SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant

One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 32; no. 12; p. 108185
Main Authors Konno, Yoriyuki, Kimura, Izumi, Uriu, Keiya, Fukushi, Masaya, Irie, Takashi, Koyanagi, Yoshio, Sauter, Daniel, Gifford, Robert J., Nakagawa, So, Sato, Kei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.09.2020
The Authors
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis. [Display omitted] •ORF3b proteins of SARS-CoV-2 and related animal viruses are IFN antagonists•SARS-CoV-2 ORF3b suppresses IFN more efficiently than its SARS-CoV ortholog•The anti-IFN activity of ORF3b depends on the length of its C terminus•An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases COVID-19 pathogenesis is characterized by impaired IFN responses. Konno et al. identify ORF3b proteins of SARS-CoV-2 and related animal viruses as IFN antagonists. Their anti-IFN activity depends on the C-terminal length, and a natural ORF3b variant with increased IFN-suppressive activity was isolated from two severe COVID-19 cases.
AbstractList One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis. COVID-19 pathogenesis is characterized by impaired IFN responses. Konno et al. identify ORF3b proteins of SARS-CoV-2 and related animal viruses as IFN antagonists. Their anti-IFN activity depends on the C-terminal length, and a natural ORF3b variant with increased IFN-suppressive activity was isolated from two severe COVID-19 cases.
One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.
One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis. [Display omitted] •ORF3b proteins of SARS-CoV-2 and related animal viruses are IFN antagonists•SARS-CoV-2 ORF3b suppresses IFN more efficiently than its SARS-CoV ortholog•The anti-IFN activity of ORF3b depends on the length of its C terminus•An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases COVID-19 pathogenesis is characterized by impaired IFN responses. Konno et al. identify ORF3b proteins of SARS-CoV-2 and related animal viruses as IFN antagonists. Their anti-IFN activity depends on the C-terminal length, and a natural ORF3b variant with increased IFN-suppressive activity was isolated from two severe COVID-19 cases.
One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.
ArticleNumber 108185
Author Kimura, Izumi
Irie, Takashi
Konno, Yoriyuki
Uriu, Keiya
Koyanagi, Yoshio
Nakagawa, So
Fukushi, Masaya
Gifford, Robert J.
Sato, Kei
Sauter, Daniel
Author_xml – sequence: 1
  givenname: Yoriyuki
  surname: Konno
  fullname: Konno, Yoriyuki
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
– sequence: 2
  givenname: Izumi
  surname: Kimura
  fullname: Kimura, Izumi
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
– sequence: 3
  givenname: Keiya
  surname: Uriu
  fullname: Uriu, Keiya
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
– sequence: 4
  givenname: Masaya
  surname: Fukushi
  fullname: Fukushi, Masaya
  organization: Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan
– sequence: 5
  givenname: Takashi
  surname: Irie
  fullname: Irie, Takashi
  organization: Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan
– sequence: 6
  givenname: Yoshio
  surname: Koyanagi
  fullname: Koyanagi, Yoshio
  organization: Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
– sequence: 7
  givenname: Daniel
  orcidid: 0000-0001-7665-0040
  surname: Sauter
  fullname: Sauter, Daniel
  organization: Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
– sequence: 8
  givenname: Robert J.
  surname: Gifford
  fullname: Gifford, Robert J.
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
– sequence: 9
  givenname: So
  surname: Nakagawa
  fullname: Nakagawa, So
  organization: Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
– sequence: 10
  givenname: Kei
  orcidid: 0000-0003-4431-1380
  surname: Sato
  fullname: Sato, Kei
  email: keisato@g.ecc.u-tokyo.ac.jp
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32941788$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQXaEiWkr_AUI-ctnUX_thDkhR1NJIFUEtlKPltWdTRxs7tZ1I4dfjNKFqOYB9sDWe92Y8770tjpx3UBTvCR4RTOrzxUjDEGA1opjuQi1pq1fFCaWElITy5ujZ_bg4i3GB86oxIYK_KY4ZFZw0bXtS_Lod39yWE39XUjS7uWQdmkak0DefwCU0dQlCD8E7NHZJzb2zMaGf9z4CGutkNzZtd4Cp0wFUBIO6bUZ_VWkd1DBs0UzrdQjWzdHF4N1cJZup7lSwyqV3xeteDRHODudp8ePy4vvkqryefZlOxtelriuSyoaTimHTVk3VC-AMV1h1hvU1FsoILDhlXaWFAAGMGm5q0Stdia6jtOO6E-y0mO55jVcLuQp2qcJWemXlY8CHuVQhWT2AZNAJAwyThjccCBbE6KauKK0Ux0yozPV5z7Vad0swOg8pf_QF6csXZ-_l3G9kJmSM7Zr5eCAI_mENMcmljVnLQTnw6ygp55w1bd459cPzWk9F_oiXE_g-QQcfY4D-KYVgubOJXMi9TeTOJnJvkwz79BdM2_SoTO7YDv8DHwYAWbGNhSCjtuA0GBtApzxS-2-C388t2Yw
CitedBy_id crossref_primary_10_1038_s12276_021_00602_1
crossref_primary_10_1080_22221751_2024_2341144
crossref_primary_10_20473_jr_v8_I_1_2022_60_68
crossref_primary_10_3390_ijms23115966
crossref_primary_10_1002_ped4_12226
crossref_primary_10_3390_ijms24098034
crossref_primary_10_3389_fmicb_2022_1093646
crossref_primary_10_1080_22221751_2020_1852892
crossref_primary_10_3390_v14112451
crossref_primary_10_15252_embr_202357238
crossref_primary_10_1016_j_bios_2021_113924
crossref_primary_10_1111_febs_15961
crossref_primary_10_1128_CMR_00103_20
crossref_primary_10_3390_microorganisms10030612
crossref_primary_10_1093_pcmedi_pbae015
crossref_primary_10_1186_s41232_020_00148_1
crossref_primary_10_1038_s44318_024_00331_x
crossref_primary_10_1093_oxfimm_iqaa004
crossref_primary_10_2174_0113892029291098240129113500
crossref_primary_10_1007_s12275_022_1502_8
crossref_primary_10_1038_s41418_020_00633_7
crossref_primary_10_1016_j_retram_2021_103289
crossref_primary_10_1128_CMR_00299_20
crossref_primary_10_1007_s12275_022_1525_1
crossref_primary_10_1084_jem_20210583
crossref_primary_10_1016_j_stem_2021_04_028
crossref_primary_10_1186_s42269_022_00856_3
crossref_primary_10_1186_s13578_021_00643_z
crossref_primary_10_1002_cmdc_202100079
crossref_primary_10_1016_j_virs_2024_04_005
crossref_primary_10_2174_1874467214666210906125959
crossref_primary_10_3390_ijms22147481
crossref_primary_10_1016_j_isci_2022_105742
crossref_primary_10_1016_j_it_2021_02_003
crossref_primary_10_1007_s00705_021_05159_y
crossref_primary_10_17352_oja_000018
crossref_primary_10_1038_s41590_021_01091_0
crossref_primary_10_1080_00015385_2020_1846921
crossref_primary_10_1590_1414_431x202010725
crossref_primary_10_3389_fmolb_2020_605236
crossref_primary_10_1136_bmjmed_2021_000040
crossref_primary_10_3390_pathogens12070928
crossref_primary_10_1016_j_genrep_2021_101200
crossref_primary_10_1128_jvi_01353_24
crossref_primary_10_1136_thoraxjnl_2021_217561
crossref_primary_10_1177_10760296211021498
crossref_primary_10_1089_jir_2021_0060
crossref_primary_10_1016_j_biopha_2020_111008
crossref_primary_10_1172_JCI149412
crossref_primary_10_15252_embr_202357137
crossref_primary_10_3389_fmolb_2022_975322
crossref_primary_10_1080_22221751_2021_1898291
crossref_primary_10_1128_JVI_00496_21
crossref_primary_10_3389_fmicb_2021_682603
crossref_primary_10_1016_j_csbj_2021_07_023
crossref_primary_10_3390_vaccines11030615
crossref_primary_10_1016_j_bbih_2024_100888
crossref_primary_10_1002_cbin_11565
crossref_primary_10_1021_jacs_0c09574
crossref_primary_10_1002_jmv_27317
crossref_primary_10_3390_v15020352
crossref_primary_10_1007_s11481_020_09968_x
crossref_primary_10_1080_08830185_2020_1840566
crossref_primary_10_1021_acs_biomac_2c00271
crossref_primary_10_1242_jcs_260682
crossref_primary_10_1007_s00018_025_05605_z
crossref_primary_10_1111_1348_0421_13157
crossref_primary_10_2222_jsv_71_33
crossref_primary_10_3389_fcimb_2022_826738
crossref_primary_10_1007_s00253_023_12971_w
crossref_primary_10_31146_1682_8658_ecg_207_11_234_241
crossref_primary_10_3389_fmicb_2020_588409
crossref_primary_10_1016_j_jmb_2021_167265
crossref_primary_10_1038_s42003_021_02265_0
crossref_primary_10_1002_path_5642
crossref_primary_10_1017_cts_2021_790
crossref_primary_10_1177_1535370220986785
crossref_primary_10_1093_infdis_jiac313
crossref_primary_10_1016_j_coi_2022_01_003
crossref_primary_10_1016_j_abb_2022_109124
crossref_primary_10_3390_v14071349
crossref_primary_10_1016_j_biopha_2022_113889
crossref_primary_10_1038_s41423_021_00807_4
crossref_primary_10_3389_fimmu_2021_614599
crossref_primary_10_1186_s13073_022_01100_3
crossref_primary_10_3390_cells10071756
crossref_primary_10_51847_jKWxBD0pay
crossref_primary_10_1016_j_virs_2024_01_010
crossref_primary_10_1017_S095026882200125X
crossref_primary_10_3389_fmolb_2021_653148
crossref_primary_10_1016_j_coviro_2021_10_009
crossref_primary_10_3389_fimmu_2023_1195871
crossref_primary_10_1128_mbio_03436_21
crossref_primary_10_1016_j_micpath_2023_106300
crossref_primary_10_3390_ijms23031716
crossref_primary_10_1016_j_crviro_2021_100013
crossref_primary_10_1038_s41586_022_04447_0
crossref_primary_10_3390_ijms22136764
crossref_primary_10_1016_j_ijbiomac_2024_134850
crossref_primary_10_1038_s41467_022_28508_0
crossref_primary_10_1128_mbio_01373_23
crossref_primary_10_3389_fimmu_2022_1035559
crossref_primary_10_1080_21645515_2020_1845524
crossref_primary_10_1016_j_stemcr_2021_02_010
crossref_primary_10_1093_cid_ciaa1645
crossref_primary_10_3389_fimmu_2021_693579
crossref_primary_10_1080_14728222_2023_2248377
crossref_primary_10_3390_biology10090829
crossref_primary_10_1038_s41586_022_05148_4
crossref_primary_10_3389_fddsv_2021_789710
crossref_primary_10_1016_j_genrep_2021_101122
crossref_primary_10_1007_s00430_022_00734_9
crossref_primary_10_1016_j_celrep_2021_109197
crossref_primary_10_51847_8u5aXM8acL
crossref_primary_10_1371_journal_pbio_3001115
crossref_primary_10_3389_fnut_2022_868845
crossref_primary_10_1080_14787210_2022_2078307
crossref_primary_10_3390_ijms25010353
crossref_primary_10_1016_j_jiph_2021_05_009
crossref_primary_10_1038_s44324_024_00038_x
crossref_primary_10_2174_1871526521666210720124950
crossref_primary_10_2174_1381612828666220506142117
crossref_primary_10_3390_pathogens13020113
crossref_primary_10_1038_s41467_022_30699_5
crossref_primary_10_1038_s41590_021_00942_0
crossref_primary_10_1016_j_coviro_2021_08_006
crossref_primary_10_1016_j_isci_2023_108080
crossref_primary_10_1021_acs_jpcb_3c07105
crossref_primary_10_1128_mmbr_00057_21
crossref_primary_10_1002_jmv_28680
crossref_primary_10_1038_s12276_021_00592_0
crossref_primary_10_1080_21505594_2021_2006960
crossref_primary_10_1016_j_celrep_2023_112835
crossref_primary_10_1126_scitranslmed_abk3445
crossref_primary_10_1038_s41579_022_00839_1
crossref_primary_10_1016_j_bbadis_2022_166634
crossref_primary_10_1016_j_clim_2020_108591
crossref_primary_10_1371_journal_pone_0314754
crossref_primary_10_1128_JVI_00178_21
crossref_primary_10_1038_s41467_021_25412_x
crossref_primary_10_1038_s41577_021_00578_z
crossref_primary_10_3390_life11060571
crossref_primary_10_1128_jvi_01784_23
crossref_primary_10_1038_s41421_020_00226_1
crossref_primary_10_1016_j_chom_2021_05_004
crossref_primary_10_1016_j_jmb_2022_167583
crossref_primary_10_1371_journal_ppat_1009753
crossref_primary_10_1007_s42399_021_00985_2
crossref_primary_10_1186_s41231_021_00090_5
crossref_primary_10_1371_journal_ppat_1009878
crossref_primary_10_1016_j_antiviral_2021_105115
crossref_primary_10_1016_j_cell_2021_08_016
crossref_primary_10_1002_iid3_70127
crossref_primary_10_1186_s40001_022_00645_8
crossref_primary_10_3390_cimb45010003
crossref_primary_10_1128_msystems_00095_21
crossref_primary_10_1016_j_virol_2021_07_011
crossref_primary_10_3389_fimmu_2022_940756
crossref_primary_10_3390_v15091925
crossref_primary_10_3389_fmed_2022_961027
crossref_primary_10_3390_ijms22031308
crossref_primary_10_1089_hs_2023_0008
crossref_primary_10_1186_s12964_023_01104_5
crossref_primary_10_3389_fmicb_2021_637554
crossref_primary_10_3390_ijms22137017
crossref_primary_10_3389_fimmu_2023_1148727
crossref_primary_10_3389_fimmu_2021_693938
crossref_primary_10_1038_s41423_020_00602_7
crossref_primary_10_1038_s41422_020_00435_z
crossref_primary_10_1016_j_immuni_2021_01_017
crossref_primary_10_3390_ijms25158012
crossref_primary_10_1016_j_micpath_2025_107398
crossref_primary_10_1016_j_intimp_2022_108531
crossref_primary_10_3389_fmicb_2022_846543
crossref_primary_10_54097_hset_v14i_1833
crossref_primary_10_31482_mmsl_2021_018
crossref_primary_10_3390_biology11010022
crossref_primary_10_1038_s41467_023_38783_0
crossref_primary_10_1016_j_celrep_2021_109391
crossref_primary_10_3390_ijms22052356
crossref_primary_10_3389_fmicb_2024_1334152
crossref_primary_10_1002_jmv_26615
crossref_primary_10_2217_nnm_2020_0269
crossref_primary_10_1016_j_smim_2021_101508
crossref_primary_10_1017_S0950268821001060
crossref_primary_10_1186_s12866_021_02158_6
crossref_primary_10_3390_v15061287
crossref_primary_10_1038_s41423_023_01104_y
crossref_primary_10_3390_cimb45020079
crossref_primary_10_3390_vaccines10101764
crossref_primary_10_1002_med_21845
crossref_primary_10_3389_fimmu_2020_582102
crossref_primary_10_1097_CCE_0000000000000263
crossref_primary_10_2174_1566524021666211004110101
crossref_primary_10_1038_s41467_021_26762_2
crossref_primary_10_3389_fimmu_2022_888897
crossref_primary_10_3389_fviro_2021_815388
crossref_primary_10_1007_s11427_021_2099_7
crossref_primary_10_1159_000518471
crossref_primary_10_1093_cvr_cvaa284
crossref_primary_10_1146_annurev_immunol_083122_043545
crossref_primary_10_1371_journal_pcbi_1011356
crossref_primary_10_1038_s41467_021_22905_7
crossref_primary_10_1038_s41598_021_91585_6
crossref_primary_10_3389_fnins_2021_727060
crossref_primary_10_3390_covid2100104
crossref_primary_10_1016_j_smim_2021_101522
crossref_primary_10_3390_ijms24119353
crossref_primary_10_1016_j_isci_2022_105444
crossref_primary_10_1111_sji_13239
crossref_primary_10_1002_mco2_154
crossref_primary_10_1186_s12985_024_02359_1
crossref_primary_10_3390_pathogens13121117
crossref_primary_10_3390_ijms25147661
crossref_primary_10_3390_ijms25189977
crossref_primary_10_3389_fmicb_2022_948770
crossref_primary_10_1111_1348_0421_13165
crossref_primary_10_3389_fimmu_2021_629185
crossref_primary_10_1111_imr_13113
crossref_primary_10_1111_imr_13114
crossref_primary_10_1038_s41429_021_00491_6
crossref_primary_10_1128_jvi_00555_23
crossref_primary_10_7554_eLife_59633
crossref_primary_10_1111_jnc_15736
crossref_primary_10_7554_eLife_61390
crossref_primary_10_1016_j_molstruc_2022_134642
crossref_primary_10_1016_j_mib_2024_102466
crossref_primary_10_1186_s12929_022_00811_4
crossref_primary_10_1002_jmv_70007
crossref_primary_10_1016_j_ymthe_2022_02_014
crossref_primary_10_1590_0074_02760210127
crossref_primary_10_2217_fvl_2020_0204
crossref_primary_10_1007_s00011_022_01555_5
crossref_primary_10_1371_journal_ppat_1009705
crossref_primary_10_29413_ABS_2022_7_5_1_8
crossref_primary_10_3389_fviro_2024_1462283
crossref_primary_10_3389_fmicb_2022_844447
crossref_primary_10_1016_j_celrep_2021_108916
crossref_primary_10_1016_j_compbiomed_2022_105575
crossref_primary_10_1016_j_bbrc_2024_149945
crossref_primary_10_1128_JVI_02415_20
crossref_primary_10_3390_ph17070891
crossref_primary_10_1016_j_cell_2021_02_029
crossref_primary_10_1016_j_vetmic_2021_109189
crossref_primary_10_1177_15353702221099579
crossref_primary_10_1007_s12274_021_3832_y
crossref_primary_10_2147_JIR_S329697
crossref_primary_10_3389_fphar_2022_915565
crossref_primary_10_3390_v14030530
crossref_primary_10_1099_jgv_0_001918
crossref_primary_10_1038_s41586_020_03148_w
crossref_primary_10_1101_gr_268110_120
crossref_primary_10_1186_s13073_023_01208_0
crossref_primary_10_3389_fimmu_2020_595739
crossref_primary_10_3390_brainsci14010059
crossref_primary_10_1016_j_cytogfr_2021_01_003
crossref_primary_10_1089_jir_2020_0214
crossref_primary_10_26508_lsa_202101347
crossref_primary_10_1128_mbio_00815_22
crossref_primary_10_14348_molcells_2021_0026
crossref_primary_10_3389_fcimb_2022_899546
crossref_primary_10_1111_tra_12872
crossref_primary_10_1038_s41392_021_00742_w
crossref_primary_10_3390_v13040560
crossref_primary_10_1128_jvi_00037_22
crossref_primary_10_1371_journal_ppat_1009130
crossref_primary_10_3390_ijms232113588
crossref_primary_10_3390_v13061139
crossref_primary_10_1016_j_freeradbiomed_2020_10_016
crossref_primary_10_1111_sji_13043
crossref_primary_10_1016_j_micpath_2021_104941
crossref_primary_10_1007_s10787_022_01129_1
crossref_primary_10_3349_ymj_2021_62_5_381
crossref_primary_10_1126_scisignal_add0082
crossref_primary_10_1371_journal_ppat_1009800
crossref_primary_10_3389_fphar_2020_592543
crossref_primary_10_1007_s00508_020_01763_1
crossref_primary_10_1093_emph_eoab005
crossref_primary_10_3390_v14061247
crossref_primary_10_1016_j_csbj_2022_01_017
crossref_primary_10_1073_pnas_2204717119
crossref_primary_10_3389_fimmu_2021_708264
crossref_primary_10_1002_2211_5463_13232
crossref_primary_10_3389_fmicb_2021_770656
crossref_primary_10_1016_j_cell_2021_07_023
Cites_doi 10.1371/journal.ppat.1006348
10.1016/S0140-6736(20)30211-7
10.1016/j.ijid.2020.01.009
10.1016/j.chom.2017.12.009
10.1038/nature12711
10.1126/science.abc6027
10.1101/gad.7.7b.1354
10.1056/NEJMoa2002032
10.1128/JVI.00631-14
10.1128/JVI.02143-16
10.1016/j.cell.2020.04.026
10.1099/jgv.0.001046
10.1016/j.chom.2020.05.008
10.1016/j.virol.2017.03.019
10.1046/j.1440-1843.2003.00518.x
10.1128/JVI.02219-09
10.1111/gtc.12463
10.1038/srep05529
10.1128/JVI.01012-07
10.1056/NEJMoa2001316
10.1093/molbev/mst010
10.1038/emi.2016.140
10.1016/S0140-6736(20)30566-3
10.1038/s41586-020-2012-7
10.1038/s41586-020-2169-0
10.3201/eid1112.041293
10.1093/molbev/msw054
10.1093/infdis/jiv476
10.1007/s11239-020-02171-y
10.1128/JVI.01782-06
10.1016/j.cub.2020.05.023
10.1099/vir.0.016378-0
10.1371/journal.ppat.1006698
10.1128/JVI.02094-17
10.1021/acs.bioconjchem.5b00141
10.1128/JVI.00697-06
10.1016/0378-1119(91)90434-D
10.1038/s41591-020-0820-9
10.1016/S0042-6822(03)00119-3
10.1016/S1473-3099(20)30243-7
10.1084/jem.20200537
10.1073/pnas.0506735102
10.1038/s41586-020-2313-x
10.1006/viro.1998.9508
10.1126/science.1118391
10.1099/vir.0.033589-0
10.1093/bioinformatics/btz305
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Authors 2020
CorporateAuthor USFQ-COVID19 Consortium
CorporateAuthor_xml – name: USFQ-COVID19 Consortium
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2020.108185
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 108185
ExternalDocumentID oai_doaj_org_article_3eb9de3017474e1091dc765225a4039a
PMC7473339
32941788
10_1016_j_celrep_2020_108185
S2211124720311748
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c651t-741530d8575f9e43050abd3f609ad909423b5c99e9e32d4d69fac59bb22b4cb93
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:28:51 EDT 2025
Thu Aug 21 14:31:09 EDT 2025
Fri Jul 11 08:16:32 EDT 2025
Mon Jul 21 06:09:44 EDT 2025
Tue Jul 01 02:59:12 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Tue Jul 25 21:02:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords COVID-19
type I interferon
SARS-CoV-2
evolution
ORF3b
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c651t-741530d8575f9e43050abd3f609ad909423b5c99e9e32d4d69fac59bb22b4cb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
ORCID 0000-0001-7665-0040
0000-0003-4431-1380
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124720311748
PMID 32941788
PQID 2444378787
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3eb9de3017474e1091dc765225a4039a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7473339
proquest_miscellaneous_2444378787
pubmed_primary_32941788
crossref_primary_10_1016_j_celrep_2020_108185
crossref_citationtrail_10_1016_j_celrep_2020_108185
elsevier_sciencedirect_doi_10_1016_j_celrep_2020_108185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-22
PublicationDateYYYYMMDD 2020-09-22
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2020
Publisher Elsevier Inc
The Authors
Elsevier
Publisher_xml – name: Elsevier Inc
– name: The Authors
– name: Elsevier
References Yamada, Nakaoka, Klein, Reith, Langer, Hopfensperger, Iwami, Schreiber, Kirchhoff, Koyanagi (bib43) 2018; 23
Ray, Tang, Jiang, Rotello (bib32) 2015; 26
(bib39) 2004
Konno, Nagaoka, Kimura, Takahashi Ueda, Kumata, Ito, Nakagawa, Kobayashi, Koyanagi, Sato (bib18) 2018; 99
Kozlov, Darriba, Flouri, Morel, Stamatakis (bib20) 2019; 35
Fujita, Nolan, Liou, Scott, Baltimore (bib6) 1993; 7
Li, Shi, Yu, Ren, Smith, Epstein, Wang, Crameri, Hu, Zhang (bib26) 2005; 310
Lin, Wang, Hao, Wang, Guo, Guan, Wang, Wang, Zhou, Li (bib28) 2017; 507
Zhou, Li, Wang, Wang, Shi (bib47) 2012; 93
Verity, Okell, Dorigatti, Winskill, Whittaker, Imai, Cuomo-Dannenburg, Thompson, Walker, Fu (bib35) 2020; 20
Yuan, Hon, Li, Wang, Xu, Zhang, Zhou, Poon, Lam, Leung, Shi (bib46) 2010; 91
Guan, Ni, Hu, Liang, Ou, He, Liu, Shan, Lei, Hui (bib9) 2020; 382
Hui, I Azhar, Madani, Ntoumi, Kock, Dar, Ippolito, Mchugh, Memish, Drosten (bib15) 2020; 91
Kobayashi, Takeuchi, Ren, Matsuda, Sato, Kimura, Misawa, Yoshikawa, Nakano, Yamada (bib17) 2014; 4
Tang, Zhang, Zhang, Wang, Fan, Li, Li, Dong, Liu, Cheung (bib33) 2006; 80
Park, Iwasaki (bib31) 2020; 27
Lam, Jia, Zhang, Shum, Jiang, Zhu, Tong, Shi, Ni, Liao (bib23) 2020; 583
Wang, Fu, Cao, Zhang, Feng, Yang, Nie, Ma, Liang (bib37) 2017; 6
Zhou, Chen, Hu, Li, Song, Liu, Wang, Liu, Yang, Holmes (bib49) 2020; 30
Katoh, Standley (bib16) 2013; 30
Krug, Yuan, Noah, Latham (bib21) 2003; 309
Frieman, Yount, Heise, Kopecky-Bromberg, Palese, Baric (bib5) 2007; 81
Horton, Nakai (bib12) 1997; 5
(bib40) 2020
Hu, Zeng, Yang, Ge, Zhang, Li, Xie, Shen, Zhang, Wang (bib13) 2017; 13
Kumar, Stecher, Tamura (bib22) 2016; 33
Lau, Li, Huang, Shek, Tse, Wang, Choi, Xu, Lam, Guo (bib25) 2010; 84
Li, Guan, Wu, Wang, Zhou, Tong, Ren, Leung, Lau, Wong (bib27) 2020; 382
Ueda, Kurosaki, Izumi, Nakano, Oloniniyi, Yasuda, Koyanagi, Sato, Nakagawa (bib34) 2017; 22
Hadjadj, Yatim, Barnabei, Corneau, Boussier, Péré, Charbit, Bondet, Chenevier-Gobeaux, Breillat (bib10) 2020; 369
Wu, Yang, Ren, Zhang, Yang, Zhang, Jin (bib41) 2016; 213
Xiao, Zhai, Feng, Zhou, Zhang, Zou, Li, Guo, Li, Shen (bib42) 2020; 583
Yoshida, Kawabata, Honda, Sakai, Ami, Sakaguchi, Irie (bib44) 2018; 92
Zhou, Yu, Du, Fan, Liu, Liu, Xiang, Wang, Song, Gu (bib48) 2020; 395
Chen, Zhou, Dong, Qu, Gong, Han, Qiu, Wang, Liu, Wei (bib4) 2020; 395
Nakano, Misawa, Juarez-Fernandez, Moriwaki, Nakaoka, Funo, Yamada, Soper, Yoshikawa, Ebrahimi (bib29) 2017; 13
Andersen, Rambaut, Lipkin, Holmes, Garry (bib1) 2020; 26
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib50) 2020; 579
Weiss (bib38) 2020; 217
Lau, Woo, Li, Huang, Tsoi, Wong, Wong, Leung, Chan, Yuen (bib24) 2005; 102
He, Zhang, Xu, Yang, Yang, Feng, Xia, Zhou, Zhen, Feng (bib11) 2014; 88
Chan-Yeung, Xu (bib3) 2003; 8
Hu, Li, Gao, Cui, Jin, Li, Ma, Liu, Cao (bib14) 2017; 91
Niwa, Yamamura, Miyazaki (bib30) 1991; 108
Kopecky-Bromberg, Martínez-Sobrido, Frieman, Baric, Palese (bib19) 2007; 81
Wang, Yan, Xu, Liang, Kan, Zheng, Chen, Zheng, Xu, Zhang (bib36) 2005; 11
Blanco-Melo, Nilsson-Payant, Liu, Uhl, Hoagland, Møller, Jordan, Oishi, Panis, Sachs (bib2) 2020; 181
Yu, Li, Chen, Ouyang, Zhang, Zhao, Tang, Luo, Xu, Yang (bib45) 2020
Ge, Li, Yang, Chmura, Zhu, Epstein, Mazet, Hu, Zhang, Peng (bib8) 2013; 503
García-Sastre, Egorov, Matassov, Brandt, Levy, Durbin, Palese, Muster (bib7) 1998; 252
Hui (10.1016/j.celrep.2020.108185_bib15) 2020; 91
Lau (10.1016/j.celrep.2020.108185_bib24) 2005; 102
Kobayashi (10.1016/j.celrep.2020.108185_bib17) 2014; 4
Hu (10.1016/j.celrep.2020.108185_bib14) 2017; 91
Yuan (10.1016/j.celrep.2020.108185_bib46) 2010; 91
Chan-Yeung (10.1016/j.celrep.2020.108185_bib3) 2003; 8
Krug (10.1016/j.celrep.2020.108185_bib21) 2003; 309
Lin (10.1016/j.celrep.2020.108185_bib28) 2017; 507
Wang (10.1016/j.celrep.2020.108185_bib36) 2005; 11
Chen (10.1016/j.celrep.2020.108185_bib4) 2020; 395
Niwa (10.1016/j.celrep.2020.108185_bib30) 1991; 108
Verity (10.1016/j.celrep.2020.108185_bib35) 2020; 20
Li (10.1016/j.celrep.2020.108185_bib26) 2005; 310
Tang (10.1016/j.celrep.2020.108185_bib33) 2006; 80
García-Sastre (10.1016/j.celrep.2020.108185_bib7) 1998; 252
Kopecky-Bromberg (10.1016/j.celrep.2020.108185_bib19) 2007; 81
Xiao (10.1016/j.celrep.2020.108185_bib42) 2020; 583
Katoh (10.1016/j.celrep.2020.108185_bib16) 2013; 30
Weiss (10.1016/j.celrep.2020.108185_bib38) 2020; 217
Kozlov (10.1016/j.celrep.2020.108185_bib20) 2019; 35
Li (10.1016/j.celrep.2020.108185_bib27) 2020; 382
(10.1016/j.celrep.2020.108185_bib40) 2020
Nakano (10.1016/j.celrep.2020.108185_bib29) 2017; 13
Konno (10.1016/j.celrep.2020.108185_bib18) 2018; 99
Yamada (10.1016/j.celrep.2020.108185_bib43) 2018; 23
Yoshida (10.1016/j.celrep.2020.108185_bib44) 2018; 92
Ray (10.1016/j.celrep.2020.108185_bib32) 2015; 26
Zhou (10.1016/j.celrep.2020.108185_bib47) 2012; 93
Zhou (10.1016/j.celrep.2020.108185_bib49) 2020; 30
Hadjadj (10.1016/j.celrep.2020.108185_bib10) 2020; 369
Wang (10.1016/j.celrep.2020.108185_bib37) 2017; 6
Lau (10.1016/j.celrep.2020.108185_bib25) 2010; 84
Ueda (10.1016/j.celrep.2020.108185_bib34) 2017; 22
Lam (10.1016/j.celrep.2020.108185_bib23) 2020; 583
Park (10.1016/j.celrep.2020.108185_bib31) 2020; 27
Kumar (10.1016/j.celrep.2020.108185_bib22) 2016; 33
Fujita (10.1016/j.celrep.2020.108185_bib6) 1993; 7
(10.1016/j.celrep.2020.108185_bib39) 2004
Hu (10.1016/j.celrep.2020.108185_bib13) 2017; 13
Ge (10.1016/j.celrep.2020.108185_bib8) 2013; 503
Guan (10.1016/j.celrep.2020.108185_bib9) 2020; 382
Zhou (10.1016/j.celrep.2020.108185_bib48) 2020; 395
Blanco-Melo (10.1016/j.celrep.2020.108185_bib2) 2020; 181
Horton (10.1016/j.celrep.2020.108185_bib12) 1997; 5
Andersen (10.1016/j.celrep.2020.108185_bib1) 2020; 26
Yu (10.1016/j.celrep.2020.108185_bib45) 2020
Zhou (10.1016/j.celrep.2020.108185_bib50) 2020; 579
He (10.1016/j.celrep.2020.108185_bib11) 2014; 88
Frieman (10.1016/j.celrep.2020.108185_bib5) 2007; 81
Wu (10.1016/j.celrep.2020.108185_bib41) 2016; 213
References_xml – volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  ident: bib16
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol. Biol. Evol.
– volume: 35
  start-page: 4453
  year: 2019
  end-page: 4455
  ident: bib20
  article-title: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference
  publication-title: Bioinformatics
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib50
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 310
  start-page: 676
  year: 2005
  end-page: 679
  ident: bib26
  article-title: Bats are natural reservoirs of SARS-like coronaviruses
  publication-title: Science
– volume: 20
  start-page: 669
  year: 2020
  end-page: 677
  ident: bib35
  article-title: Estimates of the severity of coronavirus disease 2019: a model-based analysis
  publication-title: Lancet Infect. Dis.
– volume: 93
  start-page: 275
  year: 2012
  end-page: 281
  ident: bib47
  article-title: Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities
  publication-title: J. Gen. Virol.
– volume: 7
  start-page: 1354
  year: 1993
  end-page: 1363
  ident: bib6
  article-title: The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers
  publication-title: Genes Dev.
– volume: 583
  start-page: 286
  year: 2020
  end-page: 289
  ident: bib42
  article-title: Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins
  publication-title: Nature
– volume: 108
  start-page: 193
  year: 1991
  end-page: 199
  ident: bib30
  article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector
  publication-title: Gene
– volume: 102
  start-page: 14040
  year: 2005
  end-page: 14045
  ident: bib24
  article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 88
  start-page: 7070
  year: 2014
  end-page: 7082
  ident: bib11
  article-title: Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China
  publication-title: J. Virol.
– volume: 382
  start-page: 1199
  year: 2020
  end-page: 1207
  ident: bib27
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia
  publication-title: N. Engl. J. Med.
– volume: 91
  start-page: e02143-16
  year: 2017
  ident: bib14
  article-title: The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination
  publication-title: J. Virol.
– volume: 30
  start-page: 2196
  year: 2020
  end-page: 2203.e3
  ident: bib49
  article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein
  publication-title: Curr. Biol.
– volume: 583
  start-page: 282
  year: 2020
  end-page: 285
  ident: bib23
  article-title: Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins
  publication-title: Nature
– volume: 8
  start-page: S9
  year: 2003
  end-page: S14
  ident: bib3
  article-title: SARS: epidemiology
  publication-title: Respirology
– volume: 80
  start-page: 7481
  year: 2006
  end-page: 7490
  ident: bib33
  article-title: Prevalence and genetic diversity of coronaviruses in bats from China
  publication-title: J. Virol.
– volume: 33
  start-page: 1870
  year: 2016
  end-page: 1874
  ident: bib22
  article-title: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets
  publication-title: Mol. Biol. Evol.
– volume: 217
  start-page: e20200537
  year: 2020
  ident: bib38
  article-title: Forty years with coronaviruses
  publication-title: J. Exp. Med.
– volume: 27
  start-page: 870
  year: 2020
  end-page: 878
  ident: bib31
  article-title: Type I and type III Interferons—induction, signaling, evasion, and application to combat COVID-19
  publication-title: Cell Host Microbe
– volume: 91
  start-page: 264
  year: 2020
  end-page: 266
  ident: bib15
  article-title: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China
  publication-title: Int. J. Infect. Dis.
– volume: 309
  start-page: 181
  year: 2003
  end-page: 189
  ident: bib21
  article-title: Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein
  publication-title: Virology
– volume: 26
  start-page: 1004
  year: 2015
  end-page: 1007
  ident: bib32
  article-title: Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules
  publication-title: Bioconjug. Chem.
– volume: 91
  start-page: 1058
  year: 2010
  end-page: 1062
  ident: bib46
  article-title: Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans
  publication-title: J. Gen. Virol.
– volume: 369
  start-page: 718
  year: 2020
  end-page: 724
  ident: bib10
  article-title: Impaired type I interferon activity and inflammatory responses in severe Covid-19 patients
  publication-title: Science
– volume: 503
  start-page: 535
  year: 2013
  end-page: 538
  ident: bib8
  article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
  publication-title: Nature
– volume: 181
  start-page: 1036
  year: 2020
  end-page: 1045.e9
  ident: bib2
  article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19
  publication-title: Cell
– volume: 395
  start-page: 507
  year: 2020
  end-page: 513
  ident: bib4
  article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet
– volume: 23
  start-page: 110
  year: 2018
  end-page: 120.e7
  ident: bib43
  article-title: Human-specific adaptations in Vpu conferring anti-tetherin activity are critical for efficient early HIV-1 replication
  publication-title: Cell Host Microbe
– volume: 213
  start-page: 579
  year: 2016
  end-page: 583
  ident: bib41
  article-title: ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus
  publication-title: J. Infect. Dis.
– volume: 92
  start-page: e02094
  year: 2018
  ident: bib44
  article-title: A single amino acid substitution within the paramyxovirus Sendai virus nucleoprotein is a critical determinant for production of interferon-beta-inducing copyback-type defective interfering genomes
  publication-title: J. Virol.
– year: 2020
  ident: bib40
  article-title: Coronavirus disease 2019
– volume: 395
  start-page: 1054
  year: 2020
  end-page: 1062
  ident: bib48
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
– volume: 81
  start-page: 9812
  year: 2007
  end-page: 9824
  ident: bib5
  article-title: Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane
  publication-title: J. Virol.
– volume: 4
  start-page: 5529
  year: 2014
  ident: bib17
  article-title: Characterization of red-capped mangabey tetherin: implication for the co-evolution of primates and their lentiviruses
  publication-title: Sci. Rep.
– volume: 382
  start-page: 1708
  year: 2020
  end-page: 1720
  ident: bib9
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: N. Engl. J. Med.
– volume: 22
  start-page: 148
  year: 2017
  end-page: 159
  ident: bib34
  article-title: Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency
  publication-title: Genes Cells
– volume: 11
  start-page: 1860
  year: 2005
  end-page: 1865
  ident: bib36
  article-title: SARS-CoV infection in a restaurant from palm civet
  publication-title: Emerg. Infect. Dis.
– volume: 6
  start-page: e14
  year: 2017
  ident: bib37
  article-title: Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China
  publication-title: Emerg. Microbes Infect.
– volume: 252
  start-page: 324
  year: 1998
  end-page: 330
  ident: bib7
  article-title: Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems
  publication-title: Virology
– volume: 26
  start-page: 450
  year: 2020
  end-page: 452
  ident: bib1
  article-title: The proximal origin of SARS-CoV-2
  publication-title: Nat. Med.
– volume: 13
  start-page: e1006348
  year: 2017
  ident: bib29
  article-title: HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation
  publication-title: PLoS Pathog.
– year: 2020
  ident: bib45
  article-title: Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis
  publication-title: J. Thromb. Thrombolysis
– volume: 13
  start-page: e1006698
  year: 2017
  ident: bib13
  article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus
  publication-title: PLoS Pathog.
– volume: 507
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib28
  article-title: Extensive diversity of coronaviruses in bats from China
  publication-title: Virology
– year: 2004
  ident: bib39
  article-title: Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003
– volume: 5
  start-page: 147
  year: 1997
  end-page: 152
  ident: bib12
  article-title: Better prediction of protein cellular localization sites with the k nearest neighbors classifier
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 99
  start-page: 704
  year: 2018
  end-page: 709
  ident: bib18
  article-title: A naturally occurring feline APOBEC3 variant that loses anti-lentiviral activity by lacking two amino acid residues
  publication-title: J. Gen. Virol.
– volume: 81
  start-page: 548
  year: 2007
  end-page: 557
  ident: bib19
  article-title: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists
  publication-title: J. Virol.
– volume: 84
  start-page: 2808
  year: 2010
  end-page: 2819
  ident: bib25
  article-title: Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events
  publication-title: J. Virol.
– volume: 13
  start-page: e1006348
  year: 2017
  ident: 10.1016/j.celrep.2020.108185_bib29
  article-title: HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006348
– year: 2004
  ident: 10.1016/j.celrep.2020.108185_bib39
– volume: 395
  start-page: 507
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib4
  article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30211-7
– volume: 91
  start-page: 264
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib15
  article-title: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.01.009
– volume: 23
  start-page: 110
  year: 2018
  ident: 10.1016/j.celrep.2020.108185_bib43
  article-title: Human-specific adaptations in Vpu conferring anti-tetherin activity are critical for efficient early HIV-1 replication in vivo
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.12.009
– volume: 503
  start-page: 535
  year: 2013
  ident: 10.1016/j.celrep.2020.108185_bib8
  article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/nature12711
– volume: 369
  start-page: 718
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib10
  article-title: Impaired type I interferon activity and inflammatory responses in severe Covid-19 patients
  publication-title: Science
  doi: 10.1126/science.abc6027
– volume: 7
  start-page: 1354
  issue: 7B
  year: 1993
  ident: 10.1016/j.celrep.2020.108185_bib6
  article-title: The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers
  publication-title: Genes Dev.
  doi: 10.1101/gad.7.7b.1354
– volume: 382
  start-page: 1708
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib9
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2002032
– volume: 88
  start-page: 7070
  year: 2014
  ident: 10.1016/j.celrep.2020.108185_bib11
  article-title: Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China
  publication-title: J. Virol.
  doi: 10.1128/JVI.00631-14
– volume: 91
  start-page: e02143-16
  year: 2017
  ident: 10.1016/j.celrep.2020.108185_bib14
  article-title: The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination
  publication-title: J. Virol.
  doi: 10.1128/JVI.02143-16
– volume: 181
  start-page: 1036
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib2
  article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.026
– volume: 99
  start-page: 704
  year: 2018
  ident: 10.1016/j.celrep.2020.108185_bib18
  article-title: A naturally occurring feline APOBEC3 variant that loses anti-lentiviral activity by lacking two amino acid residues
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001046
– volume: 27
  start-page: 870
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib31
  article-title: Type I and type III Interferons—induction, signaling, evasion, and application to combat COVID-19
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.05.008
– volume: 507
  start-page: 1
  year: 2017
  ident: 10.1016/j.celrep.2020.108185_bib28
  article-title: Extensive diversity of coronaviruses in bats from China
  publication-title: Virology
  doi: 10.1016/j.virol.2017.03.019
– volume: 8
  start-page: S9
  issue: Suppl
  year: 2003
  ident: 10.1016/j.celrep.2020.108185_bib3
  article-title: SARS: epidemiology
  publication-title: Respirology
  doi: 10.1046/j.1440-1843.2003.00518.x
– volume: 84
  start-page: 2808
  year: 2010
  ident: 10.1016/j.celrep.2020.108185_bib25
  article-title: Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events
  publication-title: J. Virol.
  doi: 10.1128/JVI.02219-09
– volume: 22
  start-page: 148
  year: 2017
  ident: 10.1016/j.celrep.2020.108185_bib34
  article-title: Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency
  publication-title: Genes Cells
  doi: 10.1111/gtc.12463
– year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib40
– volume: 4
  start-page: 5529
  year: 2014
  ident: 10.1016/j.celrep.2020.108185_bib17
  article-title: Characterization of red-capped mangabey tetherin: implication for the co-evolution of primates and their lentiviruses
  publication-title: Sci. Rep.
  doi: 10.1038/srep05529
– volume: 5
  start-page: 147
  year: 1997
  ident: 10.1016/j.celrep.2020.108185_bib12
  article-title: Better prediction of protein cellular localization sites with the k nearest neighbors classifier
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 81
  start-page: 9812
  year: 2007
  ident: 10.1016/j.celrep.2020.108185_bib5
  article-title: Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane
  publication-title: J. Virol.
  doi: 10.1128/JVI.01012-07
– volume: 382
  start-page: 1199
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib27
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001316
– volume: 30
  start-page: 772
  year: 2013
  ident: 10.1016/j.celrep.2020.108185_bib16
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst010
– volume: 6
  start-page: e14
  year: 2017
  ident: 10.1016/j.celrep.2020.108185_bib37
  article-title: Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2016.140
– volume: 395
  start-page: 1054
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib48
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib50
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 583
  start-page: 282
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib23
  article-title: Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins
  publication-title: Nature
  doi: 10.1038/s41586-020-2169-0
– volume: 11
  start-page: 1860
  year: 2005
  ident: 10.1016/j.celrep.2020.108185_bib36
  article-title: SARS-CoV infection in a restaurant from palm civet
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1112.041293
– volume: 33
  start-page: 1870
  year: 2016
  ident: 10.1016/j.celrep.2020.108185_bib22
  article-title: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw054
– volume: 213
  start-page: 579
  year: 2016
  ident: 10.1016/j.celrep.2020.108185_bib41
  article-title: ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiv476
– year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib45
  article-title: Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis
  publication-title: J. Thromb. Thrombolysis
  doi: 10.1007/s11239-020-02171-y
– volume: 81
  start-page: 548
  year: 2007
  ident: 10.1016/j.celrep.2020.108185_bib19
  article-title: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists
  publication-title: J. Virol.
  doi: 10.1128/JVI.01782-06
– volume: 30
  start-page: 2196
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib49
  article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.05.023
– volume: 91
  start-page: 1058
  year: 2010
  ident: 10.1016/j.celrep.2020.108185_bib46
  article-title: Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.016378-0
– volume: 13
  start-page: e1006698
  year: 2017
  ident: 10.1016/j.celrep.2020.108185_bib13
  article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006698
– volume: 92
  start-page: e02094
  year: 2018
  ident: 10.1016/j.celrep.2020.108185_bib44
  article-title: A single amino acid substitution within the paramyxovirus Sendai virus nucleoprotein is a critical determinant for production of interferon-beta-inducing copyback-type defective interfering genomes
  publication-title: J. Virol.
  doi: 10.1128/JVI.02094-17
– volume: 26
  start-page: 1004
  year: 2015
  ident: 10.1016/j.celrep.2020.108185_bib32
  article-title: Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.5b00141
– volume: 80
  start-page: 7481
  year: 2006
  ident: 10.1016/j.celrep.2020.108185_bib33
  article-title: Prevalence and genetic diversity of coronaviruses in bats from China
  publication-title: J. Virol.
  doi: 10.1128/JVI.00697-06
– volume: 108
  start-page: 193
  year: 1991
  ident: 10.1016/j.celrep.2020.108185_bib30
  article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90434-D
– volume: 26
  start-page: 450
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib1
  article-title: The proximal origin of SARS-CoV-2
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0820-9
– volume: 309
  start-page: 181
  year: 2003
  ident: 10.1016/j.celrep.2020.108185_bib21
  article-title: Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein
  publication-title: Virology
  doi: 10.1016/S0042-6822(03)00119-3
– volume: 20
  start-page: 669
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib35
  article-title: Estimates of the severity of coronavirus disease 2019: a model-based analysis
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30243-7
– volume: 217
  start-page: e20200537
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib38
  article-title: Forty years with coronaviruses
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20200537
– volume: 102
  start-page: 14040
  year: 2005
  ident: 10.1016/j.celrep.2020.108185_bib24
  article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506735102
– volume: 583
  start-page: 286
  year: 2020
  ident: 10.1016/j.celrep.2020.108185_bib42
  article-title: Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins
  publication-title: Nature
  doi: 10.1038/s41586-020-2313-x
– volume: 252
  start-page: 324
  year: 1998
  ident: 10.1016/j.celrep.2020.108185_bib7
  article-title: Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems
  publication-title: Virology
  doi: 10.1006/viro.1998.9508
– volume: 310
  start-page: 676
  year: 2005
  ident: 10.1016/j.celrep.2020.108185_bib26
  article-title: Bats are natural reservoirs of SARS-like coronaviruses
  publication-title: Science
  doi: 10.1126/science.1118391
– volume: 93
  start-page: 275
  year: 2012
  ident: 10.1016/j.celrep.2020.108185_bib47
  article-title: Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.033589-0
– volume: 35
  start-page: 4453
  year: 2019
  ident: 10.1016/j.celrep.2020.108185_bib20
  article-title: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz305
SSID ssj0000601194
Score 2.664746
Snippet One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here,...
One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108185
SubjectTerms Adult
Amino Acid Sequence - genetics
Animals
Betacoronavirus - genetics
Betacoronavirus - immunology
Chiroptera - virology
Codon, Nonsense - genetics
Coronavirus Infections - pathology
Coronavirus Infections - virology
COVID-19
Eutheria - virology
evolution
Humans
Interferon Type I - antagonists & inhibitors
Male
ORF3b
Pandemics
Pneumonia, Viral - virology
SARS-CoV-2
type I interferon
Viral Regulatory and Accessory Proteins - genetics
Viral Regulatory and Accessory Proteins - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPJcXjIS14jEzsvHpeqqIFFQS0tvlh9jWrRK0O72sP31zNjJahcOe-Ga2HHGM7a_scffMPbeNK30dREyGRw6KK4xmW3AZbmEYH0bcEWmfcgvp_XJRfn5qrraSvVFMWGJHjh13AcJVnlAM0TcWwLRWHrX1IgaKlPmUkVohA-3nKk0BxOXGR0pC0ExW6JsxntzMbjLwXwBRFcpYpRdQamUt9alSN-_szz9Cz__jqLcWpZmj9jDAU_yaZLjkN2D7jG7nzJMrp-wu_Pp2Xl21F9mgn89m0nLPy254d96hMorHrcDAyz6jk87Op4iGl3-47pfAp-6lFeCKuAkQrHr4LldY-1TE8k65mtOHMUL2hnkx_O--xm1zC_R_UZ9PWUXs-PvRyfZkG4hc3VVrDLCFjL3lLIzKCAqsNxYL0OdK-MVuoFC2sopBQqk8KWvVTCuUtYKYUtnlXzGDrq-gxeMR7-rkLZt6eqqdxakC8rk3rlg6xomTI6drd3ARU4pMeZ6DDr7pZOKNKlIJxVNWLap9Ttxcewp_5H0uClLTNrxAdqXHuxL77OvCWtGK9ADKElgAz91s6f5d6PRaByzdBBjOuhvlxohVSlxpmybCXuejGjzkxIHR9G0Lba7Y147Uuy-6W6uIy84SiClVC__h9iv2AMShSJjhHjNDlaLW3iD8Gtl38aR9gcHiirF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjL2PeydUODvZrYPse2HtPQ0A3WjWbt8ib02aYEuzjpQ_bX9062Q709FPZoW7Il3-k-pLvfMfZFFSXYPPEReIMOiilUpAtnohic17b0qJFpH_L7WX56kX1bTpYHbNbnwlBYZSf7W5kepHV3Z9z9zfHtajVepOi7oHaic8QE7WpK-IWsDEl8y-P9PgvhjSShHiK1j6hDn0EXwryMWzeOgCvTEG-XUFHlBxoqAPkPFNW_hujf8ZQPFNT8OXvWWZZ82g7-BTtw1Uv2pK01uXvF_iym54toVl9GKf9xPgfNv2644j9rNJq3PGwMetfUFZ9WdFBFgLr893W9cXxq2goT1AHFCUWxO8v1DnufqQDbsd5xQituaI-Qn6zr6irQm1-iI46Ue80u5ie_ZqdRV3ghMvkk2UZkZUBsqXinF45AwWKlLfg8FsoKdAhT0BMjhBMOUpvZXHhlJkLrNNWZ0QLesMOqrtw7xoMHloAuS0pitUY7MF6o2BrjdZ67EYP-Z0vToZJTcYy17MPPbmRLIkkkki2JRiza97ptUTkeaX9MdNy3JUztcKNurmTHVBKcFtahwEMPK3MEmGpNkaN9OlFZDEKNWNFzgRywKL5q9cjnP_dMI3H10pGMqlx9t5FoXGWAMrMsRuxty0T7QQIuk6QoS_zugL0Gsxg-qVbXASEcZwAA4v1_j_gDe0pXFBiTpkfscNvcuY9ofW31p7C87gF6vyzi
  priority: 102
  providerName: Elsevier
Title SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant
URI https://dx.doi.org/10.1016/j.celrep.2020.108185
https://www.ncbi.nlm.nih.gov/pubmed/32941788
https://www.proquest.com/docview/2444378787
https://pubmed.ncbi.nlm.nih.gov/PMC7473339
https://doaj.org/article/3eb9de3017474e1091dc765225a4039a
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEBZpSqEvoXe3R1Chry5eyZceQtmELEkhaUm66b4JnUmKsVPvBrL99Z2R7W3dg9AXgw_50MxovpHG3xDyVuUFt9nYR9wbCFBMriKdOxPF3HltCw8eGechj46zg1nyYZ7ON0hfs7XrwMVfQzusJzVrync331bvweB3fuZqGVc2DtknWUiaAx90h9wF35RjTYOjDvC3YzNynOFSM2OYy8WSvP-f7h83GvirQOs_cFt_wtLfsyt_cVfTB2Srw5l00irGQ7LhqkfkXlt5cvWYfD-dnJxGe_VZxOjHkynX9HBBFf1UA4Re0jBN6F1TV3RS4bIV0uvSLxf1wtGJaetNYAMYXDCn3VmqV9D6WAUSj3JFkbu4wRlDul_W1XmQPj2DsBzk-ITMpvuf9w6irgxDZLJ0vIwQc_DYYilPLxxShMVKW-6zWCgrIDxkXKdGCCccZzaxmfDKpEJrxnRitOBPyWZVV-45oSEeG3NdFPhLqzXaceOFiq0xXmeZGxHed7Y0HUc5lsooZZ-M9lW2IpIoItmKaESidaurlqPjlut3UY7ra5FhOxyom3PZGazkTgvrYPiDeCtxSJ9qTZ4BWk1VEnOhRiTvtUB2YKUFIXCry1se_6ZXGgm2jAs0qnL19UIC1Eo4jKBFPiLPWiVavyQHoxnnRQHPHajX4CuGZ6rLi8AXDl_AORcv_rObXpL7uIfJMYy9IpvL5tq9BgS21Nth5gK2h_Pd7WBgPwD08C-D
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6DsN2KfbssqcG7GrEthzbOqZBg2Rrs6Fpu9wEPdsMgV046SH99SNlO6i3Q4FdZdOSTIoPifpIyFeZ5cykkQuY0xCg6EwGKrM6CJl1yuQOLDLuQ57O0slF8m0xWOyRUXsXBtMqG91f63SvrZuWfvM3-zfLZX8eQ-wC1gnPESPwq_NH5DF4AxmuzuniaLfRgoAjkS-IiAQBUrRX6Hyel7aryiJyZewT7iKsqnzPRHkk_46l-tcT_Tuh8p6FGj8nB41rSYf16F-QPVu8JE_qYpPbV-RuPjybB6PyMojpj7MxU3S6ppL-LMFr3lC_M-hsVRZ0WOBJFSLq0l_X5drSoa5LTCAB6BNMY7eGqi1Qz6TH7VhtKcIVV7hJSI9XZXHlGU4vIRIH1r0mF-Pj89EkaCovBDodRJsA3QwWGqze6bhFVLBQKsNcGnJpOESEMVMDzbnllsUmMSl3Ug-4UnGsEq04e0P2i7Kwbwn1IVjEVJ7jLVajlWXacRkarZ1KU9sjrP3ZQjew5FgdYyXa_LPfomaRQBaJmkU9EuyobmpYjgfeP0I-7t5FUG3fUFZXopEqwazixoLGgxArsYiYanSWgoM6kEnIuOyRrJUC0ZFR-NTyge6_tEIjYPnimYwsbHm7FuBdJQyUZp71yGEtRLtBMlgnUZbn0G9HvDqz6D4pltceIhxmwBjj7_57xJ_J08n56Yk4mc6-vyfP8AlmycTxB7K_qW7tR3DFNuqTX2p_AJSZMAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+ORF3b+Is+a+Potent+Interferon+Antagonist+Whose+Activity+Is+Increased+by+a+Naturally+Occurring+Elongation+Variant&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Konno%2C+Yoriyuki&rft.au=Kimura%2C+Izumi&rft.au=Uriu%2C+Keiya&rft.au=Fukushi%2C+Masaya&rft.date=2020-09-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=32&rft.issue=12&rft.spage=108185&rft_id=info:doi/10.1016%2Fj.celrep.2020.108185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2020_108185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon