Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes

The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 52; pp. 20805 - 20810
Main Authors Herce, Henry D, Garcia, Angel E
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.12.2007
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0706574105

Cover

Abstract The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.
AbstractList The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.
The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.
The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.
The recombinant HIV-1 Tat protein contains a small region corresponding to residues ..., which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. (ProQuest: ... denotes formulae/symbols omitted.)
The recombinant HIV-1 Tat protein contains a small region corresponding to residues super(47)YGRKKRRQRR super(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.
The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. cell-penetrating peptide antimicrobial peptide drug delivery membrane proteins pore formation
The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.
Author Garcia, Angel E
Herce, Henry D
Author_xml – sequence: 1
  fullname: Herce, Henry D
– sequence: 2
  fullname: Garcia, Angel E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18093956$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURLeFMyfA6gGJQ9qx488LUlUBrVTEgS1Xy3GcXa-SOMQJov--3g-60AN7suV55vXMO3OSHXWhc1n2GsM5BlFc9J2J5yCAM0ExsGfZDIPCOacKjrIZABG5pIQeZycxrgBAMQkvsmMsQRWK8Vk2fg2Ns1NjBlTdd6b1NqLo2_Qw-tCl-7RYuDgig1pnl6bzsUV1GNA4mC42wW4wFGo0Lh26vvmRYzS_nKPe9aOvHDJ2CDGixve-SgptmdJcfJk9r00T3avdeZrdff40v7rOb799ubm6vM0tZ3jMS6s4KF4QSyhYU9fS1gWnwAWvhWCVENaUrnSFMjW3XEhSCGxLXrGycBU3xWn2cavbT2XrKuu6VHaj-8G3ZrjXwXj9b6TzS70Iv3T6TxFCksD7ncAQfk7JB936aF3TpC7CFDVXILkEeRCkEjMG8rAiAcoVEzyBZ0_AVZiGLtmVGFwABaES9PbvBh87-zPfBFxsgc0cBlfvEdDrDdLrDdL7DUoZ7EmG9eNmyskh3_wn78OulHVg_wvVjKSKJTBdT00zut9jYtEBNiFvtsgqjmF4ZAijDNTGx3fbeG2CNovBR333fWMMyFQPxsUDAXH3Qg
CitedBy_id crossref_primary_10_1016_j_jconrel_2020_08_045
crossref_primary_10_1021_jp2102447
crossref_primary_10_1142_S021963361750002X
crossref_primary_10_1186_1479_5876_6_80
crossref_primary_10_1016_j_chemphyslip_2011_11_008
crossref_primary_10_1021_jp504853t
crossref_primary_10_1016_j_chemphyslip_2016_01_002
crossref_primary_10_1111_tra_12578
crossref_primary_10_1038_ncomms1459
crossref_primary_10_1088_1478_3975_7_1_016001
crossref_primary_10_1063_1_4954241
crossref_primary_10_1096_fj_11_201384
crossref_primary_10_1016_j_plantsci_2022_111436
crossref_primary_10_1007_s00726_012_1421_9
crossref_primary_10_1038_s41598_023_28493_4
crossref_primary_10_1021_acs_chemrev_9b00008
crossref_primary_10_1021_nn3036304
crossref_primary_10_3390_ijms23147565
crossref_primary_10_1021_bi501392n
crossref_primary_10_1517_17425240902887029
crossref_primary_10_1002_adhm_202200371
crossref_primary_10_1080_10717544_2017_1391889
crossref_primary_10_1111_j_1398_9995_2008_01812_x
crossref_primary_10_1016_j_bbamem_2011_01_004
crossref_primary_10_1016_j_jbiomech_2018_03_036
crossref_primary_10_1021_acsinfecdis_0c00264
crossref_primary_10_1002_ange_201404684
crossref_primary_10_1096_fj_11_203315
crossref_primary_10_2174_0929866527666200525164135
crossref_primary_10_1111_j_1742_4658_2009_07359_x
crossref_primary_10_1016_j_biomaterials_2014_06_005
crossref_primary_10_1039_C4CP02211D
crossref_primary_10_1371_journal_pone_0086364
crossref_primary_10_1016_j_chemphys_2009_01_012
crossref_primary_10_1016_j_bbamem_2016_03_021
crossref_primary_10_1080_21688370_2021_1995285
crossref_primary_10_1021_acs_chemrev_8b00608
crossref_primary_10_1021_acs_jctc_6b00807
crossref_primary_10_1002_ange_200705993
crossref_primary_10_1021_acs_jpcb_1c10966
crossref_primary_10_1016_j_jmb_2022_167880
crossref_primary_10_1016_j_pharmthera_2015_07_003
crossref_primary_10_1007_s00726_010_0511_9
crossref_primary_10_1016_j_bpj_2018_08_040
crossref_primary_10_1021_jp412600e
crossref_primary_10_1002_anie_201801361
crossref_primary_10_1021_bi900914g
crossref_primary_10_1021_jp107763b
crossref_primary_10_1021_jp4068729
crossref_primary_10_1038_ncomms5482
crossref_primary_10_1016_j_bpj_2013_02_053
crossref_primary_10_1016_j_toxicon_2011_04_014
crossref_primary_10_1038_s41598_022_23631_w
crossref_primary_10_1371_journal_pone_0084821
crossref_primary_10_1002_adts_201900152
crossref_primary_10_1021_acs_jpclett_0c00175
crossref_primary_10_1016_j_cell_2017_02_031
crossref_primary_10_1021_nn305211f
crossref_primary_10_1021_jp908320b
crossref_primary_10_1038_s41556_021_00710_0
crossref_primary_10_1016_j_bbamem_2016_10_004
crossref_primary_10_1096_fj_08_110254
crossref_primary_10_1016_j_ijpharm_2019_05_014
crossref_primary_10_1039_C2CP44035K
crossref_primary_10_1186_s13287_021_02522_3
crossref_primary_10_1021_acs_langmuir_1c01594
crossref_primary_10_1016_j_cplett_2020_137503
crossref_primary_10_1016_j_actbio_2019_01_036
crossref_primary_10_1039_C5SM01696G
crossref_primary_10_1002_psc_3083
crossref_primary_10_1021_mp500495u
crossref_primary_10_1038_s41467_023_44502_6
crossref_primary_10_1073_pnas_1108795108
crossref_primary_10_1016_j_bpj_2011_05_038
crossref_primary_10_1021_ct200593t
crossref_primary_10_1039_c2sm25913c
crossref_primary_10_1021_acs_biochem_0c00536
crossref_primary_10_1016_j_bpc_2015_08_003
crossref_primary_10_1007_s00249_023_01673_w
crossref_primary_10_1016_j_pbiomolbio_2018_08_006
crossref_primary_10_1088_1361_6463_aab731
crossref_primary_10_3390_cells12192358
crossref_primary_10_1039_b820398a
crossref_primary_10_1021_bi5004102
crossref_primary_10_1016_j_bpj_2009_05_066
crossref_primary_10_1088_0957_4484_19_44_445103
crossref_primary_10_1038_s41598_020_75561_0
crossref_primary_10_1021_acs_jpcb_5b02122
crossref_primary_10_1038_mtna_2013_62
crossref_primary_10_1080_07391102_2015_1117396
crossref_primary_10_1021_acs_jpcb_6b05604
crossref_primary_10_1021_acs_jctc_2c00498
crossref_primary_10_1038_s41557_021_00866_0
crossref_primary_10_1021_jacs_0c05261
crossref_primary_10_1021_jp412739p
crossref_primary_10_1016_j_biomaterials_2014_03_062
crossref_primary_10_1021_jp310255r
crossref_primary_10_1021_jp505497k
crossref_primary_10_1016_j_bbamem_2008_10_006
crossref_primary_10_1063_1_3555531
crossref_primary_10_3390_ph14050471
crossref_primary_10_1021_nl401365n
crossref_primary_10_1016_j_bbamem_2010_02_013
crossref_primary_10_1021_bi9008243
crossref_primary_10_1111_jocd_13041
crossref_primary_10_7554_eLife_69832
crossref_primary_10_1016_j_jaci_2012_02_026
crossref_primary_10_1021_acs_jpcb_3c04895
crossref_primary_10_1016_j_addr_2020_05_006
crossref_primary_10_1016_j_bpj_2010_03_046
crossref_primary_10_1016_j_bbamem_2012_09_006
crossref_primary_10_1021_acs_langmuir_1c01613
crossref_primary_10_1002_wnan_1197
crossref_primary_10_2147_DDDT_S500004
crossref_primary_10_1007_s00253_018_8889_5
crossref_primary_10_1021_acs_molpharmaceut_2c00238
crossref_primary_10_3390_pr9010071
crossref_primary_10_1002_bit_26575
crossref_primary_10_1016_j_jconrel_2011_03_011
crossref_primary_10_1016_j_molmed_2016_11_006
crossref_primary_10_3390_membranes12070673
crossref_primary_10_1016_j_biopha_2011_02_013
crossref_primary_10_1021_bi1008408
crossref_primary_10_3390_cells12131700
crossref_primary_10_1098_rstb_2016_0219
crossref_primary_10_1073_pnas_0712363105
crossref_primary_10_1039_C7OB01290J
crossref_primary_10_1155_2014_257040
crossref_primary_10_1016_j_bbamem_2010_02_020
crossref_primary_10_1080_08927022_2016_1228105
crossref_primary_10_1021_la502363b
crossref_primary_10_3390_nano13071140
crossref_primary_10_1007_s00109_010_0693_3
crossref_primary_10_1128_MCB_01717_12
crossref_primary_10_3390_antib8010005
crossref_primary_10_1074_jbc_M109_023705
crossref_primary_10_1021_acs_jpcb_8b10483
crossref_primary_10_3390_molecules20046941
crossref_primary_10_1021_ja802383t
crossref_primary_10_1021_jp1069362
crossref_primary_10_1021_jp405418y
crossref_primary_10_1016_j_bpj_2013_11_4486
crossref_primary_10_1007_s00726_017_2531_1
crossref_primary_10_3389_fbioe_2022_911614
crossref_primary_10_1016_j_tibs_2011_08_003
crossref_primary_10_3762_bjnano_11_10
crossref_primary_10_1016_j_bpj_2016_08_047
crossref_primary_10_3390_ijms19030885
crossref_primary_10_1007_s10989_021_10301_0
crossref_primary_10_1039_D0BM01755H
crossref_primary_10_1016_j_virol_2009_09_009
crossref_primary_10_1021_jp405451e
crossref_primary_10_1002_mabi_201800364
crossref_primary_10_1021_jz500321d
crossref_primary_10_1146_annurev_physchem_040513_103718
crossref_primary_10_1016_j_bbcan_2008_03_001
crossref_primary_10_1016_j_bpj_2010_03_065
crossref_primary_10_4161_mabs_3_1_14110
crossref_primary_10_1002_adma_201707240
crossref_primary_10_1021_acsomega_8b00483
crossref_primary_10_2174_1567201817666200415111755
crossref_primary_10_1039_B916297F
crossref_primary_10_1007_s10989_013_9355_y
crossref_primary_10_1021_acs_jctc_6b00265
crossref_primary_10_1021_acs_jpcb_4c05018
crossref_primary_10_1016_j_jocs_2016_03_008
crossref_primary_10_1039_b902971k
crossref_primary_10_1002_pro_600
crossref_primary_10_1016_j_bbamem_2017_01_036
crossref_primary_10_1002_smll_201600006
crossref_primary_10_1080_17425247_2022_2083603
crossref_primary_10_1002_ddr_20331
crossref_primary_10_3390_ph5111177
crossref_primary_10_1021_jp9064196
crossref_primary_10_1039_C6SM01714B
crossref_primary_10_1021_ja507790z
crossref_primary_10_1074_jbc_M807403200
crossref_primary_10_1016_j_bbagen_2019_129423
crossref_primary_10_1016_j_bbamem_2014_01_015
crossref_primary_10_1007_s00726_012_1354_3
crossref_primary_10_1021_ct400626b
crossref_primary_10_1002_mats_201500023
crossref_primary_10_1002_biot_201100220
crossref_primary_10_1016_j_molimm_2009_09_012
crossref_primary_10_1371_journal_pone_0017732
crossref_primary_10_3390_membranes5030473
crossref_primary_10_1021_acs_jpcb_4c04266
crossref_primary_10_1016_j_bbamem_2011_07_030
crossref_primary_10_1021_jp3077886
crossref_primary_10_1021_jp5047613
crossref_primary_10_1021_jp411662c
crossref_primary_10_1016_j_jconrel_2008_06_003
crossref_primary_10_1016_j_biochi_2011_05_033
crossref_primary_10_1021_bc300585h
crossref_primary_10_1021_acs_jctc_7b01159
crossref_primary_10_3390_ijms140918758
crossref_primary_10_1021_mp500223t
crossref_primary_10_1063_1_4891305
crossref_primary_10_1021_acsabm_9b00432
crossref_primary_10_1080_07391102_2021_1958698
crossref_primary_10_1002_ange_201801361
crossref_primary_10_1002_psc_3244
crossref_primary_10_3390_s120100549
crossref_primary_10_1039_C8TB02650E
crossref_primary_10_1111_imcb_1017
crossref_primary_10_1073_pnas_1104808108
crossref_primary_10_3390_v13102043
crossref_primary_10_3390_pharmaceutics14050907
crossref_primary_10_1007_s00018_013_1416_z
crossref_primary_10_1002_anie_201404684
crossref_primary_10_1039_C2SM26519B
crossref_primary_10_1021_cb100423u
crossref_primary_10_1016_j_bpj_2009_03_059
crossref_primary_10_1016_j_peptides_2014_12_001
crossref_primary_10_1016_j_bbamem_2011_03_002
crossref_primary_10_1021_bc200127t
crossref_primary_10_1194_jlr_M006916
crossref_primary_10_1016_j_plipres_2011_12_005
crossref_primary_10_1021_acs_jpcb_9b00754
crossref_primary_10_1021_acs_jpcb_5b10404
crossref_primary_10_1021_acs_molpharmaceut_5b00153
crossref_primary_10_3389_fcell_2020_611121
crossref_primary_10_3390_molecules28083367
crossref_primary_10_1016_j_drup_2011_01_003
crossref_primary_10_1016_j_jconrel_2013_02_021
crossref_primary_10_1016_j_bios_2022_114448
crossref_primary_10_1021_acschemneuro_2c00446
crossref_primary_10_1111_jcmm_13435
crossref_primary_10_1021_la403409t
crossref_primary_10_1002_smll_202000146
crossref_primary_10_1016_j_febslet_2013_04_031
crossref_primary_10_1021_acs_jpcb_9b05414
crossref_primary_10_1080_08927022_2010_536546
crossref_primary_10_2217_nnm_11_165
crossref_primary_10_1021_acs_jpcb_4c03276
crossref_primary_10_1063_1_4932159
crossref_primary_10_1021_acssensors_1c01717
crossref_primary_10_1016_j_bbamem_2018_12_010
crossref_primary_10_1155_2013_407616
crossref_primary_10_1002_cplu_201402209
crossref_primary_10_1021_bi100642n
crossref_primary_10_1021_ct501063a
crossref_primary_10_1039_C9CP01543D
crossref_primary_10_4155_tde_10_22
crossref_primary_10_1021_acs_jpcb_0c02609
crossref_primary_10_1039_b902376c
crossref_primary_10_3390_ijms222011015
crossref_primary_10_1073_pnas_1403294111
crossref_primary_10_1248_bpb_b15_00548
crossref_primary_10_1002_anie_200705993
crossref_primary_10_1039_C6CP01133K
crossref_primary_10_1016_j_bbamem_2014_08_014
crossref_primary_10_1039_C5CP07669B
crossref_primary_10_1021_acs_chemrev_7b00678
crossref_primary_10_1021_acs_langmuir_9b02175
crossref_primary_10_1021_acsnano_1c05139
crossref_primary_10_1021_la104046z
crossref_primary_10_1126_science_1225624
crossref_primary_10_7554_eLife_23473
crossref_primary_10_1021_acsami_6b05834
crossref_primary_10_1021_ja808541r
crossref_primary_10_1016_j_colsurfb_2009_10_016
crossref_primary_10_1016_j_bpj_2012_10_027
crossref_primary_10_1021_acs_jcim_4c01940
crossref_primary_10_3390_mi14020373
crossref_primary_10_1002_psc_2934
crossref_primary_10_1021_acs_jpcb_5c00680
crossref_primary_10_1016_j_bbamem_2020_183402
crossref_primary_10_3390_membranes11120974
crossref_primary_10_1016_j_bbamem_2020_183403
crossref_primary_10_1021_acs_nanolett_6b02039
crossref_primary_10_1039_C7OB02721D
crossref_primary_10_1002_adfm_202313036
crossref_primary_10_1021_jz4007993
crossref_primary_10_1111_bpa_12694
crossref_primary_10_1124_jpet_115_223305
crossref_primary_10_1021_jacs_2c03215
crossref_primary_10_1021_jp912283r
crossref_primary_10_1080_17460441_2021_1851187
crossref_primary_10_3390_insects14070597
crossref_primary_10_1016_j_jconrel_2018_11_004
crossref_primary_10_1039_c2sm25252j
crossref_primary_10_1002_adma_201802725
crossref_primary_10_1002_advs_202404563
crossref_primary_10_3390_molecules26175420
crossref_primary_10_1021_acs_jpcb_0c02632
crossref_primary_10_1039_D0CS01127D
crossref_primary_10_1021_acs_molpharmaceut_4c01061
crossref_primary_10_1016_j_bbamem_2009_04_013
crossref_primary_10_1021_acs_langmuir_6b00768
crossref_primary_10_1038_s41586_024_08421_w
crossref_primary_10_1038_mt_2011_284
crossref_primary_10_3390_ph16091251
crossref_primary_10_1016_j_cocom_2017_09_011
crossref_primary_10_1021_acs_jcim_1c01366
crossref_primary_10_1021_acsnano_6b07981
crossref_primary_10_1021_cr1000783
crossref_primary_10_1016_j_aca_2016_04_021
crossref_primary_10_3390_ijms26010059
crossref_primary_10_1016_j_peptides_2012_09_022
crossref_primary_10_1021_la2029356
crossref_primary_10_18632_oncotarget_14993
crossref_primary_10_1021_am4039882
crossref_primary_10_1021_acs_jpclett_3c01286
crossref_primary_10_1016_j_peptides_2011_07_018
crossref_primary_10_1088_0953_8984_28_8_083001
crossref_primary_10_1016_j_jmb_2008_06_007
crossref_primary_10_1016_j_tips_2017_01_003
crossref_primary_10_1002_bip_23518
crossref_primary_10_1007_s11010_011_0829_y
crossref_primary_10_1002_bit_27703
crossref_primary_10_1016_j_bpj_2010_08_029
crossref_primary_10_1016_j_bbamem_2017_10_029
crossref_primary_10_1016_j_cis_2020_102177
crossref_primary_10_1016_j_trsl_2020_06_001
crossref_primary_10_3390_biom8030077
crossref_primary_10_3390_ph10020042
crossref_primary_10_1021_nn4040553
crossref_primary_10_3892_br_2016_639
crossref_primary_10_1021_bi801103x
crossref_primary_10_1039_c1sm06405c
crossref_primary_10_1155_2013_851915
crossref_primary_10_1007_s00249_011_0685_4
crossref_primary_10_1074_jbc_M114_587345
crossref_primary_10_1016_j_bbcan_2023_188881
crossref_primary_10_1021_jacs_4c10533
crossref_primary_10_1039_C8NR10447F
crossref_primary_10_1016_j_bpj_2021_09_028
crossref_primary_10_1016_j_compbiolchem_2019_107087
crossref_primary_10_1529_biophysj_108_134551
crossref_primary_10_1007_s12539_011_0107_4
crossref_primary_10_1021_acsami_3c14908
crossref_primary_10_1021_la202608r
crossref_primary_10_4208_cicp_071210_240511a
crossref_primary_10_1161_ATVBAHA_122_318232
crossref_primary_10_1063_1_5082351
crossref_primary_10_1038_ncomms3660
crossref_primary_10_1021_acs_langmuir_6b04234
crossref_primary_10_1021_ar4002729
crossref_primary_10_1002_2211_5463_12376
crossref_primary_10_1016_j_chemphyslip_2013_02_011
crossref_primary_10_1016_j_colsurfb_2013_01_050
crossref_primary_10_1053_j_gastro_2010_08_046
crossref_primary_10_3390_cells11244016
crossref_primary_10_1063_5_0142302
crossref_primary_10_1016_j_chemphyslip_2018_12_004
crossref_primary_10_1021_jm100362x
crossref_primary_10_1016_j_biopha_2008_07_086
crossref_primary_10_1038_nri2368
crossref_primary_10_1007_s10867_008_9074_3
crossref_primary_10_1021_acsmacrolett_6b00980
crossref_primary_10_1063_5_0015665
crossref_primary_10_1016_j_drudis_2019_06_013
Cites_doi 10.2174/1389203033487298
10.1016/S0378-5173(02)00337-X
10.1021/ar0100529
10.1016/j.addr.2004.10.005
10.1093/protein/gzi059
10.1038/newbio236011a0
10.1038/nature05416
10.1002/jcc.20291
10.1016/S0006-3495(97)78259-6
10.1016/S0006-3495(97)78845-3
10.1073/pnas.151247498
10.1080/09687860601102476
10.1016/j.bbamem.2006.02.012
10.1021/j100308a038
10.1038/nature01581
10.1021/bi000946l
10.1103/PhysRevLett.92.198304
10.1016/j.bbamem.2006.11.012
10.2174/1389203033487306
10.1074/jbc.271.30.18188
10.1002/jmr.636
10.1126/science.252.5009.1167
10.1021/bi00201a016
10.1016/S1359-6446(04)03042-9
10.1016/j.addr.2004.12.001
10.1529/biophysj.105.075697
10.1073/pnas.97.24.13003
10.1063/1.448118
10.1038/nature03216
10.1016/j.str.2004.06.013
10.1021/ja0624321
10.1074/jbc.M007540200
10.1063/1.2714527
10.1126/science.1109176
10.1021/bi0346805
10.2174/138161205774580796
10.1016/j.jconrel.2006.10.031
10.1073/pnas.0507618102
10.1021/ja072511s
10.1016/j.jconrel.2005.09.032
10.1016/j.str.2007.01.004
10.1002/jmr.630
10.1021/bc050274h
10.1021/bi0491604
10.1063/1.2378893
10.1021/bi00164a017
10.1016/S0006-3495(01)76018-3
10.1126/science.402030
10.1063/1.464397
ContentType Journal Article
Copyright Copyright 2007 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 26, 2007
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2007 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 26, 2007
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0706574105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE
CrossRef

Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 20810
ExternalDocumentID PMC2409222
1405146571
18093956
10_1073_pnas_0706574105
104_52_20805
25450982
US201300841011
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADACV
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ACHIC
ADQXQ
ADXHL
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c651t-bc9609632c240caff8cf3640676f775d77cabebe39af6c6782371cb6d5b3ed6a3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:11:39 EDT 2025
Fri Sep 05 13:38:57 EDT 2025
Thu Sep 04 18:30:18 EDT 2025
Thu Sep 04 19:44:24 EDT 2025
Mon Jun 30 10:45:43 EDT 2025
Wed Feb 19 01:48:29 EST 2025
Tue Jul 01 02:38:50 EDT 2025
Thu Apr 24 22:55:39 EDT 2025
Wed Nov 11 00:29:17 EST 2020
Thu May 30 08:49:34 EDT 2019
Thu May 29 08:42:54 EDT 2025
Wed Feb 14 05:26:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c651t-bc9609632c240caff8cf3640676f775d77cabebe39af6c6782371cb6d5b3ed6a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: H.D.H. and A.E.G. designed research, performed research, analyzed data, and wrote the paper.
Edited by José N. Onuchic, University of California at San Diego, La Jolla, CA, and approved November 7, 2007
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2409222
PMID 18093956
PQID 201304079
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_0706574105
fao_agris_US201300841011
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2409222
jstor_primary_25450982
pubmed_primary_18093956
pnas_primary_104_52_20805_fulltext
proquest_miscellaneous_48155082
proquest_journals_201304079
proquest_miscellaneous_20469576
crossref_primary_10_1073_pnas_0706574105
pnas_primary_104_52_20805
proquest_miscellaneous_69086808
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-26
PublicationDateYYYYMMDD 2007-12-26
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-26
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2007
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
Pooga M (e_1_3_3_14_2) 2005; 298
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
9129804 - Biophys J. 1997 May;72(5):2002-13
14523939 - J Mol Recognit. 2003 Sep-Oct;16(5):265-71
402030 - Science. 1977 Feb 25;195(4280):743-53
15169456 - Phys Rev Lett. 2004 May 14;92(19):198304
16211538 - J Comput Chem. 2005 Dec;26(16):1701-18
17176158 - J Chem Phys. 2006 Dec 14;125(22):224711
1463728 - Biochemistry. 1992 Dec 15;31(49):12416-23
16217012 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15059-64
17705480 - J Am Chem Soc. 2007 Sep 19;129(37):11438-46
16271792 - J Control Release. 2005 Dec 5;109(1-3):77-85
15681341 - Science. 2005 Mar 4;307(5714):1427
10913240 - Biochemistry. 2000 Jul 25;39(29):8347-52
17214959 - Biochim Biophys Acta. 2007 Mar;1768(3):419-26
16417256 - Bioconjug Chem. 2006 Jan-Feb;17(1):90-100
12678852 - Curr Protein Pept Sci. 2003 Apr;4(2):133-40
16044541 - Methods Mol Biol. 2005;298:77-89
12270237 - Int J Pharm. 2002 Oct 1;245(1-2):1-7
12885253 - Biochemistry. 2003 Aug 5;42(30):9185-94
17411107 - J Chem Phys. 2007 Mar 28;126(12):124106
16305497 - Curr Pharm Des. 2005;11(28):3597-611
9370424 - Biophys J. 1997 Nov;73(5):2269-79
11159406 - Biophys J. 2001 Jan;80(1):331-46
14523933 - J Mol Recognit. 2003 Sep-Oct;16(5):227-33
1709522 - Science. 1991 May 24;252(5009):1167-71
12069629 - Acc Chem Res. 2002 Jun;35(6):438-46
12678851 - Curr Protein Pept Sci. 2003 Apr;4(2):125-32
12721619 - Nature. 2003 May 1;423(6935):42-8
15722165 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):579-96
17292841 - Structure. 2007 Feb;15(2):235-44
15722164 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):559-77
15628854 - Biochemistry. 2005 Jan 11;44(1):138-48
16443652 - Biophys J. 2006 Apr 15;90(8):2796-807
16574060 - Biochim Biophys Acta. 2006 Mar;1758(3):260-3
15296727 - Structure. 2004 Aug;12(8):1343-51
15674282 - Nature. 2005 Jan 27;433(7024):377-81
17196289 - J Control Release. 2007 Feb 12;117(2):148-62
11087855 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13003-8
11084031 - J Biol Chem. 2001 Feb 23;276(8):5836-40
15081956 - Drug Discov Today. 2004 May 1;9(9):395-402
17520474 - Mol Membr Biol. 2007 May-Jun;24(3):173-84
16984196 - J Am Chem Soc. 2006 Sep 27;128(38):12462-7
11438707 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8786-91
8075068 - Biochemistry. 1994 Sep 6;33(35):10681-92
17136096 - Nature. 2006 Dec 7;444(7120):775-9
8663410 - J Biol Chem. 1996 Jul 26;271(30):18188-93
16251222 - Protein Eng Des Sel. 2005 Dec;18(12):563-70
4502419 - Nat New Biol. 1972 Mar 1;236(61):11-2
References_xml – ident: e_1_3_3_2_2
  doi: 10.2174/1389203033487298
– ident: e_1_3_3_7_2
  doi: 10.1016/S0378-5173(02)00337-X
– ident: e_1_3_3_27_2
  doi: 10.1021/ar0100529
– ident: e_1_3_3_15_2
  doi: 10.1016/j.addr.2004.10.005
– ident: e_1_3_3_28_2
  doi: 10.1093/protein/gzi059
– ident: e_1_3_3_43_2
  doi: 10.1038/newbio236011a0
– ident: e_1_3_3_32_2
  doi: 10.1038/nature05416
– ident: e_1_3_3_47_2
  doi: 10.1002/jcc.20291
– ident: e_1_3_3_46_2
  doi: 10.1016/S0006-3495(97)78259-6
– ident: e_1_3_3_45_2
  doi: 10.1016/S0006-3495(97)78845-3
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.151247498
– ident: e_1_3_3_13_2
  doi: 10.1080/09687860601102476
– ident: e_1_3_3_6_2
  doi: 10.1016/j.bbamem.2006.02.012
– ident: e_1_3_3_24_2
  doi: 10.1021/j100308a038
– ident: e_1_3_3_31_2
  doi: 10.1038/nature01581
– ident: e_1_3_3_38_2
  doi: 10.1021/bi000946l
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevLett.92.198304
– ident: e_1_3_3_8_2
  doi: 10.1016/j.bbamem.2006.11.012
– ident: e_1_3_3_17_2
  doi: 10.2174/1389203033487306
– ident: e_1_3_3_20_2
  doi: 10.1074/jbc.271.30.18188
– ident: e_1_3_3_19_2
  doi: 10.1002/jmr.636
– ident: e_1_3_3_41_2
  doi: 10.1126/science.252.5009.1167
– ident: e_1_3_3_22_2
  doi: 10.1021/bi00201a016
– ident: e_1_3_3_5_2
  doi: 10.1016/S1359-6446(04)03042-9
– ident: e_1_3_3_9_2
  doi: 10.1016/j.addr.2004.12.001
– ident: e_1_3_3_29_2
  doi: 10.1529/biophysj.105.075697
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.97.24.13003
– ident: e_1_3_3_48_2
  doi: 10.1063/1.448118
– ident: e_1_3_3_34_2
  doi: 10.1038/nature03216
– ident: e_1_3_3_30_2
  doi: 10.1016/j.str.2004.06.013
– ident: e_1_3_3_26_2
  doi: 10.1021/ja0624321
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M007540200
– ident: e_1_3_3_50_2
  doi: 10.1063/1.2714527
– ident: e_1_3_3_33_2
  doi: 10.1126/science.1109176
– ident: e_1_3_3_37_2
  doi: 10.1021/bi0346805
– ident: e_1_3_3_10_2
  doi: 10.2174/138161205774580796
– ident: e_1_3_3_12_2
  doi: 10.1016/j.jconrel.2006.10.031
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.0507618102
– ident: e_1_3_3_42_2
  doi: 10.1021/ja072511s
– ident: e_1_3_3_11_2
  doi: 10.1016/j.jconrel.2005.09.032
– ident: e_1_3_3_35_2
  doi: 10.1016/j.str.2007.01.004
– ident: e_1_3_3_1_2
  doi: 10.1002/jmr.630
– ident: e_1_3_3_16_2
  doi: 10.1021/bc050274h
– ident: e_1_3_3_4_2
  doi: 10.1021/bi0491604
– ident: e_1_3_3_40_2
  doi: 10.1063/1.2378893
– ident: e_1_3_3_21_2
  doi: 10.1021/bi00164a017
– volume: 298
  start-page: 77
  year: 2005
  ident: e_1_3_3_14_2
  publication-title: Methods Mol Biol
– ident: e_1_3_3_25_2
  doi: 10.1016/S0006-3495(01)76018-3
– ident: e_1_3_3_44_2
  doi: 10.1126/science.402030
– ident: e_1_3_3_49_2
  doi: 10.1063/1.464397
– reference: 12069629 - Acc Chem Res. 2002 Jun;35(6):438-46
– reference: 16271792 - J Control Release. 2005 Dec 5;109(1-3):77-85
– reference: 16574060 - Biochim Biophys Acta. 2006 Mar;1758(3):260-3
– reference: 12885253 - Biochemistry. 2003 Aug 5;42(30):9185-94
– reference: 15722164 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):559-77
– reference: 12678852 - Curr Protein Pept Sci. 2003 Apr;4(2):133-40
– reference: 16211538 - J Comput Chem. 2005 Dec;26(16):1701-18
– reference: 14523933 - J Mol Recognit. 2003 Sep-Oct;16(5):227-33
– reference: 16417256 - Bioconjug Chem. 2006 Jan-Feb;17(1):90-100
– reference: 16984196 - J Am Chem Soc. 2006 Sep 27;128(38):12462-7
– reference: 17196289 - J Control Release. 2007 Feb 12;117(2):148-62
– reference: 1463728 - Biochemistry. 1992 Dec 15;31(49):12416-23
– reference: 8663410 - J Biol Chem. 1996 Jul 26;271(30):18188-93
– reference: 17411107 - J Chem Phys. 2007 Mar 28;126(12):124106
– reference: 8075068 - Biochemistry. 1994 Sep 6;33(35):10681-92
– reference: 17176158 - J Chem Phys. 2006 Dec 14;125(22):224711
– reference: 12721619 - Nature. 2003 May 1;423(6935):42-8
– reference: 12270237 - Int J Pharm. 2002 Oct 1;245(1-2):1-7
– reference: 11438707 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8786-91
– reference: 12678851 - Curr Protein Pept Sci. 2003 Apr;4(2):125-32
– reference: 4502419 - Nat New Biol. 1972 Mar 1;236(61):11-2
– reference: 17214959 - Biochim Biophys Acta. 2007 Mar;1768(3):419-26
– reference: 16251222 - Protein Eng Des Sel. 2005 Dec;18(12):563-70
– reference: 15169456 - Phys Rev Lett. 2004 May 14;92(19):198304
– reference: 402030 - Science. 1977 Feb 25;195(4280):743-53
– reference: 11084031 - J Biol Chem. 2001 Feb 23;276(8):5836-40
– reference: 16443652 - Biophys J. 2006 Apr 15;90(8):2796-807
– reference: 17292841 - Structure. 2007 Feb;15(2):235-44
– reference: 17705480 - J Am Chem Soc. 2007 Sep 19;129(37):11438-46
– reference: 9129804 - Biophys J. 1997 May;72(5):2002-13
– reference: 10913240 - Biochemistry. 2000 Jul 25;39(29):8347-52
– reference: 16217012 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15059-64
– reference: 1709522 - Science. 1991 May 24;252(5009):1167-71
– reference: 15722165 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):579-96
– reference: 11087855 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13003-8
– reference: 15681341 - Science. 2005 Mar 4;307(5714):1427
– reference: 14523939 - J Mol Recognit. 2003 Sep-Oct;16(5):265-71
– reference: 17136096 - Nature. 2006 Dec 7;444(7120):775-9
– reference: 16305497 - Curr Pharm Des. 2005;11(28):3597-611
– reference: 17520474 - Mol Membr Biol. 2007 May-Jun;24(3):173-84
– reference: 11159406 - Biophys J. 2001 Jan;80(1):331-46
– reference: 16044541 - Methods Mol Biol. 2005;298:77-89
– reference: 15081956 - Drug Discov Today. 2004 May 1;9(9):395-402
– reference: 15628854 - Biochemistry. 2005 Jan 11;44(1):138-48
– reference: 15674282 - Nature. 2005 Jan 27;433(7024):377-81
– reference: 15296727 - Structure. 2004 Aug;12(8):1343-51
– reference: 9370424 - Biophys J. 1997 Nov;73(5):2269-79
SSID ssj0009580
Score 2.4430394
Snippet The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different...
The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different...
The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different...
The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different...
The recombinant HIV-1 Tat protein contains a small region corresponding to residues ..., which is capable of translocating cargoes of different molecular...
The recombinant HIV-1 Tat protein contains a small region corresponding to residues super(47)YGRKKRRQRR super(57)R, which is capable of translocating cargoes...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20805
SubjectTerms Amino acids
Amino Acids - chemistry
Antimicrobial Cationic Peptides - chemistry
arginine
Arginine - chemistry
Biochemistry
Biological Sciences
Cell Membrane - virology
Cell membranes
Computer Simulation
Crystallography, X-Ray - methods
DNA
Drug Delivery Systems
Drugs
Fluctuations
HIV
HIV 1
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
hydrophilicity
hydrophobicity
ingredients
Lipid bilayers
Lipid Bilayers - chemistry
Lipids
Lipids - chemistry
Membrane Lipids - chemistry
membrane proteins
Membranes
Microscopy, Confocal
Molecular Conformation
Molecular dynamics
molecular weight
Molecules
P branes
Peptides
Peptides - chemistry
Phosphates
Phospholipids
Protein Conformation
Proteins
RNA
tat Gene Products, Human Immunodeficiency Virus - chemistry
Translocation
Water - chemistry
Title Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes
URI https://www.jstor.org/stable/25450982
http://www.pnas.org/content/104/52/20805.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18093956
https://www.proquest.com/docview/201304079
https://www.proquest.com/docview/20469576
https://www.proquest.com/docview/48155082
https://www.proquest.com/docview/69086808
https://pubmed.ncbi.nlm.nih.gov/PMC2409222
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6ceGCGDAWxg8LcRiKUpI4jpNjNQYFqdMkWtRblDjJqLSm1dIe4D_jv-M920nT0UqwS9QmjtPmfXnv2fn8PULecT_1spwj56nkTlBI10lhaO0wVjBfQEyPJL7RHV2Gw0nwdcqnvd7vDmtpvcr68tfOdSX3sSrsA7viKtn_sGzbKeyAz2Bf2IKFYftPNh41tW3tXBeWr-16Nl839LZ6fY1vj2ysE40LfLEehmIVYnzCINZki5h8Dr98dzx7PBjbSyS65CizgRHUvpktZzn0MIdxdWUYhyabvWqjX910c9lMLg42S1WM_6htx7663BQ-HiKnRoe-6van_bHfcoGwvpGe70XKrX3R35qbEMjz0Avgu9LeOy_Zdco-BMpAL6XuF9oPQxrjhIGuJNo6al2o2CBSC982fhcSX94J4vBds2X_ihDg0rCscZXWfRdf8QrkuXZbgomXcwUYlDZjMb-j1K1i_9XoHFKhGJKrA_LAF0IxBD5PvY7ec6RXP5n_1qhKCfbhzrVRttZcaCs3OijTRUOSReVdOGvXKOgumbeTHY0fk0dmWEMHGqNHpFdUT8hRYwV6ZtTN3z8lqxa0tAEt7YCWGtDSlLagpQBaugVauigpoI0q0FIALTWgpRq0VIGWtqB9RiafLsbnQ8eU_nBkyL2Vk0lUQgyZL-E2y7QsI1myEJJPEZZC8FwImWbgf1iclqGEhMtnwpNZmPOMFXmYsmNyWC2q4oTQgru5iGTqlTgXhI5IuoEocf415izOLdJvbnoijS4-lme5SRQ_Q7AEb32yMZhFztoTlloSZn_TE7Bikl5DwE4m33ykCbgRHPE8ixwr07Zd-DCWcePIt4iletl0HSTcTxTCLfJ277GkNGwxi5w2KEmMs6oTdenAFbFF3rRHIZLg60Gww2KNTYIw5iLc3wKFnWBA5-9vEcZuhMV8LPJco3LzUw3GLSK28No2QJ377SPV7IfSuzdP2ot7n3lKHm6800tyuLpdF69gLLHKXqun9g9sVB0x
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+suggest+a+mechanism+for+translocation+of+the+HIV-1+TAT+peptide+across+lipid+membranes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Herce%2C+Henry+D.&rft.au=Garcia%2C+Angel+E.&rft.date=2007-12-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=52&rft.spage=20805&rft.epage=20810&rft_id=info:doi/10.1073%2Fpnas.0706574105&rft_id=info%3Apmid%2F18093956&rft.externalDocID=PMC2409222
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F52.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F52.cover.gif