Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes
The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that the...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 52; pp. 20805 - 20810 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.12.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0706574105 |
Cover
Abstract | The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. |
---|---|
AbstractList | The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. The recombinant HIV-1 Tat protein contains a small region corresponding to residues ..., which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. (ProQuest: ... denotes formulae/symbols omitted.) The recombinant HIV-1 Tat protein contains a small region corresponding to residues super(47)YGRKKRRQRR super(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. cell-penetrating peptide antimicrobial peptide drug delivery membrane proteins pore formation The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions.The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic. Therefore, a central question that any candidate mechanism has to answer is how this highly hydrophilic peptide is able to cross the hydrophobic barrier imposed by the cell membrane. We propose a mechanism for the spontaneous translocation of the Tat peptides across a lipid membrane. This mechanism involves strong interactions between the Tat peptides and the phosphate groups on both sides of the lipid bilayer, the insertion of charged side chains that nucleate the formation of a transient pore, followed by the translocation of the Tat peptides by diffusing on the pore surface. This mechanism explains how key ingredients, such as the cooperativity among the peptides, the large positive charge, and specifically the arginine amino acids, contribute to the uptake. The proposed mechanism also illustrates the importance of membrane fluctuations. Indeed, mechanisms that involve large fluctuations of the membrane structure, such as transient pores and the insertion of charged amino acid side chains, may be common and perhaps central to the functions of many membrane protein functions. |
Author | Garcia, Angel E Herce, Henry D |
Author_xml | – sequence: 1 fullname: Herce, Henry D – sequence: 2 fullname: Garcia, Angel E |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18093956$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURLeFMyfA6gGJQ9qx488LUlUBrVTEgS1Xy3GcXa-SOMQJov--3g-60AN7suV55vXMO3OSHXWhc1n2GsM5BlFc9J2J5yCAM0ExsGfZDIPCOacKjrIZABG5pIQeZycxrgBAMQkvsmMsQRWK8Vk2fg2Ns1NjBlTdd6b1NqLo2_Qw-tCl-7RYuDgig1pnl6bzsUV1GNA4mC42wW4wFGo0Lh26vvmRYzS_nKPe9aOvHDJ2CDGixve-SgptmdJcfJk9r00T3avdeZrdff40v7rOb799ubm6vM0tZ3jMS6s4KF4QSyhYU9fS1gWnwAWvhWCVENaUrnSFMjW3XEhSCGxLXrGycBU3xWn2cavbT2XrKuu6VHaj-8G3ZrjXwXj9b6TzS70Iv3T6TxFCksD7ncAQfk7JB936aF3TpC7CFDVXILkEeRCkEjMG8rAiAcoVEzyBZ0_AVZiGLtmVGFwABaES9PbvBh87-zPfBFxsgc0cBlfvEdDrDdLrDdL7DUoZ7EmG9eNmyskh3_wn78OulHVg_wvVjKSKJTBdT00zut9jYtEBNiFvtsgqjmF4ZAijDNTGx3fbeG2CNovBR333fWMMyFQPxsUDAXH3Qg |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2020_08_045 crossref_primary_10_1021_jp2102447 crossref_primary_10_1142_S021963361750002X crossref_primary_10_1186_1479_5876_6_80 crossref_primary_10_1016_j_chemphyslip_2011_11_008 crossref_primary_10_1021_jp504853t crossref_primary_10_1016_j_chemphyslip_2016_01_002 crossref_primary_10_1111_tra_12578 crossref_primary_10_1038_ncomms1459 crossref_primary_10_1088_1478_3975_7_1_016001 crossref_primary_10_1063_1_4954241 crossref_primary_10_1096_fj_11_201384 crossref_primary_10_1016_j_plantsci_2022_111436 crossref_primary_10_1007_s00726_012_1421_9 crossref_primary_10_1038_s41598_023_28493_4 crossref_primary_10_1021_acs_chemrev_9b00008 crossref_primary_10_1021_nn3036304 crossref_primary_10_3390_ijms23147565 crossref_primary_10_1021_bi501392n crossref_primary_10_1517_17425240902887029 crossref_primary_10_1002_adhm_202200371 crossref_primary_10_1080_10717544_2017_1391889 crossref_primary_10_1111_j_1398_9995_2008_01812_x crossref_primary_10_1016_j_bbamem_2011_01_004 crossref_primary_10_1016_j_jbiomech_2018_03_036 crossref_primary_10_1021_acsinfecdis_0c00264 crossref_primary_10_1002_ange_201404684 crossref_primary_10_1096_fj_11_203315 crossref_primary_10_2174_0929866527666200525164135 crossref_primary_10_1111_j_1742_4658_2009_07359_x crossref_primary_10_1016_j_biomaterials_2014_06_005 crossref_primary_10_1039_C4CP02211D crossref_primary_10_1371_journal_pone_0086364 crossref_primary_10_1016_j_chemphys_2009_01_012 crossref_primary_10_1016_j_bbamem_2016_03_021 crossref_primary_10_1080_21688370_2021_1995285 crossref_primary_10_1021_acs_chemrev_8b00608 crossref_primary_10_1021_acs_jctc_6b00807 crossref_primary_10_1002_ange_200705993 crossref_primary_10_1021_acs_jpcb_1c10966 crossref_primary_10_1016_j_jmb_2022_167880 crossref_primary_10_1016_j_pharmthera_2015_07_003 crossref_primary_10_1007_s00726_010_0511_9 crossref_primary_10_1016_j_bpj_2018_08_040 crossref_primary_10_1021_jp412600e crossref_primary_10_1002_anie_201801361 crossref_primary_10_1021_bi900914g crossref_primary_10_1021_jp107763b crossref_primary_10_1021_jp4068729 crossref_primary_10_1038_ncomms5482 crossref_primary_10_1016_j_bpj_2013_02_053 crossref_primary_10_1016_j_toxicon_2011_04_014 crossref_primary_10_1038_s41598_022_23631_w crossref_primary_10_1371_journal_pone_0084821 crossref_primary_10_1002_adts_201900152 crossref_primary_10_1021_acs_jpclett_0c00175 crossref_primary_10_1016_j_cell_2017_02_031 crossref_primary_10_1021_nn305211f crossref_primary_10_1021_jp908320b crossref_primary_10_1038_s41556_021_00710_0 crossref_primary_10_1016_j_bbamem_2016_10_004 crossref_primary_10_1096_fj_08_110254 crossref_primary_10_1016_j_ijpharm_2019_05_014 crossref_primary_10_1039_C2CP44035K crossref_primary_10_1186_s13287_021_02522_3 crossref_primary_10_1021_acs_langmuir_1c01594 crossref_primary_10_1016_j_cplett_2020_137503 crossref_primary_10_1016_j_actbio_2019_01_036 crossref_primary_10_1039_C5SM01696G crossref_primary_10_1002_psc_3083 crossref_primary_10_1021_mp500495u crossref_primary_10_1038_s41467_023_44502_6 crossref_primary_10_1073_pnas_1108795108 crossref_primary_10_1016_j_bpj_2011_05_038 crossref_primary_10_1021_ct200593t crossref_primary_10_1039_c2sm25913c crossref_primary_10_1021_acs_biochem_0c00536 crossref_primary_10_1016_j_bpc_2015_08_003 crossref_primary_10_1007_s00249_023_01673_w crossref_primary_10_1016_j_pbiomolbio_2018_08_006 crossref_primary_10_1088_1361_6463_aab731 crossref_primary_10_3390_cells12192358 crossref_primary_10_1039_b820398a crossref_primary_10_1021_bi5004102 crossref_primary_10_1016_j_bpj_2009_05_066 crossref_primary_10_1088_0957_4484_19_44_445103 crossref_primary_10_1038_s41598_020_75561_0 crossref_primary_10_1021_acs_jpcb_5b02122 crossref_primary_10_1038_mtna_2013_62 crossref_primary_10_1080_07391102_2015_1117396 crossref_primary_10_1021_acs_jpcb_6b05604 crossref_primary_10_1021_acs_jctc_2c00498 crossref_primary_10_1038_s41557_021_00866_0 crossref_primary_10_1021_jacs_0c05261 crossref_primary_10_1021_jp412739p crossref_primary_10_1016_j_biomaterials_2014_03_062 crossref_primary_10_1021_jp310255r crossref_primary_10_1021_jp505497k crossref_primary_10_1016_j_bbamem_2008_10_006 crossref_primary_10_1063_1_3555531 crossref_primary_10_3390_ph14050471 crossref_primary_10_1021_nl401365n crossref_primary_10_1016_j_bbamem_2010_02_013 crossref_primary_10_1021_bi9008243 crossref_primary_10_1111_jocd_13041 crossref_primary_10_7554_eLife_69832 crossref_primary_10_1016_j_jaci_2012_02_026 crossref_primary_10_1021_acs_jpcb_3c04895 crossref_primary_10_1016_j_addr_2020_05_006 crossref_primary_10_1016_j_bpj_2010_03_046 crossref_primary_10_1016_j_bbamem_2012_09_006 crossref_primary_10_1021_acs_langmuir_1c01613 crossref_primary_10_1002_wnan_1197 crossref_primary_10_2147_DDDT_S500004 crossref_primary_10_1007_s00253_018_8889_5 crossref_primary_10_1021_acs_molpharmaceut_2c00238 crossref_primary_10_3390_pr9010071 crossref_primary_10_1002_bit_26575 crossref_primary_10_1016_j_jconrel_2011_03_011 crossref_primary_10_1016_j_molmed_2016_11_006 crossref_primary_10_3390_membranes12070673 crossref_primary_10_1016_j_biopha_2011_02_013 crossref_primary_10_1021_bi1008408 crossref_primary_10_3390_cells12131700 crossref_primary_10_1098_rstb_2016_0219 crossref_primary_10_1073_pnas_0712363105 crossref_primary_10_1039_C7OB01290J crossref_primary_10_1155_2014_257040 crossref_primary_10_1016_j_bbamem_2010_02_020 crossref_primary_10_1080_08927022_2016_1228105 crossref_primary_10_1021_la502363b crossref_primary_10_3390_nano13071140 crossref_primary_10_1007_s00109_010_0693_3 crossref_primary_10_1128_MCB_01717_12 crossref_primary_10_3390_antib8010005 crossref_primary_10_1074_jbc_M109_023705 crossref_primary_10_1021_acs_jpcb_8b10483 crossref_primary_10_3390_molecules20046941 crossref_primary_10_1021_ja802383t crossref_primary_10_1021_jp1069362 crossref_primary_10_1021_jp405418y crossref_primary_10_1016_j_bpj_2013_11_4486 crossref_primary_10_1007_s00726_017_2531_1 crossref_primary_10_3389_fbioe_2022_911614 crossref_primary_10_1016_j_tibs_2011_08_003 crossref_primary_10_3762_bjnano_11_10 crossref_primary_10_1016_j_bpj_2016_08_047 crossref_primary_10_3390_ijms19030885 crossref_primary_10_1007_s10989_021_10301_0 crossref_primary_10_1039_D0BM01755H crossref_primary_10_1016_j_virol_2009_09_009 crossref_primary_10_1021_jp405451e crossref_primary_10_1002_mabi_201800364 crossref_primary_10_1021_jz500321d crossref_primary_10_1146_annurev_physchem_040513_103718 crossref_primary_10_1016_j_bbcan_2008_03_001 crossref_primary_10_1016_j_bpj_2010_03_065 crossref_primary_10_4161_mabs_3_1_14110 crossref_primary_10_1002_adma_201707240 crossref_primary_10_1021_acsomega_8b00483 crossref_primary_10_2174_1567201817666200415111755 crossref_primary_10_1039_B916297F crossref_primary_10_1007_s10989_013_9355_y crossref_primary_10_1021_acs_jctc_6b00265 crossref_primary_10_1021_acs_jpcb_4c05018 crossref_primary_10_1016_j_jocs_2016_03_008 crossref_primary_10_1039_b902971k crossref_primary_10_1002_pro_600 crossref_primary_10_1016_j_bbamem_2017_01_036 crossref_primary_10_1002_smll_201600006 crossref_primary_10_1080_17425247_2022_2083603 crossref_primary_10_1002_ddr_20331 crossref_primary_10_3390_ph5111177 crossref_primary_10_1021_jp9064196 crossref_primary_10_1039_C6SM01714B crossref_primary_10_1021_ja507790z crossref_primary_10_1074_jbc_M807403200 crossref_primary_10_1016_j_bbagen_2019_129423 crossref_primary_10_1016_j_bbamem_2014_01_015 crossref_primary_10_1007_s00726_012_1354_3 crossref_primary_10_1021_ct400626b crossref_primary_10_1002_mats_201500023 crossref_primary_10_1002_biot_201100220 crossref_primary_10_1016_j_molimm_2009_09_012 crossref_primary_10_1371_journal_pone_0017732 crossref_primary_10_3390_membranes5030473 crossref_primary_10_1021_acs_jpcb_4c04266 crossref_primary_10_1016_j_bbamem_2011_07_030 crossref_primary_10_1021_jp3077886 crossref_primary_10_1021_jp5047613 crossref_primary_10_1021_jp411662c crossref_primary_10_1016_j_jconrel_2008_06_003 crossref_primary_10_1016_j_biochi_2011_05_033 crossref_primary_10_1021_bc300585h crossref_primary_10_1021_acs_jctc_7b01159 crossref_primary_10_3390_ijms140918758 crossref_primary_10_1021_mp500223t crossref_primary_10_1063_1_4891305 crossref_primary_10_1021_acsabm_9b00432 crossref_primary_10_1080_07391102_2021_1958698 crossref_primary_10_1002_ange_201801361 crossref_primary_10_1002_psc_3244 crossref_primary_10_3390_s120100549 crossref_primary_10_1039_C8TB02650E crossref_primary_10_1111_imcb_1017 crossref_primary_10_1073_pnas_1104808108 crossref_primary_10_3390_v13102043 crossref_primary_10_3390_pharmaceutics14050907 crossref_primary_10_1007_s00018_013_1416_z crossref_primary_10_1002_anie_201404684 crossref_primary_10_1039_C2SM26519B crossref_primary_10_1021_cb100423u crossref_primary_10_1016_j_bpj_2009_03_059 crossref_primary_10_1016_j_peptides_2014_12_001 crossref_primary_10_1016_j_bbamem_2011_03_002 crossref_primary_10_1021_bc200127t crossref_primary_10_1194_jlr_M006916 crossref_primary_10_1016_j_plipres_2011_12_005 crossref_primary_10_1021_acs_jpcb_9b00754 crossref_primary_10_1021_acs_jpcb_5b10404 crossref_primary_10_1021_acs_molpharmaceut_5b00153 crossref_primary_10_3389_fcell_2020_611121 crossref_primary_10_3390_molecules28083367 crossref_primary_10_1016_j_drup_2011_01_003 crossref_primary_10_1016_j_jconrel_2013_02_021 crossref_primary_10_1016_j_bios_2022_114448 crossref_primary_10_1021_acschemneuro_2c00446 crossref_primary_10_1111_jcmm_13435 crossref_primary_10_1021_la403409t crossref_primary_10_1002_smll_202000146 crossref_primary_10_1016_j_febslet_2013_04_031 crossref_primary_10_1021_acs_jpcb_9b05414 crossref_primary_10_1080_08927022_2010_536546 crossref_primary_10_2217_nnm_11_165 crossref_primary_10_1021_acs_jpcb_4c03276 crossref_primary_10_1063_1_4932159 crossref_primary_10_1021_acssensors_1c01717 crossref_primary_10_1016_j_bbamem_2018_12_010 crossref_primary_10_1155_2013_407616 crossref_primary_10_1002_cplu_201402209 crossref_primary_10_1021_bi100642n crossref_primary_10_1021_ct501063a crossref_primary_10_1039_C9CP01543D crossref_primary_10_4155_tde_10_22 crossref_primary_10_1021_acs_jpcb_0c02609 crossref_primary_10_1039_b902376c crossref_primary_10_3390_ijms222011015 crossref_primary_10_1073_pnas_1403294111 crossref_primary_10_1248_bpb_b15_00548 crossref_primary_10_1002_anie_200705993 crossref_primary_10_1039_C6CP01133K crossref_primary_10_1016_j_bbamem_2014_08_014 crossref_primary_10_1039_C5CP07669B crossref_primary_10_1021_acs_chemrev_7b00678 crossref_primary_10_1021_acs_langmuir_9b02175 crossref_primary_10_1021_acsnano_1c05139 crossref_primary_10_1021_la104046z crossref_primary_10_1126_science_1225624 crossref_primary_10_7554_eLife_23473 crossref_primary_10_1021_acsami_6b05834 crossref_primary_10_1021_ja808541r crossref_primary_10_1016_j_colsurfb_2009_10_016 crossref_primary_10_1016_j_bpj_2012_10_027 crossref_primary_10_1021_acs_jcim_4c01940 crossref_primary_10_3390_mi14020373 crossref_primary_10_1002_psc_2934 crossref_primary_10_1021_acs_jpcb_5c00680 crossref_primary_10_1016_j_bbamem_2020_183402 crossref_primary_10_3390_membranes11120974 crossref_primary_10_1016_j_bbamem_2020_183403 crossref_primary_10_1021_acs_nanolett_6b02039 crossref_primary_10_1039_C7OB02721D crossref_primary_10_1002_adfm_202313036 crossref_primary_10_1021_jz4007993 crossref_primary_10_1111_bpa_12694 crossref_primary_10_1124_jpet_115_223305 crossref_primary_10_1021_jacs_2c03215 crossref_primary_10_1021_jp912283r crossref_primary_10_1080_17460441_2021_1851187 crossref_primary_10_3390_insects14070597 crossref_primary_10_1016_j_jconrel_2018_11_004 crossref_primary_10_1039_c2sm25252j crossref_primary_10_1002_adma_201802725 crossref_primary_10_1002_advs_202404563 crossref_primary_10_3390_molecules26175420 crossref_primary_10_1021_acs_jpcb_0c02632 crossref_primary_10_1039_D0CS01127D crossref_primary_10_1021_acs_molpharmaceut_4c01061 crossref_primary_10_1016_j_bbamem_2009_04_013 crossref_primary_10_1021_acs_langmuir_6b00768 crossref_primary_10_1038_s41586_024_08421_w crossref_primary_10_1038_mt_2011_284 crossref_primary_10_3390_ph16091251 crossref_primary_10_1016_j_cocom_2017_09_011 crossref_primary_10_1021_acs_jcim_1c01366 crossref_primary_10_1021_acsnano_6b07981 crossref_primary_10_1021_cr1000783 crossref_primary_10_1016_j_aca_2016_04_021 crossref_primary_10_3390_ijms26010059 crossref_primary_10_1016_j_peptides_2012_09_022 crossref_primary_10_1021_la2029356 crossref_primary_10_18632_oncotarget_14993 crossref_primary_10_1021_am4039882 crossref_primary_10_1021_acs_jpclett_3c01286 crossref_primary_10_1016_j_peptides_2011_07_018 crossref_primary_10_1088_0953_8984_28_8_083001 crossref_primary_10_1016_j_jmb_2008_06_007 crossref_primary_10_1016_j_tips_2017_01_003 crossref_primary_10_1002_bip_23518 crossref_primary_10_1007_s11010_011_0829_y crossref_primary_10_1002_bit_27703 crossref_primary_10_1016_j_bpj_2010_08_029 crossref_primary_10_1016_j_bbamem_2017_10_029 crossref_primary_10_1016_j_cis_2020_102177 crossref_primary_10_1016_j_trsl_2020_06_001 crossref_primary_10_3390_biom8030077 crossref_primary_10_3390_ph10020042 crossref_primary_10_1021_nn4040553 crossref_primary_10_3892_br_2016_639 crossref_primary_10_1021_bi801103x crossref_primary_10_1039_c1sm06405c crossref_primary_10_1155_2013_851915 crossref_primary_10_1007_s00249_011_0685_4 crossref_primary_10_1074_jbc_M114_587345 crossref_primary_10_1016_j_bbcan_2023_188881 crossref_primary_10_1021_jacs_4c10533 crossref_primary_10_1039_C8NR10447F crossref_primary_10_1016_j_bpj_2021_09_028 crossref_primary_10_1016_j_compbiolchem_2019_107087 crossref_primary_10_1529_biophysj_108_134551 crossref_primary_10_1007_s12539_011_0107_4 crossref_primary_10_1021_acsami_3c14908 crossref_primary_10_1021_la202608r crossref_primary_10_4208_cicp_071210_240511a crossref_primary_10_1161_ATVBAHA_122_318232 crossref_primary_10_1063_1_5082351 crossref_primary_10_1038_ncomms3660 crossref_primary_10_1021_acs_langmuir_6b04234 crossref_primary_10_1021_ar4002729 crossref_primary_10_1002_2211_5463_12376 crossref_primary_10_1016_j_chemphyslip_2013_02_011 crossref_primary_10_1016_j_colsurfb_2013_01_050 crossref_primary_10_1053_j_gastro_2010_08_046 crossref_primary_10_3390_cells11244016 crossref_primary_10_1063_5_0142302 crossref_primary_10_1016_j_chemphyslip_2018_12_004 crossref_primary_10_1021_jm100362x crossref_primary_10_1016_j_biopha_2008_07_086 crossref_primary_10_1038_nri2368 crossref_primary_10_1007_s10867_008_9074_3 crossref_primary_10_1021_acsmacrolett_6b00980 crossref_primary_10_1063_5_0015665 crossref_primary_10_1016_j_drudis_2019_06_013 |
Cites_doi | 10.2174/1389203033487298 10.1016/S0378-5173(02)00337-X 10.1021/ar0100529 10.1016/j.addr.2004.10.005 10.1093/protein/gzi059 10.1038/newbio236011a0 10.1038/nature05416 10.1002/jcc.20291 10.1016/S0006-3495(97)78259-6 10.1016/S0006-3495(97)78845-3 10.1073/pnas.151247498 10.1080/09687860601102476 10.1016/j.bbamem.2006.02.012 10.1021/j100308a038 10.1038/nature01581 10.1021/bi000946l 10.1103/PhysRevLett.92.198304 10.1016/j.bbamem.2006.11.012 10.2174/1389203033487306 10.1074/jbc.271.30.18188 10.1002/jmr.636 10.1126/science.252.5009.1167 10.1021/bi00201a016 10.1016/S1359-6446(04)03042-9 10.1016/j.addr.2004.12.001 10.1529/biophysj.105.075697 10.1073/pnas.97.24.13003 10.1063/1.448118 10.1038/nature03216 10.1016/j.str.2004.06.013 10.1021/ja0624321 10.1074/jbc.M007540200 10.1063/1.2714527 10.1126/science.1109176 10.1021/bi0346805 10.2174/138161205774580796 10.1016/j.jconrel.2006.10.031 10.1073/pnas.0507618102 10.1021/ja072511s 10.1016/j.jconrel.2005.09.032 10.1016/j.str.2007.01.004 10.1002/jmr.630 10.1021/bc050274h 10.1021/bi0491604 10.1063/1.2378893 10.1021/bi00164a017 10.1016/S0006-3495(01)76018-3 10.1126/science.402030 10.1063/1.464397 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 26, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 26, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0706574105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE CrossRef Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 20810 |
ExternalDocumentID | PMC2409222 1405146571 18093956 10_1073_pnas_0706574105 104_52_20805 25450982 US201300841011 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADACV ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ACHIC ADQXQ ADXHL H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c651t-bc9609632c240caff8cf3640676f775d77cabebe39af6c6782371cb6d5b3ed6a3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:11:39 EDT 2025 Fri Sep 05 13:38:57 EDT 2025 Thu Sep 04 18:30:18 EDT 2025 Thu Sep 04 19:44:24 EDT 2025 Mon Jun 30 10:45:43 EDT 2025 Wed Feb 19 01:48:29 EST 2025 Tue Jul 01 02:38:50 EDT 2025 Thu Apr 24 22:55:39 EDT 2025 Wed Nov 11 00:29:17 EST 2020 Thu May 30 08:49:34 EDT 2019 Thu May 29 08:42:54 EDT 2025 Wed Feb 14 05:26:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c651t-bc9609632c240caff8cf3640676f775d77cabebe39af6c6782371cb6d5b3ed6a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: H.D.H. and A.E.G. designed research, performed research, analyzed data, and wrote the paper. Edited by José N. Onuchic, University of California at San Diego, La Jolla, CA, and approved November 7, 2007 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2409222 |
PMID | 18093956 |
PQID | 201304079 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_0706574105 fao_agris_US201300841011 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2409222 jstor_primary_25450982 pubmed_primary_18093956 pnas_primary_104_52_20805_fulltext proquest_miscellaneous_48155082 proquest_journals_201304079 proquest_miscellaneous_20469576 crossref_primary_10_1073_pnas_0706574105 pnas_primary_104_52_20805 proquest_miscellaneous_69086808 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-12-26 |
PublicationDateYYYYMMDD | 2007-12-26 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-26 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 Pooga M (e_1_3_3_14_2) 2005; 298 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 9129804 - Biophys J. 1997 May;72(5):2002-13 14523939 - J Mol Recognit. 2003 Sep-Oct;16(5):265-71 402030 - Science. 1977 Feb 25;195(4280):743-53 15169456 - Phys Rev Lett. 2004 May 14;92(19):198304 16211538 - J Comput Chem. 2005 Dec;26(16):1701-18 17176158 - J Chem Phys. 2006 Dec 14;125(22):224711 1463728 - Biochemistry. 1992 Dec 15;31(49):12416-23 16217012 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15059-64 17705480 - J Am Chem Soc. 2007 Sep 19;129(37):11438-46 16271792 - J Control Release. 2005 Dec 5;109(1-3):77-85 15681341 - Science. 2005 Mar 4;307(5714):1427 10913240 - Biochemistry. 2000 Jul 25;39(29):8347-52 17214959 - Biochim Biophys Acta. 2007 Mar;1768(3):419-26 16417256 - Bioconjug Chem. 2006 Jan-Feb;17(1):90-100 12678852 - Curr Protein Pept Sci. 2003 Apr;4(2):133-40 16044541 - Methods Mol Biol. 2005;298:77-89 12270237 - Int J Pharm. 2002 Oct 1;245(1-2):1-7 12885253 - Biochemistry. 2003 Aug 5;42(30):9185-94 17411107 - J Chem Phys. 2007 Mar 28;126(12):124106 16305497 - Curr Pharm Des. 2005;11(28):3597-611 9370424 - Biophys J. 1997 Nov;73(5):2269-79 11159406 - Biophys J. 2001 Jan;80(1):331-46 14523933 - J Mol Recognit. 2003 Sep-Oct;16(5):227-33 1709522 - Science. 1991 May 24;252(5009):1167-71 12069629 - Acc Chem Res. 2002 Jun;35(6):438-46 12678851 - Curr Protein Pept Sci. 2003 Apr;4(2):125-32 12721619 - Nature. 2003 May 1;423(6935):42-8 15722165 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):579-96 17292841 - Structure. 2007 Feb;15(2):235-44 15722164 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):559-77 15628854 - Biochemistry. 2005 Jan 11;44(1):138-48 16443652 - Biophys J. 2006 Apr 15;90(8):2796-807 16574060 - Biochim Biophys Acta. 2006 Mar;1758(3):260-3 15296727 - Structure. 2004 Aug;12(8):1343-51 15674282 - Nature. 2005 Jan 27;433(7024):377-81 17196289 - J Control Release. 2007 Feb 12;117(2):148-62 11087855 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13003-8 11084031 - J Biol Chem. 2001 Feb 23;276(8):5836-40 15081956 - Drug Discov Today. 2004 May 1;9(9):395-402 17520474 - Mol Membr Biol. 2007 May-Jun;24(3):173-84 16984196 - J Am Chem Soc. 2006 Sep 27;128(38):12462-7 11438707 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8786-91 8075068 - Biochemistry. 1994 Sep 6;33(35):10681-92 17136096 - Nature. 2006 Dec 7;444(7120):775-9 8663410 - J Biol Chem. 1996 Jul 26;271(30):18188-93 16251222 - Protein Eng Des Sel. 2005 Dec;18(12):563-70 4502419 - Nat New Biol. 1972 Mar 1;236(61):11-2 |
References_xml | – ident: e_1_3_3_2_2 doi: 10.2174/1389203033487298 – ident: e_1_3_3_7_2 doi: 10.1016/S0378-5173(02)00337-X – ident: e_1_3_3_27_2 doi: 10.1021/ar0100529 – ident: e_1_3_3_15_2 doi: 10.1016/j.addr.2004.10.005 – ident: e_1_3_3_28_2 doi: 10.1093/protein/gzi059 – ident: e_1_3_3_43_2 doi: 10.1038/newbio236011a0 – ident: e_1_3_3_32_2 doi: 10.1038/nature05416 – ident: e_1_3_3_47_2 doi: 10.1002/jcc.20291 – ident: e_1_3_3_46_2 doi: 10.1016/S0006-3495(97)78259-6 – ident: e_1_3_3_45_2 doi: 10.1016/S0006-3495(97)78845-3 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.151247498 – ident: e_1_3_3_13_2 doi: 10.1080/09687860601102476 – ident: e_1_3_3_6_2 doi: 10.1016/j.bbamem.2006.02.012 – ident: e_1_3_3_24_2 doi: 10.1021/j100308a038 – ident: e_1_3_3_31_2 doi: 10.1038/nature01581 – ident: e_1_3_3_38_2 doi: 10.1021/bi000946l – ident: e_1_3_3_39_2 doi: 10.1103/PhysRevLett.92.198304 – ident: e_1_3_3_8_2 doi: 10.1016/j.bbamem.2006.11.012 – ident: e_1_3_3_17_2 doi: 10.2174/1389203033487306 – ident: e_1_3_3_20_2 doi: 10.1074/jbc.271.30.18188 – ident: e_1_3_3_19_2 doi: 10.1002/jmr.636 – ident: e_1_3_3_41_2 doi: 10.1126/science.252.5009.1167 – ident: e_1_3_3_22_2 doi: 10.1021/bi00201a016 – ident: e_1_3_3_5_2 doi: 10.1016/S1359-6446(04)03042-9 – ident: e_1_3_3_9_2 doi: 10.1016/j.addr.2004.12.001 – ident: e_1_3_3_29_2 doi: 10.1529/biophysj.105.075697 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.97.24.13003 – ident: e_1_3_3_48_2 doi: 10.1063/1.448118 – ident: e_1_3_3_34_2 doi: 10.1038/nature03216 – ident: e_1_3_3_30_2 doi: 10.1016/j.str.2004.06.013 – ident: e_1_3_3_26_2 doi: 10.1021/ja0624321 – ident: e_1_3_3_18_2 doi: 10.1074/jbc.M007540200 – ident: e_1_3_3_50_2 doi: 10.1063/1.2714527 – ident: e_1_3_3_33_2 doi: 10.1126/science.1109176 – ident: e_1_3_3_37_2 doi: 10.1021/bi0346805 – ident: e_1_3_3_10_2 doi: 10.2174/138161205774580796 – ident: e_1_3_3_12_2 doi: 10.1016/j.jconrel.2006.10.031 – ident: e_1_3_3_36_2 doi: 10.1073/pnas.0507618102 – ident: e_1_3_3_42_2 doi: 10.1021/ja072511s – ident: e_1_3_3_11_2 doi: 10.1016/j.jconrel.2005.09.032 – ident: e_1_3_3_35_2 doi: 10.1016/j.str.2007.01.004 – ident: e_1_3_3_1_2 doi: 10.1002/jmr.630 – ident: e_1_3_3_16_2 doi: 10.1021/bc050274h – ident: e_1_3_3_4_2 doi: 10.1021/bi0491604 – ident: e_1_3_3_40_2 doi: 10.1063/1.2378893 – ident: e_1_3_3_21_2 doi: 10.1021/bi00164a017 – volume: 298 start-page: 77 year: 2005 ident: e_1_3_3_14_2 publication-title: Methods Mol Biol – ident: e_1_3_3_25_2 doi: 10.1016/S0006-3495(01)76018-3 – ident: e_1_3_3_44_2 doi: 10.1126/science.402030 – ident: e_1_3_3_49_2 doi: 10.1063/1.464397 – reference: 12069629 - Acc Chem Res. 2002 Jun;35(6):438-46 – reference: 16271792 - J Control Release. 2005 Dec 5;109(1-3):77-85 – reference: 16574060 - Biochim Biophys Acta. 2006 Mar;1758(3):260-3 – reference: 12885253 - Biochemistry. 2003 Aug 5;42(30):9185-94 – reference: 15722164 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):559-77 – reference: 12678852 - Curr Protein Pept Sci. 2003 Apr;4(2):133-40 – reference: 16211538 - J Comput Chem. 2005 Dec;26(16):1701-18 – reference: 14523933 - J Mol Recognit. 2003 Sep-Oct;16(5):227-33 – reference: 16417256 - Bioconjug Chem. 2006 Jan-Feb;17(1):90-100 – reference: 16984196 - J Am Chem Soc. 2006 Sep 27;128(38):12462-7 – reference: 17196289 - J Control Release. 2007 Feb 12;117(2):148-62 – reference: 1463728 - Biochemistry. 1992 Dec 15;31(49):12416-23 – reference: 8663410 - J Biol Chem. 1996 Jul 26;271(30):18188-93 – reference: 17411107 - J Chem Phys. 2007 Mar 28;126(12):124106 – reference: 8075068 - Biochemistry. 1994 Sep 6;33(35):10681-92 – reference: 17176158 - J Chem Phys. 2006 Dec 14;125(22):224711 – reference: 12721619 - Nature. 2003 May 1;423(6935):42-8 – reference: 12270237 - Int J Pharm. 2002 Oct 1;245(1-2):1-7 – reference: 11438707 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8786-91 – reference: 12678851 - Curr Protein Pept Sci. 2003 Apr;4(2):125-32 – reference: 4502419 - Nat New Biol. 1972 Mar 1;236(61):11-2 – reference: 17214959 - Biochim Biophys Acta. 2007 Mar;1768(3):419-26 – reference: 16251222 - Protein Eng Des Sel. 2005 Dec;18(12):563-70 – reference: 15169456 - Phys Rev Lett. 2004 May 14;92(19):198304 – reference: 402030 - Science. 1977 Feb 25;195(4280):743-53 – reference: 11084031 - J Biol Chem. 2001 Feb 23;276(8):5836-40 – reference: 16443652 - Biophys J. 2006 Apr 15;90(8):2796-807 – reference: 17292841 - Structure. 2007 Feb;15(2):235-44 – reference: 17705480 - J Am Chem Soc. 2007 Sep 19;129(37):11438-46 – reference: 9129804 - Biophys J. 1997 May;72(5):2002-13 – reference: 10913240 - Biochemistry. 2000 Jul 25;39(29):8347-52 – reference: 16217012 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15059-64 – reference: 1709522 - Science. 1991 May 24;252(5009):1167-71 – reference: 15722165 - Adv Drug Deliv Rev. 2005 Feb 28;57(4):579-96 – reference: 11087855 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13003-8 – reference: 15681341 - Science. 2005 Mar 4;307(5714):1427 – reference: 14523939 - J Mol Recognit. 2003 Sep-Oct;16(5):265-71 – reference: 17136096 - Nature. 2006 Dec 7;444(7120):775-9 – reference: 16305497 - Curr Pharm Des. 2005;11(28):3597-611 – reference: 17520474 - Mol Membr Biol. 2007 May-Jun;24(3):173-84 – reference: 11159406 - Biophys J. 2001 Jan;80(1):331-46 – reference: 16044541 - Methods Mol Biol. 2005;298:77-89 – reference: 15081956 - Drug Discov Today. 2004 May 1;9(9):395-402 – reference: 15628854 - Biochemistry. 2005 Jan 11;44(1):138-48 – reference: 15674282 - Nature. 2005 Jan 27;433(7024):377-81 – reference: 15296727 - Structure. 2004 Aug;12(8):1343-51 – reference: 9370424 - Biophys J. 1997 Nov;73(5):2269-79 |
SSID | ssj0009580 |
Score | 2.4430394 |
Snippet | The recombinant HIV-1 Tat protein contains a small region corresponding to residues ⁴⁷YGRKKRRQRR⁵⁷R, which is capable of translocating cargoes of different... The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different... The recombinant HIV-1 Tat protein contains a small region corresponding to residues 47 YGRKKRRQRR 57 R, which is capable of translocating cargoes of different... The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different... The recombinant HIV-1 Tat protein contains a small region corresponding to residues ..., which is capable of translocating cargoes of different molecular... The recombinant HIV-1 Tat protein contains a small region corresponding to residues super(47)YGRKKRRQRR super(57)R, which is capable of translocating cargoes... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20805 |
SubjectTerms | Amino acids Amino Acids - chemistry Antimicrobial Cationic Peptides - chemistry arginine Arginine - chemistry Biochemistry Biological Sciences Cell Membrane - virology Cell membranes Computer Simulation Crystallography, X-Ray - methods DNA Drug Delivery Systems Drugs Fluctuations HIV HIV 1 Human immunodeficiency virus Human immunodeficiency virus 1 Humans hydrophilicity hydrophobicity ingredients Lipid bilayers Lipid Bilayers - chemistry Lipids Lipids - chemistry Membrane Lipids - chemistry membrane proteins Membranes Microscopy, Confocal Molecular Conformation Molecular dynamics molecular weight Molecules P branes Peptides Peptides - chemistry Phosphates Phospholipids Protein Conformation Proteins RNA tat Gene Products, Human Immunodeficiency Virus - chemistry Translocation Water - chemistry |
Title | Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes |
URI | https://www.jstor.org/stable/25450982 http://www.pnas.org/content/104/52/20805.abstract https://www.ncbi.nlm.nih.gov/pubmed/18093956 https://www.proquest.com/docview/201304079 https://www.proquest.com/docview/20469576 https://www.proquest.com/docview/48155082 https://www.proquest.com/docview/69086808 https://pubmed.ncbi.nlm.nih.gov/PMC2409222 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6ceGCGDAWxg8LcRiKUpI4jpNjNQYFqdMkWtRblDjJqLSm1dIe4D_jv-M920nT0UqwS9QmjtPmfXnv2fn8PULecT_1spwj56nkTlBI10lhaO0wVjBfQEyPJL7RHV2Gw0nwdcqnvd7vDmtpvcr68tfOdSX3sSrsA7viKtn_sGzbKeyAz2Bf2IKFYftPNh41tW3tXBeWr-16Nl839LZ6fY1vj2ysE40LfLEehmIVYnzCINZki5h8Dr98dzx7PBjbSyS65CizgRHUvpktZzn0MIdxdWUYhyabvWqjX910c9lMLg42S1WM_6htx7663BQ-HiKnRoe-6van_bHfcoGwvpGe70XKrX3R35qbEMjz0Avgu9LeOy_Zdco-BMpAL6XuF9oPQxrjhIGuJNo6al2o2CBSC982fhcSX94J4vBds2X_ihDg0rCscZXWfRdf8QrkuXZbgomXcwUYlDZjMb-j1K1i_9XoHFKhGJKrA_LAF0IxBD5PvY7ec6RXP5n_1qhKCfbhzrVRttZcaCs3OijTRUOSReVdOGvXKOgumbeTHY0fk0dmWEMHGqNHpFdUT8hRYwV6ZtTN3z8lqxa0tAEt7YCWGtDSlLagpQBaugVauigpoI0q0FIALTWgpRq0VIGWtqB9RiafLsbnQ8eU_nBkyL2Vk0lUQgyZL-E2y7QsI1myEJJPEZZC8FwImWbgf1iclqGEhMtnwpNZmPOMFXmYsmNyWC2q4oTQgru5iGTqlTgXhI5IuoEocf415izOLdJvbnoijS4-lme5SRQ_Q7AEb32yMZhFztoTlloSZn_TE7Bikl5DwE4m33ykCbgRHPE8ixwr07Zd-DCWcePIt4iletl0HSTcTxTCLfJ277GkNGwxi5w2KEmMs6oTdenAFbFF3rRHIZLg60Gww2KNTYIw5iLc3wKFnWBA5-9vEcZuhMV8LPJco3LzUw3GLSK28No2QJ377SPV7IfSuzdP2ot7n3lKHm6800tyuLpdF69gLLHKXqun9g9sVB0x |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+suggest+a+mechanism+for+translocation+of+the+HIV-1+TAT+peptide+across+lipid+membranes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Herce%2C+Henry+D.&rft.au=Garcia%2C+Angel+E.&rft.date=2007-12-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=52&rft.spage=20805&rft.epage=20810&rft_id=info:doi/10.1073%2Fpnas.0706574105&rft_id=info%3Apmid%2F18093956&rft.externalDocID=PMC2409222 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F52.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F52.cover.gif |