_primary_10_3390_plants12051193
crossref_primary_10_3389_fpls_2022_1081787
crossref_primary_10_3390_su141811309
crossref_primary_10_1007_s00442_017_3893_5
crossref_primary_10_1016_j_ecolind_2024_112313
crossref_primary_10_1007_s00442_019_04423_y
crossref_primary_10_18307_2018_0318
crossref_primary_10_1016_j_catena_2022_106857
crossref_primary_10_3390_land10070708
crossref_primary_10_1016_j_flora_2024_152667
crossref_primary_10_1080_13416979_2024_2386704
crossref_primary_10_1002_aqc_3120
crossref_primary_10_1093_treephys_tpab165
crossref_primary_10_1007_s10452_023_10012_2
crossref_primary_10_7211_jjsrt_47_466
crossref_primary_10_3389_fmicb_2022_1076610
crossref_primary_10_1016_j_heliyon_2021_e08048
crossref_primary_10_1007_s10750_016_2907_3
crossref_primary_10_1007_s13157_018_1084_8
crossref_primary_10_1007_s11258_019_00918_z
crossref_primary_10_1002_iroh_202102091
crossref_primary_10_1016_j_ecoleng_2018_04_017
crossref_primary_10_3389_fpls_2023_1257730
crossref_primary_10_1017_S0266467421000493
crossref_primary_10_1007_s11056_018_9627_7
crossref_primary_10_1002_eco_2158
crossref_primary_10_1016_j_jclepro_2019_118885
crossref_primary_10_1016_j_ecolind_2024_112955
crossref_primary_10_1371_journal_pone_0207689
crossref_primary_10_3390_plants14020282
crossref_primary_10_3390_ijerph191811582
crossref_primary_10_1071_BT22051
crossref_primary_10_1016_j_jhydrol_2024_131728
crossref_primary_10_1016_j_jplph_2020_153180
crossref_primary_10_1016_j_scitotenv_2019_06_006
crossref_primary_10_1016_j_ecolind_2019_04_005
crossref_primary_10_3390_w16010164
crossref_primary_10_1002_rra_4271
crossref_primary_10_1017_inp_2017_22
crossref_primary_10_1111_mec_13348
crossref_primary_10_1111_jvs_13145
crossref_primary_10_3390_rs14061415
crossref_primary_10_1111_1365_2745_12460
crossref_primary_10_1111_jvs_12731
crossref_primary_10_1007_s11356_024_34153_5
crossref_primary_10_1371_journal_pone_0153972
crossref_primary_10_1016_j_scitotenv_2024_174616
Cites_doi 10.1038/nclimate1911
10.1111/j.1365-2664.2006.01223.x
10.2307/1313099
10.1111/j.1438-8677.1999.tb00253.x
10.1890/02-740
10.1146/annurev.ecolsys.28.1.621
10.1093/aob/mcn143
10.1007/s10750-005-1905-7
10.1111/j.1365-2745.2004.00957.x
10.1002/rrr.624
10.1111/fwb.12088
10.1111/j.0030-1299.2004.13083.x
10.1111/j.1365-2486.2010.02230.x
10.1029/2008JD011438
10.1007/s10531-008-9532-z
10.1111/j.1654-109X.2006.tb00665.x
10.2307/1941956
10.2307/1311607
10.1111/j.1654-109X.2006.tb00676.x
10.1111/j.1365-2664.2008.01534.x
10.1111/nph.12951
10.1029/2005JD005965
10.1016/j.aquabot.2004.10.006
10.1111/j.1365-2745.2005.01057.x
10.1002/rra.707
10.1146/annurev.arplant.59.032607.092752
10.1111/j.1654-1103.2007.tb02576.x
10.1071/MF08066
10.1007/BF02851908
10.1672/0277-5212(2000)020[0323:SANAIF]2.0.CO;2
10.1111/j.0028-646X.2001.257_1.x
10.1093/jxb/41.7.775
10.1038/21877
10.1023/A:1021493327180
10.1016/S1369-5266(03)00038-4
10.1046/j.1365-3040.1998.00261.x
10.1111/j.1365-2664.2011.02026.x
10.1017/S037689290200022X
10.1093/oxfordjournals.aob.a010308
10.1111/fwb.12328
10.1029/2008JD011523
10.1007/s10021-012-9597-0
10.1016/S0098-8472(02)00018-7
10.1007/BF00204341
10.1111/j.1526-100X.2012.00893.x
10.1007/s10584-006-9210-7
10.1016/j.geomorph.2009.11.018
10.1111/1365-2435.12441
10.1111/j.1469-8137.1987.tb00153.x
10.1029/2012JD017461
10.1890/0012-9658(2000)081[0899:FORFIR]2.0.CO;2
10.2307/2404910
10.1111/j.1365-2427.2009.02206.x
10.1046/j.1365-3040.2000.00628.x
10.1046/j.1365-2664.1998.3540553.x
10.1111/j.1365-2427.2011.02694.x
10.1111/j.1365-2427.2006.01713.x
10.1093/aob/mcn183
10.1007/s00468-010-0481-2
10.1111/j.1365-313X.2008.03769.x
10.1016/j.jaridenv.2004.04.004
10.1046/j.1365-2745.2003.00749.x
10.1111/j.1365-2427.2005.01383.x
10.2307/1941822
ContentType Journal Article
Copyright 2015 John The Authors. Published by John Wiley & Sons Ltd.
2015 John The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: 2015 John The Authors. Published by John Wiley & Sons Ltd.
– notice: 2015 John The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID FBQ
BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7ST
7U1
7U6
7S9
L.6
DOI 10.1111/gcb.12921
DatabaseName AGRIS
Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Risk Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Risk Abstracts
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Risk Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2890
ExternalDocumentID 3748200681
25752818
10_1111_gcb_12921
GCB12921
ark_67375_WNG_WH9M6GRB_H
US201500212013
Genre reviewArticle
Meta-Analysis
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union 7th Framework Project REFRESH
  funderid: 244121
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7ST
7U1
7U6
7S9
L.6
ID FETCH-LOGICAL-c6521-e56ba46c27b0379288f4e60e4dba46535d71cefa7e0ad7165ef3bbdfe8f738fd3
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Jul 11 18:40:32 EDT 2025
Fri Jul 11 08:16:00 EDT 2025
Fri Jul 25 10:57:43 EDT 2025
Thu Apr 03 07:09:12 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
Tue Jul 01 03:52:53 EDT 2025
Wed Jan 22 16:15:46 EST 2025
Wed Oct 30 09:53:22 EDT 2024
Wed Dec 27 18:53:50 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords hydrological changes
floods
wetlands
biodiversity
global change
literature survey
riparian gradient
survival
vegetation
climate change
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/4.0
2015 John The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6521-e56ba46c27b0379288f4e60e4dba46535d71cefa7e0ad7165ef3bbdfe8f738fd3
Notes http://dx.doi.org/10.1111/gcb.12921
Table S1. Keyword strings and results. Table S2. Papers meta-analysis survival. Table S3. Papers meta-analysis biomass. Table S4. Morphological adjustments to flooding stress. Table S5. List of species included in the analyses, with species growth form and relevant traits. Table S6. Papers species richness. Table S7. Summary of the main effects of flooding on riparian plant species richness and composition.
ArticleID:GCB12921
European Union 7th Framework Project REFRESH - No. 244121
istex:D523B3DA2DABD78C4FB5C53CB15D4483EC82486D
ark:/67375/WNG-WH9M6GRB-H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12921
PMID 25752818
PQID 1697398953
PQPubID 30327
PageCount 10
ParticipantIDs proquest_miscellaneous_1753414044
proquest_miscellaneous_1705077286
proquest_journals_1697398953
pubmed_primary_25752818
crossref_citationtrail_10_1111_gcb_12921
crossref_primary_10_1111_gcb_12921
wiley_primary_10_1111_gcb_12921_GCB12921
istex_primary_ark_67375_WNG_WH9M6GRB_H
fao_agris_US201500212013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2015
Publisher Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
References Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. BioScience, 41, 540-551.
Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimation and genetic diversity. Annual Review of Plant Biology, 59, 313-339.
Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands: a test of biodiversity theory. Ecological Society of America, 79, 94-105.
Naiman RJ, Décamps H, McClain ME (2005) Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier, Oxford, UK.
Beltman B, Willems JH, Güsewell S (2007) Flood events overrule fertiliser effects on biomass production and species richness in riverine grasslands. Journal of Vegetation Science, 18, 625-634.
Brederveld RJ, Jaehnig SC, Lorenz AW, Brunzel S, Soons MB (2011) Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology, 48, 1241-1250.
Verhoeven JTA, Soons MB, Janssen R, Omtzigt N (2008) An Operational Landscape Unit approach for identifying key landscape connections in wetland restoration. Journal of Applied Ecology, 45, 1496-1503.
Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Applied Vegetation Science, 9, 271-278.
Baattrup-Pedersen A, Dalkvist D, Dybkjær JB, Riis T, Larsen SE, Kronvang B (2013a) Species recruitment following flooding, sediment deposition and seed addition in restored riparian areas. Restoration Ecology, 21, 399-408.
Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7-30.
Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell and Environment, 23, 1237-1245.
Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 106, 465-495.
Setter TL, Ellis M, Laureles EV et al. (1997) Physiology and genetics of submergence tolerance in rice. Annals of Botany, 79, 67-77.
Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany, 49, 1431-1436.
Baattrup-Pedersen A, Friberg N, Larsen SE, Riis T (2005) The influence of channelisation on riparian plant assemblages. Freshwater Biology, 50, 1248-1261.
Poff LN, Allan DJ, Bain MB et al. (1997) The natural flow regime. BioScience, 47, 769-784.
Pezeshki SR (1991) Root responses of flood-tolerant and flood-sensitive tree species to soil redox conditions. Trees, 5, 180-186.
Ström L, Jansson R, Nilsson C (2012) Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel river in Sweden. Freshwater Biology, 57, 49-60.
Craft CB, Casey WP (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands, 20, 323-332.
Petit NE, Froend RH, Davies PM (2001) Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regulated Rivers: Research and Management, 17, 201-215.
Laan P, Blom CWPM (1990) Growth and survival responses of Rumex species to flooding and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. Journal of Experimental Botany, 41, 775-783.
Smith M, Moss JS (1998) An experimental investigation, using stomatal conductance and fluorescence of the flood sensitivity of Boltonia decurrens and its competitors. Journal of Applied Ecology, 35, 553-561.
Baattrup-Pedersen A, Jensen KMB, Thodsen H et al. (2013b) Effects of stream flooding on the distribution and diversity of groundwater-dependent vegetation in riparian areas. Freshwater Biology, 58, 817-827.
Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. Journal of Geophysical Research, 111, 22.
Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environmental Conservation, 29, 308-330.
Chen H, Qualls RG, Miller GC (2002) Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environmental and Experimental Botany, 48, 119-128.
Pezeshki SR (1993) Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica, 28, 423-430.
van Eck WHJM, Lenssen JPM, van de Steeg HM, Blom C, de Kroon H (2006) Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species. Hydrobiologia, 565, 59-69.
Noe GB, Hupp CR, Rybicky NB (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems, 16, 75-94.
Olde Venterink H, Vermaat JE, Pronk M et al. (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Applied Vegetation Science, 9, 163-174.
Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 400, 61-63.
Renöfält BM, Merritt DM, Nilsson C (2007) Connecting variation in vegetation and stream flow: the role of geomorphic context in vegetation response to large floods along boreal rivers. Journal of Applied Ecology, 44, 147-157.
Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. Journal of geophysical research, 114, 17.
Vervuren PJA, Blom CWPM, de Kroon H (2003) Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology, 91, 135-146.
Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. Journal of geophysical research, 114, 16.
Jansson R, Nilsson C, Renöfält B (2000) Fragmentation of riparian floras in rivers with multiple dams. Ecology, 81, 899-903.
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2005) Introduction to Meta-Analysis. John Wiley & Sons Ltd, Chichester, UK.
Osterkamp WR, Hupp CR (2010) Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future. Geomorphology, 116, 274-285.
Garssen AG, Soons MB, Verhoeven JTA (2014) Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshwater Biology, 59, 1052-1063.
Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics, 28, 621-658.
Rojas R, Feyen L, Bianchi A, Dosio A (2012) Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. Journal of Geophysical Research-Atmospheres, 117, 22.
Banach K, Banach AM, Lamers LPM, de Kroon H, Bennicelli RP, Smits AJM, Visser EJW (2009) Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas. Annals of Botany, 103, 341-351.
Goodson JM, Gurnell AM, Angold PG, Morrissey IP (2003) Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: the River Dove, Derbyshire, UK. River Research and Applications, 19, 317-334.
Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1, 274-287.
Laan P, Tosserams M, Blom CWPM, Veen BW (1990) Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant and Soil, 122, 39-46.
Wassen MJW, Peeters WHM, Olde Venterink H (2003) Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology, 165, 27-43.
Geigenberger P (2003) Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology, 6, 247-256.
Insausti P, Grimoldi AA, Chaneton EJ, Vasellati V (2001) Flooding induces a suite of adaptive plastic responses in the grass Paspalum dilatatum. New Phytologist, 152, 291-299.
Catford JA, Jansson R (2014) Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytologist, 204, 19-36.
Bates BC, Kundzewicz ZW, Wu S, Palutikof JP, Eds. (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, Switzerland, 210.
Fraaije RGA, ter Braak CJF, Verduyn BG, Breeman LBS, Verhoeven JTA, Soons MB (2015) Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient. Functional Ecology, 29, 971-980.
Ström L, Jansson R, Nilsson C, Johansson ME, Xiong S (2011) Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology, 17, 254-267.
van Eck WHJM, Lenssen JPM, Rengelink RHJ, Blom CWPM, de Kroon H (2005) Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods. Aquatic Botany, 81, 253-264.
Pierik R, van Aken JM, Voesenek LACJ (2009) Is elongation-induced leaf emergence beneficial for submerged Rumex species? Annals of Botany, 102, 353-357.
Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. Journal of Ecology, 93, 1094-1103.
Naiman RJ, Décamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications, 3, 209-212.
1998; 49
2010; 55
2013b; 58
2013; 3
1993; 28
1997; 43
1987; 106
1997; 47
1999; 400
2005; 60
2003; 19
2011; 17
2012; 57
2009; 114
1993; 3
1990; 41
2014; 204
2009; 58
2002; 48
2003; 91
2010; 24
2013; 16
2010; 116
2003; 6
1991; 41
2014; 59
2001; 17
2003; 165
2006; 565
2009; 18
2007; 18
2004; 85
2000; 23
2009; 60
2006; 9
2000; 20
2008; 59
2008
2007
1997; 28
2005
2005; 81
1999; 1
2007; 52
2004; 107
1990; 122
2006; 111
1991; 5
2013a; 21
2002; 29
2015; 29
2001; 152
1997; 79
2000; 81
2008; 45
2007; 81
2009; 102
2011; 48
2005; 93
2005; 50
2013
2007; 44
2012; 117
2009; 103
1994; 4
1998; 79
1998; 35
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Intergovernmental Panel on Climate Change (IPCC) (e_1_2_6_32_1) 2007
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Borenstein M (e_1_2_6_10_1) 2005
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
Petit NE (e_1_2_6_51_1) 2001; 17
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Pezeshki SR (e_1_2_6_53_1) 1993; 28
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
Bates BC (e_1_2_6_8_1) 2008
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
Pierik R (e_1_2_6_54_1) 2009; 102
e_1_2_6_63_1
e_1_2_6_42_1
Naiman RJ (e_1_2_6_45_1) 2005
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Intergovernmental Panel on Climate Change (IPCC) (e_1_2_6_33_1) 2013
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
Pollock MM (e_1_2_6_56_1) 1998; 79
e_1_2_6_69_1
References_xml – reference: Baattrup-Pedersen A, Jensen KMB, Thodsen H et al. (2013b) Effects of stream flooding on the distribution and diversity of groundwater-dependent vegetation in riparian areas. Freshwater Biology, 58, 817-827.
– reference: Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. Journal of geophysical research, 114, 17.
– reference: Chen H, Qualls RG, Miller GC (2002) Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environmental and Experimental Botany, 48, 119-128.
– reference: Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. BioScience, 41, 540-551.
– reference: Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell and Environment, 23, 1237-1245.
– reference: Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany, 49, 1431-1436.
– reference: Hirabayashi Y, Mahendran R, Koirala S et al. (2013) Global flood risk under climate change. Nature Climate Change, 3, 816-821.
– reference: Voesenek LACJ, Rijnders JHGM, Peeters AJM, van de Steeg HM, de Kroon H (2004) Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology, 85, 16-27.
– reference: Capon SJ (2005) Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. Journal of Arid Environments, 60, 283-302.
– reference: Lenssen JPM, de Kroon H (2005) Abiotic constraints at the upper boundaries of two Rumex species on a freshwater flooding gradient. Journal of Ecology, 93, 138-147.
– reference: Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Applied Vegetation Science, 9, 271-278.
– reference: van Eck WHJM, Lenssen JPM, Rengelink RHJ, Blom CWPM, de Kroon H (2005) Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods. Aquatic Botany, 81, 253-264.
– reference: Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. Journal of geophysical research, 114, 16.
– reference: Baattrup-Pedersen A, Dalkvist D, Dybkjær JB, Riis T, Larsen SE, Kronvang B (2013a) Species recruitment following flooding, sediment deposition and seed addition in restored riparian areas. Restoration Ecology, 21, 399-408.
– reference: Pedersen O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal, 58, 147-156.
– reference: Garssen AG, Soons MB, Verhoeven JTA (2014) Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshwater Biology, 59, 1052-1063.
– reference: Insausti P, Grimoldi AA, Chaneton EJ, Vasellati V (2001) Flooding induces a suite of adaptive plastic responses in the grass Paspalum dilatatum. New Phytologist, 152, 291-299.
– reference: Bates BC, Kundzewicz ZW, Wu S, Palutikof JP, Eds. (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, Switzerland, 210.
– reference: Noe GB, Hupp CR, Rybicky NB (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems, 16, 75-94.
– reference: Smith M, Moss JS (1998) An experimental investigation, using stomatal conductance and fluorescence of the flood sensitivity of Boltonia decurrens and its competitors. Journal of Applied Ecology, 35, 553-561.
– reference: Verhoeven JTA, Soons MB, Janssen R, Omtzigt N (2008) An Operational Landscape Unit approach for identifying key landscape connections in wetland restoration. Journal of Applied Ecology, 45, 1496-1503.
– reference: Wassen MJW, Peeters WHM, Olde Venterink H (2003) Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology, 165, 27-43.
– reference: Osterkamp WR, Hupp CR (2010) Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future. Geomorphology, 116, 274-285.
– reference: Brederveld RJ, Jaehnig SC, Lorenz AW, Brunzel S, Soons MB (2011) Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology, 48, 1241-1250.
– reference: Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 106, 465-495.
– reference: Jansson R, Nilsson C, Renöfält B (2000) Fragmentation of riparian floras in rivers with multiple dams. Ecology, 81, 899-903.
– reference: Naiman RJ, Décamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications, 3, 209-212.
– reference: Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 400, 61-63.
– reference: Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimation and genetic diversity. Annual Review of Plant Biology, 59, 313-339.
– reference: Stromberg JC, Hazelton AF, White MS (2009) Plant species richness in ephemeral and perennial reaches of a dryland river. Biodiversity and Conservation, 18, 663-677.
– reference: Fraaije RGA, ter Braak CJF, Verduyn BG, Breeman LBS, Verhoeven JTA, Soons MB (2015) Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient. Functional Ecology, 29, 971-980.
– reference: Hughes JW, Cass WB (1997) Pattern and process of a floodplain forest, Vermont, USA: predicted responses of vegetation to perturbation. Journal of Applied Ecology, 43, 594-612.
– reference: Geigenberger P (2003) Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology, 6, 247-256.
– reference: Laan P, Blom CWPM (1990) Growth and survival responses of Rumex species to flooding and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. Journal of Experimental Botany, 41, 775-783.
– reference: Nakai A, Yurugi Y, Kisanuki H (2010) Stress responses in Salix gracilistyla cuttings subjected to repetitive alternate flooding and drought. Trees, 24, 1087-1095.
– reference: Auble GT, Friedman JM, Scott ML (1994) Relating riparian vegetation to present and future streamflows. Ecological Applications, 4, 544-554.
– reference: Setter TL, Ellis M, Laureles EV et al. (1997) Physiology and genetics of submergence tolerance in rice. Annals of Botany, 79, 67-77.
– reference: Petit NE, Froend RH, Davies PM (2001) Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regulated Rivers: Research and Management, 17, 201-215.
– reference: Banach K, Banach AM, Lamers LPM, de Kroon H, Bennicelli RP, Smits AJM, Visser EJW (2009) Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas. Annals of Botany, 103, 341-351.
– reference: Ström L, Jansson R, Nilsson C, Johansson ME, Xiong S (2011) Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology, 17, 254-267.
– reference: Pierik R, van Aken JM, Voesenek LACJ (2009) Is elongation-induced leaf emergence beneficial for submerged Rumex species? Annals of Botany, 102, 353-357.
– reference: Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7-30.
– reference: Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1, 274-287.
– reference: Baattrup-Pedersen A, Friberg N, Larsen SE, Riis T (2005) The influence of channelisation on riparian plant assemblages. Freshwater Biology, 50, 1248-1261.
– reference: Kronvang B, Hoffmann CC, Dröge R (2009) Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments. Marine and Freshwater Research, 60, 638-646.
– reference: Ström L, Jansson R, Nilsson C (2012) Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel river in Sweden. Freshwater Biology, 57, 49-60.
– reference: Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. Journal of Geophysical Research, 111, 22.
– reference: Beltman B, Willems JH, Güsewell S (2007) Flood events overrule fertiliser effects on biomass production and species richness in riverine grasslands. Journal of Vegetation Science, 18, 625-634.
– reference: Catford JA, Jansson R (2014) Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytologist, 204, 19-36.
– reference: Craft CB, Casey WP (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands, 20, 323-332.
– reference: Renöfält BM, Merritt DM, Nilsson C (2007) Connecting variation in vegetation and stream flow: the role of geomorphic context in vegetation response to large floods along boreal rivers. Journal of Applied Ecology, 44, 147-157.
– reference: Laan P, Tosserams M, Blom CWPM, Veen BW (1990) Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant and Soil, 122, 39-46.
– reference: Rojas R, Feyen L, Bianchi A, Dosio A (2012) Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. Journal of Geophysical Research-Atmospheres, 117, 22.
– reference: Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2005) Introduction to Meta-Analysis. John Wiley & Sons Ltd, Chichester, UK.
– reference: Stromberg JC, Beauchamp VB, Dixon MD, Lite SJ, Paradzick C (2007) Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid southwestern United States. Freshwater Biology, 52, 651-679.
– reference: Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environmental Conservation, 29, 308-330.
– reference: Goodson JM, Gurnell AM, Angold PG, Morrissey IP (2003) Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: the River Dove, Derbyshire, UK. River Research and Applications, 19, 317-334.
– reference: Olde Venterink H, Vermaat JE, Pronk M et al. (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Applied Vegetation Science, 9, 163-174.
– reference: Pezeshki SR (1993) Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica, 28, 423-430.
– reference: van Eck WHJM, van de Steeg HM, Blom CWPM, de Kroon H (2004) Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos, 107, 393-405.
– reference: Vervuren PJA, Blom CWPM, de Kroon H (2003) Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology, 91, 135-146.
– reference: Naiman RJ, Décamps H, McClain ME (2005) Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier, Oxford, UK.
– reference: Poff LN, Allan DJ, Bain MB et al. (1997) The natural flow regime. BioScience, 47, 769-784.
– reference: Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics, 28, 621-658.
– reference: Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands: a test of biodiversity theory. Ecological Society of America, 79, 94-105.
– reference: van Eck WHJM, Lenssen JPM, van de Steeg HM, Blom C, de Kroon H (2006) Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species. Hydrobiologia, 565, 59-69.
– reference: Merritt DM, Scott ML, Le Roy Poff N, Auble GT, Lytle DA (2010) Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55, 206-225.
– reference: Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. Journal of Ecology, 93, 1094-1103.
– reference: Pezeshki SR (1991) Root responses of flood-tolerant and flood-sensitive tree species to soil redox conditions. Trees, 5, 180-186.
– volume: 44
  start-page: 147
  year: 2007
  end-page: 157
  article-title: Connecting variation in vegetation and stream flow: the role of geomorphic context in vegetation response to large floods along boreal rivers
  publication-title: Journal of Applied Ecology
– volume: 81
  start-page: 7
  year: 2007
  end-page: 30
  article-title: A summary of the PRUDENCE model projections of changes in European climate by the end of this century
  publication-title: Climatic Change
– volume: 93
  start-page: 138
  year: 2005
  end-page: 147
  article-title: Abiotic constraints at the upper boundaries of two species on a freshwater flooding gradient
  publication-title: Journal of Ecology
– year: 2005
– volume: 28
  start-page: 423
  year: 1993
  end-page: 430
  article-title: Differences in patterns of photosynthetic responses to hypoxia in flood‐tolerant and flood‐sensitive tree species
  publication-title: Photosynthetica
– volume: 60
  start-page: 638
  year: 2009
  end-page: 646
  article-title: Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments
  publication-title: Marine and Freshwater Research
– volume: 20
  start-page: 323
  year: 2000
  end-page: 332
  article-title: Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA
  publication-title: Wetlands
– volume: 116
  start-page: 274
  year: 2010
  end-page: 285
  article-title: Fluvial processes and vegetation ‐ Glimpses of the past, the present, and perhaps the future
  publication-title: Geomorphology
– volume: 41
  start-page: 775
  year: 1990
  end-page: 783
  article-title: Growth and survival responses of species to flooding and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates
  publication-title: Journal of Experimental Botany
– volume: 23
  start-page: 1237
  year: 2000
  end-page: 1245
  article-title: Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono‐ and dicotyledonous wetland species with contrasting types of aerenchyma
  publication-title: Plant, Cell and Environment
– volume: 17
  start-page: 254
  year: 2011
  end-page: 267
  article-title: Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions
  publication-title: Global Change Biology
– volume: 91
  start-page: 135
  year: 2003
  end-page: 146
  article-title: Extreme flooding events on the Rhine and the survival and distribution of riparian plant species
  publication-title: Journal of Ecology
– volume: 59
  start-page: 1052
  year: 2014
  end-page: 1063
  article-title: Effects of climate‐induced increases in summer drought on riparian plant species: a meta‐analysis
  publication-title: Freshwater Biology
– volume: 114
  start-page: 17
  year: 2009
  article-title: Impact of global warming on streamflow drought in Europe
  publication-title: Journal of geophysical research
– volume: 400
  start-page: 61
  year: 1999
  end-page: 63
  article-title: Hydrologically defined niches reveal a basis for species richness in plant communities
  publication-title: Nature
– volume: 49
  start-page: 1431
  year: 1998
  end-page: 1436
  article-title: The barrier to radial oxygen loss from roots of rice ( L.) is induced by growth in stagnant solution
  publication-title: Journal of Experimental Botany
– volume: 106
  start-page: 465
  year: 1987
  end-page: 495
  article-title: The anatomical characteristics of roots and plant response to soil flooding
  publication-title: New Phytologist
– volume: 48
  start-page: 1241
  year: 2011
  end-page: 1250
  article-title: Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates
  publication-title: Journal of Applied Ecology
– volume: 165
  start-page: 27
  year: 2003
  end-page: 43
  article-title: Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland
  publication-title: Plant Ecology
– volume: 9
  start-page: 163
  year: 2006
  end-page: 174
  article-title: Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands
  publication-title: Applied Vegetation Science
– volume: 48
  start-page: 119
  year: 2002
  end-page: 128
  article-title: Adaptive responses of to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production
  publication-title: Environmental and Experimental Botany
– volume: 85
  start-page: 16
  year: 2004
  end-page: 27
  article-title: Plant hormones regulate fast shoot elongation under water: from genes to communities
  publication-title: Ecology
– volume: 41
  start-page: 540
  year: 1991
  end-page: 551
  article-title: An ecosystem perspective of riparian zones
  publication-title: BioScience
– volume: 24
  start-page: 1087
  year: 2010
  end-page: 1095
  article-title: Stress responses in cuttings subjected to repetitive alternate flooding and drought
  publication-title: Trees
– volume: 4
  start-page: 544
  year: 1994
  end-page: 554
  article-title: Relating riparian vegetation to present and future streamflows
  publication-title: Ecological Applications
– volume: 103
  start-page: 341
  year: 2009
  end-page: 351
  article-title: Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas
  publication-title: Annals of Botany
– start-page: 210
  year: 2008
– volume: 81
  start-page: 899
  year: 2000
  end-page: 903
  article-title: Fragmentation of riparian floras in rivers with multiple dams
  publication-title: Ecology
– volume: 60
  start-page: 283
  year: 2005
  end-page: 302
  article-title: Flood variability and spatial variation in plant community composition and structure on a large arid floodplain
  publication-title: Journal of Arid Environments
– volume: 35
  start-page: 553
  year: 1998
  end-page: 561
  article-title: An experimental investigation, using stomatal conductance and fluorescence of the flood sensitivity of and its competitors
  publication-title: Journal of Applied Ecology
– volume: 52
  start-page: 651
  year: 2007
  end-page: 679
  article-title: Importance of low‐flow and high‐flow characteristics to restoration of riparian vegetation along rivers in arid southwestern United States
  publication-title: Freshwater Biology
– volume: 6
  start-page: 247
  year: 2003
  end-page: 256
  article-title: Response of plant metabolism to too little oxygen
  publication-title: Current Opinion in Plant Biology
– volume: 43
  start-page: 594
  year: 1997
  end-page: 612
  article-title: Pattern and process of a floodplain forest, Vermont, USA: predicted responses of vegetation to perturbation
  publication-title: Journal of Applied Ecology
– volume: 28
  start-page: 621
  year: 1997
  end-page: 658
  article-title: The ecology of interfaces: riparian zones
  publication-title: Annual review of Ecology and Systematics
– volume: 16
  start-page: 75
  year: 2013
  end-page: 94
  article-title: Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands
  publication-title: Ecosystems
– volume: 9
  start-page: 271
  year: 2006
  end-page: 278
  article-title: Wind dispersal in freshwater wetlands: knowledge for conservation and restoration
  publication-title: Applied Vegetation Science
– volume: 107
  start-page: 393
  year: 2004
  end-page: 405
  article-title: Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species
  publication-title: Oikos
– volume: 114
  start-page: 16
  year: 2009
  article-title: Flood hazard in Europe in an ensemble of regional climate scenarios
  publication-title: Journal of geophysical research
– volume: 1
  start-page: 274
  year: 1999
  end-page: 287
  article-title: Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence
  publication-title: Plant Biology
– volume: 565
  start-page: 59
  year: 2006
  end-page: 69
  article-title: Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species
  publication-title: Hydrobiologia
– volume: 111
  start-page: 22
  year: 2006
  article-title: Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models
  publication-title: Journal of Geophysical Research
– volume: 19
  start-page: 317
  year: 2003
  end-page: 334
  article-title: Evidence for hydrochory and the deposition of viable seeds within winter flow‐deposited sediments: the River Dove, Derbyshire, UK
  publication-title: River Research and Applications
– volume: 59
  start-page: 313
  year: 2008
  end-page: 339
  article-title: Flooding stress: acclimation and genetic diversity
  publication-title: Annual Review of Plant Biology
– volume: 18
  start-page: 625
  year: 2007
  end-page: 634
  article-title: Flood events overrule fertiliser effects on biomass production and species richness in riverine grasslands
  publication-title: Journal of Vegetation Science
– volume: 29
  start-page: 971
  year: 2015
  end-page: 980
  article-title: Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient
  publication-title: Functional Ecology
– volume: 21
  start-page: 399
  year: 2013a
  end-page: 408
  article-title: Species recruitment following flooding, sediment deposition and seed addition in restored riparian areas
  publication-title: Restoration Ecology
– volume: 5
  start-page: 180
  year: 1991
  end-page: 186
  article-title: Root responses of flood‐tolerant and flood‐sensitive tree species to soil redox conditions
  publication-title: Trees
– year: 2007
– volume: 47
  start-page: 769
  year: 1997
  end-page: 784
  article-title: The natural flow regime
  publication-title: BioScience
– volume: 3
  start-page: 816
  year: 2013
  end-page: 821
  article-title: Global flood risk under climate change
  publication-title: Nature Climate Change
– volume: 79
  start-page: 94
  year: 1998
  end-page: 105
  article-title: Plant species richness in riparian wetlands: a test of biodiversity theory
  publication-title: Ecological Society of America
– volume: 3
  start-page: 209
  year: 1993
  end-page: 212
  article-title: The role of riparian corridors in maintaining regional biodiversity
  publication-title: Ecological Applications
– volume: 79
  start-page: 67
  year: 1997
  end-page: 77
  article-title: Physiology and genetics of submergence tolerance in rice
  publication-title: Annals of Botany
– volume: 204
  start-page: 19
  year: 2014
  end-page: 36
  article-title: Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems
  publication-title: New Phytologist
– volume: 122
  start-page: 39
  year: 1990
  end-page: 46
  article-title: Internal oxygen transport in species and its significance for respiration under hypoxic conditions
  publication-title: Plant and Soil
– volume: 55
  start-page: 206
  year: 2010
  end-page: 225
  article-title: Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation‐flow response guilds
  publication-title: Freshwater Biology
– volume: 29
  start-page: 308
  year: 2002
  end-page: 330
  article-title: Riverine flood plains: present state and future trends
  publication-title: Environmental Conservation
– volume: 58
  start-page: 147
  year: 2009
  end-page: 156
  article-title: Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice
  publication-title: The Plant Journal
– volume: 50
  start-page: 1248
  year: 2005
  end-page: 1261
  article-title: The influence of channelisation on riparian plant assemblages
  publication-title: Freshwater Biology
– volume: 93
  start-page: 1094
  year: 2005
  end-page: 1103
  article-title: Hydrochory increases riparian plant species richness: a comparison between a free‐flowing and a regulated river
  publication-title: Journal of Ecology
– volume: 17
  start-page: 201
  year: 2001
  end-page: 215
  article-title: Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers
  publication-title: Regulated Rivers: Research and Management
– volume: 117
  start-page: 22
  year: 2012
  article-title: Assessment of future flood hazard in Europe using a large ensemble of bias‐corrected regional climate simulations
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 45
  start-page: 1496
  year: 2008
  end-page: 1503
  article-title: An Operational Landscape Unit approach for identifying key landscape connections in wetland restoration
  publication-title: Journal of Applied Ecology
– volume: 81
  start-page: 253
  year: 2005
  end-page: 264
  article-title: Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods
  publication-title: Aquatic Botany
– volume: 18
  start-page: 663
  year: 2009
  end-page: 677
  article-title: Plant species richness in ephemeral and perennial reaches of a dryland river
  publication-title: Biodiversity and Conservation
– volume: 57
  start-page: 49
  year: 2012
  end-page: 60
  article-title: Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate‐driven hydrological change along the Vindel river in Sweden
  publication-title: Freshwater Biology
– volume: 58
  start-page: 817
  year: 2013b
  end-page: 827
  article-title: Effects of stream flooding on the distribution and diversity of groundwater‐dependent vegetation in riparian areas
  publication-title: Freshwater Biology
– volume: 152
  start-page: 291
  year: 2001
  end-page: 299
  article-title: Flooding induces a suite of adaptive plastic responses in the grass
  publication-title: New Phytologist
– volume: 102
  start-page: 353
  year: 2009
  end-page: 357
  article-title: Is elongation‐induced leaf emergence beneficial for submerged species?
  publication-title: Annals of Botany
– year: 2013
– ident: e_1_2_6_29_1
  doi: 10.1038/nclimate1911
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-2664.2006.01223.x
– ident: e_1_2_6_55_1
  doi: 10.2307/1313099
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1438-8677.1999.tb00253.x
– ident: e_1_2_6_71_1
  doi: 10.1890/02-740
– ident: e_1_2_6_43_1
  doi: 10.1146/annurev.ecolsys.28.1.621
– volume: 102
  start-page: 353
  year: 2009
  ident: e_1_2_6_54_1
  article-title: Is elongation‐induced leaf emergence beneficial for submerged Rumex species?
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcn143
– ident: e_1_2_6_21_1
  doi: 10.1007/s10750-005-1905-7
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1365-2745.2004.00957.x
– volume: 17
  start-page: 201
  year: 2001
  ident: e_1_2_6_51_1
  article-title: Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers
  publication-title: Regulated Rivers: Research and Management
  doi: 10.1002/rrr.624
– ident: e_1_2_6_5_1
  doi: 10.1111/fwb.12088
– ident: e_1_2_6_19_1
  doi: 10.1111/j.0030-1299.2004.13083.x
– volume-title: Riparia: Ecology, Conservation, and Management of Streamside Communities
  year: 2005
  ident: e_1_2_6_45_1
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1365-2486.2010.02230.x
– ident: e_1_2_6_22_1
  doi: 10.1029/2008JD011438
– ident: e_1_2_6_66_1
  doi: 10.1007/s10531-008-9532-z
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1654-109X.2006.tb00665.x
– ident: e_1_2_6_2_1
  doi: 10.2307/1941956
– volume-title: Introduction to Meta‐Analysis
  year: 2005
  ident: e_1_2_6_10_1
– ident: e_1_2_6_28_1
  doi: 10.2307/1311607
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1654-109X.2006.tb00676.x
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1365-2664.2008.01534.x
– ident: e_1_2_6_13_1
  doi: 10.1111/nph.12951
– ident: e_1_2_6_24_1
  doi: 10.1029/2005JD005965
– volume-title: Fourth Assessment Report, IPCC Plenary XXVII
  year: 2007
  ident: e_1_2_6_32_1
– ident: e_1_2_6_20_1
  doi: 10.1016/j.aquabot.2004.10.006
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-2745.2005.01057.x
– ident: e_1_2_6_27_1
  doi: 10.1002/rra.707
– volume: 79
  start-page: 94
  year: 1998
  ident: e_1_2_6_56_1
  article-title: Plant species richness in riparian wetlands: a test of biodiversity theory
  publication-title: Ecological Society of America
– ident: e_1_2_6_6_1
  doi: 10.1146/annurev.arplant.59.032607.092752
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1654-1103.2007.tb02576.x
– ident: e_1_2_6_38_1
  doi: 10.1071/MF08066
– ident: e_1_2_6_40_1
  doi: 10.1007/BF02851908
– ident: e_1_2_6_17_1
  doi: 10.1672/0277-5212(2000)020[0323:SANAIF]2.0.CO;2
– ident: e_1_2_6_31_1
  doi: 10.1111/j.0028-646X.2001.257_1.x
– volume: 28
  start-page: 423
  year: 1993
  ident: e_1_2_6_53_1
  article-title: Differences in patterns of photosynthetic responses to hypoxia in flood‐tolerant and flood‐sensitive tree species
  publication-title: Photosynthetica
– ident: e_1_2_6_39_1
  doi: 10.1093/jxb/41.7.775
– ident: e_1_2_6_60_1
  doi: 10.1038/21877
– ident: e_1_2_6_72_1
  doi: 10.1023/A:1021493327180
– ident: e_1_2_6_26_1
  doi: 10.1016/S1369-5266(03)00038-4
– start-page: 210
  volume-title: Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change
  year: 2008
  ident: e_1_2_6_8_1
– ident: e_1_2_6_16_1
  doi: 10.1046/j.1365-3040.1998.00261.x
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1365-2664.2011.02026.x
– ident: e_1_2_6_67_1
  doi: 10.1017/S037689290200022X
– volume-title: Fifth Assessment Report: Climate Change 2013
  year: 2013
  ident: e_1_2_6_33_1
– ident: e_1_2_6_59_1
  doi: 10.1093/oxfordjournals.aob.a010308
– ident: e_1_2_6_25_1
  doi: 10.1111/fwb.12328
– ident: e_1_2_6_18_1
  doi: 10.1029/2008JD011523
– ident: e_1_2_6_47_1
  doi: 10.1007/s10021-012-9597-0
– ident: e_1_2_6_14_1
  doi: 10.1016/S0098-8472(02)00018-7
– ident: e_1_2_6_52_1
  doi: 10.1007/BF00204341
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1526-100X.2012.00893.x
– ident: e_1_2_6_15_1
  doi: 10.1007/s10584-006-9210-7
– ident: e_1_2_6_49_1
  doi: 10.1016/j.geomorph.2009.11.018
– ident: e_1_2_6_23_1
  doi: 10.1111/1365-2435.12441
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1469-8137.1987.tb00153.x
– ident: e_1_2_6_58_1
  doi: 10.1029/2012JD017461
– ident: e_1_2_6_35_1
  doi: 10.1890/0012-9658(2000)081[0899:FORFIR]2.0.CO;2
– ident: e_1_2_6_30_1
  doi: 10.2307/2404910
– ident: e_1_2_6_42_1
  doi: 10.1111/j.1365-2427.2009.02206.x
– ident: e_1_2_6_70_1
  doi: 10.1046/j.1365-3040.2000.00628.x
– ident: e_1_2_6_61_1
  doi: 10.1046/j.1365-2664.1998.3540553.x
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1365-2427.2011.02694.x
– ident: e_1_2_6_65_1
  doi: 10.1111/j.1365-2427.2006.01713.x
– ident: e_1_2_6_7_1
  doi: 10.1093/aob/mcn183
– ident: e_1_2_6_46_1
  doi: 10.1007/s00468-010-0481-2
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-313X.2008.03769.x
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jaridenv.2004.04.004
– ident: e_1_2_6_69_1
  doi: 10.1046/j.1365-2745.2003.00749.x
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-2427.2005.01383.x
– ident: e_1_2_6_44_1
  doi: 10.2307/1941822
SSID ssj0003206
Score 2.547283
SecondaryResourceType review_article
Snippet A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2881
SubjectTerms Arid climates
Biodiversity
Biomass
botanical composition
Climate change
Community composition
Ecosystem
ephemeral streams
Flooding
Floods
global change
hydrograph
hydrological changes
Intermittent streams
literature survey
mature plants
Meta-analysis
Nutrient status
Plant biomass
Plant communities
Plant Development
Plant ecology
Plant species
Plants
Porosity
Riparian ecology
riparian gradient
risk
rivers
Seedlings
Semiarid climates
semiarid zones
shoots
Species composition
Species richness
surveys
Survival
vegetation
Water levels
watersheds
wetlands
Title Riparian plant community responses to increased flooding: a meta‐analysis
URI https://api.istex.fr/ark:/67375/WNG-WH9M6GRB-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12921
https://www.ncbi.nlm.nih.gov/pubmed/25752818
https://www.proquest.com/docview/1697398953
https://www.proquest.com/docview/1705077286
https://www.proquest.com/docview/1753414044
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61lZC48AiUGkq1IFRxcWR7H7bhRKM2ESgVCkTtAWm1Xq-rqMGpYkeinPgJ_EZ-CbNrx6WoIMQlcuJxZI_n8a098w3AC5okXCfc-EZw5TPejHkx-BGmhbIpXNhG4fGxGE3Z21N-ugGv170wDT9E98DNeoaL19bBVVb94uRnOutjsnJN5LZWywKiyRV1FI3cXM2QcoahJqQtq5Ct4umOvJaLNgu1QIRqlfvlJrh5Hb269HN0Fz6tT7ypOjnvr-qsr7_-xun4n1d2D-60sJS8aezoPmyYsge3mkGVlz3YPrzqh0OxNiBUPfDGCLoXSydG9slgPkME7L49gHeTmR1xqEpyMcf7R3TTi1JfkmVTmGsqUi_IrLTAtTI5KWwRPabSV0SRz6ZWP759Vy1nykOYHh1-HIz8dnaDrwUiAt9wkSkmdBRnAY3TKEkKZkRgWG5_5pTncahNoWITKNwU3BQ0y_LCJEVMkyKn27BVLkqzA0TbNWga0BwXUyzRCEnjPIrSkBWGKR2EHrxc30WpW2JzO19jLtcLHFSodAr14HknetGwedwktIOmINUZRlk5_RDZZ0KWCB-NyIN9Zx_dwWp5bivjYi5PjofyZJSOxXByIEce7K4NSLZBoZKhSGOaJinH_3nW7UZ3tu9oVGkWK5SJA0TocZSIv8lwxB4sYMyDR41xdieEEZhbgi9UijOxP1-mHA4O3Mbjfxd9AretOpoCyF3Yqpcr8xRBWZ3twWbE3u85H_wJeNAvuA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgQXHoFSQ4EFoYpLItv7sI240KhNoE0OoVF7qVbr9bqKGpwqcSTKiZ_Ab-SXMLt2XIoKQlwiJxlH9nge325mvgF4TeOY65ibthFctRmvxrwYfAmSXNkULmyj8GAo-mP28Zgfr8G7VS9MxQ_RbLhZz3Dx2jq43ZD-xctPddrBbGW7yG_aid5uQTW6JI-ioZusGVDOMNgEtOYVsnU8zalXstGNXM0Qo1r1frkOcF7Fry4B7d2Dk9WlV3UnZ51lmXb0199YHf_33u7D3RqZkveVKT2ANVO04FY1q_KiBRu7ly1xKFbHhEULvAHi7tnciZFt0p1OEAS7dw9hfzSxUw5VQc6n-AiJrtpRygsyr2pzzYKUMzIpLHZdmIzkto4es-lboshnU6of376rmjblEYz3dg-7_XY9vqGtBYKCtuEiVUzoMEp9GiVhHOfMCN-wzH7MKc-iQJtcRcZXeCi4yWmaZrmJ84jGeUY3YL2YFWYTiLbL0MSnGa6nWKwRlUZZGCYByw1T2g88eLN6jFLX3OZ2xMZUrtY4qFDpFOrBq0b0vCL0uE5oE21BqlMMtHL8KbTbQpYLH63Ig21nIM3Jan5mi-MiLo-GPXnUTwaiN9qRfQ-2VhYk67iwkIFIIprECcffedl8jR5t_6ZRhZktUSbyEaRHYSz-JsMRfjCfMQ8eV9bZXBAGYW45vlApzsb-fJuy191xB0_-XfQF3O4fDg7kwYfh_lO4Y1VT1UNuwXo5X5pniNHK9LlzxZ80qzL8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIhAXHoFSQ4EFoYqLI9v78BpONG0SKIlQIGoPSKv1ereKGpwocSTKiZ_Ab-SXMGs7LkUFIS6RE48jezyPb-2ZbxB6ToRgWjDjG86UT1k15sXAR5hY5VI4d43CgyHvj-nbY3a8gV6te2EqfojmgZvzjDJeOwefZ_YXJz_RaRuSlWsiv0p5IJxJ74_OuaNIVA7WDAmjEGtCUtMKuTKe5tALyeiKVTOAqE67Xy7Dmxfha5l_urfQp_WZV2Unp-1Vkbb1199IHf_z0m6jmzUuxa8rQ7qDNkzeQteqSZVnLbR1cN4QB2J1RFi2kDcA1D1blGJ4F3emE4DA5be76HA0cTMOVY7nU7iBWFfNKMUZXlSVuWaJixme5A65Lk2Grauih1z6Eiv82RTqx7fvqiZNuYfG3YOPnb5fD2_wNQdI4BvGU0W5juI0IHESCWGp4YGhmfuZEZbFoTZWxSZQsMmZsSRNM2uEjYmwGdlCm_ksN9sIa7cITQKSwWqKCg2YNM6iKAmpNVTpIPTQi_VdlLpmNncDNqZyvcIBhcpSoR561ojOKzqPy4S2wRSkOoEwK8cfIvdQyDHhgxF5aLe0j-ZgtTh1pXExk0fDnjzqJwPeG-3Jvod21gYk66iwlCFPYpKIhMH_PG12gz-7lzQqN7MVyMQBQPQ4EvxvMgzABw0o9dD9yjibE4IQzBzDFyilNLE_X6bsdfbKjQf_LvoEXX-_35Xv3gwPH6IbTjNVMeQO2iwWK_MIAFqRPi4d8SeO-DG0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riparian+plant+community+responses+to+increased+flooding%3A+a+meta-analysis&rft.jtitle=Global+change+biology&rft.au=Garssen%2C+Annemarie+G&rft.au=Baattrup-Pedersen%2C+Annette&rft.au=Voesenek%2C+Laurentius+A+C+J&rft.au=Verhoeven%2C+Jos+T+A&rft.date=2015-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=21&rft.issue=8&rft.spage=2881&rft_id=info:doi/10.1111%2Fgcb.12921&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3748200681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon