A multi-site, multi-disorder resting-state magnetic resonance image database

Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable class...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 8; no. 1; pp. 227 - 15
Main Authors Tanaka, Saori C., Yamashita, Ayumu, Yahata, Noriaki, Itahashi, Takashi, Lisi, Giuseppe, Yamada, Takashi, Ichikawa, Naho, Takamura, Masahiro, Yoshihara, Yujiro, Kunimatsu, Akira, Okada, Naohiro, Hashimoto, Ryuichiro, Okada, Go, Sakai, Yuki, Morimoto, Jun, Narumoto, Jin, Shimada, Yasuhiro, Mano, Hiroaki, Yoshida, Wako, Seymour, Ben, Shimizu, Takeshi, Hosomi, Koichi, Saitoh, Youichi, Kasai, Kiyoto, Kato, Nobumasa, Takahashi, Hidehiko, Okamoto, Yasumasa, Yamashita, Okito, Kawato, Mitsuo, Imamizu, Hiroshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset. Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging Factor Type(s) age • sex • site • disorder Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14716329
AbstractList Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants ("traveling subjects") visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.
Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset. Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging Factor Type(s) age • sex • site • disorder Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14716329
Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset. Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging Factor Type(s) age • sex • site • disorder Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.14716329
Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants ("traveling subjects") visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants ("traveling subjects") visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.
Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging Factor Type(s) age • sex • site • disorder Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14716329
Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.Measurement(s)mental or behavioural disorder • brain measurement • Demographic DataTechnology Type(s)functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance ImagingFactor Type(s)age • sex • site • disorderSample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14716329
ArticleNumber 227
Author Ichikawa, Naho
Yamada, Takashi
Shimizu, Takeshi
Narumoto, Jin
Lisi, Giuseppe
Okada, Go
Yoshida, Wako
Tanaka, Saori C.
Takahashi, Hidehiko
Saitoh, Youichi
Yamashita, Ayumu
Kasai, Kiyoto
Okamoto, Yasumasa
Shimada, Yasuhiro
Yahata, Noriaki
Sakai, Yuki
Kunimatsu, Akira
Kawato, Mitsuo
Hosomi, Koichi
Itahashi, Takashi
Okada, Naohiro
Hashimoto, Ryuichiro
Yoshihara, Yujiro
Kato, Nobumasa
Takamura, Masahiro
Morimoto, Jun
Seymour, Ben
Imamizu, Hiroshi
Mano, Hiroaki
Yamashita, Okito
Author_xml – sequence: 1
  givenname: Saori C.
  orcidid: 0000-0002-7001-5051
  surname: Tanaka
  fullname: Tanaka, Saori C.
  email: xsaori@atr.jp
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International
– sequence: 2
  givenname: Ayumu
  orcidid: 0000-0003-3825-2919
  surname: Yamashita
  fullname: Yamashita, Ayumu
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Psychiatry, Boston University School of Medicine
– sequence: 3
  givenname: Noriaki
  surname: Yahata
  fullname: Yahata, Noriaki
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology
– sequence: 4
  givenname: Takashi
  orcidid: 0000-0001-7606-7090
  surname: Itahashi
  fullname: Itahashi, Takashi
  organization: Medical Institute of Developmental Disabilities Research, Showa University
– sequence: 5
  givenname: Giuseppe
  surname: Lisi
  fullname: Lisi, Giuseppe
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International
– sequence: 6
  givenname: Takashi
  surname: Yamada
  fullname: Yamada, Takashi
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Medical Institute of Developmental Disabilities Research, Showa University
– sequence: 7
  givenname: Naho
  orcidid: 0000-0003-2659-329X
  surname: Ichikawa
  fullname: Ichikawa, Naho
  organization: Brain, Mind and KANSEI Sciences Research Center, Hiroshima University
– sequence: 8
  givenname: Masahiro
  orcidid: 0000-0001-9742-152X
  surname: Takamura
  fullname: Takamura, Masahiro
  organization: Brain, Mind and KANSEI Sciences Research Center, Hiroshima University
– sequence: 9
  givenname: Yujiro
  surname: Yoshihara
  fullname: Yoshihara, Yujiro
  organization: Department of Psychiatry, Kyoto University Graduate School of Medicine
– sequence: 10
  givenname: Akira
  orcidid: 0000-0002-7141-2585
  surname: Kunimatsu
  fullname: Kunimatsu, Akira
  organization: Department of Radiology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Department of Radiology, Graduate School of Medicine, The University of Tokyo
– sequence: 11
  givenname: Naohiro
  surname: Okada
  fullname: Okada, Naohiro
  organization: Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, The International Research Center for Neurointelligence (WPI-IRCN) at the University of Tokyo Institutes for Advanced Study (UTIAS)
– sequence: 12
  givenname: Ryuichiro
  orcidid: 0000-0002-9661-3412
  surname: Hashimoto
  fullname: Hashimoto, Ryuichiro
  organization: Medical Institute of Developmental Disabilities Research, Showa University, Department of Language Sciences, Tokyo Metropolitan University
– sequence: 13
  givenname: Go
  surname: Okada
  fullname: Okada, Go
  organization: Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
– sequence: 14
  givenname: Yuki
  surname: Sakai
  fullname: Sakai, Yuki
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
– sequence: 15
  givenname: Jun
  surname: Morimoto
  fullname: Morimoto, Jun
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Systems Science, Graduate School of Informatics, Kyoto University
– sequence: 16
  givenname: Jin
  surname: Narumoto
  fullname: Narumoto, Jin
  organization: Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
– sequence: 17
  givenname: Yasuhiro
  orcidid: 0000-0001-9281-0200
  surname: Shimada
  fullname: Shimada, Yasuhiro
  organization: Brain Activity Imaging Center, ATR-Promotions Inc
– sequence: 18
  givenname: Hiroaki
  surname: Mano
  fullname: Mano, Hiroaki
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Laboratory of Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University
– sequence: 19
  givenname: Wako
  surname: Yoshida
  fullname: Yoshida, Wako
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Systems Science, Graduate School of Informatics, Kyoto University
– sequence: 20
  givenname: Ben
  surname: Seymour
  fullname: Seymour, Ben
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Laboratory of Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University, The Wellcome Centre for Integrative Neuroimaging, University of Oxford
– sequence: 21
  givenname: Takeshi
  orcidid: 0000-0002-0122-5186
  surname: Shimizu
  fullname: Shimizu, Takeshi
  organization: Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 22
  givenname: Koichi
  surname: Hosomi
  fullname: Hosomi, Koichi
  organization: Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 23
  givenname: Youichi
  surname: Saitoh
  fullname: Saitoh, Youichi
  organization: Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 24
  givenname: Kiyoto
  surname: Kasai
  fullname: Kasai, Kiyoto
  organization: Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, The International Research Center for Neurointelligence (WPI-IRCN) at the University of Tokyo Institutes for Advanced Study (UTIAS)
– sequence: 25
  givenname: Nobumasa
  surname: Kato
  fullname: Kato, Nobumasa
  organization: Medical Institute of Developmental Disabilities Research, Showa University
– sequence: 26
  givenname: Hidehiko
  surname: Takahashi
  fullname: Takahashi, Hidehiko
  organization: Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University
– sequence: 27
  givenname: Yasumasa
  surname: Okamoto
  fullname: Okamoto, Yasumasa
  organization: Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
– sequence: 28
  givenname: Okito
  surname: Yamashita
  fullname: Yamashita, Okito
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Advanced Intelligence Project, RIKEN
– sequence: 29
  givenname: Mitsuo
  orcidid: 0000-0001-8185-1197
  surname: Kawato
  fullname: Kawato, Mitsuo
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Advanced Intelligence Project, RIKEN
– sequence: 30
  givenname: Hiroshi
  orcidid: 0000-0003-1024-0051
  surname: Imamizu
  fullname: Imamizu, Hiroshi
  organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34462444$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustq3TAUFCUlSW_zA10UQzdd1K3eljeFEPoIXMgmeyHJx64uvlIq2YX8feX45rnIRhKjmdHonPMOHYUYAKEPBH8lmKlvmRPRNjWmpMYEY16rN-iUYkFrziU7enI-QWc57zDGhHEsGnyMTljBKef8FG3Pq_08Tr7OfoIvh3Pnc0wdpCpBnnwY6jyZCaq9GQJM3i1wDCY4qHzBoOrMZKzJ8B697c2Y4eywb9D1zx_XF7_r7dWvy4vzbe2kwFMNTU8Es9hRxXvJO6kYOGNag5nkuKeN6Zu-ByUcNY1rHe-tlZTZlmPreMs26HK17aLZ6ZtUQqRbHY3Xd0BMgzap5BxBc24bI5RsCQdugbaSFmsKolMFcLZ4fV-9bma7h85BmJIZn5k-vwn-jx7iP62WWipaDD4fDFL8O5d66b3PDsbRBIhz1lTIplWqLIX66QV1F-cUSqUWliRciNLaDfr4NNFDlPueFQJdCS7FnBP0DxSC9TIbep0NXWZD382GVkWkXoicL031cfmVH1-XslWayzthgPQY-xXVf2r0zYY
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120594
crossref_primary_10_1016_j_biopsych_2024_10_007
crossref_primary_10_1016_j_neuroimage_2022_119800
crossref_primary_10_3389_fnins_2024_1385920
crossref_primary_10_1162_imag_a_00042
crossref_primary_10_1016_j_media_2024_103388
crossref_primary_10_1038_s41467_024_50267_3
crossref_primary_10_1111_ejn_16120
crossref_primary_10_1016_j_ins_2024_121376
crossref_primary_10_1126_sciadv_adk6063
crossref_primary_10_1002_hbm_26558
crossref_primary_10_1080_27706710_2024_2403477
crossref_primary_10_1016_j_jad_2023_04_082
crossref_primary_10_1016_j_neuroimage_2023_120125
crossref_primary_10_1109_TMI_2024_3419041
crossref_primary_10_1111_pcn_13717
crossref_primary_10_3390_app13031753
crossref_primary_10_1016_j_eclinm_2023_102276
crossref_primary_10_1080_00952990_2022_2116712
crossref_primary_10_1186_s13293_024_00615_1
crossref_primary_10_3389_fpsyt_2024_1288808
crossref_primary_10_1038_s41598_023_46073_4
crossref_primary_10_1109_JIOT_2023_3325822
crossref_primary_10_1002_hbm_25899
crossref_primary_10_1016_j_cmpb_2024_108419
crossref_primary_10_1016_j_neunet_2024_106147
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1016_j_neunet_2024_107039
crossref_primary_10_1016_j_neunet_2025_107335
crossref_primary_10_1111_pcn_13542
crossref_primary_10_1016_j_media_2023_102799
crossref_primary_10_1038_s41467_023_39142_9
crossref_primary_10_1038_s41386_025_02064_9
crossref_primary_10_1038_s41598_024_84152_2
crossref_primary_10_1017_S0033291724000254
crossref_primary_10_1126_sciadv_ado8837
crossref_primary_10_1016_j_nicl_2023_103345
crossref_primary_10_3389_fnins_2022_889105
crossref_primary_10_1016_j_neubiorev_2025_106063
crossref_primary_10_1016_j_biopsych_2023_03_024
crossref_primary_10_1016_j_patter_2024_101081
crossref_primary_10_1016_j_ipm_2024_103961
crossref_primary_10_1016_j_neuroimage_2022_119297
crossref_primary_10_1093_cercor_bhad178
crossref_primary_10_54097_hset_v30i_4978
crossref_primary_10_1371_journal_pbio_3001627
crossref_primary_10_3390_app12146925
crossref_primary_10_1016_j_jbi_2025_104784
crossref_primary_10_57197_JDR_2024_0101
crossref_primary_10_3390_brainsci12091219
crossref_primary_10_1016_j_media_2025_103455
crossref_primary_10_3390_brainsci15030313
crossref_primary_10_1038_s41380_024_02759_3
crossref_primary_10_1093_schbul_sbad022
crossref_primary_10_1016_j_bbr_2024_115386
crossref_primary_10_1017_S0033291725000418
Cites_doi 10.1162/jocn_a_00077
10.1038/sdata.2016.44
10.1073/pnas.0905267106
10.1371/journal.pbio.3000042
10.7303/syn22317079
10.1016/j.biopsych.2009.10.008
10.1093/schbul/sbaa021
10.7303/syn22317082
10.1176/appi.ajp.2015.14091200
10.1038/s41598-020-60527-z
10.1038/ng.2711
10.7303/syn22317078
10.7303/syn22317081
10.1016/j.neuroimage.2011.10.018
10.1038/s41598-017-07792-7
10.1038/nature15692
10.1038/ncomms11254
10.1111/j.1440-1819.1995.tb01875.x
10.1176/appi.books.9780890425596
10.1017/S0033291703001399
10.1016/j.neuroimage.2016.02.079
10.1001/jamapsychiatry.2014.2206
10.1176/appi.ajp.2017.16040400
10.12688/wellcomeopenres.15191.2
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41597-021-01004-8
DatabaseName Springer Nature Link Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 15
ExternalDocumentID oai_doaj_org_article_44b7a586914e4be29627ff2e5d84e4cb
PMC8405782
34462444
10_1038_s41597_021_01004_8
Genre Research Support, Non-U.S. Gov't
Dataset
Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP20dm0307008; JP20dm0307002; JP20dm0307009; JP20dm0307004
  funderid: https://doi.org/10.13039/100009619
– fundername: JP17dm0107044, JP20dm0307004, JP20dm0307008, JP20dm0307002, and JP20dm0307009 by the Japan Agency for Medical Research and Development (AMED)
– fundername: Versus Arthritis
  grantid: 21537
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP20dm0307004
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP20dm0307008
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP20dm0307009
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP20dm0307002
– fundername: ;
– fundername: ;
  grantid: JP20dm0307008; JP20dm0307002; JP20dm0307009; JP20dm0307004
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c650t-e7f153b0c284f64d683ecaa9a03640f27af7ffe85c2a7c9c4fbb623b940bc493
IEDL.DBID M48
ISSN 2052-4463
IngestDate Wed Aug 27 01:30:57 EDT 2025
Thu Aug 21 18:15:48 EDT 2025
Thu Jul 10 20:34:54 EDT 2025
Wed Aug 13 01:46:10 EDT 2025
Mon Jul 21 06:03:09 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 03:49:00 EDT 2025
Fri Feb 21 02:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c650t-e7f153b0c284f64d683ecaa9a03640f27af7ffe85c2a7c9c4fbb623b940bc493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0001-9742-152X
0000-0001-8185-1197
0000-0003-2659-329X
0000-0001-9281-0200
0000-0003-1024-0051
0000-0003-3825-2919
0000-0002-0122-5186
0000-0002-9661-3412
0000-0002-7141-2585
0000-0002-7001-5051
0000-0001-7606-7090
OpenAccessLink https://www.proquest.com/docview/2566145510?pq-origsite=%requestingapplication%
PMID 34462444
PQID 2566145510
PQPubID 2041912
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_44b7a586914e4be29627ff2e5d84e4cb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8405782
proquest_miscellaneous_2567988679
proquest_journals_2566145510
pubmed_primary_34462444
crossref_primary_10_1038_s41597_021_01004_8
crossref_citationtrail_10_1038_s41597_021_01004_8
springer_journals_10_1038_s41597_021_01004_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-30
PublicationDateYYYYMMDD 2021-08-30
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References InselTRCuthbertBNEndophenotypes: bridging genomic complexity and disorder heterogeneityBiol. Psychiatry20096698898910.1016/j.biopsych.2009.10.008
NakajimaTReliability and validity of the Japanese version of the Yale-Brown Obsessive-Compulsive ScalePsychiatry Clin Neurosci1995491211261:STN:280:DyaK28zksVegtQ%3D%3D10.1111/j.1440-1819.1995.tb01875.x
PoldrackRAFarahMJProgress and challenges in probing the human brainNature20155263713792015Natur.526..371P1:CAS:528:DC%2BC2MXhs1KqtL%2FO10.1038/nature15692
World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems. 10th Revision. 2nd edn (World Health Organization, 2004).
McTeagueLMIdentification of common neural circuit disruptions in cognitive control across psychiatric disordersAm. J. Psychiatry201717467668510.1176/appi.ajp.2017.16040400
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Association, 2013).
SheehanDVThe Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10J Clin Psychiatry.199859Suppl 2022339881538
YamashitaAHarmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement biasPLoS Biol.201917e30000421:CAS:528:DC%2BC1MXhtlWmt7zM10.1371/journal.pbio.3000042
SmithSMCorrespondence of the brain’s functional architecture during activation and restProc. Natl. Acad. Sci. USA200910613040130452009PNAS..10613040S1:CAS:528:DC%2BD1MXhtVKru7%2FJ10.1073/pnas.0905267106
ClementzBAIdentification of distinct psychosis biotypes using brain-based biomarkersAm. J. Psychiatry201617337338410.1176/appi.ajp.2015.14091200
GorgolewskiKJThe brain imaging data structure, a format for organizing and describing outputs of neuroimaging experimentsSci. Data2016310.1038/sdata.2016.44
ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: Promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079
JacobiFPrevalence, co-morbidity and correlates of mental disorders in the general population: Results from the German Health Interview and Examination Survey (GHS)Psychol. Med.2004345976111:STN:280:DC%2BD2c3gtleitA%3D%3D10.1017/S0033291703001399
GoodkindMIdentification of a common neurobiological substrate for mental illnessJAMA Psychiatry20157230531510.1001/jamapsychiatry.2014.2206
TanakaSCSRPBS Multi-disorder MRI Dataset (unrestricted)202010.7303/syn22317081Synapse
AllenMRaincloud plots: a multi-platform tool for robust data visualizationWellcome Open Res.202146310.12688/wellcomeopenres.15191.2
TakagiYA neural marker of obsessive-compulsive disorder from whole-brain functional connectivitySci. Rep.201772017NatSR...7.7538T10.1038/s41598-017-07792-7
IchikawaNPrimary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressantsSci. Rep.2020102020NatSR..10.3542I1:CAS:528:DC%2BB3cXlvVKrs7c%3D10.1038/s41598-020-60527-z
YahataNA small number of abnormal brain connections predicts adult autism spectrum disorderNat. Commun.201672016NatCo...711254Y1:CAS:528:DC%2BC28Xmt1SisL0%3D10.1038/ncomms11254
PowerJDSpurious but systematic correlations in functional connectivity MRI networks arise from subject motionNeuroimage2012592142215410.1016/j.neuroimage.2011.10.018
TanakaS. CSRPBS Multi-disorder Connectivity Dataset201710.7303/syn22317078Synapse
TanakaSCSRPBS Multi-disorder MRI Dataset (restricted)201910.7303/syn22317079Synapse
Cross-Disorder Group of the Psychiatric Genomics ConsortiumGenetic relationship between five psychiatric disorders estimated from genome-wide SNPsNat. Genet.20134598499410.1038/ng.2711
Merskey, H. and Bogduk, N. Classification of Chronic Pain. 2nd Edition, IASP Task Force on Taxonomy. IASP Press, Seattle (1994).
YoshiharaYOverlapping but asymmetrical relationships between schizophrenia and autism revealed by brain connectivitySchizophr. Bull.2020461210121810.1093/schbul/sbaa021
LairdARBehavioral interpretations of intrinsic connectivity networksJ. Cogn. Neurosci.2011234022403710.1162/jocn_a_00077
TanakaSCSRPBS Traveling Subject MRI Dataset201910.7303/syn22317082Synapse
LM McTeague (1004_CR6) 2017; 174
M Goodkind (1004_CR3) 2015; 72
Y Takagi (1004_CR16) 2017; 7
TR Insel (1004_CR7) 2009; 66
Cross-Disorder Group of the Psychiatric Genomics Consortium (1004_CR5) 2013; 45
N Yahata (1004_CR13) 2016; 7
S. C Tanaka (1004_CR18) 2017
1004_CR23
BA Clementz (1004_CR11) 2016; 173
KJ Gorgolewski (1004_CR26) 2016; 3
AR Laird (1004_CR9) 2011; 23
Y Yoshihara (1004_CR15) 2020; 46
SM Smith (1004_CR8) 2009; 106
N Ichikawa (1004_CR14) 2020; 10
A Yamashita (1004_CR17) 2019; 17
SC Tanaka (1004_CR20) 2020
1004_CR1
MR Arbabshirani (1004_CR12) 2017; 145
SC Tanaka (1004_CR21) 2019
1004_CR2
T Nakajima (1004_CR24) 1995; 49
DV Sheehan (1004_CR22) 1998; 59
SC Tanaka (1004_CR19) 2019
M Allen (1004_CR27) 2021; 4
F Jacobi (1004_CR4) 2004; 34
RA Poldrack (1004_CR10) 2015; 526
JD Power (1004_CR25) 2012; 59
References_xml – reference: GorgolewskiKJThe brain imaging data structure, a format for organizing and describing outputs of neuroimaging experimentsSci. Data2016310.1038/sdata.2016.44
– reference: TanakaSCSRPBS Multi-disorder MRI Dataset (restricted)201910.7303/syn22317079Synapse
– reference: TanakaSCSRPBS Traveling Subject MRI Dataset201910.7303/syn22317082Synapse
– reference: YoshiharaYOverlapping but asymmetrical relationships between schizophrenia and autism revealed by brain connectivitySchizophr. Bull.2020461210121810.1093/schbul/sbaa021
– reference: McTeagueLMIdentification of common neural circuit disruptions in cognitive control across psychiatric disordersAm. J. Psychiatry201717467668510.1176/appi.ajp.2017.16040400
– reference: JacobiFPrevalence, co-morbidity and correlates of mental disorders in the general population: Results from the German Health Interview and Examination Survey (GHS)Psychol. Med.2004345976111:STN:280:DC%2BD2c3gtleitA%3D%3D10.1017/S0033291703001399
– reference: Cross-Disorder Group of the Psychiatric Genomics ConsortiumGenetic relationship between five psychiatric disorders estimated from genome-wide SNPsNat. Genet.20134598499410.1038/ng.2711
– reference: LairdARBehavioral interpretations of intrinsic connectivity networksJ. Cogn. Neurosci.2011234022403710.1162/jocn_a_00077
– reference: SheehanDVThe Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10J Clin Psychiatry.199859Suppl 2022339881538
– reference: YamashitaAHarmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement biasPLoS Biol.201917e30000421:CAS:528:DC%2BC1MXhtlWmt7zM10.1371/journal.pbio.3000042
– reference: AllenMRaincloud plots: a multi-platform tool for robust data visualizationWellcome Open Res.202146310.12688/wellcomeopenres.15191.2
– reference: TanakaS. CSRPBS Multi-disorder Connectivity Dataset201710.7303/syn22317078Synapse
– reference: PoldrackRAFarahMJProgress and challenges in probing the human brainNature20155263713792015Natur.526..371P1:CAS:528:DC%2BC2MXhs1KqtL%2FO10.1038/nature15692
– reference: TakagiYA neural marker of obsessive-compulsive disorder from whole-brain functional connectivitySci. Rep.201772017NatSR...7.7538T10.1038/s41598-017-07792-7
– reference: PowerJDSpurious but systematic correlations in functional connectivity MRI networks arise from subject motionNeuroimage2012592142215410.1016/j.neuroimage.2011.10.018
– reference: Merskey, H. and Bogduk, N. Classification of Chronic Pain. 2nd Edition, IASP Task Force on Taxonomy. IASP Press, Seattle (1994).
– reference: NakajimaTReliability and validity of the Japanese version of the Yale-Brown Obsessive-Compulsive ScalePsychiatry Clin Neurosci1995491211261:STN:280:DyaK28zksVegtQ%3D%3D10.1111/j.1440-1819.1995.tb01875.x
– reference: YahataNA small number of abnormal brain connections predicts adult autism spectrum disorderNat. Commun.201672016NatCo...711254Y1:CAS:528:DC%2BC28Xmt1SisL0%3D10.1038/ncomms11254
– reference: American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Association, 2013).
– reference: ClementzBAIdentification of distinct psychosis biotypes using brain-based biomarkersAm. J. Psychiatry201617337338410.1176/appi.ajp.2015.14091200
– reference: ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: Promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079
– reference: IchikawaNPrimary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressantsSci. Rep.2020102020NatSR..10.3542I1:CAS:528:DC%2BB3cXlvVKrs7c%3D10.1038/s41598-020-60527-z
– reference: World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems. 10th Revision. 2nd edn (World Health Organization, 2004).
– reference: SmithSMCorrespondence of the brain’s functional architecture during activation and restProc. Natl. Acad. Sci. USA200910613040130452009PNAS..10613040S1:CAS:528:DC%2BD1MXhtVKru7%2FJ10.1073/pnas.0905267106
– reference: InselTRCuthbertBNEndophenotypes: bridging genomic complexity and disorder heterogeneityBiol. Psychiatry20096698898910.1016/j.biopsych.2009.10.008
– reference: GoodkindMIdentification of a common neurobiological substrate for mental illnessJAMA Psychiatry20157230531510.1001/jamapsychiatry.2014.2206
– reference: TanakaSCSRPBS Multi-disorder MRI Dataset (unrestricted)202010.7303/syn22317081Synapse
– ident: 1004_CR23
– ident: 1004_CR2
– volume: 23
  start-page: 4022
  year: 2011
  ident: 1004_CR9
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00077
– volume: 3
  year: 2016
  ident: 1004_CR26
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.44
– volume: 106
  start-page: 13040
  year: 2009
  ident: 1004_CR8
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905267106
– volume: 17
  start-page: e3000042
  year: 2019
  ident: 1004_CR17
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000042
– year: 2019
  ident: 1004_CR19
  doi: 10.7303/syn22317079
– volume: 66
  start-page: 988
  year: 2009
  ident: 1004_CR7
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2009.10.008
– volume: 46
  start-page: 1210
  year: 2020
  ident: 1004_CR15
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbaa021
– year: 2019
  ident: 1004_CR21
  doi: 10.7303/syn22317082
– volume: 173
  start-page: 373
  year: 2016
  ident: 1004_CR11
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2015.14091200
– volume: 10
  year: 2020
  ident: 1004_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60527-z
– volume: 45
  start-page: 984
  year: 2013
  ident: 1004_CR5
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2711
– year: 2017
  ident: 1004_CR18
  doi: 10.7303/syn22317078
– year: 2020
  ident: 1004_CR20
  doi: 10.7303/syn22317081
– volume: 59
  start-page: 2142
  year: 2012
  ident: 1004_CR25
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 7
  year: 2017
  ident: 1004_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07792-7
– volume: 59
  start-page: 22
  issue: Suppl 20
  year: 1998
  ident: 1004_CR22
  publication-title: J Clin Psychiatry.
– volume: 526
  start-page: 371
  year: 2015
  ident: 1004_CR10
  publication-title: Nature
  doi: 10.1038/nature15692
– volume: 7
  year: 2016
  ident: 1004_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11254
– volume: 49
  start-page: 121
  year: 1995
  ident: 1004_CR24
  publication-title: Psychiatry Clin Neurosci
  doi: 10.1111/j.1440-1819.1995.tb01875.x
– ident: 1004_CR1
  doi: 10.1176/appi.books.9780890425596
– volume: 34
  start-page: 597
  year: 2004
  ident: 1004_CR4
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291703001399
– volume: 145
  start-page: 137
  year: 2017
  ident: 1004_CR12
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 72
  start-page: 305
  year: 2015
  ident: 1004_CR3
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2014.2206
– volume: 174
  start-page: 676
  year: 2017
  ident: 1004_CR6
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2017.16040400
– volume: 4
  start-page: 63
  year: 2021
  ident: 1004_CR27
  publication-title: Wellcome Open Res.
  doi: 10.12688/wellcomeopenres.15191.2
SSID ssj0001340570
Score 2.5300727
Snippet Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as...
Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 227
SubjectTerms 631/378/3920
692/53/2421
692/699/375
692/699/476
Adult
Brain - diagnostic imaging
Brain mapping
Data Descriptor
Databases, Factual
Datasets
Female
Functional magnetic resonance imaging
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Male
Medical imaging
Mental disorders
Mental Disorders - diagnostic imaging
Middle Aged
multidisciplinary
Neural networks
Neuroimaging
Patients
Science
Science (multidisciplinary)
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLfQnnhBG1_rGKhIPIBYtFybNunjQEwT2ni6SXuL8uGOSayHuNv_j53mjruxjRdeqspJ1cixa6e2fwZ4RxZXYlQookYvVFRB-IluRfSdR4WG5Iarkc--tSfn6utFc7HW6otzwkZ44JFxh0p57RrTdhOFymPFzWL6vsImGiIEz19fsnlrh6n0d6VmR0TmKhlZm8M5WSoGHq349MzZF2bDEiXA_ru8zL-TJW9FTJMhOt6GJ9mDLI_Gle_AIxyewk7W0Xn5PgNJf3gGp0dlyhcUHCE-yPcxw22W3JSDXiBSSVF57S4Hrmdk8oxBOLC8IhqWnELKpu45TI-_TD-fiNw9QQTyuhYCdU9fMy8DGaC-VbE1NQbnOseRR9lX2vXESDRNqJwOXVC99-QL-Y52J6iufgFbw2zAXShDQ0ou0Td9VErGzreBjDoaTdtsnNYFTJaMtCEji3ODix82RbhrY0fmW2K-Tcy3poCPq2d-jrgaD87-xPuzmsmY2IlAkmKzpNh_SUoB-8vdtVlR55Y8vpax2ieygLerYVIxjpu4AWc3aQ6jutGlgJejMKxWUtNxmjwkVYDeEJONpW6ODFffE4y3YRE1VQEHS4H6s6z7WbH3P1jxCh5XSROMqOU-bC1-3eBrcq4W_k3So9_cph-S
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BuXBBLc_0gYLEAUStZhMndk5VQVQVAk5F2pvlx7hUKknpbv9_Z7zeXS2PXqLIcRRnHp6xZ_wNwFuyuBUGiSIodEIG6YWbqE4E1zuUqElu-DTyt-_d2Q_5ZdpO84bbLKdVLufENFGH0fMe-RGZ5o5BtSfV8fVvwVWjOLqaS2g8hEcMXcYpXWqq1nssDbsjVT4rUzX6aEb2iuFHa15Dcw6G3rBHCbb_X77m3ymTf8RNkzk63YYn2Y8sTxaM34EHODyFnayps_JdhpN-_wy-npQpa1Dwnxzm-5BBN0suzUEfEOlgUfnLXgx8qpGbR4biwPKS2rDkRFI2eM_h_PTz-aczkWsoCE--11ygijSnucqTGYqdDJ1u0FvbW44_VrFWNqoYUbe-tsr3XkbnyCNyPfHIy755AVvDOOArKH1Lql6ha2OQsgq96zwxBLUiZmurVAGTJSGNz_jiXObiyqQ4d6PNgviGiG8S8Y0u4MPqnesFusa9vT8yf1Y9GRk7NYw3FyYrmpHSKdvqrqexSYc1FxeKscY2aGrwroD9JXdNVteZWQtXAW9Wj0nROHpiBxxvUx_GdqNLAS8XwrAaSUOLavKTZAFqQ0w2hrr5ZLj8mcC8NYuorgs4XArUelj_J8Xu_X-xB4_rJONaNNU-bM1vbvGAnKe5e5005A5XWRbN
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcuGCWp6BgoLEAUQtvIkTO8eyoqoQcCpSb5Yf41IJsqi7_f-d8TpbLRQkLlHkOMpo_E1mkpn5DPCaPK7EqFBEjV6oqILwM92L6AePCg3hhruRv3ztT76pT2fd2Q40Uy9MLtrPlJb5NT1Vh71fkqNh3tCGP365eMLcgbtM3c6onvfzm_8qLYcgsvTHyNbccuuWD8pU_bfFl3-WSf6WK80u6HgP7pfYsT5aS7sPOzg-gP1incv6TaGQfvsQPh_VuVJQcG74sJzHQrRZ83Yc9ACRm4nqn-585E5GHl4w_QbWFzSGNRePspN7BKfHH0_nJ6LsmyACxVsrgTrRe8zLQK4n9Sr2psXg3OA45yhTo13SKaHpQuN0GIJK3lMU5Adal6CG9jHsjosRn0IdOjJvib5LUSkZB98HcudoNC2wcVpXMJsUaUPhFOetLX7YnNtujV0r35LybVa-NRW829zza82o8c_ZH3h9NjOZDTsPLC7PbUGHVcpr15l-INmUx4Y3FEqpwS4aGgi-goNpdW0x0aWlWK9nlvaZrODV5jIZF2dM3IiLqzyH-dzoUMGTNRg2krSEPYqNVAV6CyZbom5fGS--ZwJvwxA1TQWHE6BuxPq7Kp793_TncK_JmDeilQewu7q8whcUQK38y2wx15KqFI8
  priority: 102
  providerName: Springer Nature
Title A multi-site, multi-disorder resting-state magnetic resonance image database
URI https://link.springer.com/article/10.1038/s41597-021-01004-8
https://www.ncbi.nlm.nih.gov/pubmed/34462444
https://www.proquest.com/docview/2566145510
https://www.proquest.com/docview/2567988679
https://pubmed.ncbi.nlm.nih.gov/PMC8405782
https://doaj.org/article/44b7a586914e4be29627ff2e5d84e4cb
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t44UXxPgMjCpIPICYIXWc2HlAqKs2TRWbEGxS36zYscekkULbSfDfc-c4RYWCeGmqi9Oezne5s8_3O4Dn6HEz1wjHGukME42wzAxlyRpTGSecQr2hauTTs_LkQkymxXQL-nZHUYCLjUs76id1Mb9-_f3bj3do8G-7knH1ZoFOiDBFOS2M6WCF2oZd9EySDPU0hvthzyWn8IS2XXhWcIYroTzW0Wz-mTVfFSD9N8Whfx6n_C2nGlzV8R24HWPMdNQpxR5sufYu7EUrXqQvItT0y3vwfpSGE4WMcsgH8XsTATlTatuBf8BC0VH6pb5sqeKRyDOC6XDpFdJcSodMyRneh_Pjo_PxCYv9FZjFuGzJnPT4vjOZRRflS9GUKne2rquacpOZ57L20nunCstraSsrvDEYLZkK58-KKn8AO-2sdY8gtQW-BjJnCt8IkTWVKS26fackKoKqpUxg2AtS24g9Ti0wrnXIgedKd8LXKHwdhK9VAq9Wz3ztkDf-OfqQ5mc1klCzA2E2v9TRCLUQRtaFKivkTRjHqfGQ99wVjUKCNQns97Ore03UGBOWhOY-zBJ4trqNRkiZlbp1s5swhnDf8COBh50yrDjJUc0whhIJyDU1WWN1_U579TkAfStSV8UTOOgV6hdbfxfF4_9g8wnc4kHRFcuzfdhZzm_cU4yulmYA23IqB7A7Gk0-TfB6eHT24SNSx-V4EHYsBsGofgLyxyPU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEOUZKBAkkEDUajZxYueAUAuttnS7QmiRerNix24rQVK6WyF-FP-RGcfZ1fLorZdV5DhaZ_zNw7HnG4AX6HETW3PLamE14zU3TA9FwWpdasutRNxQNvLRpBh94R-P8-M1-NXnwtCxyt4mekNdt4a-kW-jay6IVHuYvDv_zqhqFO2u9iU0Olgc2p8_cMk2e3vwAef3ZZru703fj1ioKsAMRiNzZoVDLdeJQcPsCl4XMrOmqsqKduQSl4rKCeeszE1aCVMa7rTGGEGXOGrDiXsJLf46z3AlM4D13b3Jp8_LjzoZxT9JSM5JMrk9QwdJfKcpLdrp0IdccYC-TsC_gtu_z2j-sVHr_d_-bbgVAtd4p0PaBqzZ5g5sBNMwi18F_urXd2G8E_tjioxEtxWu68DyGVMtEPwD5jOZ4m_VSUNplNTcEveHjc-wzcZ0cpU87D2YXod478OgaRv7EGKTo21JrM5dzXlSl7owiAArBaJLVkJEMOwFqUwgNKe6Gl-V31jPpOqEr1D4ygtfyQjeLJ457-g8ruy9S_Oz6ElU3L6hvThRQbMV51pUuSxKHBvXNqVqRs6lNq8lNhgdwWY_uyrYh5laojmC54vbqNm0XVM1tr30fYhMDn8ieNCBYTGSDFfxGJjxCMQKTFaGunqnOTv17OGSICrTCLZ6QC2H9X9RPLr6LZ7BjdH0aKzGB5PDx3Az9XiXLEs2YTC_uLRPMHKb66dBX2JQ16yhvwG-NVWO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJcEOUZKBAkkEDU2mzixM4BoUJZtbRUHIq0Nyt-tZUgKd2tED-Nf8eM4-xqefTWyypyHK0z_ubhePwNwHP0uJmz3DErnGbccsP0WFTM6lo77iTihk4jfzqsdr_wj9Nyuga_hrMwlFY52MRgqG1n6Bv5CF1zRaTa42zkY1rE553J27PvjCpI0U7rUE6jh8i--_kDl2-zN3s7ONcv8nzy4ej9LosVBpjByGTOnPCo8TozaKR9xW0lC2eapm5ody7zuWi88N7J0uSNMLXhXmuMF3SNb2A48TCh9b8minJMKiamYvl5p6BIKIvHdLJCjmboKon5NKflO6V_yBVXGCoG_CvM_Ttb848t2-AJJ7fgZgxh0-0ecxuw5trbsBGNxCx9GZmsX92Bg-00JCwyEtxWvLaR7zOlqiD4ByycaUq_NcctHaik5o5YQFx6im0upRxW8rV34egqhHsP1tuudQ8gNSVamczp0lvOM1vryiAWnBSIM9kIkcB4EKQykdqcKmx8VWGLvZCqF75C4asgfCUTeL145qwn9ri09zuan0VPIuUODd35sYo6rjjXoillVePYuHY51TXyPnelldhgdAKbw-yqaClmaonrBJ4tbqOO08ZN07ruIvQhWjn8SeB-D4bFSApcz2OIxhMQKzBZGerqnfb0JPCIS4KozBPYGgC1HNb_RfHw8rd4CtdRL9XB3uH-I7iRB7hLVmSbsD4_v3CPMYSb6ydBWVJQV6ycvwHe0Vhe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-site%2C+multi-disorder+resting-state+magnetic+resonance+image+database&rft.jtitle=Scientific+data&rft.au=Tanaka%2C+Saori+C&rft.au=Yamashita%2C+Ayumu&rft.au=Yahata%2C+Noriaki&rft.au=Itahashi%2C+Takashi&rft.date=2021-08-30&rft.issn=2052-4463&rft.eissn=2052-4463&rft.volume=8&rft.issue=1&rft.spage=227&rft_id=info:doi/10.1038%2Fs41597-021-01004-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon