Chemical activation of a food deprivation signal extends lifespan
Summary Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find n...
Saved in:
Published in | Aging cell Vol. 15; no. 5; pp. 832 - 841 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.10.2016
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug‐like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. |
---|---|
AbstractList | Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. Summary Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology.Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. Model organisms subject to dietary restriction ( DR ) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug‐like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP 1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. Summary Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug‐like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. |
Audience | Academic |
Author | Garrett, Theo Hughes, Robert E. Lithgow, Gordon J. Miller, Aaron Lucanic, Mark Yu, Ivan Asadi Shahmirzadi, Azar Holden‐Dye, Lindy Gill, Matthew S. Calahorro, Fernando |
AuthorAffiliation | 3 Center for Biological Sciences Institute for Life Sciences University of Southampton Southampton UK 4 Davis School of Gerontology University of Southern California Los Angeles CA USA 1 Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA 2 Dominican University of California 50 Acacia Avenue San Rafael CA USA 5 Department of Metabolism & Aging The Scripps Research Institute‐Scripps Florida 130 Scripps Way Jupiter FL 33458 |
AuthorAffiliation_xml | – name: 1 Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA – name: 3 Center for Biological Sciences Institute for Life Sciences University of Southampton Southampton UK – name: 4 Davis School of Gerontology University of Southern California Los Angeles CA USA – name: 2 Dominican University of California 50 Acacia Avenue San Rafael CA USA – name: 5 Department of Metabolism & Aging The Scripps Research Institute‐Scripps Florida 130 Scripps Way Jupiter FL 33458 |
Author_xml | – sequence: 1 givenname: Mark surname: Lucanic fullname: Lucanic, Mark organization: Buck Institute for Research on Aging – sequence: 2 givenname: Theo surname: Garrett fullname: Garrett, Theo organization: Buck Institute for Research on Aging – sequence: 3 givenname: Ivan surname: Yu fullname: Yu, Ivan organization: Dominican University of California – sequence: 4 givenname: Fernando surname: Calahorro fullname: Calahorro, Fernando organization: University of Southampton – sequence: 5 givenname: Azar surname: Asadi Shahmirzadi fullname: Asadi Shahmirzadi, Azar organization: University of Southern California – sequence: 6 givenname: Aaron surname: Miller fullname: Miller, Aaron organization: Buck Institute for Research on Aging – sequence: 7 givenname: Matthew S. surname: Gill fullname: Gill, Matthew S. organization: The Scripps Research Institute‐Scripps Florida – sequence: 8 givenname: Robert E. surname: Hughes fullname: Hughes, Robert E. organization: Buck Institute for Research on Aging – sequence: 9 givenname: Lindy surname: Holden‐Dye fullname: Holden‐Dye, Lindy organization: University of Southampton – sequence: 10 givenname: Gordon J. surname: Lithgow fullname: Lithgow, Gordon J. organization: Buck Institute for Research on Aging |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27220516$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1rGzEQhkVJaD7aS35AWOglFOxqJO1qdSkYkyYBQy_tWWi1kqOwltzVOm3-fWbtOG1CqHSQGD3zzoxmTshBTNERcgZ0Cri-GOu6KTCh2DtyDEKKiZKsOni-Q31ETnK-oxSkovw9OWKSMVpCdUxm81u3CtZ0hbFDuDdDSLFIvjCFT6ktWrfu99YclhE592dwsc1FF7zLaxM_kENvuuw-Pp2n5Oe3yx_z68ni-9XNfLaY2KoENmmYtJIz2ZQ1NcoD87WnrVXATEkdE60qOTSOceFaK6pSGqVcDZJz27AWj1Pydae73jQrZFwcetNpzG9l-gedTNAvX2K41ct0r0sKnIJAgYsngT792rg86FXI-HWdiS5tsgaMVnPJ6xLRT6_Qu7TpsfotVSlVs0r8pZamczpEnzCuHUX1TFLUUlKMeU_foHC348djJ31A-wuH838Lfa5w3zQE6A6wfcq5d17bMGx7hMqh00D1OBd6nAu9nQt0-fzKZa_6Jgw7-Ddm9vAfUs_ml4udzyMiesXM |
CitedBy_id | crossref_primary_10_1186_s12915_022_01272_9 crossref_primary_10_1007_s10522_021_09945_8 crossref_primary_10_1007_s11357_019_00108_9 crossref_primary_10_1002_prp2_721 crossref_primary_10_1016_j_toxrep_2021_06_007 crossref_primary_10_1016_j_mad_2016_07_010 crossref_primary_10_1038_s41684_019_0326_6 crossref_primary_10_1007_s11357_021_00416_z crossref_primary_10_12688_f1000research_17196_1 crossref_primary_10_1093_toxsci_kfy181 crossref_primary_10_3390_cells11010100 crossref_primary_10_1007_s11357_023_00867_6 crossref_primary_10_5582_ddt_2018_01018 crossref_primary_10_3390_ph13080164 crossref_primary_10_18632_aging_205743 crossref_primary_10_1016_j_celrep_2019_03_044 crossref_primary_10_1016_j_ddmod_2018_11_001 crossref_primary_10_1186_s13765_022_00685_y crossref_primary_10_1038_ncomms14256 crossref_primary_10_1016_j_mad_2018_08_001 |
Cites_doi | 10.1016/S0896-6273(03)00816-X 10.1101/cshperspect.a004440 10.1523/JNEUROSCI.19-01-00159.1999 10.1534/genetics.166.1.161 10.1089/rej.1.1998.1.327 10.1074/jbc.M112.398362 10.1111/j.1474-9726.2005.00181.x 10.1371/journal.pone.0064297 10.1111/j.1474-9726.2009.00527.x 10.1126/science.1203411 10.1007/s10158-006-0023-1 10.3389/fgene.2015.00077 10.1016/j.cell.2013.09.052 10.1895/wormbook.1.150.1 10.1016/0896-6273(89)90206-7 10.1038/317536a0 10.1016/B978-0-12-394620-1.00006-0 10.1126/science.1156093 10.1038/nature11081 10.1111/j.1474-9726.2006.00202.x 10.1038/45544 10.1093/emboj/16.19.5867 10.1016/j.tcb.2013.04.007 10.1093/genetics/77.1.71 10.1242/jeb.175.1.283 10.1038/nature05837 10.1016/j.cmet.2006.02.012 10.1371/journal.pone.0008482 10.2144/02324bm01 10.1073/pnas.1315466111 10.1074/jbc.C400100200 10.1016/j.cell.2013.05.042 10.1016/j.cell.2010.12.016 10.1073/pnas.95.22.13091 10.1038/nature10007 10.1038/nature05991 10.18632/aging.100564 10.1523/JNEUROSCI.1359-13.2013 10.1016/j.cell.2013.02.035 10.1016/j.exger.2006.06.038 10.1016/j.arr.2012.06.006 10.1038/nature05904 10.1371/journal.pbio.1000356 10.1038/nature13264 10.1371/journal.pone.0008758 10.1016/j.cell.2014.03.051 10.1371/journal.pgen.1000486 10.1534/genetics.103.020230 10.1038/nmeth.2475 10.1016/0896-6273(94)90207-0 10.1093/genetics/141.4.1365 10.1038/nrm3352 |
ContentType | Journal Article |
Copyright | 2016 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. COPYRIGHT 2016 John Wiley & Sons, Inc. Copyright © 2016 The Anatomical Society and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2016 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. – notice: 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. – notice: COPYRIGHT 2016 John Wiley & Sons, Inc. – notice: Copyright © 2016 The Anatomical Society and John Wiley & Sons Ltd |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/acel.12492 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | M. Lucanic et al |
EISSN | 1474-9726 |
EndPage | 841 |
ExternalDocumentID | PMC5013014 4171985451 A707839743 27220516 10_1111_acel_12492 ACEL12492 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH Office of Research Infrastructure Programs funderid: P40 OD010440 – fundername: Ellison Medical Foundation/American Federation of Aging Research Post‐Doctoral Fellowship funderid: BB/L02439X/1 – fundername: Larry L. Hillblom Foundation Grant – fundername: National Institutes of Health (NIH) Training Grant funderid: T32 AG000266; RL1 GM084432; AG036992; UL1024917 – fundername: Interdisciplinary Research Consortium on Geroscience funderid: 1R01AG029631‐01A1 – fundername: NIA NIH HHS grantid: R01 AG036992 – fundername: NIGMS NIH HHS grantid: RL1 GM084432 – fundername: NIA NIH HHS grantid: R01 AG029631 – fundername: NIH HHS grantid: P40 OD010440 – fundername: NIA NIH HHS grantid: T32 AG000266 – fundername: NIH Office of Research Infrastructure Programs grantid: P40 OD010440 – fundername: National Institutes of Health (NIH) Training Grant grantid: T32 AG000266; RL1 GM084432; AG036992; UL1024917 – fundername: Interdisciplinary Research Consortium on Geroscience grantid: 1R01AG029631‐01A1 – fundername: Ellison Medical Foundation/American Federation of Aging Research Post‐Doctoral Fellowship grantid: BB/L02439X/1 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7TK AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c6512-b27c7327b580a9f12f8f0dc912a50e24d9531be234edc4657a99e81733cb2d733 |
IEDL.DBID | M48 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 13:12:20 EDT 2025 Fri Jul 11 08:09:32 EDT 2025 Wed Aug 13 04:46:33 EDT 2025 Tue Jun 17 21:44:12 EDT 2025 Tue Jun 10 20:43:03 EDT 2025 Thu Apr 03 07:00:06 EDT 2025 Tue Jul 01 01:49:12 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Wed Jan 22 16:25:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Aging Caenorhabditis Pharmacogenetics Drug Discovery dietary restriction |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 http://doi.wiley.com/10.1002/tdm_license_1.1 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6512-b27c7327b580a9f12f8f0dc912a50e24d9531be234edc4657a99e81733cb2d733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.12492 |
PMID | 27220516 |
PQID | 1816998264 |
PQPubID | 1036381 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5013014 proquest_miscellaneous_1817837385 proquest_journals_1816998264 gale_infotracmisc_A707839743 gale_infotracacademiconefile_A707839743 pubmed_primary_27220516 crossref_citationtrail_10_1111_acel_12492 crossref_primary_10_1111_acel_12492 wiley_primary_10_1111_acel_12492_ACEL12492 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2004; 167 2004; 166 2012; 287 2012; 487 2013a; 12 2013; 23 2013; 8 2012; 13 1999; 402 2011; 473 2013; 10 1999; 19 2007; 450 2013; 155 1997; 16 2013; 153 1998; 95 2010; 5 1993; 175 2010; 8 1989; 3 2004; 41 2015; 6 1974; 77 2007; 447 2012 2002; 32 2006; 5 2007 2006; 6 2006; 3 2014; 111 2008; 320 2011; 3 2014; 510 2012; 107 2011; 332 2014; 157 2006; 41 2004; 279 2007; 315 2013; 33 1994; 12 2013b; 5 2009; 8 2009; 5 1998; 1 2009; 4 1985; 317 1995; 141 2011; 144 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 Mango SE (e_1_2_7_31_1) 2007 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 Avery L (e_1_2_7_4_1) 1993; 175 e_1_2_7_39_1 Brenner S (e_1_2_7_8_1) 1974; 77 e_1_2_7_6_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Lee RY (e_1_2_7_26_1) 1999; 19 Raizen DM (e_1_2_7_41_1) 1995; 141 18033297 - Nature. 2007 Nov 22;450(7169):553-6 23793570 - Aging (Albany NY). 2013 Jun;5(6):394-411 9870947 - J Neurosci. 1999 Jan 1;19(1):159-67 15140874 - J Biol Chem. 2004 May 21;279(21):21774-8 23791175 - Cell. 2013 Jun 20;153(7):1435-47 24243022 - Cell. 2013 Oct 24;155(3):659-73 24828042 - Nature. 2014 Jun 19;510(7505):397-401 17476212 - Nature. 2007 May 31;447(7144):550-5 23726168 - Trends Cell Biol. 2013 Sep;23(9):409-20 16872777 - Exp Gerontol. 2006 Oct;41(10 ):1032-9 22722842 - Nature. 2012 Jul 5;487(7405):99-103 22771382 - Ageing Res Rev. 2013 Jan;12(1):445-58 24847072 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8143-8 10617200 - Nature. 1999 Dec 16;402(6763):804-9 19793063 - Aging Cell. 2009 Dec;8(6):765-8 19461873 - PLoS Genet. 2009 May;5(5):e1000486 25784926 - Front Genet. 2015 Mar 03;6:77 20041123 - PLoS One. 2009 Dec 29;4(12):e8482 16862440 - Invert Neurosci. 2006 Sep;6(3):105-22 16626389 - Aging Cell. 2006 Apr;5(2):97-108 2642006 - Neuron. 1989 Oct;3(4):473-85 16581001 - Cell Metab. 2006 Apr;3(4):237-45 8155316 - Neuron. 1994 Mar;12(3):483-95 21562563 - Nature. 2011 May 12;473(7346):226-9 22226524 - Methods Cell Biol. 2012;107:177-206 18050503 - WormBook. 2007 Jan 22;:1-26 23666410 - Nat Methods. 2013 Jul;10(7):665-70 23717588 - PLoS One. 2013 May 22;8(5):e64297 9789046 - Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13091-6 2413367 - Nature. 1985 Oct 10-16;317(6037):536-8 9312045 - EMBO J. 1997 Oct 1;16(19):5867-79 23540700 - Cell. 2013 Mar 28;153(1):228-39 22588366 - Nat Rev Mol Cell Biol. 2012 May 16;13(6):397-404 15238517 - Genetics. 2004 Jun;167(2):633-43 15020415 - Genetics. 2004 Jan;166(1):161-9 22628186 - WormBook. 2012 May 21;:1-23 8601480 - Genetics. 1995 Dec;141(4):1365-82 23986249 - J Neurosci. 2013 Aug 28;33(35):14146-59 17538612 - Nature. 2007 May 31;447(7144):545-9 24855942 - Cell. 2014 May 22;157(5):1023-36 20090912 - PLoS One. 2010 Jan 18;5(1):e8758 8440973 - J Exp Biol. 1993 Feb;175:283-97 11962590 - Biotechniques. 2002 Apr;32(4):728-30 17272684 - Science. 2007 Feb 23;315 (5815):1133-7 22875856 - J Biol Chem. 2012 Sep 28;287(40):33191-7 18467592 - Science. 2008 May 9;320(5877):811-4 4366476 - Genetics. 1974 May;77(1):71-94 21474712 - Science. 2011 May 6;332(6030):729-32 21441594 - Cold Spring Harb Perspect Biol. 2011 May 01;3(5):null 20422037 - PLoS Biol. 2010 Apr 20;8(4):e1000356 21215371 - Cell. 2011 Jan 7;144(1):79-91 14715134 - Neuron. 2004 Jan 8;41(1):45-55 |
References_xml | – volume: 450 start-page: 553 year: 2007 end-page: 556 article-title: An antidepressant that extends lifespan in adult publication-title: Nature – volume: 12 start-page: 483 year: 1994 end-page: 495 article-title: Electrical activity and behavior in the pharynx of publication-title: Neuron – volume: 167 start-page: 633 year: 2004 end-page: 643 article-title: The GAR‐3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the pharynx publication-title: Genetics – start-page: 1 year: 2012 end-page: 23 article-title: feeding publication-title: WormBook – volume: 510 start-page: 397 year: 2014 end-page: 401 article-title: The metabolite alpha‐ketoglutarate extends lifespan by inhibiting ATP synthase and TOR publication-title: Nature – volume: 95 start-page: 13091 year: 1998 end-page: 13096 article-title: The genetics of caloric restriction in publication-title: Proc. Natl Acad. Sci. USA – volume: 144 start-page: 79 year: 2011 end-page: 91 article-title: The cell‐non‐autonomous nature of electron transport chain‐mediated longevity publication-title: Cell – volume: 4 start-page: e8482 year: 2009 article-title: AutoEPG: software for the analysis of electrical activity in the microcircuit underpinning feeding behaviour of publication-title: PLoS One – volume: 5 start-page: e1000486 year: 2009 article-title: HIF‐1 modulates dietary restriction‐mediated lifespan extension via IRE‐1 in publication-title: PLoS Genet. – volume: 6 start-page: 105 year: 2006 end-page: 122 article-title: Anatomy, physiology and pharmacology of pharynx: a model to define gene function in a simple neural system publication-title: Invert. Neurosci. – volume: 12 start-page: 445 year: 2013a end-page: 458 article-title: Pharmacological lifespan extension of invertebrates publication-title: Ageing Res. Rev. – volume: 153 start-page: 228 year: 2013 end-page: 239 article-title: Metformin retards aging in by altering microbial folate and methionine metabolism publication-title: Cell – volume: 19 start-page: 159 year: 1999 end-page: 167 article-title: EAT‐4, a homolog of a mammalian sodium‐dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in publication-title: J. Neurosci. – volume: 6 start-page: 77 year: 2015 article-title: Pharmacological classes that extend lifespan of publication-title: Front. Genet. – volume: 8 start-page: e1000356 year: 2010 article-title: Carbon dioxide sensing modulates lifespan and physiology in Drosophila publication-title: PLoS Biol. – volume: 153 start-page: 1435 year: 2013 end-page: 1447 article-title: XBP‐1 is a cell‐nonautonomous regulator of stress resistance and longevity publication-title: Cell – volume: 13 start-page: 397 year: 2012 end-page: 404 article-title: Axis of ageing: telomeres, p53 and mitochondria publication-title: Nat. Rev. Mol. Cell Biol. – volume: 141 start-page: 1365 year: 1995 end-page: 1382 article-title: Interacting genes required for pharyngeal excitation by motor neuron MC in publication-title: Genetics – start-page: 1 year: 2007 end-page: 26 article-title: The pharynx: a model for organogenesis publication-title: WormBook – volume: 473 start-page: 226 year: 2011 end-page: 229 article-title: N‐acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans publication-title: Nature – volume: 3 start-page: 473 year: 1989 end-page: 485 article-title: Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of publication-title: Neuron – volume: 32 start-page: 728 year: 2002 end-page: 730 article-title: PCR fusion‐based approach to create reporter gene constructs for expression analysis in transgenic publication-title: Biotechniques – volume: 5 start-page: e8758 year: 2010 article-title: Metformin induces a dietary restriction‐like state and the oxidative stress response to extend Healthspan via AMPK, LKB1, and SKN‐1 publication-title: PLoS One – volume: 175 start-page: 283 year: 1993 end-page: 297 article-title: Motor neuron M3 controls pharyngeal muscle relaxation timing in publication-title: J. Exp. Biol. – volume: 155 start-page: 659 year: 2013 end-page: 673 article-title: Modular control of glutamatergic neuronal identity in by distinct homeodomain proteins publication-title: Cell – volume: 157 start-page: 1023 year: 2014 end-page: 1036 article-title: TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling publication-title: Cell – volume: 10 start-page: 665 year: 2013 end-page: 670 article-title: The lifespan machine publication-title: Nat. Methods – volume: 320 start-page: 811 year: 2008 end-page: 814 article-title: Regulation of the cellular heat shock response in by thermosensory neurons publication-title: Science – volume: 5 start-page: 394 year: 2013b end-page: 411 article-title: Age‐related micro‐RNA abundance in individual publication-title: Aging (Albany NY) – volume: 332 start-page: 729 year: 2011 end-page: 732 article-title: Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes publication-title: Science – volume: 23 start-page: 409 year: 2013 end-page: 420 article-title: A cytoprotective perspective on longevity regulation publication-title: Trends Cell Biol. – volume: 287 start-page: 33191 year: 2012 end-page: 33197 article-title: Endoplasmic reticulum stress pathway required for immune homeostasis is neurally controlled by arrestin‐1 publication-title: J. Biol. Chem. – volume: 8 start-page: e64297 year: 2013 article-title: NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of adult and larvae publication-title: PLoS One – volume: 107 start-page: 177 year: 2012 end-page: 206 article-title: Laser microsurgery in publication-title: Methods Cell Biol. – volume: 77 start-page: 71 year: 1974 end-page: 94 article-title: The genetics of publication-title: Genetics – volume: 402 start-page: 804 year: 1999 end-page: 809 article-title: Regulation of lifespan by sensory perception in publication-title: Nature – volume: 5 start-page: 97 year: 2006 end-page: 108 article-title: Calorie restriction mimetics: an emerging research field publication-title: Aging Cell – volume: 111 start-page: 8143 year: 2014 end-page: 8148 article-title: Positive and negative gustatory inputs affect Drosophila lifespan partly in parallel to dFOXO signaling publication-title: Proc. Natl Acad. Sci. USA – volume: 41 start-page: 45 year: 2004 end-page: 55 article-title: Regulation of longevity by specific gustatory and olfactory neurons publication-title: Neuron – volume: 41 start-page: 1032 year: 2006 end-page: 1039 article-title: Pharmacology of delayed aging and extended lifespan of publication-title: Exp. Gerontol. – volume: 315 start-page: 1133 year: 2007 end-page: 1137 article-title: Regulation of Drosophila life span by olfaction and food‐derived odors publication-title: Science – volume: 279 start-page: 21774 year: 2004 end-page: 21778 article-title: The M3 receptor‐mediated K(+) current (IKM3), a G(q) protein‐coupled K(+) channel publication-title: J. Biol. Chem. – volume: 1 start-page: 327 year: 1998 end-page: 337 article-title: 2‐Deoxy‐d‐glucose feeding in rats mimics physiological effects of caloric restriction publication-title: J. Anti Aging Med. – volume: 33 start-page: 14146 year: 2013 end-page: 14159 article-title: Extrasynaptic muscarinic acetylcholine receptors on neuronal cell bodies regulate presynaptic function in publication-title: J. Neurosci. – volume: 16 start-page: 5867 year: 1997 end-page: 5879 article-title: avr‐15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in publication-title: EMBO J. – volume: 317 start-page: 536 year: 1985 end-page: 538 article-title: GTP‐binding proteins couple cardiac muscarinic receptors to a K channel publication-title: Nature – volume: 3 year: 2011 article-title: Aging as an event of proteostasis collapse publication-title: Cold Spring Harb. Perspect. Biol. – volume: 8 start-page: 765 year: 2009 end-page: 768 article-title: Oxaloacetate supplementation increases lifespan in through an AMPK/FOXO‐dependent pathway publication-title: Aging Cell – volume: 3 start-page: 237 year: 2006 end-page: 245 article-title: Starvation activates MAP kinase through the muscarinic acetylcholine pathway in pharynx publication-title: Cell Metab. – volume: 166 start-page: 161 year: 2004 end-page: 169 article-title: eat‐2 and eat‐18 are required for nicotinic neurotransmission in the pharynx publication-title: Genetics – volume: 447 start-page: 545 year: 2007 end-page: 549 article-title: Two neurons mediate diet‐restriction‐induced longevity in publication-title: Nature – volume: 487 start-page: 99 year: 2012 end-page: 103 article-title: Compartmentalized calcium dynamics in a interneuron encode head movement publication-title: Nature – volume: 447 start-page: 550 year: 2007 end-page: 555 article-title: PHA‐4/Foxa mediates diet‐restriction‐induced longevity of publication-title: Nature – ident: e_1_2_7_2_1 doi: 10.1016/S0896-6273(03)00816-X – ident: e_1_2_7_51_1 doi: 10.1101/cshperspect.a004440 – volume: 19 start-page: 159 year: 1999 ident: e_1_2_7_26_1 article-title: EAT‐4, a homolog of a mammalian sodium‐dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-01-00159.1999 – ident: e_1_2_7_32_1 doi: 10.1534/genetics.166.1.161 – ident: e_1_2_7_25_1 doi: 10.1089/rej.1.1998.1.327 – ident: e_1_2_7_47_1 doi: 10.1074/jbc.M112.398362 – ident: e_1_2_7_27_1 doi: 10.1111/j.1474-9726.2005.00181.x – ident: e_1_2_7_22_1 doi: 10.1371/journal.pone.0064297 – ident: e_1_2_7_53_1 doi: 10.1111/j.1474-9726.2009.00527.x – ident: e_1_2_7_50_1 doi: 10.1126/science.1203411 – ident: e_1_2_7_19_1 doi: 10.1007/s10158-006-0023-1 – ident: e_1_2_7_10_1 doi: 10.3389/fgene.2015.00077 – ident: e_1_2_7_44_1 doi: 10.1016/j.cell.2013.09.052 – ident: e_1_2_7_6_1 doi: 10.1895/wormbook.1.150.1 – ident: e_1_2_7_5_1 doi: 10.1016/0896-6273(89)90206-7 – ident: e_1_2_7_37_1 doi: 10.1038/317536a0 – ident: e_1_2_7_18_1 doi: 10.1016/B978-0-12-394620-1.00006-0 – ident: e_1_2_7_39_1 doi: 10.1126/science.1156093 – ident: e_1_2_7_20_1 doi: 10.1038/nature11081 – ident: e_1_2_7_23_1 doi: 10.1111/j.1474-9726.2006.00202.x – ident: e_1_2_7_3_1 doi: 10.1038/45544 – ident: e_1_2_7_15_1 doi: 10.1093/emboj/16.19.5867 – ident: e_1_2_7_46_1 doi: 10.1016/j.tcb.2013.04.007 – volume: 77 start-page: 71 year: 1974 ident: e_1_2_7_8_1 article-title: The genetics of Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/77.1.71 – volume: 175 start-page: 283 year: 1993 ident: e_1_2_7_4_1 article-title: Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans publication-title: J. Exp. Biol. doi: 10.1242/jeb.175.1.283 – ident: e_1_2_7_35_1 doi: 10.1038/nature05837 – ident: e_1_2_7_54_1 doi: 10.1016/j.cmet.2006.02.012 – ident: e_1_2_7_16_1 doi: 10.1371/journal.pone.0008482 – ident: e_1_2_7_21_1 doi: 10.2144/02324bm01 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.1315466111 – ident: e_1_2_7_45_1 doi: 10.1074/jbc.C400100200 – ident: e_1_2_7_52_1 doi: 10.1016/j.cell.2013.05.042 – ident: e_1_2_7_17_1 doi: 10.1016/j.cell.2010.12.016 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.95.22.13091 – ident: e_1_2_7_28_1 doi: 10.1038/nature10007 – ident: e_1_2_7_36_1 doi: 10.1038/nature05991 – ident: e_1_2_7_30_1 doi: 10.18632/aging.100564 – ident: e_1_2_7_11_1 doi: 10.1523/JNEUROSCI.1359-13.2013 – ident: e_1_2_7_9_1 doi: 10.1016/j.cell.2013.02.035 – ident: e_1_2_7_14_1 doi: 10.1016/j.exger.2006.06.038 – ident: e_1_2_7_29_1 doi: 10.1016/j.arr.2012.06.006 – ident: e_1_2_7_7_1 doi: 10.1038/nature05904 – start-page: 1 year: 2007 ident: e_1_2_7_31_1 article-title: The C. elegans pharynx: a model for organogenesis publication-title: WormBook – ident: e_1_2_7_38_1 doi: 10.1371/journal.pbio.1000356 – ident: e_1_2_7_13_1 doi: 10.1038/nature13264 – ident: e_1_2_7_33_1 doi: 10.1371/journal.pone.0008758 – ident: e_1_2_7_42_1 doi: 10.1016/j.cell.2014.03.051 – ident: e_1_2_7_12_1 doi: 10.1371/journal.pgen.1000486 – ident: e_1_2_7_48_1 doi: 10.1534/genetics.103.020230 – ident: e_1_2_7_49_1 doi: 10.1038/nmeth.2475 – ident: e_1_2_7_40_1 doi: 10.1016/0896-6273(94)90207-0 – volume: 141 start-page: 1365 year: 1995 ident: e_1_2_7_41_1 article-title: Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/141.4.1365 – ident: e_1_2_7_43_1 doi: 10.1038/nrm3352 – reference: 22771382 - Ageing Res Rev. 2013 Jan;12(1):445-58 – reference: 21441594 - Cold Spring Harb Perspect Biol. 2011 May 01;3(5):null – reference: 20422037 - PLoS Biol. 2010 Apr 20;8(4):e1000356 – reference: 16862440 - Invert Neurosci. 2006 Sep;6(3):105-22 – reference: 21562563 - Nature. 2011 May 12;473(7346):226-9 – reference: 18467592 - Science. 2008 May 9;320(5877):811-4 – reference: 22722842 - Nature. 2012 Jul 5;487(7405):99-103 – reference: 22588366 - Nat Rev Mol Cell Biol. 2012 May 16;13(6):397-404 – reference: 15140874 - J Biol Chem. 2004 May 21;279(21):21774-8 – reference: 22875856 - J Biol Chem. 2012 Sep 28;287(40):33191-7 – reference: 22628186 - WormBook. 2012 May 21;:1-23 – reference: 24847072 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8143-8 – reference: 24855942 - Cell. 2014 May 22;157(5):1023-36 – reference: 9312045 - EMBO J. 1997 Oct 1;16(19):5867-79 – reference: 14715134 - Neuron. 2004 Jan 8;41(1):45-55 – reference: 11962590 - Biotechniques. 2002 Apr;32(4):728-30 – reference: 16626389 - Aging Cell. 2006 Apr;5(2):97-108 – reference: 25784926 - Front Genet. 2015 Mar 03;6:77 – reference: 9870947 - J Neurosci. 1999 Jan 1;19(1):159-67 – reference: 2413367 - Nature. 1985 Oct 10-16;317(6037):536-8 – reference: 19793063 - Aging Cell. 2009 Dec;8(6):765-8 – reference: 18033297 - Nature. 2007 Nov 22;450(7169):553-6 – reference: 19461873 - PLoS Genet. 2009 May;5(5):e1000486 – reference: 16581001 - Cell Metab. 2006 Apr;3(4):237-45 – reference: 17272684 - Science. 2007 Feb 23;315 (5815):1133-7 – reference: 9789046 - Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13091-6 – reference: 24243022 - Cell. 2013 Oct 24;155(3):659-73 – reference: 10617200 - Nature. 1999 Dec 16;402(6763):804-9 – reference: 17476212 - Nature. 2007 May 31;447(7144):550-5 – reference: 23986249 - J Neurosci. 2013 Aug 28;33(35):14146-59 – reference: 8155316 - Neuron. 1994 Mar;12(3):483-95 – reference: 23726168 - Trends Cell Biol. 2013 Sep;23(9):409-20 – reference: 21474712 - Science. 2011 May 6;332(6030):729-32 – reference: 23540700 - Cell. 2013 Mar 28;153(1):228-39 – reference: 15020415 - Genetics. 2004 Jan;166(1):161-9 – reference: 23793570 - Aging (Albany NY). 2013 Jun;5(6):394-411 – reference: 18050503 - WormBook. 2007 Jan 22;:1-26 – reference: 15238517 - Genetics. 2004 Jun;167(2):633-43 – reference: 21215371 - Cell. 2011 Jan 7;144(1):79-91 – reference: 24828042 - Nature. 2014 Jun 19;510(7505):397-401 – reference: 20041123 - PLoS One. 2009 Dec 29;4(12):e8482 – reference: 17538612 - Nature. 2007 May 31;447(7144):545-9 – reference: 16872777 - Exp Gerontol. 2006 Oct;41(10 ):1032-9 – reference: 20090912 - PLoS One. 2010 Jan 18;5(1):e8758 – reference: 23666410 - Nat Methods. 2013 Jul;10(7):665-70 – reference: 23791175 - Cell. 2013 Jun 20;153(7):1435-47 – reference: 23717588 - PLoS One. 2013 May 22;8(5):e64297 – reference: 2642006 - Neuron. 1989 Oct;3(4):473-85 – reference: 8601480 - Genetics. 1995 Dec;141(4):1365-82 – reference: 8440973 - J Exp Biol. 1993 Feb;175:283-97 – reference: 4366476 - Genetics. 1974 May;77(1):71-94 – reference: 22226524 - Methods Cell Biol. 2012;107:177-206 |
SSID | ssj0017903 |
Score | 2.2995296 |
Snippet | Summary
Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health,... Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on... Summary Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health,... Model organisms subject to dietary restriction ( DR ) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 832 |
SubjectTerms | Aging Animals Caenorhabditis Caenorhabditis elegans - physiology Caenorhabditis elegans Proteins - metabolism Caloric Restriction Chloride Channels - metabolism dietary restriction Drug Discovery Feeding Behavior - drug effects Food Deprivation - physiology Glutamate Glutamates - metabolism Health aspects Longevity - drug effects Longevity - physiology Models, Biological Muscle Contraction - drug effects Mutation - genetics Neurophysiology Original Pharmacogenetics Pharynx - drug effects Pharynx - physiology Receptors, Muscarinic - genetics Receptors, Muscarinic - metabolism Signal Transduction - drug effects Small Molecule Libraries - analysis Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS90wFD_4geDLcJtu3dyoTJAJ3dp8NO2T3MkVGVNEJvhW0jRhwqV1u_qw_37npGm1MnxqaU7b5CQ5H8nJ7wDsNzwTUnCWOJ3pRDTWJto5nZTSWYveGHf-LMzZeX56Jb5fy-uw4LYMYZWDTPSCuukMrZF_RU2Uo2uA-vvo9ndCWaNodzWk0FiFdRTBBTpf69_m5xeX4z6CKn1u5EwokZQohgNAKcXyaGMXXyj1MpuopKeC-ZFmeho1-dia9eroZAteBDsynvUd_xJWbPsKNvrMkn9fw2wAAojp4EK_7Bp3Ltax67ompvjX4SlFcCBdvxq-jBc3zqKUabfh6mT-8_g0CdkSEpNLyqTDlFGcqVoWqS5dxlzh0saUGdMytUw0JU632jIusAkil0qXpS0yxbmpWYOXHVhru9a-hTh1VqCQrF1hpFDKFqnSWnK0lshbU3UEnweGVSZAiVNGi0U1uBTE3MozN4JPI-1tD6DxX6oD4ntFswq_ZHQ4HID1IXyqakagRGg6CR7B7oQSZ4OZFg89V4XZuKwexk4Ee2MxvUkRZq3t7j0NfoKwfSJ403f0WF-m6DhylkegJkNgJCCM7mlJe_PLY3VL2hnO8L-HfrA8w4Jqdjz_4e_ePd-G97CJVlveRxTuwtrdn3v7AS2ju_pjGP7_AKcIC2I priority: 102 providerName: ProQuest – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KQeiLVls1WiXFglTIkexHNgFfjtJSpPogFvpSwmazi8UjEe_uof71zuwm8XKIoE8J2cnXZmb2t5uZ3wCcNDwTUnCWOJ3pRDTWJto5nZTSWYuzMe58LszHT_nltfhwI2924P2QCxP4IcYFN7IM76_JwHW93DBybexiRqWTyQFTsBYhos8jdxQxT_noeqFEUqIH7rlJKYzn96mT0WjbJ28MStsBk5tA1o9EF4_gdniHEIDybbZe1TPzc4ve8X9fch8e9hA1ngedegw7tn0CD0LRyvsDmA8cAzHlRIQV3bhzsY5d1zUxhdYORyk4BOXCQvsyXtw5iw6sPYTri_MvZ5dJX4ghMbmkIj1MGcWZqmWR6tJlzBUubUyZMS1Ty0RToiXXlnGBXSRyqXRZ2iJTnJuaNbh5Crtt19rnEKfOCvS_tSuMFErZIlVaS45AjCaCqo7gdPgglelZyqlYxqIaZivUJZXvkgjejLLfAzfHH6Xe0netyGDxSkb3eQf4PER9Vc2J7whRmeARHE0k0dDMtHnQjKo39GWFACnHGSvCygiOx2Y6k4LXWtutvQxegmiDIngWFGl8XqYo0znLI1ATFRsFiP572tLeffU04JJ-Omd433deg_7SBdX87PzK7734F-GXsIfwMA-hi0ewu_qxtq8Qgq3q197UfgHN4is0 priority: 102 providerName: Wiley-Blackwell |
Title | Chemical activation of a food deprivation signal extends lifespan |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12492 https://www.ncbi.nlm.nih.gov/pubmed/27220516 https://www.proquest.com/docview/1816998264 https://www.proquest.com/docview/1817837385 https://pubmed.ncbi.nlm.nih.gov/PMC5013014 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDBddy2AvY91n2u7I2GBskJL4I04exriWK2WspZQd9C04jk0LR7L1A9r_vpIT3y6l7GEvSYiVL1mSJUf-CeBTwzMhBWeJ05lORGNtop3TSSmdtRiNcefXwhwd54dz8eNMnq1BqN85MPDq0dCO6knNLxe7t3_uvqPCfwtZOdrYxS4VUUZTvIEjkiIFPRJ__yao0ldIzoQSSYnGeIApHV9LsMCKlp1S6fOVMeqhpV4Zqh6mUa66t358OngBzwfHMp72krAJa7Z9CU_7UpN3r2AakAFiWsnQz8PGnYt17LquiSkhNpyllA6k66fHr-LFhbNodtrXMD-Y_do_TIbyCYnJJZXWYcoozlQti1SXLmOucGljyoxpmVommhL1r7aMC_wEkUuly9IWmeLc1KzB3RtYb7vWvoM4dVag1axdYaRQyhap0lpydJ8ofFN1BF8CwyozYItTiYtFFWIM4nPl-RzBxyXt7x5R41Gqz8T3ijoe72T0sFoA34cAq6opoRShLyV4BDsjSlQPM24OPVcF6arQrckxzkRnMIIPy2a6klLOWtvdeBq8BYH9RPC27-jl-wZBiUCNRGBJQKDd45b24tyDd0v6VZzhc796YfkHC6rp_uynP9r678dswzP08PI--3AH1q8vb-x79KKu6wk8YeJkAht7s-OT04mfi6DtKZt45bkHfnUdgQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FC2iL4U743WGlERhdhkLpnkochat2ztdhFpoW9xMpmhhSWpbov0p_xGz8nNpkjf-hYyJ8nkzLnOnAvAm4JHQgrOAqcjHYjC2kA7p4NUOmvRG-OuzoU5mMfTI_H1WB6vwJ8uF4bCKjuZWAvqojK0R76FmihG1wD196eznwF1jaLT1a6FRkMW-_byN7psy-29L7i-bxnbnRzuTIO2q0BgYkkdZ5gyijOVyyTUqYuYS1xYmDRiWoaWiSJFsswt48IWRsRS6TS1SaQ4NzkrFG2AoshfFRxdmRGsfp7Mv33vzy1UWvdijoQSQYpivy2ISrFD2tjFR2r1zAYq8LoiuKIJr0dpXrWea_W3ex_WWrvVHzeE9gBWbPkQ7jSdLC8fwbgrPOBTokSzzetXzte-q6rCp3jb7i5FjCBcs_u-9BenzqJUKx_D0a3g8QmMyqq06-CHzgoUyrlLjBRK2SRUWkuO1hl5hyr34H2HsMy0pcupg8Yi61wYQm5WI9eD1z3sWVOw479Q7wjvGXExvsnoNhkB50P1sLIxFUFCU01wDzYGkMh9ZjjcrVzWcv8y-0erHrzqh-lJimgrbXVRw-ArqJaQB0-bhe7nyxSlP0exB2pAAj0A1QQfjpSnJ3VtcEkn0RF-90NNLDegIBvvTGb11bOb_-El3J0eHsyy2d58_zncQ4sxbqIZN2B0_uvCvkCr7DzfbFnBhx-3zX1_AflGRsM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ta9YwED_GhuKX4XztnFpREIVKm5emBb-UuYepc_jBR4ZfQpombPDQjr188L_3Ln3Z0yGCn1qaS5tecpdLcvc7gDcNz4QUnCXeZCYRjXOJ8d4kpfTO4WqM-xAL8-04P1yKLyfyZAM-jrEwPT7EtOFGkhH0NQn4eePXhNxYt_pAqZNRAW8RTB6O6a3q5_LXcjpFUGXIjJwJJZISlfAAT0qePDe1ZxPSbbW8Ni_d9plct2XDZLS4D9uDFRlXfbfvwIZrH8CdPq_k74dQjTAAMYUt9JuucedjE_uua2Lyfh2fkv8G0vV74Zfx6sw71DHtI1guDn7sHyZDroTE5pLy6DBlFWeqlkVqSp8xX_i0sWXGjEwdE02JwlY7xgX-gsilMmXpikxxbmvW4OUxbLZd655CnHonUEXWvrBSKOWKVBkjOdpKtFZTdQTvRoZpOwCJUz6LlR4XFMRcHZgbweuJ9ryHz_gr1VviuyaZwjdZM4QGYHsInUpXBEmEhpPgEezNKFEW7Lx47Dk9yOKlRhsmx0UlWn4RvJqKqSb5l7Wuuw40-ApC9ongSd_RU3uZomDkLI9AzYbAREAI3fOS9uw0IHVLOhfO8Lvvw2D5Bwt0tX9wFO52_4f4Jdz9_mmhjz4ff30G99CYy3tHwz3YvLq4ds_RYLqqXwxy8QdvDg86 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+activation+of+a+food+deprivation+signal+extends+lifespan&rft.jtitle=Aging+cell&rft.au=Lucanic%2C+Mark&rft.au=Garrett%2C+Theo&rft.au=Yu%2C+Ivan&rft.au=Calahorro%2C+Fernando&rft.date=2016-10-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=15&rft.issue=5&rft.spage=832&rft.epage=841&rft_id=info:doi/10.1111%2Facel.12492&rft_id=info%3Apmid%2F27220516&rft.externalDocID=PMC5013014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |