Riparian plant community responses to increased flooding: a meta‐analysis
A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evide...
Saved in:
Published in | Global change biology Vol. 21; no. 8; pp. 2881 - 2890 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science
01.08.2015
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams). |
---|---|
AbstractList | A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams). A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams). A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams). |
Author | Garssen, Annemarie G Verhoeven, Jos T. A Voesenek, Laurentius A. C. J Baattrup‐Pedersen, Annette Soons, Merel B |
Author_xml | – sequence: 1 fullname: Garssen, Annemarie G – sequence: 2 fullname: Baattrup‐Pedersen, Annette – sequence: 3 fullname: Voesenek, Laurentius A. C. J – sequence: 4 fullname: Verhoeven, Jos T. A – sequence: 5 fullname: Soons, Merel B |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25752818$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1u1DAQB3ALtaIfcOAFIBIXekjrj9hOeqMruosoIBWqHi0nGa9cEjvYiWBvPALPyJPUy-5yqEDCl7Gs33-k8RyhPecdIPSM4FOSztmyqU8JrSh5hA4JEzynRSn21nde5AQTdoCOYrzDGDOKxWN0QLnktCTlIXp3bQcdrHbZ0Gk3Zo3v-8nZcZUFiIN3EWI2-sy6JoCO0Gam8761bnme6ayHUf_68VM73a2ijU_QvtFdhKfbeoxuLt98ni3yq4_zt7PXV3kjOCU5cFHrQjRU1pjJipalKUBgKNr1M2e8laQBoyVgna6Cg2F13RoojWSladkxerXpOwT_dYI4qt7GBro0APgpKiI5K0iBi-I_KOZYSlqKRF8-oHd-Cmm0pEQlWVVWnCX1fKumuodWDcH2OqzU7kcTONuAJvgYAxjV2FGP1rsxaNspgtV6ZyrtTP3eWUqcPEjsmv7Nbrt_sx2s_g3VfHaxS-SbhI0jfP-T0OGLEpJJrm4_zNXtonov5tcXapH8i4032iu9DDaqm08UE44xJakydg-vLL1p |
CitedBy_id | crossref_primary_10_3389_fpls_2025_1503627 crossref_primary_10_1007_s10750_020_04401_z crossref_primary_10_1016_j_rama_2021_10_002 crossref_primary_10_3389_ffgc_2021_723553 crossref_primary_10_3390_w15020341 crossref_primary_10_1016_j_scitotenv_2024_173185 crossref_primary_10_1111_ddi_12448 crossref_primary_10_1016_j_scitotenv_2019_01_357 crossref_primary_10_3390_land11091512 crossref_primary_10_1016_j_agwat_2024_108800 crossref_primary_10_1002_ecy_3205 crossref_primary_10_1016_j_agrformet_2019_02_002 crossref_primary_10_1007_s11273_021_09815_7 crossref_primary_10_1007_s42974_023_00180_4 crossref_primary_10_1016_j_ecoleng_2021_106459 crossref_primary_10_1016_j_geomorph_2024_109193 crossref_primary_10_1139_cjfr_2016_0202 crossref_primary_10_1111_1365_2745_70030 crossref_primary_10_1007_s11104_020_04612_2 crossref_primary_10_1111_nph_14185 crossref_primary_10_1016_j_scitotenv_2019_134092 crossref_primary_10_1016_j_jprot_2018_04_031 crossref_primary_10_1111_1365_2435_12441 crossref_primary_10_1016_j_ecolind_2024_111570 crossref_primary_10_1080_02705060_2018_1550022 crossref_primary_10_3375_2162_4399_44_2_76 crossref_primary_10_3390_su142214911 crossref_primary_10_1111_jvs_12352 crossref_primary_10_1139_er_2016_0085 crossref_primary_10_3390_f12020203 crossref_primary_10_1016_j_catena_2025_108757 crossref_primary_10_1016_j_advwatres_2017_09_028 crossref_primary_10_1111_avsc_12494 crossref_primary_10_1016_j_ecolind_2023_110505 crossref_primary_10_1371_journal_pone_0220231 crossref_primary_10_1093_jpe_rty027 crossref_primary_10_1016_j_ecolind_2024_111733 crossref_primary_10_3390_w15183228 crossref_primary_10_1002_agj2_20096 crossref_primary_10_1016_j_scitotenv_2016_08_046 crossref_primary_10_1134_S1067413620010051 crossref_primary_10_1093_biosci_biae038 crossref_primary_10_1002_ece3_4494 crossref_primary_10_1016_j_ecolind_2022_108730 crossref_primary_10_1016_j_scitotenv_2018_09_327 crossref_primary_10_1016_j_ecolind_2022_109269 crossref_primary_10_3389_fpls_2021_634898 crossref_primary_10_1093_treephys_tpaa031 crossref_primary_10_1002_eco_2359 crossref_primary_10_1007_s10750_021_04785_6 crossref_primary_10_1111_jvs_12800 crossref_primary_10_1016_j_jenvman_2022_115467 crossref_primary_10_1016_j_gecco_2022_e02118 crossref_primary_10_1007_s11629_022_7691_0 crossref_primary_10_1016_j_jhydrol_2019_03_049 crossref_primary_10_1007_s10452_021_09927_5 crossref_primary_10_1007_s13157_020_01375_5 crossref_primary_10_1016_j_flora_2021_151960 crossref_primary_10_1016_j_tplants_2022_12_013 crossref_primary_10_1002_rra_3938 crossref_primary_10_3390_su12072921 crossref_primary_10_1016_j_envexpbot_2018_08_015 crossref_primary_10_1111_gcb_13687 crossref_primary_10_1016_j_scitotenv_2021_149827 crossref_primary_10_1088_1748_9326_abfc78 crossref_primary_10_1002_ece3_7019 crossref_primary_10_1002_ece3_3973 crossref_primary_10_1016_j_flora_2023_152296 crossref_primary_10_1111_jvs_13186 crossref_primary_10_1016_j_agrformet_2022_109071 crossref_primary_10_1002_eco_1950 crossref_primary_10_1016_j_jaridenv_2016_12_004 crossref_primary_10_18343_jipi_30_1_55 crossref_primary_10_1111_jac_12394 crossref_primary_10_1098_rspb_2019_1755 crossref_primary_10_1002_ecm_1645 crossref_primary_10_3389_fenvs_2019_00124 crossref_primary_10_1016_j_geomorph_2023_108672 crossref_primary_10_1111_gcb_14569 crossref_primary_10_3354_meps14091 crossref_primary_10_1016_j_earscirev_2018_04_007 crossref_primary_10_3390_w8120566 crossref_primary_10_3390_f12010022 crossref_primary_10_3390_su16083217 crossref_primary_10_1007_s11056_021_09861_2 crossref_primary_10_1016_j_ecohyd_2021_02_004 crossref_primary_10_1007_s00468_018_1751_7 crossref_primary_10_1007_s11368_019_02533_x crossref_primary_10_3390_w14172622 crossref_primary_10_1007_s10661_023_11121_z crossref_primary_10_1016_j_gloplacha_2016_08_012 crossref_primary_10_3390_agronomy14091899 crossref_primary_10_1002_aqc_70023 crossref_primary_10_1002_ece3_5926 crossref_primary_10_1093_aob_mcac031 crossref_primary_10_1016_j_jenvman_2024_121188 crossref_primary_10_1111_ppl_13594 crossref_primary_10_1111_fwb_13630 crossref_primary_10_1002_ecs2_1548 crossref_primary_10_1016_j_ecolind_2024_113039 crossref_primary_10_1371_journal_pone_0294359 crossref_primary_10_3389_fenvs_2022_1019695 crossref_primary_10_1111_nph_13693 crossref_primary_10_1007_s00027_019_0640_5 crossref_primary_10_1093_forestry_cpad014 crossref_primary_10_1016_j_scitotenv_2018_05_321 crossref_primary_10_1007_s13157_021_01524_4 crossref_primary_10_1016_j_hisbio_2025_100018 crossref_primary_10_1016_j_foreco_2020_117962 crossref_primary_10_2478_jengeo_2018_0008 crossref_primary_10_1016_j_ecolind_2018_04_040 crossref_primary_10_1016_j_scitotenv_2020_144654 crossref_primary_10_3389_fmicb_2023_1108025 crossref_primary_10_1016_j_ecolind_2020_106797 crossref_primary_10_3390_f11050518 crossref_primary_10_1007_s10750_019_04159_z crossref_primary_10_1111_avsc_12297 crossref_primary_10_3390_w16101339 crossref_primary_10_1007_s11120_020_00791_2 crossref_primary_10_1086_699481 crossref_primary_10_3390_plants12051193 crossref_primary_10_3389_fpls_2022_1081787 crossref_primary_10_3390_su141811309 crossref_primary_10_1007_s00442_017_3893_5 crossref_primary_10_1016_j_ecolind_2024_112313 crossref_primary_10_1007_s00442_019_04423_y crossref_primary_10_18307_2018_0318 crossref_primary_10_1016_j_catena_2022_106857 crossref_primary_10_3390_land10070708 crossref_primary_10_1016_j_flora_2024_152667 crossref_primary_10_1080_13416979_2024_2386704 crossref_primary_10_1002_aqc_3120 crossref_primary_10_1093_treephys_tpab165 crossref_primary_10_1007_s10452_023_10012_2 crossref_primary_10_7211_jjsrt_47_466 crossref_primary_10_3389_fmicb_2022_1076610 crossref_primary_10_1016_j_heliyon_2021_e08048 crossref_primary_10_1007_s10750_016_2907_3 crossref_primary_10_1007_s13157_018_1084_8 crossref_primary_10_1007_s11258_019_00918_z crossref_primary_10_1002_iroh_202102091 crossref_primary_10_1016_j_ecoleng_2018_04_017 crossref_primary_10_3389_fpls_2023_1257730 crossref_primary_10_1017_S0266467421000493 crossref_primary_10_1007_s11056_018_9627_7 crossref_primary_10_1002_eco_2158 crossref_primary_10_1016_j_jclepro_2019_118885 crossref_primary_10_1016_j_ecolind_2024_112955 crossref_primary_10_1371_journal_pone_0207689 crossref_primary_10_3390_plants14020282 crossref_primary_10_3390_ijerph191811582 crossref_primary_10_1071_BT22051 crossref_primary_10_1016_j_jhydrol_2024_131728 crossref_primary_10_1016_j_jplph_2020_153180 crossref_primary_10_1016_j_scitotenv_2019_06_006 crossref_primary_10_1016_j_ecolind_2019_04_005 crossref_primary_10_3390_w16010164 crossref_primary_10_1002_rra_4271 crossref_primary_10_1017_inp_2017_22 crossref_primary_10_1111_mec_13348 crossref_primary_10_1111_jvs_13145 crossref_primary_10_3390_rs14061415 crossref_primary_10_1111_1365_2745_12460 crossref_primary_10_1111_jvs_12731 crossref_primary_10_1007_s11356_024_34153_5 crossref_primary_10_1371_journal_pone_0153972 crossref_primary_10_1016_j_scitotenv_2024_174616 |
Cites_doi | 10.1038/nclimate1911 10.1111/j.1365-2664.2006.01223.x 10.2307/1313099 10.1111/j.1438-8677.1999.tb00253.x 10.1890/02-740 10.1146/annurev.ecolsys.28.1.621 10.1093/aob/mcn143 10.1007/s10750-005-1905-7 10.1111/j.1365-2745.2004.00957.x 10.1002/rrr.624 10.1111/fwb.12088 10.1111/j.0030-1299.2004.13083.x 10.1111/j.1365-2486.2010.02230.x 10.1029/2008JD011438 10.1007/s10531-008-9532-z 10.1111/j.1654-109X.2006.tb00665.x 10.2307/1941956 10.2307/1311607 10.1111/j.1654-109X.2006.tb00676.x 10.1111/j.1365-2664.2008.01534.x 10.1111/nph.12951 10.1029/2005JD005965 10.1016/j.aquabot.2004.10.006 10.1111/j.1365-2745.2005.01057.x 10.1002/rra.707 10.1146/annurev.arplant.59.032607.092752 10.1111/j.1654-1103.2007.tb02576.x 10.1071/MF08066 10.1007/BF02851908 10.1672/0277-5212(2000)020[0323:SANAIF]2.0.CO;2 10.1111/j.0028-646X.2001.257_1.x 10.1093/jxb/41.7.775 10.1038/21877 10.1023/A:1021493327180 10.1016/S1369-5266(03)00038-4 10.1046/j.1365-3040.1998.00261.x 10.1111/j.1365-2664.2011.02026.x 10.1017/S037689290200022X 10.1093/oxfordjournals.aob.a010308 10.1111/fwb.12328 10.1029/2008JD011523 10.1007/s10021-012-9597-0 10.1016/S0098-8472(02)00018-7 10.1007/BF00204341 10.1111/j.1526-100X.2012.00893.x 10.1007/s10584-006-9210-7 10.1016/j.geomorph.2009.11.018 10.1111/1365-2435.12441 10.1111/j.1469-8137.1987.tb00153.x 10.1029/2012JD017461 10.1890/0012-9658(2000)081[0899:FORFIR]2.0.CO;2 10.2307/2404910 10.1111/j.1365-2427.2009.02206.x 10.1046/j.1365-3040.2000.00628.x 10.1046/j.1365-2664.1998.3540553.x 10.1111/j.1365-2427.2011.02694.x 10.1111/j.1365-2427.2006.01713.x 10.1093/aob/mcn183 10.1007/s00468-010-0481-2 10.1111/j.1365-313X.2008.03769.x 10.1016/j.jaridenv.2004.04.004 10.1046/j.1365-2745.2003.00749.x 10.1111/j.1365-2427.2005.01383.x 10.2307/1941822 |
ContentType | Journal Article |
Copyright | 2015 John The Authors. Published by John Wiley & Sons Ltd. 2015 John The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2015 John The Authors. Published by John Wiley & Sons Ltd. – notice: 2015 John The Authors. Global Change Biology Published by John Wiley & Sons Ltd. – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | FBQ BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7ST 7U1 7U6 7S9 L.6 |
DOI | 10.1111/gcb.12921 |
DatabaseName | AGRIS Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Risk Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Risk Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Risk Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 2890 |
ExternalDocumentID | 3748200681 25752818 10_1111_gcb_12921 GCB12921 ark_67375_WNG_WH9M6GRB_H US201500212013 |
Genre | reviewArticle Meta-Analysis Review Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Union 7th Framework Project REFRESH funderid: 244121 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7ST 7U1 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c6521-e56ba46c27b0379288f4e60e4dba46535d71cefa7e0ad7165ef3bbdfe8f738fd3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Jul 11 18:40:32 EDT 2025 Fri Jul 11 08:16:00 EDT 2025 Fri Jul 25 10:57:43 EDT 2025 Thu Apr 03 07:09:12 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 Tue Jul 01 03:52:53 EDT 2025 Wed Jan 22 16:15:46 EST 2025 Wed Oct 30 09:53:22 EDT 2024 Wed Dec 27 18:53:50 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | hydrological changes floods wetlands biodiversity global change literature survey riparian gradient survival vegetation climate change |
Language | English |
License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 2015 John The Authors. Global Change Biology Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6521-e56ba46c27b0379288f4e60e4dba46535d71cefa7e0ad7165ef3bbdfe8f738fd3 |
Notes | http://dx.doi.org/10.1111/gcb.12921 Table S1. Keyword strings and results. Table S2. Papers meta-analysis survival. Table S3. Papers meta-analysis biomass. Table S4. Morphological adjustments to flooding stress. Table S5. List of species included in the analyses, with species growth form and relevant traits. Table S6. Papers species richness. Table S7. Summary of the main effects of flooding on riparian plant species richness and composition. ArticleID:GCB12921 European Union 7th Framework Project REFRESH - No. 244121 istex:D523B3DA2DABD78C4FB5C53CB15D4483EC82486D ark:/67375/WNG-WH9M6GRB-H ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12921 |
PMID | 25752818 |
PQID | 1697398953 |
PQPubID | 30327 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1753414044 proquest_miscellaneous_1705077286 proquest_journals_1697398953 pubmed_primary_25752818 crossref_citationtrail_10_1111_gcb_12921 crossref_primary_10_1111_gcb_12921 wiley_primary_10_1111_gcb_12921_GCB12921 istex_primary_ark_67375_WNG_WH9M6GRB_H fao_agris_US201500212013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2015 |
Publisher | Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. BioScience, 41, 540-551. Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimation and genetic diversity. Annual Review of Plant Biology, 59, 313-339. Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands: a test of biodiversity theory. Ecological Society of America, 79, 94-105. Naiman RJ, Décamps H, McClain ME (2005) Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier, Oxford, UK. Beltman B, Willems JH, Güsewell S (2007) Flood events overrule fertiliser effects on biomass production and species richness in riverine grasslands. Journal of Vegetation Science, 18, 625-634. Brederveld RJ, Jaehnig SC, Lorenz AW, Brunzel S, Soons MB (2011) Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology, 48, 1241-1250. Verhoeven JTA, Soons MB, Janssen R, Omtzigt N (2008) An Operational Landscape Unit approach for identifying key landscape connections in wetland restoration. Journal of Applied Ecology, 45, 1496-1503. Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Applied Vegetation Science, 9, 271-278. Baattrup-Pedersen A, Dalkvist D, Dybkjær JB, Riis T, Larsen SE, Kronvang B (2013a) Species recruitment following flooding, sediment deposition and seed addition in restored riparian areas. Restoration Ecology, 21, 399-408. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7-30. Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell and Environment, 23, 1237-1245. Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 106, 465-495. Setter TL, Ellis M, Laureles EV et al. (1997) Physiology and genetics of submergence tolerance in rice. Annals of Botany, 79, 67-77. Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany, 49, 1431-1436. Baattrup-Pedersen A, Friberg N, Larsen SE, Riis T (2005) The influence of channelisation on riparian plant assemblages. Freshwater Biology, 50, 1248-1261. Poff LN, Allan DJ, Bain MB et al. (1997) The natural flow regime. BioScience, 47, 769-784. Pezeshki SR (1991) Root responses of flood-tolerant and flood-sensitive tree species to soil redox conditions. Trees, 5, 180-186. Ström L, Jansson R, Nilsson C (2012) Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel river in Sweden. Freshwater Biology, 57, 49-60. Craft CB, Casey WP (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands, 20, 323-332. Petit NE, Froend RH, Davies PM (2001) Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regulated Rivers: Research and Management, 17, 201-215. Laan P, Blom CWPM (1990) Growth and survival responses of Rumex species to flooding and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. Journal of Experimental Botany, 41, 775-783. Smith M, Moss JS (1998) An experimental investigation, using stomatal conductance and fluorescence of the flood sensitivity of Boltonia decurrens and its competitors. Journal of Applied Ecology, 35, 553-561. Baattrup-Pedersen A, Jensen KMB, Thodsen H et al. (2013b) Effects of stream flooding on the distribution and diversity of groundwater-dependent vegetation in riparian areas. Freshwater Biology, 58, 817-827. Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. Journal of Geophysical Research, 111, 22. Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environmental Conservation, 29, 308-330. Chen H, Qualls RG, Miller GC (2002) Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environmental and Experimental Botany, 48, 119-128. Pezeshki SR (1993) Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica, 28, 423-430. van Eck WHJM, Lenssen JPM, van de Steeg HM, Blom C, de Kroon H (2006) Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species. Hydrobiologia, 565, 59-69. Noe GB, Hupp CR, Rybicky NB (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems, 16, 75-94. Olde Venterink H, Vermaat JE, Pronk M et al. (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Applied Vegetation Science, 9, 163-174. Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 400, 61-63. Renöfält BM, Merritt DM, Nilsson C (2007) Connecting variation in vegetation and stream flow: the role of geomorphic context in vegetation response to large floods along boreal rivers. Journal of Applied Ecology, 44, 147-157. Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. Journal of geophysical research, 114, 17. Vervuren PJA, Blom CWPM, de Kroon H (2003) Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology, 91, 135-146. Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. Journal of geophysical research, 114, 16. Jansson R, Nilsson C, Renöfält B (2000) Fragmentation of riparian floras in rivers with multiple dams. Ecology, 81, 899-903. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2005) Introduction to Meta-Analysis. John Wiley & Sons Ltd, Chichester, UK. Osterkamp WR, Hupp CR (2010) Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future. Geomorphology, 116, 274-285. Garssen AG, Soons MB, Verhoeven JTA (2014) Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshwater Biology, 59, 1052-1063. Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics, 28, 621-658. Rojas R, Feyen L, Bianchi A, Dosio A (2012) Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. Journal of Geophysical Research-Atmospheres, 117, 22. Banach K, Banach AM, Lamers LPM, de Kroon H, Bennicelli RP, Smits AJM, Visser EJW (2009) Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas. Annals of Botany, 103, 341-351. Goodson JM, Gurnell AM, Angold PG, Morrissey IP (2003) Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: the River Dove, Derbyshire, UK. River Research and Applications, 19, 317-334. Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1, 274-287. Laan P, Tosserams M, Blom CWPM, Veen BW (1990) Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant and Soil, 122, 39-46. Wassen MJW, Peeters WHM, Olde Venterink H (2003) Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology, 165, 27-43. Geigenberger P (2003) Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology, 6, 247-256. Insausti P, Grimoldi AA, Chaneton EJ, Vasellati V (2001) Flooding induces a suite of adaptive plastic responses in the grass Paspalum dilatatum. New Phytologist, 152, 291-299. Catford JA, Jansson R (2014) Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytologist, 204, 19-36. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP, Eds. (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, Switzerland, 210. Fraaije RGA, ter Braak CJF, Verduyn BG, Breeman LBS, Verhoeven JTA, Soons MB (2015) Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient. Functional Ecology, 29, 971-980. Ström L, Jansson R, Nilsson C, Johansson ME, Xiong S (2011) Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology, 17, 254-267. van Eck WHJM, Lenssen JPM, Rengelink RHJ, Blom CWPM, de Kroon H (2005) Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods. Aquatic Botany, 81, 253-264. Pierik R, van Aken JM, Voesenek LACJ (2009) Is elongation-induced leaf emergence beneficial for submerged Rumex species? Annals of Botany, 102, 353-357. Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. Journal of Ecology, 93, 1094-1103. Naiman RJ, Décamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications, 3, 209-212. 1998; 49 2010; 55 2013b; 58 2013; 3 1993; 28 1997; 43 1987; 106 1997; 47 1999; 400 2005; 60 2003; 19 2011; 17 2012; 57 2009; 114 1993; 3 1990; 41 2014; 204 2009; 58 2002; 48 2003; 91 2010; 24 2013; 16 2010; 116 2003; 6 1991; 41 2014; 59 2001; 17 2003; 165 2006; 565 2009; 18 2007; 18 2004; 85 2000; 23 2009; 60 2006; 9 2000; 20 2008; 59 2008 2007 1997; 28 2005 2005; 81 1999; 1 2007; 52 2004; 107 1990; 122 2006; 111 1991; 5 2013a; 21 2002; 29 2015; 29 2001; 152 1997; 79 2000; 81 2008; 45 2007; 81 2009; 102 2011; 48 2005; 93 2005; 50 2013 2007; 44 2012; 117 2009; 103 1994; 4 1998; 79 1998; 35 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Intergovernmental Panel on Climate Change (IPCC) (e_1_2_6_32_1) 2007 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Borenstein M (e_1_2_6_10_1) 2005 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 Petit NE (e_1_2_6_51_1) 2001; 17 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Pezeshki SR (e_1_2_6_53_1) 1993; 28 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 Bates BC (e_1_2_6_8_1) 2008 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Pierik R (e_1_2_6_54_1) 2009; 102 e_1_2_6_63_1 e_1_2_6_42_1 Naiman RJ (e_1_2_6_45_1) 2005 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Intergovernmental Panel on Climate Change (IPCC) (e_1_2_6_33_1) 2013 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 Pollock MM (e_1_2_6_56_1) 1998; 79 e_1_2_6_69_1 |
References_xml | – reference: Baattrup-Pedersen A, Jensen KMB, Thodsen H et al. (2013b) Effects of stream flooding on the distribution and diversity of groundwater-dependent vegetation in riparian areas. Freshwater Biology, 58, 817-827. – reference: Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. Journal of geophysical research, 114, 17. – reference: Chen H, Qualls RG, Miller GC (2002) Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environmental and Experimental Botany, 48, 119-128. – reference: Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. BioScience, 41, 540-551. – reference: Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell and Environment, 23, 1237-1245. – reference: Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany, 49, 1431-1436. – reference: Hirabayashi Y, Mahendran R, Koirala S et al. (2013) Global flood risk under climate change. Nature Climate Change, 3, 816-821. – reference: Voesenek LACJ, Rijnders JHGM, Peeters AJM, van de Steeg HM, de Kroon H (2004) Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology, 85, 16-27. – reference: Capon SJ (2005) Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. Journal of Arid Environments, 60, 283-302. – reference: Lenssen JPM, de Kroon H (2005) Abiotic constraints at the upper boundaries of two Rumex species on a freshwater flooding gradient. Journal of Ecology, 93, 138-147. – reference: Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Applied Vegetation Science, 9, 271-278. – reference: van Eck WHJM, Lenssen JPM, Rengelink RHJ, Blom CWPM, de Kroon H (2005) Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods. Aquatic Botany, 81, 253-264. – reference: Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. Journal of geophysical research, 114, 16. – reference: Baattrup-Pedersen A, Dalkvist D, Dybkjær JB, Riis T, Larsen SE, Kronvang B (2013a) Species recruitment following flooding, sediment deposition and seed addition in restored riparian areas. Restoration Ecology, 21, 399-408. – reference: Pedersen O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal, 58, 147-156. – reference: Garssen AG, Soons MB, Verhoeven JTA (2014) Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshwater Biology, 59, 1052-1063. – reference: Insausti P, Grimoldi AA, Chaneton EJ, Vasellati V (2001) Flooding induces a suite of adaptive plastic responses in the grass Paspalum dilatatum. New Phytologist, 152, 291-299. – reference: Bates BC, Kundzewicz ZW, Wu S, Palutikof JP, Eds. (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, Switzerland, 210. – reference: Noe GB, Hupp CR, Rybicky NB (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems, 16, 75-94. – reference: Smith M, Moss JS (1998) An experimental investigation, using stomatal conductance and fluorescence of the flood sensitivity of Boltonia decurrens and its competitors. Journal of Applied Ecology, 35, 553-561. – reference: Verhoeven JTA, Soons MB, Janssen R, Omtzigt N (2008) An Operational Landscape Unit approach for identifying key landscape connections in wetland restoration. Journal of Applied Ecology, 45, 1496-1503. – reference: Wassen MJW, Peeters WHM, Olde Venterink H (2003) Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology, 165, 27-43. – reference: Osterkamp WR, Hupp CR (2010) Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future. Geomorphology, 116, 274-285. – reference: Brederveld RJ, Jaehnig SC, Lorenz AW, Brunzel S, Soons MB (2011) Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology, 48, 1241-1250. – reference: Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 106, 465-495. – reference: Jansson R, Nilsson C, Renöfält B (2000) Fragmentation of riparian floras in rivers with multiple dams. Ecology, 81, 899-903. – reference: Naiman RJ, Décamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications, 3, 209-212. – reference: Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 400, 61-63. – reference: Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimation and genetic diversity. Annual Review of Plant Biology, 59, 313-339. – reference: Stromberg JC, Hazelton AF, White MS (2009) Plant species richness in ephemeral and perennial reaches of a dryland river. Biodiversity and Conservation, 18, 663-677. – reference: Fraaije RGA, ter Braak CJF, Verduyn BG, Breeman LBS, Verhoeven JTA, Soons MB (2015) Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient. Functional Ecology, 29, 971-980. – reference: Hughes JW, Cass WB (1997) Pattern and process of a floodplain forest, Vermont, USA: predicted responses of vegetation to perturbation. Journal of Applied Ecology, 43, 594-612. – reference: Geigenberger P (2003) Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology, 6, 247-256. – reference: Laan P, Blom CWPM (1990) Growth and survival responses of Rumex species to flooding and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. Journal of Experimental Botany, 41, 775-783. – reference: Nakai A, Yurugi Y, Kisanuki H (2010) Stress responses in Salix gracilistyla cuttings subjected to repetitive alternate flooding and drought. Trees, 24, 1087-1095. – reference: Auble GT, Friedman JM, Scott ML (1994) Relating riparian vegetation to present and future streamflows. Ecological Applications, 4, 544-554. – reference: Setter TL, Ellis M, Laureles EV et al. (1997) Physiology and genetics of submergence tolerance in rice. Annals of Botany, 79, 67-77. – reference: Petit NE, Froend RH, Davies PM (2001) Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regulated Rivers: Research and Management, 17, 201-215. – reference: Banach K, Banach AM, Lamers LPM, de Kroon H, Bennicelli RP, Smits AJM, Visser EJW (2009) Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas. Annals of Botany, 103, 341-351. – reference: Ström L, Jansson R, Nilsson C, Johansson ME, Xiong S (2011) Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology, 17, 254-267. – reference: Pierik R, van Aken JM, Voesenek LACJ (2009) Is elongation-induced leaf emergence beneficial for submerged Rumex species? Annals of Botany, 102, 353-357. – reference: Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7-30. – reference: Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1, 274-287. – reference: Baattrup-Pedersen A, Friberg N, Larsen SE, Riis T (2005) The influence of channelisation on riparian plant assemblages. Freshwater Biology, 50, 1248-1261. – reference: Kronvang B, Hoffmann CC, Dröge R (2009) Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments. Marine and Freshwater Research, 60, 638-646. – reference: Ström L, Jansson R, Nilsson C (2012) Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel river in Sweden. Freshwater Biology, 57, 49-60. – reference: Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. Journal of Geophysical Research, 111, 22. – reference: Beltman B, Willems JH, Güsewell S (2007) Flood events overrule fertiliser effects on biomass production and species richness in riverine grasslands. Journal of Vegetation Science, 18, 625-634. – reference: Catford JA, Jansson R (2014) Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytologist, 204, 19-36. – reference: Craft CB, Casey WP (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands, 20, 323-332. – reference: Renöfält BM, Merritt DM, Nilsson C (2007) Connecting variation in vegetation and stream flow: the role of geomorphic context in vegetation response to large floods along boreal rivers. Journal of Applied Ecology, 44, 147-157. – reference: Laan P, Tosserams M, Blom CWPM, Veen BW (1990) Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant and Soil, 122, 39-46. – reference: Rojas R, Feyen L, Bianchi A, Dosio A (2012) Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. Journal of Geophysical Research-Atmospheres, 117, 22. – reference: Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2005) Introduction to Meta-Analysis. John Wiley & Sons Ltd, Chichester, UK. – reference: Stromberg JC, Beauchamp VB, Dixon MD, Lite SJ, Paradzick C (2007) Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid southwestern United States. Freshwater Biology, 52, 651-679. – reference: Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environmental Conservation, 29, 308-330. – reference: Goodson JM, Gurnell AM, Angold PG, Morrissey IP (2003) Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: the River Dove, Derbyshire, UK. River Research and Applications, 19, 317-334. – reference: Olde Venterink H, Vermaat JE, Pronk M et al. (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Applied Vegetation Science, 9, 163-174. – reference: Pezeshki SR (1993) Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica, 28, 423-430. – reference: van Eck WHJM, van de Steeg HM, Blom CWPM, de Kroon H (2004) Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos, 107, 393-405. – reference: Vervuren PJA, Blom CWPM, de Kroon H (2003) Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology, 91, 135-146. – reference: Naiman RJ, Décamps H, McClain ME (2005) Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier, Oxford, UK. – reference: Poff LN, Allan DJ, Bain MB et al. (1997) The natural flow regime. BioScience, 47, 769-784. – reference: Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics, 28, 621-658. – reference: Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands: a test of biodiversity theory. Ecological Society of America, 79, 94-105. – reference: van Eck WHJM, Lenssen JPM, van de Steeg HM, Blom C, de Kroon H (2006) Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species. Hydrobiologia, 565, 59-69. – reference: Merritt DM, Scott ML, Le Roy Poff N, Auble GT, Lytle DA (2010) Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55, 206-225. – reference: Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. Journal of Ecology, 93, 1094-1103. – reference: Pezeshki SR (1991) Root responses of flood-tolerant and flood-sensitive tree species to soil redox conditions. Trees, 5, 180-186. – volume: 44 start-page: 147 year: 2007 end-page: 157 article-title: Connecting variation in vegetation and stream flow: the role of geomorphic context in vegetation response to large floods along boreal rivers publication-title: Journal of Applied Ecology – volume: 81 start-page: 7 year: 2007 end-page: 30 article-title: A summary of the PRUDENCE model projections of changes in European climate by the end of this century publication-title: Climatic Change – volume: 93 start-page: 138 year: 2005 end-page: 147 article-title: Abiotic constraints at the upper boundaries of two species on a freshwater flooding gradient publication-title: Journal of Ecology – year: 2005 – volume: 28 start-page: 423 year: 1993 end-page: 430 article-title: Differences in patterns of photosynthetic responses to hypoxia in flood‐tolerant and flood‐sensitive tree species publication-title: Photosynthetica – volume: 60 start-page: 638 year: 2009 end-page: 646 article-title: Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments publication-title: Marine and Freshwater Research – volume: 20 start-page: 323 year: 2000 end-page: 332 article-title: Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA publication-title: Wetlands – volume: 116 start-page: 274 year: 2010 end-page: 285 article-title: Fluvial processes and vegetation ‐ Glimpses of the past, the present, and perhaps the future publication-title: Geomorphology – volume: 41 start-page: 775 year: 1990 end-page: 783 article-title: Growth and survival responses of species to flooding and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates publication-title: Journal of Experimental Botany – volume: 23 start-page: 1237 year: 2000 end-page: 1245 article-title: Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono‐ and dicotyledonous wetland species with contrasting types of aerenchyma publication-title: Plant, Cell and Environment – volume: 17 start-page: 254 year: 2011 end-page: 267 article-title: Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions publication-title: Global Change Biology – volume: 91 start-page: 135 year: 2003 end-page: 146 article-title: Extreme flooding events on the Rhine and the survival and distribution of riparian plant species publication-title: Journal of Ecology – volume: 59 start-page: 1052 year: 2014 end-page: 1063 article-title: Effects of climate‐induced increases in summer drought on riparian plant species: a meta‐analysis publication-title: Freshwater Biology – volume: 114 start-page: 17 year: 2009 article-title: Impact of global warming on streamflow drought in Europe publication-title: Journal of geophysical research – volume: 400 start-page: 61 year: 1999 end-page: 63 article-title: Hydrologically defined niches reveal a basis for species richness in plant communities publication-title: Nature – volume: 49 start-page: 1431 year: 1998 end-page: 1436 article-title: The barrier to radial oxygen loss from roots of rice ( L.) is induced by growth in stagnant solution publication-title: Journal of Experimental Botany – volume: 106 start-page: 465 year: 1987 end-page: 495 article-title: The anatomical characteristics of roots and plant response to soil flooding publication-title: New Phytologist – volume: 48 start-page: 1241 year: 2011 end-page: 1250 article-title: Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates publication-title: Journal of Applied Ecology – volume: 165 start-page: 27 year: 2003 end-page: 43 article-title: Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland publication-title: Plant Ecology – volume: 9 start-page: 163 year: 2006 end-page: 174 article-title: Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands publication-title: Applied Vegetation Science – volume: 48 start-page: 119 year: 2002 end-page: 128 article-title: Adaptive responses of to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production publication-title: Environmental and Experimental Botany – volume: 85 start-page: 16 year: 2004 end-page: 27 article-title: Plant hormones regulate fast shoot elongation under water: from genes to communities publication-title: Ecology – volume: 41 start-page: 540 year: 1991 end-page: 551 article-title: An ecosystem perspective of riparian zones publication-title: BioScience – volume: 24 start-page: 1087 year: 2010 end-page: 1095 article-title: Stress responses in cuttings subjected to repetitive alternate flooding and drought publication-title: Trees – volume: 4 start-page: 544 year: 1994 end-page: 554 article-title: Relating riparian vegetation to present and future streamflows publication-title: Ecological Applications – volume: 103 start-page: 341 year: 2009 end-page: 351 article-title: Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas publication-title: Annals of Botany – start-page: 210 year: 2008 – volume: 81 start-page: 899 year: 2000 end-page: 903 article-title: Fragmentation of riparian floras in rivers with multiple dams publication-title: Ecology – volume: 60 start-page: 283 year: 2005 end-page: 302 article-title: Flood variability and spatial variation in plant community composition and structure on a large arid floodplain publication-title: Journal of Arid Environments – volume: 35 start-page: 553 year: 1998 end-page: 561 article-title: An experimental investigation, using stomatal conductance and fluorescence of the flood sensitivity of and its competitors publication-title: Journal of Applied Ecology – volume: 52 start-page: 651 year: 2007 end-page: 679 article-title: Importance of low‐flow and high‐flow characteristics to restoration of riparian vegetation along rivers in arid southwestern United States publication-title: Freshwater Biology – volume: 6 start-page: 247 year: 2003 end-page: 256 article-title: Response of plant metabolism to too little oxygen publication-title: Current Opinion in Plant Biology – volume: 43 start-page: 594 year: 1997 end-page: 612 article-title: Pattern and process of a floodplain forest, Vermont, USA: predicted responses of vegetation to perturbation publication-title: Journal of Applied Ecology – volume: 28 start-page: 621 year: 1997 end-page: 658 article-title: The ecology of interfaces: riparian zones publication-title: Annual review of Ecology and Systematics – volume: 16 start-page: 75 year: 2013 end-page: 94 article-title: Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands publication-title: Ecosystems – volume: 9 start-page: 271 year: 2006 end-page: 278 article-title: Wind dispersal in freshwater wetlands: knowledge for conservation and restoration publication-title: Applied Vegetation Science – volume: 107 start-page: 393 year: 2004 end-page: 405 article-title: Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species publication-title: Oikos – volume: 114 start-page: 16 year: 2009 article-title: Flood hazard in Europe in an ensemble of regional climate scenarios publication-title: Journal of geophysical research – volume: 1 start-page: 274 year: 1999 end-page: 287 article-title: Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence publication-title: Plant Biology – volume: 565 start-page: 59 year: 2006 end-page: 69 article-title: Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species publication-title: Hydrobiologia – volume: 111 start-page: 22 year: 2006 article-title: Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models publication-title: Journal of Geophysical Research – volume: 19 start-page: 317 year: 2003 end-page: 334 article-title: Evidence for hydrochory and the deposition of viable seeds within winter flow‐deposited sediments: the River Dove, Derbyshire, UK publication-title: River Research and Applications – volume: 59 start-page: 313 year: 2008 end-page: 339 article-title: Flooding stress: acclimation and genetic diversity publication-title: Annual Review of Plant Biology – volume: 18 start-page: 625 year: 2007 end-page: 634 article-title: Flood events overrule fertiliser effects on biomass production and species richness in riverine grasslands publication-title: Journal of Vegetation Science – volume: 29 start-page: 971 year: 2015 end-page: 980 article-title: Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient publication-title: Functional Ecology – volume: 21 start-page: 399 year: 2013a end-page: 408 article-title: Species recruitment following flooding, sediment deposition and seed addition in restored riparian areas publication-title: Restoration Ecology – volume: 5 start-page: 180 year: 1991 end-page: 186 article-title: Root responses of flood‐tolerant and flood‐sensitive tree species to soil redox conditions publication-title: Trees – year: 2007 – volume: 47 start-page: 769 year: 1997 end-page: 784 article-title: The natural flow regime publication-title: BioScience – volume: 3 start-page: 816 year: 2013 end-page: 821 article-title: Global flood risk under climate change publication-title: Nature Climate Change – volume: 79 start-page: 94 year: 1998 end-page: 105 article-title: Plant species richness in riparian wetlands: a test of biodiversity theory publication-title: Ecological Society of America – volume: 3 start-page: 209 year: 1993 end-page: 212 article-title: The role of riparian corridors in maintaining regional biodiversity publication-title: Ecological Applications – volume: 79 start-page: 67 year: 1997 end-page: 77 article-title: Physiology and genetics of submergence tolerance in rice publication-title: Annals of Botany – volume: 204 start-page: 19 year: 2014 end-page: 36 article-title: Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems publication-title: New Phytologist – volume: 122 start-page: 39 year: 1990 end-page: 46 article-title: Internal oxygen transport in species and its significance for respiration under hypoxic conditions publication-title: Plant and Soil – volume: 55 start-page: 206 year: 2010 end-page: 225 article-title: Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation‐flow response guilds publication-title: Freshwater Biology – volume: 29 start-page: 308 year: 2002 end-page: 330 article-title: Riverine flood plains: present state and future trends publication-title: Environmental Conservation – volume: 58 start-page: 147 year: 2009 end-page: 156 article-title: Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice publication-title: The Plant Journal – volume: 50 start-page: 1248 year: 2005 end-page: 1261 article-title: The influence of channelisation on riparian plant assemblages publication-title: Freshwater Biology – volume: 93 start-page: 1094 year: 2005 end-page: 1103 article-title: Hydrochory increases riparian plant species richness: a comparison between a free‐flowing and a regulated river publication-title: Journal of Ecology – volume: 17 start-page: 201 year: 2001 end-page: 215 article-title: Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers publication-title: Regulated Rivers: Research and Management – volume: 117 start-page: 22 year: 2012 article-title: Assessment of future flood hazard in Europe using a large ensemble of bias‐corrected regional climate simulations publication-title: Journal of Geophysical Research‐Atmospheres – volume: 45 start-page: 1496 year: 2008 end-page: 1503 article-title: An Operational Landscape Unit approach for identifying key landscape connections in wetland restoration publication-title: Journal of Applied Ecology – volume: 81 start-page: 253 year: 2005 end-page: 264 article-title: Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods publication-title: Aquatic Botany – volume: 18 start-page: 663 year: 2009 end-page: 677 article-title: Plant species richness in ephemeral and perennial reaches of a dryland river publication-title: Biodiversity and Conservation – volume: 57 start-page: 49 year: 2012 end-page: 60 article-title: Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate‐driven hydrological change along the Vindel river in Sweden publication-title: Freshwater Biology – volume: 58 start-page: 817 year: 2013b end-page: 827 article-title: Effects of stream flooding on the distribution and diversity of groundwater‐dependent vegetation in riparian areas publication-title: Freshwater Biology – volume: 152 start-page: 291 year: 2001 end-page: 299 article-title: Flooding induces a suite of adaptive plastic responses in the grass publication-title: New Phytologist – volume: 102 start-page: 353 year: 2009 end-page: 357 article-title: Is elongation‐induced leaf emergence beneficial for submerged species? publication-title: Annals of Botany – year: 2013 – ident: e_1_2_6_29_1 doi: 10.1038/nclimate1911 – ident: e_1_2_6_57_1 doi: 10.1111/j.1365-2664.2006.01223.x – ident: e_1_2_6_55_1 doi: 10.2307/1313099 – ident: e_1_2_6_34_1 doi: 10.1111/j.1438-8677.1999.tb00253.x – ident: e_1_2_6_71_1 doi: 10.1890/02-740 – ident: e_1_2_6_43_1 doi: 10.1146/annurev.ecolsys.28.1.621 – volume: 102 start-page: 353 year: 2009 ident: e_1_2_6_54_1 article-title: Is elongation‐induced leaf emergence beneficial for submerged Rumex species? publication-title: Annals of Botany doi: 10.1093/aob/mcn143 – ident: e_1_2_6_21_1 doi: 10.1007/s10750-005-1905-7 – ident: e_1_2_6_41_1 doi: 10.1111/j.1365-2745.2004.00957.x – volume: 17 start-page: 201 year: 2001 ident: e_1_2_6_51_1 article-title: Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers publication-title: Regulated Rivers: Research and Management doi: 10.1002/rrr.624 – ident: e_1_2_6_5_1 doi: 10.1111/fwb.12088 – ident: e_1_2_6_19_1 doi: 10.1111/j.0030-1299.2004.13083.x – volume-title: Riparia: Ecology, Conservation, and Management of Streamside Communities year: 2005 ident: e_1_2_6_45_1 – ident: e_1_2_6_63_1 doi: 10.1111/j.1365-2486.2010.02230.x – ident: e_1_2_6_22_1 doi: 10.1029/2008JD011438 – ident: e_1_2_6_66_1 doi: 10.1007/s10531-008-9532-z – ident: e_1_2_6_48_1 doi: 10.1111/j.1654-109X.2006.tb00665.x – ident: e_1_2_6_2_1 doi: 10.2307/1941956 – volume-title: Introduction to Meta‐Analysis year: 2005 ident: e_1_2_6_10_1 – ident: e_1_2_6_28_1 doi: 10.2307/1311607 – ident: e_1_2_6_62_1 doi: 10.1111/j.1654-109X.2006.tb00676.x – ident: e_1_2_6_68_1 doi: 10.1111/j.1365-2664.2008.01534.x – ident: e_1_2_6_13_1 doi: 10.1111/nph.12951 – ident: e_1_2_6_24_1 doi: 10.1029/2005JD005965 – volume-title: Fourth Assessment Report, IPCC Plenary XXVII year: 2007 ident: e_1_2_6_32_1 – ident: e_1_2_6_20_1 doi: 10.1016/j.aquabot.2004.10.006 – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-2745.2005.01057.x – ident: e_1_2_6_27_1 doi: 10.1002/rra.707 – volume: 79 start-page: 94 year: 1998 ident: e_1_2_6_56_1 article-title: Plant species richness in riparian wetlands: a test of biodiversity theory publication-title: Ecological Society of America – ident: e_1_2_6_6_1 doi: 10.1146/annurev.arplant.59.032607.092752 – ident: e_1_2_6_9_1 doi: 10.1111/j.1654-1103.2007.tb02576.x – ident: e_1_2_6_38_1 doi: 10.1071/MF08066 – ident: e_1_2_6_40_1 doi: 10.1007/BF02851908 – ident: e_1_2_6_17_1 doi: 10.1672/0277-5212(2000)020[0323:SANAIF]2.0.CO;2 – ident: e_1_2_6_31_1 doi: 10.1111/j.0028-646X.2001.257_1.x – volume: 28 start-page: 423 year: 1993 ident: e_1_2_6_53_1 article-title: Differences in patterns of photosynthetic responses to hypoxia in flood‐tolerant and flood‐sensitive tree species publication-title: Photosynthetica – ident: e_1_2_6_39_1 doi: 10.1093/jxb/41.7.775 – ident: e_1_2_6_60_1 doi: 10.1038/21877 – ident: e_1_2_6_72_1 doi: 10.1023/A:1021493327180 – ident: e_1_2_6_26_1 doi: 10.1016/S1369-5266(03)00038-4 – start-page: 210 volume-title: Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change year: 2008 ident: e_1_2_6_8_1 – ident: e_1_2_6_16_1 doi: 10.1046/j.1365-3040.1998.00261.x – ident: e_1_2_6_11_1 doi: 10.1111/j.1365-2664.2011.02026.x – ident: e_1_2_6_67_1 doi: 10.1017/S037689290200022X – volume-title: Fifth Assessment Report: Climate Change 2013 year: 2013 ident: e_1_2_6_33_1 – ident: e_1_2_6_59_1 doi: 10.1093/oxfordjournals.aob.a010308 – ident: e_1_2_6_25_1 doi: 10.1111/fwb.12328 – ident: e_1_2_6_18_1 doi: 10.1029/2008JD011523 – ident: e_1_2_6_47_1 doi: 10.1007/s10021-012-9597-0 – ident: e_1_2_6_14_1 doi: 10.1016/S0098-8472(02)00018-7 – ident: e_1_2_6_52_1 doi: 10.1007/BF00204341 – ident: e_1_2_6_4_1 doi: 10.1111/j.1526-100X.2012.00893.x – ident: e_1_2_6_15_1 doi: 10.1007/s10584-006-9210-7 – ident: e_1_2_6_49_1 doi: 10.1016/j.geomorph.2009.11.018 – ident: e_1_2_6_23_1 doi: 10.1111/1365-2435.12441 – ident: e_1_2_6_37_1 doi: 10.1111/j.1469-8137.1987.tb00153.x – ident: e_1_2_6_58_1 doi: 10.1029/2012JD017461 – ident: e_1_2_6_35_1 doi: 10.1890/0012-9658(2000)081[0899:FORFIR]2.0.CO;2 – ident: e_1_2_6_30_1 doi: 10.2307/2404910 – ident: e_1_2_6_42_1 doi: 10.1111/j.1365-2427.2009.02206.x – ident: e_1_2_6_70_1 doi: 10.1046/j.1365-3040.2000.00628.x – ident: e_1_2_6_61_1 doi: 10.1046/j.1365-2664.1998.3540553.x – ident: e_1_2_6_64_1 doi: 10.1111/j.1365-2427.2011.02694.x – ident: e_1_2_6_65_1 doi: 10.1111/j.1365-2427.2006.01713.x – ident: e_1_2_6_7_1 doi: 10.1093/aob/mcn183 – ident: e_1_2_6_46_1 doi: 10.1007/s00468-010-0481-2 – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-313X.2008.03769.x – ident: e_1_2_6_12_1 doi: 10.1016/j.jaridenv.2004.04.004 – ident: e_1_2_6_69_1 doi: 10.1046/j.1365-2745.2003.00749.x – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-2427.2005.01383.x – ident: e_1_2_6_44_1 doi: 10.2307/1941822 |
SSID | ssj0003206 |
Score | 2.547283 |
SecondaryResourceType | review_article |
Snippet | A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2881 |
SubjectTerms | Arid climates Biodiversity Biomass botanical composition Climate change Community composition Ecosystem ephemeral streams Flooding Floods global change hydrograph hydrological changes Intermittent streams literature survey mature plants Meta-analysis Nutrient status Plant biomass Plant communities Plant Development Plant ecology Plant species Plants Porosity Riparian ecology riparian gradient risk rivers Seedlings Semiarid climates semiarid zones shoots Species composition Species richness surveys Survival vegetation Water levels watersheds wetlands |
Title | Riparian plant community responses to increased flooding: a meta‐analysis |
URI | https://api.istex.fr/ark:/67375/WNG-WH9M6GRB-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12921 https://www.ncbi.nlm.nih.gov/pubmed/25752818 https://www.proquest.com/docview/1697398953 https://www.proquest.com/docview/1705077286 https://www.proquest.com/docview/1753414044 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61lZC48AiUGkq1IFRxcWR7H7bhRKM2ESgVCkTtAWm1Xq-rqMGpYkeinPgJ_EZ-CbNrx6WoIMQlcuJxZI_n8a098w3AC5okXCfc-EZw5TPejHkx-BGmhbIpXNhG4fGxGE3Z21N-ugGv170wDT9E98DNeoaL19bBVVb94uRnOutjsnJN5LZWywKiyRV1FI3cXM2QcoahJqQtq5Ct4umOvJaLNgu1QIRqlfvlJrh5Hb269HN0Fz6tT7ypOjnvr-qsr7_-xun4n1d2D-60sJS8aezoPmyYsge3mkGVlz3YPrzqh0OxNiBUPfDGCLoXSydG9slgPkME7L49gHeTmR1xqEpyMcf7R3TTi1JfkmVTmGsqUi_IrLTAtTI5KWwRPabSV0SRz6ZWP759Vy1nykOYHh1-HIz8dnaDrwUiAt9wkSkmdBRnAY3TKEkKZkRgWG5_5pTncahNoWITKNwU3BQ0y_LCJEVMkyKn27BVLkqzA0TbNWga0BwXUyzRCEnjPIrSkBWGKR2EHrxc30WpW2JzO19jLtcLHFSodAr14HknetGwedwktIOmINUZRlk5_RDZZ0KWCB-NyIN9Zx_dwWp5bivjYi5PjofyZJSOxXByIEce7K4NSLZBoZKhSGOaJinH_3nW7UZ3tu9oVGkWK5SJA0TocZSIv8lwxB4sYMyDR41xdieEEZhbgi9UijOxP1-mHA4O3Mbjfxd9AretOpoCyF3Yqpcr8xRBWZ3twWbE3u85H_wJeNAvuA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgQXHoFSQ4EFoYpLItv7sI240KhNoE0OoVF7qVbr9bqKGpwqcSTKiZ_Ab-SXMLt2XIoKQlwiJxlH9nge325mvgF4TeOY65ibthFctRmvxrwYfAmSXNkULmyj8GAo-mP28Zgfr8G7VS9MxQ_RbLhZz3Dx2jq43ZD-xctPddrBbGW7yG_aid5uQTW6JI-ioZusGVDOMNgEtOYVsnU8zalXstGNXM0Qo1r1frkOcF7Fry4B7d2Dk9WlV3UnZ51lmXb0199YHf_33u7D3RqZkveVKT2ANVO04FY1q_KiBRu7ly1xKFbHhEULvAHi7tnciZFt0p1OEAS7dw9hfzSxUw5VQc6n-AiJrtpRygsyr2pzzYKUMzIpLHZdmIzkto4es-lboshnU6of376rmjblEYz3dg-7_XY9vqGtBYKCtuEiVUzoMEp9GiVhHOfMCN-wzH7MKc-iQJtcRcZXeCi4yWmaZrmJ84jGeUY3YL2YFWYTiLbL0MSnGa6nWKwRlUZZGCYByw1T2g88eLN6jFLX3OZ2xMZUrtY4qFDpFOrBq0b0vCL0uE5oE21BqlMMtHL8KbTbQpYLH63Ig21nIM3Jan5mi-MiLo-GPXnUTwaiN9qRfQ-2VhYk67iwkIFIIprECcffedl8jR5t_6ZRhZktUSbyEaRHYSz-JsMRfjCfMQ8eV9bZXBAGYW45vlApzsb-fJuy191xB0_-XfQF3O4fDg7kwYfh_lO4Y1VT1UNuwXo5X5pniNHK9LlzxZ80qzL8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIhAXHoFSQ4EFoYqLI9v78BpONG0SKIlQIGoPSKv1ereKGpwocSTKiZ_Ab-SXMGs7LkUFIS6RE48jezyPb-2ZbxB6ToRgWjDjG86UT1k15sXAR5hY5VI4d43CgyHvj-nbY3a8gV6te2EqfojmgZvzjDJeOwefZ_YXJz_RaRuSlWsiv0p5IJxJ74_OuaNIVA7WDAmjEGtCUtMKuTKe5tALyeiKVTOAqE67Xy7Dmxfha5l_urfQp_WZV2Unp-1Vkbb1199IHf_z0m6jmzUuxa8rQ7qDNkzeQteqSZVnLbR1cN4QB2J1RFi2kDcA1D1blGJ4F3emE4DA5be76HA0cTMOVY7nU7iBWFfNKMUZXlSVuWaJixme5A65Lk2Grauih1z6Eiv82RTqx7fvqiZNuYfG3YOPnb5fD2_wNQdI4BvGU0W5juI0IHESCWGp4YGhmfuZEZbFoTZWxSZQsMmZsSRNM2uEjYmwGdlCm_ksN9sIa7cITQKSwWqKCg2YNM6iKAmpNVTpIPTQi_VdlLpmNncDNqZyvcIBhcpSoR561ojOKzqPy4S2wRSkOoEwK8cfIvdQyDHhgxF5aLe0j-ZgtTh1pXExk0fDnjzqJwPeG-3Jvod21gYk66iwlCFPYpKIhMH_PG12gz-7lzQqN7MVyMQBQPQ4EvxvMgzABw0o9dD9yjibE4IQzBzDFyilNLE_X6bsdfbKjQf_LvoEXX-_35Xv3gwPH6IbTjNVMeQO2iwWK_MIAFqRPi4d8SeO-DG0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riparian+plant+community+responses+to+increased+flooding%3A+a+meta-analysis&rft.jtitle=Global+change+biology&rft.au=Garssen%2C+Annemarie+G&rft.au=Baattrup-Pedersen%2C+Annette&rft.au=Voesenek%2C+Laurentius+A+C+J&rft.au=Verhoeven%2C+Jos+T+A&rft.date=2015-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=21&rft.issue=8&rft.spage=2881&rft_id=info:doi/10.1111%2Fgcb.12921&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3748200681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |