SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant
One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS...
Saved in:
Published in | Cell reports (Cambridge) Vol. 32; no. 12; p. 108185 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.09.2020
The Authors Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.
[Display omitted]
•ORF3b proteins of SARS-CoV-2 and related animal viruses are IFN antagonists•SARS-CoV-2 ORF3b suppresses IFN more efficiently than its SARS-CoV ortholog•The anti-IFN activity of ORF3b depends on the length of its C terminus•An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases
COVID-19 pathogenesis is characterized by impaired IFN responses. Konno et al. identify ORF3b proteins of SARS-CoV-2 and related animal viruses as IFN antagonists. Their anti-IFN activity depends on the C-terminal length, and a natural ORF3b variant with increased IFN-suppressive activity was isolated from two severe COVID-19 cases. |
---|---|
AbstractList | One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its
ORF3b
gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated
ORF3b
gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer
ORF3b
reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended
ORF3b
gene that may potentially affect COVID-19 pathogenesis.
COVID-19 pathogenesis is characterized by impaired IFN responses. Konno et al. identify ORF3b proteins of SARS-CoV-2 and related animal viruses as IFN antagonists. Their anti-IFN activity depends on the C-terminal length, and a natural ORF3b variant with increased IFN-suppressive activity was isolated from two severe COVID-19 cases. One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis. One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis. [Display omitted] •ORF3b proteins of SARS-CoV-2 and related animal viruses are IFN antagonists•SARS-CoV-2 ORF3b suppresses IFN more efficiently than its SARS-CoV ortholog•The anti-IFN activity of ORF3b depends on the length of its C terminus•An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases COVID-19 pathogenesis is characterized by impaired IFN responses. Konno et al. identify ORF3b proteins of SARS-CoV-2 and related animal viruses as IFN antagonists. Their anti-IFN activity depends on the C-terminal length, and a natural ORF3b variant with increased IFN-suppressive activity was isolated from two severe COVID-19 cases. One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis. |
ArticleNumber | 108185 |
Author | Kimura, Izumi Irie, Takashi Konno, Yoriyuki Uriu, Keiya Koyanagi, Yoshio Nakagawa, So Fukushi, Masaya Gifford, Robert J. Sato, Kei Sauter, Daniel |
Author_xml | – sequence: 1 givenname: Yoriyuki surname: Konno fullname: Konno, Yoriyuki organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan – sequence: 2 givenname: Izumi surname: Kimura fullname: Kimura, Izumi organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan – sequence: 3 givenname: Keiya surname: Uriu fullname: Uriu, Keiya organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan – sequence: 4 givenname: Masaya surname: Fukushi fullname: Fukushi, Masaya organization: Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan – sequence: 5 givenname: Takashi surname: Irie fullname: Irie, Takashi organization: Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan – sequence: 6 givenname: Yoshio surname: Koyanagi fullname: Koyanagi, Yoshio organization: Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan – sequence: 7 givenname: Daniel orcidid: 0000-0001-7665-0040 surname: Sauter fullname: Sauter, Daniel organization: Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany – sequence: 8 givenname: Robert J. surname: Gifford fullname: Gifford, Robert J. organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK – sequence: 9 givenname: So surname: Nakagawa fullname: Nakagawa, So organization: Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan – sequence: 10 givenname: Kei orcidid: 0000-0003-4431-1380 surname: Sato fullname: Sato, Kei email: keisato@g.ecc.u-tokyo.ac.jp organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32941788$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQXaEiWkr_AUI-ctnUX_thDkhR1NJIFUEtlKPltWdTRxs7tZ1I4dfjNKFqOYB9sDWe92Y8770tjpx3UBTvCR4RTOrzxUjDEGA1opjuQi1pq1fFCaWElITy5ujZ_bg4i3GB86oxIYK_KY4ZFZw0bXtS_Lod39yWE39XUjS7uWQdmkak0DefwCU0dQlCD8E7NHZJzb2zMaGf9z4CGutkNzZtd4Cp0wFUBIO6bUZ_VWkd1DBs0UzrdQjWzdHF4N1cJZup7lSwyqV3xeteDRHODudp8ePy4vvkqryefZlOxtelriuSyoaTimHTVk3VC-AMV1h1hvU1FsoILDhlXaWFAAGMGm5q0Stdia6jtOO6E-y0mO55jVcLuQp2qcJWemXlY8CHuVQhWT2AZNAJAwyThjccCBbE6KauKK0Ux0yozPV5z7Vad0swOg8pf_QF6csXZ-_l3G9kJmSM7Zr5eCAI_mENMcmljVnLQTnw6ygp55w1bd459cPzWk9F_oiXE_g-QQcfY4D-KYVgubOJXMi9TeTOJnJvkwz79BdM2_SoTO7YDv8DHwYAWbGNhSCjtuA0GBtApzxS-2-C388t2Yw |
CitedBy_id | crossref_primary_10_1038_s12276_021_00602_1 crossref_primary_10_1080_22221751_2024_2341144 crossref_primary_10_20473_jr_v8_I_1_2022_60_68 crossref_primary_10_3390_ijms23115966 crossref_primary_10_1002_ped4_12226 crossref_primary_10_3390_ijms24098034 crossref_primary_10_3389_fmicb_2022_1093646 crossref_primary_10_1080_22221751_2020_1852892 crossref_primary_10_3390_v14112451 crossref_primary_10_15252_embr_202357238 crossref_primary_10_1016_j_bios_2021_113924 crossref_primary_10_1111_febs_15961 crossref_primary_10_1128_CMR_00103_20 crossref_primary_10_3390_microorganisms10030612 crossref_primary_10_1093_pcmedi_pbae015 crossref_primary_10_1186_s41232_020_00148_1 crossref_primary_10_1038_s44318_024_00331_x crossref_primary_10_1093_oxfimm_iqaa004 crossref_primary_10_2174_0113892029291098240129113500 crossref_primary_10_1007_s12275_022_1502_8 crossref_primary_10_1038_s41418_020_00633_7 crossref_primary_10_1016_j_retram_2021_103289 crossref_primary_10_1128_CMR_00299_20 crossref_primary_10_1007_s12275_022_1525_1 crossref_primary_10_1084_jem_20210583 crossref_primary_10_1016_j_stem_2021_04_028 crossref_primary_10_1186_s42269_022_00856_3 crossref_primary_10_1186_s13578_021_00643_z crossref_primary_10_1002_cmdc_202100079 crossref_primary_10_1016_j_virs_2024_04_005 crossref_primary_10_2174_1874467214666210906125959 crossref_primary_10_3390_ijms22147481 crossref_primary_10_1016_j_isci_2022_105742 crossref_primary_10_1016_j_it_2021_02_003 crossref_primary_10_1007_s00705_021_05159_y crossref_primary_10_17352_oja_000018 crossref_primary_10_1038_s41590_021_01091_0 crossref_primary_10_1080_00015385_2020_1846921 crossref_primary_10_1590_1414_431x202010725 crossref_primary_10_3389_fmolb_2020_605236 crossref_primary_10_1136_bmjmed_2021_000040 crossref_primary_10_3390_pathogens12070928 crossref_primary_10_1016_j_genrep_2021_101200 crossref_primary_10_1128_jvi_01353_24 crossref_primary_10_1136_thoraxjnl_2021_217561 crossref_primary_10_1177_10760296211021498 crossref_primary_10_1089_jir_2021_0060 crossref_primary_10_1016_j_biopha_2020_111008 crossref_primary_10_1172_JCI149412 crossref_primary_10_15252_embr_202357137 crossref_primary_10_3389_fmolb_2022_975322 crossref_primary_10_1080_22221751_2021_1898291 crossref_primary_10_1128_JVI_00496_21 crossref_primary_10_3389_fmicb_2021_682603 crossref_primary_10_1016_j_csbj_2021_07_023 crossref_primary_10_3390_vaccines11030615 crossref_primary_10_1016_j_bbih_2024_100888 crossref_primary_10_1002_cbin_11565 crossref_primary_10_1021_jacs_0c09574 crossref_primary_10_1002_jmv_27317 crossref_primary_10_3390_v15020352 crossref_primary_10_1007_s11481_020_09968_x crossref_primary_10_1080_08830185_2020_1840566 crossref_primary_10_1021_acs_biomac_2c00271 crossref_primary_10_1242_jcs_260682 crossref_primary_10_1007_s00018_025_05605_z crossref_primary_10_1111_1348_0421_13157 crossref_primary_10_2222_jsv_71_33 crossref_primary_10_3389_fcimb_2022_826738 crossref_primary_10_1007_s00253_023_12971_w crossref_primary_10_31146_1682_8658_ecg_207_11_234_241 crossref_primary_10_3389_fmicb_2020_588409 crossref_primary_10_1016_j_jmb_2021_167265 crossref_primary_10_1038_s42003_021_02265_0 crossref_primary_10_1002_path_5642 crossref_primary_10_1017_cts_2021_790 crossref_primary_10_1177_1535370220986785 crossref_primary_10_1093_infdis_jiac313 crossref_primary_10_1016_j_coi_2022_01_003 crossref_primary_10_1016_j_abb_2022_109124 crossref_primary_10_3390_v14071349 crossref_primary_10_1016_j_biopha_2022_113889 crossref_primary_10_1038_s41423_021_00807_4 crossref_primary_10_3389_fimmu_2021_614599 crossref_primary_10_1186_s13073_022_01100_3 crossref_primary_10_3390_cells10071756 crossref_primary_10_51847_jKWxBD0pay crossref_primary_10_1016_j_virs_2024_01_010 crossref_primary_10_1017_S095026882200125X crossref_primary_10_3389_fmolb_2021_653148 crossref_primary_10_1016_j_coviro_2021_10_009 crossref_primary_10_3389_fimmu_2023_1195871 crossref_primary_10_1128_mbio_03436_21 crossref_primary_10_1016_j_micpath_2023_106300 crossref_primary_10_3390_ijms23031716 crossref_primary_10_1016_j_crviro_2021_100013 crossref_primary_10_1038_s41586_022_04447_0 crossref_primary_10_3390_ijms22136764 crossref_primary_10_1016_j_ijbiomac_2024_134850 crossref_primary_10_1038_s41467_022_28508_0 crossref_primary_10_1128_mbio_01373_23 crossref_primary_10_3389_fimmu_2022_1035559 crossref_primary_10_1080_21645515_2020_1845524 crossref_primary_10_1016_j_stemcr_2021_02_010 crossref_primary_10_1093_cid_ciaa1645 crossref_primary_10_3389_fimmu_2021_693579 crossref_primary_10_1080_14728222_2023_2248377 crossref_primary_10_3390_biology10090829 crossref_primary_10_1038_s41586_022_05148_4 crossref_primary_10_3389_fddsv_2021_789710 crossref_primary_10_1016_j_genrep_2021_101122 crossref_primary_10_1007_s00430_022_00734_9 crossref_primary_10_1016_j_celrep_2021_109197 crossref_primary_10_51847_8u5aXM8acL crossref_primary_10_1371_journal_pbio_3001115 crossref_primary_10_3389_fnut_2022_868845 crossref_primary_10_1080_14787210_2022_2078307 crossref_primary_10_3390_ijms25010353 crossref_primary_10_1016_j_jiph_2021_05_009 crossref_primary_10_1038_s44324_024_00038_x crossref_primary_10_2174_1871526521666210720124950 crossref_primary_10_2174_1381612828666220506142117 crossref_primary_10_3390_pathogens13020113 crossref_primary_10_1038_s41467_022_30699_5 crossref_primary_10_1038_s41590_021_00942_0 crossref_primary_10_1016_j_coviro_2021_08_006 crossref_primary_10_1016_j_isci_2023_108080 crossref_primary_10_1021_acs_jpcb_3c07105 crossref_primary_10_1128_mmbr_00057_21 crossref_primary_10_1002_jmv_28680 crossref_primary_10_1038_s12276_021_00592_0 crossref_primary_10_1080_21505594_2021_2006960 crossref_primary_10_1016_j_celrep_2023_112835 crossref_primary_10_1126_scitranslmed_abk3445 crossref_primary_10_1038_s41579_022_00839_1 crossref_primary_10_1016_j_bbadis_2022_166634 crossref_primary_10_1016_j_clim_2020_108591 crossref_primary_10_1371_journal_pone_0314754 crossref_primary_10_1128_JVI_00178_21 crossref_primary_10_1038_s41467_021_25412_x crossref_primary_10_1038_s41577_021_00578_z crossref_primary_10_3390_life11060571 crossref_primary_10_1128_jvi_01784_23 crossref_primary_10_1038_s41421_020_00226_1 crossref_primary_10_1016_j_chom_2021_05_004 crossref_primary_10_1016_j_jmb_2022_167583 crossref_primary_10_1371_journal_ppat_1009753 crossref_primary_10_1007_s42399_021_00985_2 crossref_primary_10_1186_s41231_021_00090_5 crossref_primary_10_1371_journal_ppat_1009878 crossref_primary_10_1016_j_antiviral_2021_105115 crossref_primary_10_1016_j_cell_2021_08_016 crossref_primary_10_1002_iid3_70127 crossref_primary_10_1186_s40001_022_00645_8 crossref_primary_10_3390_cimb45010003 crossref_primary_10_1128_msystems_00095_21 crossref_primary_10_1016_j_virol_2021_07_011 crossref_primary_10_3389_fimmu_2022_940756 crossref_primary_10_3390_v15091925 crossref_primary_10_3389_fmed_2022_961027 crossref_primary_10_3390_ijms22031308 crossref_primary_10_1089_hs_2023_0008 crossref_primary_10_1186_s12964_023_01104_5 crossref_primary_10_3389_fmicb_2021_637554 crossref_primary_10_3390_ijms22137017 crossref_primary_10_3389_fimmu_2023_1148727 crossref_primary_10_3389_fimmu_2021_693938 crossref_primary_10_1038_s41423_020_00602_7 crossref_primary_10_1038_s41422_020_00435_z crossref_primary_10_1016_j_immuni_2021_01_017 crossref_primary_10_3390_ijms25158012 crossref_primary_10_1016_j_micpath_2025_107398 crossref_primary_10_1016_j_intimp_2022_108531 crossref_primary_10_3389_fmicb_2022_846543 crossref_primary_10_54097_hset_v14i_1833 crossref_primary_10_31482_mmsl_2021_018 crossref_primary_10_3390_biology11010022 crossref_primary_10_1038_s41467_023_38783_0 crossref_primary_10_1016_j_celrep_2021_109391 crossref_primary_10_3390_ijms22052356 crossref_primary_10_3389_fmicb_2024_1334152 crossref_primary_10_1002_jmv_26615 crossref_primary_10_2217_nnm_2020_0269 crossref_primary_10_1016_j_smim_2021_101508 crossref_primary_10_1017_S0950268821001060 crossref_primary_10_1186_s12866_021_02158_6 crossref_primary_10_3390_v15061287 crossref_primary_10_1038_s41423_023_01104_y crossref_primary_10_3390_cimb45020079 crossref_primary_10_3390_vaccines10101764 crossref_primary_10_1002_med_21845 crossref_primary_10_3389_fimmu_2020_582102 crossref_primary_10_1097_CCE_0000000000000263 crossref_primary_10_2174_1566524021666211004110101 crossref_primary_10_1038_s41467_021_26762_2 crossref_primary_10_3389_fimmu_2022_888897 crossref_primary_10_3389_fviro_2021_815388 crossref_primary_10_1007_s11427_021_2099_7 crossref_primary_10_1159_000518471 crossref_primary_10_1093_cvr_cvaa284 crossref_primary_10_1146_annurev_immunol_083122_043545 crossref_primary_10_1371_journal_pcbi_1011356 crossref_primary_10_1038_s41467_021_22905_7 crossref_primary_10_1038_s41598_021_91585_6 crossref_primary_10_3389_fnins_2021_727060 crossref_primary_10_3390_covid2100104 crossref_primary_10_1016_j_smim_2021_101522 crossref_primary_10_3390_ijms24119353 crossref_primary_10_1016_j_isci_2022_105444 crossref_primary_10_1111_sji_13239 crossref_primary_10_1002_mco2_154 crossref_primary_10_1186_s12985_024_02359_1 crossref_primary_10_3390_pathogens13121117 crossref_primary_10_3390_ijms25147661 crossref_primary_10_3390_ijms25189977 crossref_primary_10_3389_fmicb_2022_948770 crossref_primary_10_1111_1348_0421_13165 crossref_primary_10_3389_fimmu_2021_629185 crossref_primary_10_1111_imr_13113 crossref_primary_10_1111_imr_13114 crossref_primary_10_1038_s41429_021_00491_6 crossref_primary_10_1128_jvi_00555_23 crossref_primary_10_7554_eLife_59633 crossref_primary_10_1111_jnc_15736 crossref_primary_10_7554_eLife_61390 crossref_primary_10_1016_j_molstruc_2022_134642 crossref_primary_10_1016_j_mib_2024_102466 crossref_primary_10_1186_s12929_022_00811_4 crossref_primary_10_1002_jmv_70007 crossref_primary_10_1016_j_ymthe_2022_02_014 crossref_primary_10_1590_0074_02760210127 crossref_primary_10_2217_fvl_2020_0204 crossref_primary_10_1007_s00011_022_01555_5 crossref_primary_10_1371_journal_ppat_1009705 crossref_primary_10_29413_ABS_2022_7_5_1_8 crossref_primary_10_3389_fviro_2024_1462283 crossref_primary_10_3389_fmicb_2022_844447 crossref_primary_10_1016_j_celrep_2021_108916 crossref_primary_10_1016_j_compbiomed_2022_105575 crossref_primary_10_1016_j_bbrc_2024_149945 crossref_primary_10_1128_JVI_02415_20 crossref_primary_10_3390_ph17070891 crossref_primary_10_1016_j_cell_2021_02_029 crossref_primary_10_1016_j_vetmic_2021_109189 crossref_primary_10_1177_15353702221099579 crossref_primary_10_1007_s12274_021_3832_y crossref_primary_10_2147_JIR_S329697 crossref_primary_10_3389_fphar_2022_915565 crossref_primary_10_3390_v14030530 crossref_primary_10_1099_jgv_0_001918 crossref_primary_10_1038_s41586_020_03148_w crossref_primary_10_1101_gr_268110_120 crossref_primary_10_1186_s13073_023_01208_0 crossref_primary_10_3389_fimmu_2020_595739 crossref_primary_10_3390_brainsci14010059 crossref_primary_10_1016_j_cytogfr_2021_01_003 crossref_primary_10_1089_jir_2020_0214 crossref_primary_10_26508_lsa_202101347 crossref_primary_10_1128_mbio_00815_22 crossref_primary_10_14348_molcells_2021_0026 crossref_primary_10_3389_fcimb_2022_899546 crossref_primary_10_1111_tra_12872 crossref_primary_10_1038_s41392_021_00742_w crossref_primary_10_3390_v13040560 crossref_primary_10_1128_jvi_00037_22 crossref_primary_10_1371_journal_ppat_1009130 crossref_primary_10_3390_ijms232113588 crossref_primary_10_3390_v13061139 crossref_primary_10_1016_j_freeradbiomed_2020_10_016 crossref_primary_10_1111_sji_13043 crossref_primary_10_1016_j_micpath_2021_104941 crossref_primary_10_1007_s10787_022_01129_1 crossref_primary_10_3349_ymj_2021_62_5_381 crossref_primary_10_1126_scisignal_add0082 crossref_primary_10_1371_journal_ppat_1009800 crossref_primary_10_3389_fphar_2020_592543 crossref_primary_10_1007_s00508_020_01763_1 crossref_primary_10_1093_emph_eoab005 crossref_primary_10_3390_v14061247 crossref_primary_10_1016_j_csbj_2022_01_017 crossref_primary_10_1073_pnas_2204717119 crossref_primary_10_3389_fimmu_2021_708264 crossref_primary_10_1002_2211_5463_13232 crossref_primary_10_3389_fmicb_2021_770656 crossref_primary_10_1016_j_cell_2021_07_023 |
Cites_doi | 10.1371/journal.ppat.1006348 10.1016/S0140-6736(20)30211-7 10.1016/j.ijid.2020.01.009 10.1016/j.chom.2017.12.009 10.1038/nature12711 10.1126/science.abc6027 10.1101/gad.7.7b.1354 10.1056/NEJMoa2002032 10.1128/JVI.00631-14 10.1128/JVI.02143-16 10.1016/j.cell.2020.04.026 10.1099/jgv.0.001046 10.1016/j.chom.2020.05.008 10.1016/j.virol.2017.03.019 10.1046/j.1440-1843.2003.00518.x 10.1128/JVI.02219-09 10.1111/gtc.12463 10.1038/srep05529 10.1128/JVI.01012-07 10.1056/NEJMoa2001316 10.1093/molbev/mst010 10.1038/emi.2016.140 10.1016/S0140-6736(20)30566-3 10.1038/s41586-020-2012-7 10.1038/s41586-020-2169-0 10.3201/eid1112.041293 10.1093/molbev/msw054 10.1093/infdis/jiv476 10.1007/s11239-020-02171-y 10.1128/JVI.01782-06 10.1016/j.cub.2020.05.023 10.1099/vir.0.016378-0 10.1371/journal.ppat.1006698 10.1128/JVI.02094-17 10.1021/acs.bioconjchem.5b00141 10.1128/JVI.00697-06 10.1016/0378-1119(91)90434-D 10.1038/s41591-020-0820-9 10.1016/S0042-6822(03)00119-3 10.1016/S1473-3099(20)30243-7 10.1084/jem.20200537 10.1073/pnas.0506735102 10.1038/s41586-020-2313-x 10.1006/viro.1998.9508 10.1126/science.1118391 10.1099/vir.0.033589-0 10.1093/bioinformatics/btz305 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020 |
CorporateAuthor | USFQ-COVID19 Consortium |
CorporateAuthor_xml | – name: USFQ-COVID19 Consortium |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2020.108185 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 108185 |
ExternalDocumentID | oai_doaj_org_article_3eb9de3017474e1091dc765225a4039a PMC7473339 32941788 10_1016_j_celrep_2020_108185 S2211124720311748 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c651t-741530d8575f9e43050abd3f609ad909423b5c99e9e32d4d69fac59bb22b4cb93 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:28:51 EDT 2025 Thu Aug 21 14:31:09 EDT 2025 Fri Jul 11 08:16:32 EDT 2025 Mon Jul 21 06:09:44 EDT 2025 Tue Jul 01 02:59:12 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Tue Jul 25 21:02:48 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | COVID-19 type I interferon SARS-CoV-2 evolution ORF3b |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c651t-741530d8575f9e43050abd3f609ad909423b5c99e9e32d4d69fac59bb22b4cb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ORCID | 0000-0001-7665-0040 0000-0003-4431-1380 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124720311748 |
PMID | 32941788 |
PQID | 2444378787 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3eb9de3017474e1091dc765225a4039a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7473339 proquest_miscellaneous_2444378787 pubmed_primary_32941788 crossref_primary_10_1016_j_celrep_2020_108185 crossref_citationtrail_10_1016_j_celrep_2020_108185 elsevier_sciencedirect_doi_10_1016_j_celrep_2020_108185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-22 |
PublicationDateYYYYMMDD | 2020-09-22 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2020 |
Publisher | Elsevier Inc The Authors Elsevier |
Publisher_xml | – name: Elsevier Inc – name: The Authors – name: Elsevier |
References | Yamada, Nakaoka, Klein, Reith, Langer, Hopfensperger, Iwami, Schreiber, Kirchhoff, Koyanagi (bib43) 2018; 23 Ray, Tang, Jiang, Rotello (bib32) 2015; 26 (bib39) 2004 Konno, Nagaoka, Kimura, Takahashi Ueda, Kumata, Ito, Nakagawa, Kobayashi, Koyanagi, Sato (bib18) 2018; 99 Kozlov, Darriba, Flouri, Morel, Stamatakis (bib20) 2019; 35 Fujita, Nolan, Liou, Scott, Baltimore (bib6) 1993; 7 Li, Shi, Yu, Ren, Smith, Epstein, Wang, Crameri, Hu, Zhang (bib26) 2005; 310 Lin, Wang, Hao, Wang, Guo, Guan, Wang, Wang, Zhou, Li (bib28) 2017; 507 Zhou, Li, Wang, Wang, Shi (bib47) 2012; 93 Verity, Okell, Dorigatti, Winskill, Whittaker, Imai, Cuomo-Dannenburg, Thompson, Walker, Fu (bib35) 2020; 20 Yuan, Hon, Li, Wang, Xu, Zhang, Zhou, Poon, Lam, Leung, Shi (bib46) 2010; 91 Guan, Ni, Hu, Liang, Ou, He, Liu, Shan, Lei, Hui (bib9) 2020; 382 Hui, I Azhar, Madani, Ntoumi, Kock, Dar, Ippolito, Mchugh, Memish, Drosten (bib15) 2020; 91 Kobayashi, Takeuchi, Ren, Matsuda, Sato, Kimura, Misawa, Yoshikawa, Nakano, Yamada (bib17) 2014; 4 Tang, Zhang, Zhang, Wang, Fan, Li, Li, Dong, Liu, Cheung (bib33) 2006; 80 Park, Iwasaki (bib31) 2020; 27 Lam, Jia, Zhang, Shum, Jiang, Zhu, Tong, Shi, Ni, Liao (bib23) 2020; 583 Wang, Fu, Cao, Zhang, Feng, Yang, Nie, Ma, Liang (bib37) 2017; 6 Zhou, Chen, Hu, Li, Song, Liu, Wang, Liu, Yang, Holmes (bib49) 2020; 30 Katoh, Standley (bib16) 2013; 30 Krug, Yuan, Noah, Latham (bib21) 2003; 309 Frieman, Yount, Heise, Kopecky-Bromberg, Palese, Baric (bib5) 2007; 81 Horton, Nakai (bib12) 1997; 5 (bib40) 2020 Hu, Zeng, Yang, Ge, Zhang, Li, Xie, Shen, Zhang, Wang (bib13) 2017; 13 Kumar, Stecher, Tamura (bib22) 2016; 33 Lau, Li, Huang, Shek, Tse, Wang, Choi, Xu, Lam, Guo (bib25) 2010; 84 Li, Guan, Wu, Wang, Zhou, Tong, Ren, Leung, Lau, Wong (bib27) 2020; 382 Ueda, Kurosaki, Izumi, Nakano, Oloniniyi, Yasuda, Koyanagi, Sato, Nakagawa (bib34) 2017; 22 Hadjadj, Yatim, Barnabei, Corneau, Boussier, Péré, Charbit, Bondet, Chenevier-Gobeaux, Breillat (bib10) 2020; 369 Wu, Yang, Ren, Zhang, Yang, Zhang, Jin (bib41) 2016; 213 Xiao, Zhai, Feng, Zhou, Zhang, Zou, Li, Guo, Li, Shen (bib42) 2020; 583 Yoshida, Kawabata, Honda, Sakai, Ami, Sakaguchi, Irie (bib44) 2018; 92 Zhou, Yu, Du, Fan, Liu, Liu, Xiang, Wang, Song, Gu (bib48) 2020; 395 Chen, Zhou, Dong, Qu, Gong, Han, Qiu, Wang, Liu, Wei (bib4) 2020; 395 Nakano, Misawa, Juarez-Fernandez, Moriwaki, Nakaoka, Funo, Yamada, Soper, Yoshikawa, Ebrahimi (bib29) 2017; 13 Andersen, Rambaut, Lipkin, Holmes, Garry (bib1) 2020; 26 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib50) 2020; 579 Weiss (bib38) 2020; 217 Lau, Woo, Li, Huang, Tsoi, Wong, Wong, Leung, Chan, Yuen (bib24) 2005; 102 He, Zhang, Xu, Yang, Yang, Feng, Xia, Zhou, Zhen, Feng (bib11) 2014; 88 Chan-Yeung, Xu (bib3) 2003; 8 Hu, Li, Gao, Cui, Jin, Li, Ma, Liu, Cao (bib14) 2017; 91 Niwa, Yamamura, Miyazaki (bib30) 1991; 108 Kopecky-Bromberg, Martínez-Sobrido, Frieman, Baric, Palese (bib19) 2007; 81 Wang, Yan, Xu, Liang, Kan, Zheng, Chen, Zheng, Xu, Zhang (bib36) 2005; 11 Blanco-Melo, Nilsson-Payant, Liu, Uhl, Hoagland, Møller, Jordan, Oishi, Panis, Sachs (bib2) 2020; 181 Yu, Li, Chen, Ouyang, Zhang, Zhao, Tang, Luo, Xu, Yang (bib45) 2020 Ge, Li, Yang, Chmura, Zhu, Epstein, Mazet, Hu, Zhang, Peng (bib8) 2013; 503 García-Sastre, Egorov, Matassov, Brandt, Levy, Durbin, Palese, Muster (bib7) 1998; 252 Hui (10.1016/j.celrep.2020.108185_bib15) 2020; 91 Lau (10.1016/j.celrep.2020.108185_bib24) 2005; 102 Kobayashi (10.1016/j.celrep.2020.108185_bib17) 2014; 4 Hu (10.1016/j.celrep.2020.108185_bib14) 2017; 91 Yuan (10.1016/j.celrep.2020.108185_bib46) 2010; 91 Chan-Yeung (10.1016/j.celrep.2020.108185_bib3) 2003; 8 Krug (10.1016/j.celrep.2020.108185_bib21) 2003; 309 Lin (10.1016/j.celrep.2020.108185_bib28) 2017; 507 Wang (10.1016/j.celrep.2020.108185_bib36) 2005; 11 Chen (10.1016/j.celrep.2020.108185_bib4) 2020; 395 Niwa (10.1016/j.celrep.2020.108185_bib30) 1991; 108 Verity (10.1016/j.celrep.2020.108185_bib35) 2020; 20 Li (10.1016/j.celrep.2020.108185_bib26) 2005; 310 Tang (10.1016/j.celrep.2020.108185_bib33) 2006; 80 García-Sastre (10.1016/j.celrep.2020.108185_bib7) 1998; 252 Kopecky-Bromberg (10.1016/j.celrep.2020.108185_bib19) 2007; 81 Xiao (10.1016/j.celrep.2020.108185_bib42) 2020; 583 Katoh (10.1016/j.celrep.2020.108185_bib16) 2013; 30 Weiss (10.1016/j.celrep.2020.108185_bib38) 2020; 217 Kozlov (10.1016/j.celrep.2020.108185_bib20) 2019; 35 Li (10.1016/j.celrep.2020.108185_bib27) 2020; 382 (10.1016/j.celrep.2020.108185_bib40) 2020 Nakano (10.1016/j.celrep.2020.108185_bib29) 2017; 13 Konno (10.1016/j.celrep.2020.108185_bib18) 2018; 99 Yamada (10.1016/j.celrep.2020.108185_bib43) 2018; 23 Yoshida (10.1016/j.celrep.2020.108185_bib44) 2018; 92 Ray (10.1016/j.celrep.2020.108185_bib32) 2015; 26 Zhou (10.1016/j.celrep.2020.108185_bib47) 2012; 93 Zhou (10.1016/j.celrep.2020.108185_bib49) 2020; 30 Hadjadj (10.1016/j.celrep.2020.108185_bib10) 2020; 369 Wang (10.1016/j.celrep.2020.108185_bib37) 2017; 6 Lau (10.1016/j.celrep.2020.108185_bib25) 2010; 84 Ueda (10.1016/j.celrep.2020.108185_bib34) 2017; 22 Lam (10.1016/j.celrep.2020.108185_bib23) 2020; 583 Park (10.1016/j.celrep.2020.108185_bib31) 2020; 27 Kumar (10.1016/j.celrep.2020.108185_bib22) 2016; 33 Fujita (10.1016/j.celrep.2020.108185_bib6) 1993; 7 (10.1016/j.celrep.2020.108185_bib39) 2004 Hu (10.1016/j.celrep.2020.108185_bib13) 2017; 13 Ge (10.1016/j.celrep.2020.108185_bib8) 2013; 503 Guan (10.1016/j.celrep.2020.108185_bib9) 2020; 382 Zhou (10.1016/j.celrep.2020.108185_bib48) 2020; 395 Blanco-Melo (10.1016/j.celrep.2020.108185_bib2) 2020; 181 Horton (10.1016/j.celrep.2020.108185_bib12) 1997; 5 Andersen (10.1016/j.celrep.2020.108185_bib1) 2020; 26 Yu (10.1016/j.celrep.2020.108185_bib45) 2020 Zhou (10.1016/j.celrep.2020.108185_bib50) 2020; 579 He (10.1016/j.celrep.2020.108185_bib11) 2014; 88 Frieman (10.1016/j.celrep.2020.108185_bib5) 2007; 81 Wu (10.1016/j.celrep.2020.108185_bib41) 2016; 213 |
References_xml | – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: bib16 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. – volume: 35 start-page: 4453 year: 2019 end-page: 4455 ident: bib20 article-title: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference publication-title: Bioinformatics – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib50 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 310 start-page: 676 year: 2005 end-page: 679 ident: bib26 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science – volume: 20 start-page: 669 year: 2020 end-page: 677 ident: bib35 article-title: Estimates of the severity of coronavirus disease 2019: a model-based analysis publication-title: Lancet Infect. Dis. – volume: 93 start-page: 275 year: 2012 end-page: 281 ident: bib47 article-title: Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities publication-title: J. Gen. Virol. – volume: 7 start-page: 1354 year: 1993 end-page: 1363 ident: bib6 article-title: The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers publication-title: Genes Dev. – volume: 583 start-page: 286 year: 2020 end-page: 289 ident: bib42 article-title: Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins publication-title: Nature – volume: 108 start-page: 193 year: 1991 end-page: 199 ident: bib30 article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector publication-title: Gene – volume: 102 start-page: 14040 year: 2005 end-page: 14045 ident: bib24 article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats publication-title: Proc. Natl. Acad. Sci. USA – volume: 88 start-page: 7070 year: 2014 end-page: 7082 ident: bib11 article-title: Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China publication-title: J. Virol. – volume: 382 start-page: 1199 year: 2020 end-page: 1207 ident: bib27 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia publication-title: N. Engl. J. Med. – volume: 91 start-page: e02143-16 year: 2017 ident: bib14 article-title: The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination publication-title: J. Virol. – volume: 30 start-page: 2196 year: 2020 end-page: 2203.e3 ident: bib49 article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein publication-title: Curr. Biol. – volume: 583 start-page: 282 year: 2020 end-page: 285 ident: bib23 article-title: Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins publication-title: Nature – volume: 8 start-page: S9 year: 2003 end-page: S14 ident: bib3 article-title: SARS: epidemiology publication-title: Respirology – volume: 80 start-page: 7481 year: 2006 end-page: 7490 ident: bib33 article-title: Prevalence and genetic diversity of coronaviruses in bats from China publication-title: J. Virol. – volume: 33 start-page: 1870 year: 2016 end-page: 1874 ident: bib22 article-title: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets publication-title: Mol. Biol. Evol. – volume: 217 start-page: e20200537 year: 2020 ident: bib38 article-title: Forty years with coronaviruses publication-title: J. Exp. Med. – volume: 27 start-page: 870 year: 2020 end-page: 878 ident: bib31 article-title: Type I and type III Interferons—induction, signaling, evasion, and application to combat COVID-19 publication-title: Cell Host Microbe – volume: 91 start-page: 264 year: 2020 end-page: 266 ident: bib15 article-title: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China publication-title: Int. J. Infect. Dis. – volume: 309 start-page: 181 year: 2003 end-page: 189 ident: bib21 article-title: Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein publication-title: Virology – volume: 26 start-page: 1004 year: 2015 end-page: 1007 ident: bib32 article-title: Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules publication-title: Bioconjug. Chem. – volume: 91 start-page: 1058 year: 2010 end-page: 1062 ident: bib46 article-title: Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans publication-title: J. Gen. Virol. – volume: 369 start-page: 718 year: 2020 end-page: 724 ident: bib10 article-title: Impaired type I interferon activity and inflammatory responses in severe Covid-19 patients publication-title: Science – volume: 503 start-page: 535 year: 2013 end-page: 538 ident: bib8 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature – volume: 181 start-page: 1036 year: 2020 end-page: 1045.e9 ident: bib2 article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19 publication-title: Cell – volume: 395 start-page: 507 year: 2020 end-page: 513 ident: bib4 article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study publication-title: Lancet – volume: 23 start-page: 110 year: 2018 end-page: 120.e7 ident: bib43 article-title: Human-specific adaptations in Vpu conferring anti-tetherin activity are critical for efficient early HIV-1 replication publication-title: Cell Host Microbe – volume: 213 start-page: 579 year: 2016 end-page: 583 ident: bib41 article-title: ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus publication-title: J. Infect. Dis. – volume: 92 start-page: e02094 year: 2018 ident: bib44 article-title: A single amino acid substitution within the paramyxovirus Sendai virus nucleoprotein is a critical determinant for production of interferon-beta-inducing copyback-type defective interfering genomes publication-title: J. Virol. – year: 2020 ident: bib40 article-title: Coronavirus disease 2019 – volume: 395 start-page: 1054 year: 2020 end-page: 1062 ident: bib48 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet – volume: 81 start-page: 9812 year: 2007 end-page: 9824 ident: bib5 article-title: Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane publication-title: J. Virol. – volume: 4 start-page: 5529 year: 2014 ident: bib17 article-title: Characterization of red-capped mangabey tetherin: implication for the co-evolution of primates and their lentiviruses publication-title: Sci. Rep. – volume: 382 start-page: 1708 year: 2020 end-page: 1720 ident: bib9 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: N. Engl. J. Med. – volume: 22 start-page: 148 year: 2017 end-page: 159 ident: bib34 article-title: Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency publication-title: Genes Cells – volume: 11 start-page: 1860 year: 2005 end-page: 1865 ident: bib36 article-title: SARS-CoV infection in a restaurant from palm civet publication-title: Emerg. Infect. Dis. – volume: 6 start-page: e14 year: 2017 ident: bib37 article-title: Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China publication-title: Emerg. Microbes Infect. – volume: 252 start-page: 324 year: 1998 end-page: 330 ident: bib7 article-title: Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems publication-title: Virology – volume: 26 start-page: 450 year: 2020 end-page: 452 ident: bib1 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. – volume: 13 start-page: e1006348 year: 2017 ident: bib29 article-title: HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation publication-title: PLoS Pathog. – year: 2020 ident: bib45 article-title: Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis publication-title: J. Thromb. Thrombolysis – volume: 13 start-page: e1006698 year: 2017 ident: bib13 article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus publication-title: PLoS Pathog. – volume: 507 start-page: 1 year: 2017 end-page: 10 ident: bib28 article-title: Extensive diversity of coronaviruses in bats from China publication-title: Virology – year: 2004 ident: bib39 article-title: Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 – volume: 5 start-page: 147 year: 1997 end-page: 152 ident: bib12 article-title: Better prediction of protein cellular localization sites with the k nearest neighbors classifier publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 99 start-page: 704 year: 2018 end-page: 709 ident: bib18 article-title: A naturally occurring feline APOBEC3 variant that loses anti-lentiviral activity by lacking two amino acid residues publication-title: J. Gen. Virol. – volume: 81 start-page: 548 year: 2007 end-page: 557 ident: bib19 article-title: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists publication-title: J. Virol. – volume: 84 start-page: 2808 year: 2010 end-page: 2819 ident: bib25 article-title: Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events publication-title: J. Virol. – volume: 13 start-page: e1006348 year: 2017 ident: 10.1016/j.celrep.2020.108185_bib29 article-title: HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006348 – year: 2004 ident: 10.1016/j.celrep.2020.108185_bib39 – volume: 395 start-page: 507 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib4 article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study publication-title: Lancet doi: 10.1016/S0140-6736(20)30211-7 – volume: 91 start-page: 264 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib15 article-title: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.01.009 – volume: 23 start-page: 110 year: 2018 ident: 10.1016/j.celrep.2020.108185_bib43 article-title: Human-specific adaptations in Vpu conferring anti-tetherin activity are critical for efficient early HIV-1 replication in vivo publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.12.009 – volume: 503 start-page: 535 year: 2013 ident: 10.1016/j.celrep.2020.108185_bib8 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature doi: 10.1038/nature12711 – volume: 369 start-page: 718 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib10 article-title: Impaired type I interferon activity and inflammatory responses in severe Covid-19 patients publication-title: Science doi: 10.1126/science.abc6027 – volume: 7 start-page: 1354 issue: 7B year: 1993 ident: 10.1016/j.celrep.2020.108185_bib6 article-title: The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers publication-title: Genes Dev. doi: 10.1101/gad.7.7b.1354 – volume: 382 start-page: 1708 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib9 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2002032 – volume: 88 start-page: 7070 year: 2014 ident: 10.1016/j.celrep.2020.108185_bib11 article-title: Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China publication-title: J. Virol. doi: 10.1128/JVI.00631-14 – volume: 91 start-page: e02143-16 year: 2017 ident: 10.1016/j.celrep.2020.108185_bib14 article-title: The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination publication-title: J. Virol. doi: 10.1128/JVI.02143-16 – volume: 181 start-page: 1036 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib2 article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 99 start-page: 704 year: 2018 ident: 10.1016/j.celrep.2020.108185_bib18 article-title: A naturally occurring feline APOBEC3 variant that loses anti-lentiviral activity by lacking two amino acid residues publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001046 – volume: 27 start-page: 870 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib31 article-title: Type I and type III Interferons—induction, signaling, evasion, and application to combat COVID-19 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.05.008 – volume: 507 start-page: 1 year: 2017 ident: 10.1016/j.celrep.2020.108185_bib28 article-title: Extensive diversity of coronaviruses in bats from China publication-title: Virology doi: 10.1016/j.virol.2017.03.019 – volume: 8 start-page: S9 issue: Suppl year: 2003 ident: 10.1016/j.celrep.2020.108185_bib3 article-title: SARS: epidemiology publication-title: Respirology doi: 10.1046/j.1440-1843.2003.00518.x – volume: 84 start-page: 2808 year: 2010 ident: 10.1016/j.celrep.2020.108185_bib25 article-title: Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events publication-title: J. Virol. doi: 10.1128/JVI.02219-09 – volume: 22 start-page: 148 year: 2017 ident: 10.1016/j.celrep.2020.108185_bib34 article-title: Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency publication-title: Genes Cells doi: 10.1111/gtc.12463 – year: 2020 ident: 10.1016/j.celrep.2020.108185_bib40 – volume: 4 start-page: 5529 year: 2014 ident: 10.1016/j.celrep.2020.108185_bib17 article-title: Characterization of red-capped mangabey tetherin: implication for the co-evolution of primates and their lentiviruses publication-title: Sci. Rep. doi: 10.1038/srep05529 – volume: 5 start-page: 147 year: 1997 ident: 10.1016/j.celrep.2020.108185_bib12 article-title: Better prediction of protein cellular localization sites with the k nearest neighbors classifier publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 81 start-page: 9812 year: 2007 ident: 10.1016/j.celrep.2020.108185_bib5 article-title: Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane publication-title: J. Virol. doi: 10.1128/JVI.01012-07 – volume: 382 start-page: 1199 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib27 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001316 – volume: 30 start-page: 772 year: 2013 ident: 10.1016/j.celrep.2020.108185_bib16 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 6 start-page: e14 year: 2017 ident: 10.1016/j.celrep.2020.108185_bib37 article-title: Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2016.140 – volume: 395 start-page: 1054 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib48 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)30566-3 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib50 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 583 start-page: 282 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib23 article-title: Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins publication-title: Nature doi: 10.1038/s41586-020-2169-0 – volume: 11 start-page: 1860 year: 2005 ident: 10.1016/j.celrep.2020.108185_bib36 article-title: SARS-CoV infection in a restaurant from palm civet publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1112.041293 – volume: 33 start-page: 1870 year: 2016 ident: 10.1016/j.celrep.2020.108185_bib22 article-title: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw054 – volume: 213 start-page: 579 year: 2016 ident: 10.1016/j.celrep.2020.108185_bib41 article-title: ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiv476 – year: 2020 ident: 10.1016/j.celrep.2020.108185_bib45 article-title: Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis publication-title: J. Thromb. Thrombolysis doi: 10.1007/s11239-020-02171-y – volume: 81 start-page: 548 year: 2007 ident: 10.1016/j.celrep.2020.108185_bib19 article-title: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists publication-title: J. Virol. doi: 10.1128/JVI.01782-06 – volume: 30 start-page: 2196 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib49 article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.05.023 – volume: 91 start-page: 1058 year: 2010 ident: 10.1016/j.celrep.2020.108185_bib46 article-title: Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans publication-title: J. Gen. Virol. doi: 10.1099/vir.0.016378-0 – volume: 13 start-page: e1006698 year: 2017 ident: 10.1016/j.celrep.2020.108185_bib13 article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006698 – volume: 92 start-page: e02094 year: 2018 ident: 10.1016/j.celrep.2020.108185_bib44 article-title: A single amino acid substitution within the paramyxovirus Sendai virus nucleoprotein is a critical determinant for production of interferon-beta-inducing copyback-type defective interfering genomes publication-title: J. Virol. doi: 10.1128/JVI.02094-17 – volume: 26 start-page: 1004 year: 2015 ident: 10.1016/j.celrep.2020.108185_bib32 article-title: Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.5b00141 – volume: 80 start-page: 7481 year: 2006 ident: 10.1016/j.celrep.2020.108185_bib33 article-title: Prevalence and genetic diversity of coronaviruses in bats from China publication-title: J. Virol. doi: 10.1128/JVI.00697-06 – volume: 108 start-page: 193 year: 1991 ident: 10.1016/j.celrep.2020.108185_bib30 article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector publication-title: Gene doi: 10.1016/0378-1119(91)90434-D – volume: 26 start-page: 450 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib1 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. doi: 10.1038/s41591-020-0820-9 – volume: 309 start-page: 181 year: 2003 ident: 10.1016/j.celrep.2020.108185_bib21 article-title: Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein publication-title: Virology doi: 10.1016/S0042-6822(03)00119-3 – volume: 20 start-page: 669 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib35 article-title: Estimates of the severity of coronavirus disease 2019: a model-based analysis publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30243-7 – volume: 217 start-page: e20200537 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib38 article-title: Forty years with coronaviruses publication-title: J. Exp. Med. doi: 10.1084/jem.20200537 – volume: 102 start-page: 14040 year: 2005 ident: 10.1016/j.celrep.2020.108185_bib24 article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506735102 – volume: 583 start-page: 286 year: 2020 ident: 10.1016/j.celrep.2020.108185_bib42 article-title: Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins publication-title: Nature doi: 10.1038/s41586-020-2313-x – volume: 252 start-page: 324 year: 1998 ident: 10.1016/j.celrep.2020.108185_bib7 article-title: Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems publication-title: Virology doi: 10.1006/viro.1998.9508 – volume: 310 start-page: 676 year: 2005 ident: 10.1016/j.celrep.2020.108185_bib26 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science doi: 10.1126/science.1118391 – volume: 93 start-page: 275 year: 2012 ident: 10.1016/j.celrep.2020.108185_bib47 article-title: Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities publication-title: J. Gen. Virol. doi: 10.1099/vir.0.033589-0 – volume: 35 start-page: 4453 year: 2019 ident: 10.1016/j.celrep.2020.108185_bib20 article-title: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz305 |
SSID | ssj0000601194 |
Score | 2.664746 |
Snippet | One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here,... One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108185 |
SubjectTerms | Adult Amino Acid Sequence - genetics Animals Betacoronavirus - genetics Betacoronavirus - immunology Chiroptera - virology Codon, Nonsense - genetics Coronavirus Infections - pathology Coronavirus Infections - virology COVID-19 Eutheria - virology evolution Humans Interferon Type I - antagonists & inhibitors Male ORF3b Pandemics Pneumonia, Viral - virology SARS-CoV-2 type I interferon Viral Regulatory and Accessory Proteins - genetics Viral Regulatory and Accessory Proteins - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPJcXjIS14jEzsvHpeqqIFFQS0tvlh9jWrRK0O72sP31zNjJahcOe-Ga2HHGM7a_scffMPbeNK30dREyGRw6KK4xmW3AZbmEYH0bcEWmfcgvp_XJRfn5qrraSvVFMWGJHjh13AcJVnlAM0TcWwLRWHrX1IgaKlPmUkVohA-3nKk0BxOXGR0pC0ExW6JsxntzMbjLwXwBRFcpYpRdQamUt9alSN-_szz9Cz__jqLcWpZmj9jDAU_yaZLjkN2D7jG7nzJMrp-wu_Pp2Xl21F9mgn89m0nLPy254d96hMorHrcDAyz6jk87Op4iGl3-47pfAp-6lFeCKuAkQrHr4LldY-1TE8k65mtOHMUL2hnkx_O--xm1zC_R_UZ9PWUXs-PvRyfZkG4hc3VVrDLCFjL3lLIzKCAqsNxYL0OdK-MVuoFC2sopBQqk8KWvVTCuUtYKYUtnlXzGDrq-gxeMR7-rkLZt6eqqdxakC8rk3rlg6xomTI6drd3ARU4pMeZ6DDr7pZOKNKlIJxVNWLap9Ttxcewp_5H0uClLTNrxAdqXHuxL77OvCWtGK9ADKElgAz91s6f5d6PRaByzdBBjOuhvlxohVSlxpmybCXuejGjzkxIHR9G0Lba7Y147Uuy-6W6uIy84SiClVC__h9iv2AMShSJjhHjNDlaLW3iD8Gtl38aR9gcHiirF priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjL2PeydUODvZrYPse2HtPQ0A3WjWbt8ib02aYEuzjpQ_bX9062Q709FPZoW7Il3-k-pLvfMfZFFSXYPPEReIMOiilUpAtnohic17b0qJFpH_L7WX56kX1bTpYHbNbnwlBYZSf7W5kepHV3Z9z9zfHtajVepOi7oHaic8QE7WpK-IWsDEl8y-P9PgvhjSShHiK1j6hDn0EXwryMWzeOgCvTEG-XUFHlBxoqAPkPFNW_hujf8ZQPFNT8OXvWWZZ82g7-BTtw1Uv2pK01uXvF_iym54toVl9GKf9xPgfNv2644j9rNJq3PGwMetfUFZ9WdFBFgLr893W9cXxq2goT1AHFCUWxO8v1DnufqQDbsd5xQituaI-Qn6zr6irQm1-iI46Ue80u5ie_ZqdRV3ghMvkk2UZkZUBsqXinF45AwWKlLfg8FsoKdAhT0BMjhBMOUpvZXHhlJkLrNNWZ0QLesMOqrtw7xoMHloAuS0pitUY7MF6o2BrjdZ67EYP-Z0vToZJTcYy17MPPbmRLIkkkki2JRiza97ptUTkeaX9MdNy3JUztcKNurmTHVBKcFtahwEMPK3MEmGpNkaN9OlFZDEKNWNFzgRywKL5q9cjnP_dMI3H10pGMqlx9t5FoXGWAMrMsRuxty0T7QQIuk6QoS_zugL0Gsxg-qVbXASEcZwAA4v1_j_gDe0pXFBiTpkfscNvcuY9ofW31p7C87gF6vyzi priority: 102 providerName: Elsevier |
Title | SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant |
URI | https://dx.doi.org/10.1016/j.celrep.2020.108185 https://www.ncbi.nlm.nih.gov/pubmed/32941788 https://www.proquest.com/docview/2444378787 https://pubmed.ncbi.nlm.nih.gov/PMC7473339 https://doaj.org/article/3eb9de3017474e1091dc765225a4039a |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEBZpSqEvoXe3R1Chry5eyZceQtmELEkhaUm66b4JnUmKsVPvBrL99Z2R7W3dg9AXgw_50MxovpHG3xDyVuUFt9nYR9wbCFBMriKdOxPF3HltCw8eGechj46zg1nyYZ7ON0hfs7XrwMVfQzusJzVrync331bvweB3fuZqGVc2DtknWUiaAx90h9wF35RjTYOjDvC3YzNynOFSM2OYy8WSvP-f7h83GvirQOs_cFt_wtLfsyt_cVfTB2Srw5l00irGQ7LhqkfkXlt5cvWYfD-dnJxGe_VZxOjHkynX9HBBFf1UA4Re0jBN6F1TV3RS4bIV0uvSLxf1wtGJaetNYAMYXDCn3VmqV9D6WAUSj3JFkbu4wRlDul_W1XmQPj2DsBzk-ITMpvuf9w6irgxDZLJ0vIwQc_DYYilPLxxShMVKW-6zWCgrIDxkXKdGCCccZzaxmfDKpEJrxnRitOBPyWZVV-45oSEeG3NdFPhLqzXaceOFiq0xXmeZGxHed7Y0HUc5lsooZZ-M9lW2IpIoItmKaESidaurlqPjlut3UY7ra5FhOxyom3PZGazkTgvrYPiDeCtxSJ9qTZ4BWk1VEnOhRiTvtUB2YKUFIXCry1se_6ZXGgm2jAs0qnL19UIC1Eo4jKBFPiLPWiVavyQHoxnnRQHPHajX4CuGZ6rLi8AXDl_AORcv_rObXpL7uIfJMYy9IpvL5tq9BgS21Nth5gK2h_Pd7WBgPwD08C-D |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6DsN2KfbssqcG7GrEthzbOqZBg2Rrs6Fpu9wEPdsMgV046SH99SNlO6i3Q4FdZdOSTIoPifpIyFeZ5cykkQuY0xCg6EwGKrM6CJl1yuQOLDLuQ57O0slF8m0xWOyRUXsXBtMqG91f63SvrZuWfvM3-zfLZX8eQ-wC1gnPESPwq_NH5DF4AxmuzuniaLfRgoAjkS-IiAQBUrRX6Hyel7aryiJyZewT7iKsqnzPRHkk_46l-tcT_Tuh8p6FGj8nB41rSYf16F-QPVu8JE_qYpPbV-RuPjybB6PyMojpj7MxU3S6ppL-LMFr3lC_M-hsVRZ0WOBJFSLq0l_X5drSoa5LTCAB6BNMY7eGqi1Qz6TH7VhtKcIVV7hJSI9XZXHlGU4vIRIH1r0mF-Pj89EkaCovBDodRJsA3QwWGqze6bhFVLBQKsNcGnJpOESEMVMDzbnllsUmMSl3Ug-4UnGsEq04e0P2i7Kwbwn1IVjEVJ7jLVajlWXacRkarZ1KU9sjrP3ZQjew5FgdYyXa_LPfomaRQBaJmkU9EuyobmpYjgfeP0I-7t5FUG3fUFZXopEqwazixoLGgxArsYiYanSWgoM6kEnIuOyRrJUC0ZFR-NTyge6_tEIjYPnimYwsbHm7FuBdJQyUZp71yGEtRLtBMlgnUZbn0G9HvDqz6D4pltceIhxmwBjj7_57xJ_J08n56Yk4mc6-vyfP8AlmycTxB7K_qW7tR3DFNuqTX2p_AJSZMAI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+ORF3b+Is+a+Potent+Interferon+Antagonist+Whose+Activity+Is+Increased+by+a+Naturally+Occurring+Elongation+Variant&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Konno%2C+Yoriyuki&rft.au=Kimura%2C+Izumi&rft.au=Uriu%2C+Keiya&rft.au=Fukushi%2C+Masaya&rft.date=2020-09-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=32&rft.issue=12&rft.spage=108185&rft_id=info:doi/10.1016%2Fj.celrep.2020.108185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2020_108185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |