Conservation of enhancer location in divergent insects
Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-κB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential r...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 34; pp. 14414 - 14419 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
25.08.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-κB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the "shadow" enhancer regulating brinker: It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. |
---|---|
AbstractList | Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian \[NF_K B\]. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the "shadow" enhancer regulating brinker. It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-κB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum . Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the “shadow” enhancer regulating brinker : It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-IºB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the 'shadow- enhancer regulating brinker: It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-kappaB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the "shadow" enhancer regulating brinker: It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-κB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the "shadow" enhancer regulating brinker: It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-kappaB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the "shadow" enhancer regulating brinker: It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms.Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-kappaB. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the "shadow" enhancer regulating brinker: It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to mammalian NF-...B. The Dorsal gradient generates at least 3 distinct thresholds of gene activity and tissue specification by the differential regulation of target enhancers containing distinctive combinations of binding sites for Dorsal, Twist, Snail, and other DV determinants. To understand the evolution of DV patterning mechanisms, we identified and characterized Dorsal target enhancers from the mosquito Anopheles gambiae and the flour beetle Tribolium castaneum. Putative orthologous enhancers are located in similar positions relative to the target genes they control, even though they lack sequence conservation and sometimes produce divergent patterns of gene expression. The most dramatic example of this conservation is seen for the "shadow" enhancer regulating brinker: It is conserved within the intron of the neighboring Atg5 locus of both flies and mosquitoes. These results suggest that, like exons, an enhancer position might be subject to constraint. Thus, novel patterns of gene expression might arise from the modification of conserved enhancers rather than the invention of new ones. We propose that this enhancer constancy might be a general property of regulatory evolution, and should facilitate enhancer discovery in nonmodel organisms. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Cande, Jessica Goltsev, Yury Levine, Michael S |
Author_xml | – sequence: 1 fullname: Cande, Jessica – sequence: 2 fullname: Goltsev, Yury – sequence: 3 fullname: Levine, Michael S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19666595$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNPCmhUQdYHEYtrrt71BQhEvqRIL6NryOJ7U0cQO9iSCf19PExrogqws-3z3-L7O0ElM0SP0EsMlBkmv1tGWS9DAJWcYxBM0waBxI5iGEzQBILJRjLBTdFbKEgA0V_AMnWIthOCaT5CYpVh83tohpDhN3dTHWxudz9M-ud1jiNN52Pq88HGol-LdUJ6jp53ti3-xP8_RzaePP2Zfmutvn7_OPlw3TnA8NK2lrWCdlaAcB8kpls4DEXPNOSOEzsncWyVa3jHHO-9bbTustZCy1YpToOfo_c53vWlXfu5qCtn2Zp3DyubfJtlg_lViuDWLtDVEUqLuDd7uDXL6ufFlMKtQnO97G33aFCOkwMC1PAoyQZUiUhwFCSjgWKoKXjwCl2mTY21XZTADomF0e_13gQ-V_ZlQBa52gMuplOy7AwJm3AEz7oA57ECN4I8iXBjuR1k7FPr_xL3bpzIKh1-EocxgxjAz3abvB_9rqOz0CFuRVztkWYaUHxgGTDFGx8Le7PTOJmMXORRz8702hgIWklKN6R0ol-Au |
CitedBy_id | crossref_primary_10_1111_imb_12574 crossref_primary_10_1101_gad_2010711 crossref_primary_10_3389_fgene_2020_602949 crossref_primary_10_1186_2041_9139_5_38 crossref_primary_10_1016_j_celrep_2018_02_073 crossref_primary_10_1016_j_devcel_2022_12_003 crossref_primary_10_1534_g3_116_032029 crossref_primary_10_3390_insects12070591 crossref_primary_10_1093_gbe_evu184 crossref_primary_10_1371_journal_pgen_1007581 crossref_primary_10_1242_jeb_212241 crossref_primary_10_1371_journal_pgen_1006052 crossref_primary_10_1534_genetics_119_301985 crossref_primary_10_1016_j_ydbio_2010_01_035 crossref_primary_10_2139_ssrn_4186258 crossref_primary_10_1038_ng_808 crossref_primary_10_1016_j_gde_2009_10_006 crossref_primary_10_1073_pnas_1207715109 crossref_primary_10_1002_dvdy_23871 crossref_primary_10_1371_journal_pgen_1011174 crossref_primary_10_1016_j_cub_2015_11_034 crossref_primary_10_1111_eva_12939 crossref_primary_10_1186_s12862_015_0499_6 crossref_primary_10_1016_j_tig_2009_12_003 crossref_primary_10_1111_j_1600_065X_2012_01096_x crossref_primary_10_1371_journal_pgen_1004435 crossref_primary_10_1371_journal_pgen_1001222 crossref_primary_10_1038_nrg3095 crossref_primary_10_2139_ssrn_3155922 crossref_primary_10_1016_j_ydbio_2019_01_003 crossref_primary_10_1016_j_semcdb_2015_12_003 crossref_primary_10_7554_eLife_84969 crossref_primary_10_1098_rstb_2013_0028 crossref_primary_10_1007_s11010_023_04712_4 crossref_primary_10_1038_nrg3207 crossref_primary_10_1002_wdev_3 crossref_primary_10_1016_j_ydbio_2016_06_031 crossref_primary_10_1093_bfgp_els041 crossref_primary_10_1002_bies_201100121 crossref_primary_10_1098_rstb_2013_0020 crossref_primary_10_1111_imb_12705 crossref_primary_10_1242_dev_160663 crossref_primary_10_1371_journal_pgen_1010891 crossref_primary_10_1002_dvg_22403 crossref_primary_10_3389_fgene_2021_785934 |
Cites_doi | 10.1101/gad.1509007 10.1101/gr.5108606 10.1242/dev.01124 10.1073/pnas.012591199 10.1016/S0959-437X(00)00252-5 10.1016/j.ydbio.2004.06.011 10.1016/j.cub.2005.02.057 10.1101/gad.8.21.2602 10.1126/science.1085753 10.1016/0092-8674(88)90537-5 10.1101/gad.1509607 10.1016/j.cub.2006.05.044 10.1073/pnas.0400611101 10.1016/j.devcel.2006.10.012 10.1007/s00427-004-0446-9 10.1016/S0959-437X(02)00355-6 10.1126/science.1077061 10.1242/dev.02863 10.1242/dev.129.14.3411 10.1101/gad.5.10.1892 10.1126/science.1160631 10.1016/S0092-8674(00)80660-1 10.1126/science.860134 10.1093/genetics/166.4.1775 10.1016/j.devcel.2008.02.011 10.1016/0092-8674(88)90538-7 10.1016/S0092-8674(02)01087-5 10.1002/neu.20104 10.1038/nature07388 10.1073/pnas.0611511104 10.1371/journal.pgen.1000106 10.1242/dev.02373 10.1073/pnas.0605154103 10.1101/gad.5.10.1881 10.1101/gad.6.9.1728 10.1016/S0925-4773(99)00041-6 10.1242/dev.127.23.5145 10.1242/dev.122.11.3363 10.1016/0925-4773(94)90036-1 10.1007/s00427-008-0213-4 10.1371/journal.pbio.0060263 10.1126/science.1099247 10.1016/0092-8674(92)90181-B 10.1006/dbio.2002.0652 10.1242/dev.112.2.371 10.1016/j.cub.2005.10.026 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Aug 25, 2009 |
Copyright_xml | – notice: Copyright National Academy of Sciences Aug 25, 2009 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0905754106 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts MEDLINE MEDLINE - Academic Virology and AIDS Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14419 |
ExternalDocumentID | PMC2732830 1849215491 19666595 10_1073_pnas_0905754106 106_34_14414 40484435 US201301673391 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM46638 – fundername: NIGMS NIH HHS grantid: R37 GM046638 – fundername: NIGMS NIH HHS grantid: R01 GM046638 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c651t-ba3b64fa708c5075317ce026d9554223d2dea86b5f4c5feeb9af199677b985303 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:25:55 EDT 2025 Thu Jul 10 17:00:17 EDT 2025 Fri Jul 11 02:06:10 EDT 2025 Fri Jul 11 09:33:57 EDT 2025 Mon Jun 30 08:24:44 EDT 2025 Wed Feb 19 02:32:01 EST 2025 Thu Apr 24 22:55:39 EDT 2025 Tue Jul 01 00:46:42 EDT 2025 Wed Nov 11 00:29:55 EST 2020 Thu May 30 08:50:59 EDT 2019 Thu May 29 08:42:55 EDT 2025 Thu Apr 03 09:45:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c651t-ba3b64fa708c5075317ce026d9554223d2dea86b5f4c5feeb9af199677b985303 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: J.C., Y.G., and M.S.L. designed research; J.C. and Y.G. performed research; and J.C. and M.S.L. wrote the paper. Contributed by Michael S. Levine, May 23, 2009 |
OpenAccessLink | http://doi.org/10.1073/pnas.0905754106 |
PMID | 19666595 |
PQID | 201402906 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_201402906 proquest_miscellaneous_67610597 proquest_miscellaneous_46388276 proquest_miscellaneous_20805178 crossref_citationtrail_10_1073_pnas_0905754106 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2732830 pnas_primary_106_34_14414_fulltext crossref_primary_10_1073_pnas_0905754106 pubmed_primary_19666595 pnas_primary_106_34_14414 jstor_primary_40484435 fao_agris_US201301673391 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-25 |
PublicationDateYYYYMMDD | 2009-08-25 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-25 day: 25 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 Chang J (e_1_3_3_20_2) 2001; 45 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_11_2 doi: 10.1101/gad.1509007 – ident: e_1_3_3_9_2 doi: 10.1101/gr.5108606 – ident: e_1_3_3_6_2 doi: 10.1242/dev.01124 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.012591199 – ident: e_1_3_3_34_2 doi: 10.1016/S0959-437X(00)00252-5 – ident: e_1_3_3_37_2 doi: 10.1016/j.ydbio.2004.06.011 – ident: e_1_3_3_17_2 doi: 10.1016/j.cub.2005.02.057 – ident: e_1_3_3_15_2 doi: 10.1101/gad.8.21.2602 – ident: e_1_3_3_36_2 doi: 10.1126/science.1085753 – ident: e_1_3_3_29_2 doi: 10.1016/0092-8674(88)90537-5 – ident: e_1_3_3_43_2 doi: 10.1101/gad.1509607 – ident: e_1_3_3_45_2 doi: 10.1016/j.cub.2006.05.044 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.0400611101 – ident: e_1_3_3_21_2 doi: 10.1016/j.devcel.2006.10.012 – ident: e_1_3_3_25_2 doi: 10.1007/s00427-004-0446-9 – ident: e_1_3_3_32_2 doi: 10.1016/S0959-437X(02)00355-6 – ident: e_1_3_3_33_2 doi: 10.1126/science.1077061 – ident: e_1_3_3_16_2 doi: 10.1242/dev.02863 – ident: e_1_3_3_39_2 doi: 10.1242/dev.129.14.3411 – ident: e_1_3_3_23_2 doi: 10.1101/gad.5.10.1892 – ident: e_1_3_3_27_2 doi: 10.1126/science.1160631 – volume: 45 start-page: 715 year: 2001 ident: e_1_3_3_20_2 article-title: The CNS midline cells control the spitz class and Egfr signaling genes to establish the proper cell fate of the Drosophila ventral neuroectoderm publication-title: Int J Dev Biol – ident: e_1_3_3_26_2 doi: 10.1016/S0092-8674(00)80660-1 – ident: e_1_3_3_35_2 doi: 10.1126/science.860134 – ident: e_1_3_3_41_2 doi: 10.1093/genetics/166.4.1775 – ident: e_1_3_3_13_2 doi: 10.1016/j.devcel.2008.02.011 – ident: e_1_3_3_28_2 doi: 10.1016/0092-8674(88)90538-7 – ident: e_1_3_3_1_2 doi: 10.1016/S0092-8674(02)01087-5 – ident: e_1_3_3_18_2 doi: 10.1002/neu.20104 – ident: e_1_3_3_47_2 doi: 10.1038/nature07388 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.0611511104 – ident: e_1_3_3_38_2 doi: 10.1371/journal.pgen.1000106 – ident: e_1_3_3_46_2 doi: 10.1242/dev.02373 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.0605154103 – ident: e_1_3_3_22_2 doi: 10.1101/gad.5.10.1881 – ident: e_1_3_3_7_2 doi: 10.1101/gad.6.9.1728 – ident: e_1_3_3_12_2 doi: 10.1016/S0925-4773(99)00041-6 – ident: e_1_3_3_10_2 doi: 10.1242/dev.127.23.5145 – ident: e_1_3_3_19_2 doi: 10.1242/dev.122.11.3363 – ident: e_1_3_3_24_2 doi: 10.1016/0925-4773(94)90036-1 – ident: e_1_3_3_44_2 doi: 10.1007/s00427-008-0213-4 – ident: e_1_3_3_30_2 doi: 10.1371/journal.pbio.0060263 – ident: e_1_3_3_42_2 doi: 10.1126/science.1099247 – ident: e_1_3_3_2_2 doi: 10.1016/0092-8674(92)90181-B – ident: e_1_3_3_5_2 doi: 10.1006/dbio.2002.0652 – ident: e_1_3_3_3_2 doi: 10.1242/dev.112.2.371 – ident: e_1_3_3_4_2 doi: 10.1016/j.cub.2005.10.026 |
SSID | ssj0009580 |
Score | 2.1757262 |
Snippet | Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to... Dorsoventral (DV) patterning of the Drosophila embryo is controlled by a concentration gradient of Dorsal, a sequence-specific transcription factor related to... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14414 |
SubjectTerms | Animals Animals, Genetically Modified Anopheles - embryology Anopheles - genetics Anopheles gambiae Aquatic insects Base Sequence Binding sites Binding Sites - genetics Biological Sciences Body Patterning - genetics Cactus Cluster Analysis Computational Biology - methods Conservation Conserved Sequence - genetics Drosophila Drosophila melanogaster - embryology Drosophila melanogaster - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Ectoderm Embryo, Nonmammalian - embryology Embryo, Nonmammalian - metabolism Embryos enhancer elements Enhancer Elements, Genetic - genetics Evolution Evolution, Molecular Gastrula - metabolism Gene expression Gene Expression Regulation, Developmental Genes Genetic loci Genetic Variation In Situ Hybridization insect genetics Insecta - embryology Insecta - genetics Insects Introns loci Mesoderm Mosquitoes Nuclear Proteins - genetics Nuclear Proteins - metabolism nucleotide sequences Oligonucleotide Array Sequence Analysis Phosphoproteins - genetics Phosphoproteins - metabolism Species Specificity Tissues transcription factors Transcription Factors - genetics Transcription Factors - metabolism Tribolium - embryology Tribolium - genetics Tribolium castaneum |
Title | Conservation of enhancer location in divergent insects |
URI | https://www.jstor.org/stable/40484435 http://www.pnas.org/content/106/34/14414.abstract https://www.ncbi.nlm.nih.gov/pubmed/19666595 https://www.proquest.com/docview/201402906 https://www.proquest.com/docview/20805178 https://www.proquest.com/docview/46388276 https://www.proquest.com/docview/67610597 https://pubmed.ncbi.nlm.nih.gov/PMC2732830 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-x8cILYsCYGR8R4mGoSkmT1E4epwmYEFSTWKW9WXY-tkkjmZb0hb-eO8dO0qlFwEtU1c61yu98d778fAfwPsElg0ALP1O4yNEfl36SqcBH7ypylc7L3CD9fcFPl_HXi_nF0G3UnC5p9TT7tfFcyf-git8hrnRK9h-Q7YXiF_gZ8cUrIozXv8KYum26pCpFfUV1RSDeTchDORZjTswLOkBFvHPibozj0bPefzWOLbBw6cHj4bCJtQDNxJ-cLYbWxSeUge44Mk0zIv18qW9a9LjGvK8GnvE3dMJdAtWS9W3e1SUdUsqidgeUp0VnKDHO8HnctfrsLWnARypjk5SdYaR9W7zRZKONoT7DlWqmQUrRY2zFjAC8_WkQRGvBqf7h4Lt6RqEb2oGHIW4YQpe36csvJ4Er7CSij_d-zVSO7e5fC092SlU7nioVv8W7Nm1E7vNpRwHK-RN4bHcW3nGnJnvwoKiewp5DzjuyBcY_PAM-1huvLj2nN57TG--68nq98azePIfl50_nJ6e-7Z_hZ3w-a32tIs3jUokgyTDsR2srsgL33HmKMSSGhXmYFyrhel7GxDksdKpKIqULoVOM4oJoH3aruioOwNNJJMqZQon0Zl1rnMoV3sJDkQS61Aym7rHJzBaXpx4nN9KQHEQk6eHJ4ZEzOOpvuO3qqmyfeoA4SHWJXk8uf4T0rn3GRRSlMwb7BpxeRIwOKUaLw4AZKYNoLqNYGi1k8G7rmCwt5YrBocNZ2hXfyJDSEdQfgcHbfhTNMb1jU1VRr2hKQlXvku0zYvR4SSj-IIMLTrseweBFp1fDX7VaykCsaVw_gYrFr49U11emaHxIVbmi4OVWmYfwaFjpr2C3vVsVrzHgbvUbs5Z-A5RB0ok |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservation+of+enhancer+location+in+divergent+insects&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cande%2C+Jessica&rft.au=Goltsev%2C+Yury&rft.au=Levine%2C+Michael+S&rft.date=2009-08-25&rft.eissn=1091-6490&rft.volume=106&rft.issue=34&rft.spage=14414&rft_id=info:doi/10.1073%2Fpnas.0905754106&rft_id=info%3Apmid%2F19666595&rft.externalDocID=19666595 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F34.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F34.cover.gif |