A multi-site, multi-disorder resting-state magnetic resonance image database
Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable class...
Saved in:
Published in | Scientific data Vol. 8; no. 1; pp. 227 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.08.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.
Measurement(s)
mental or behavioural disorder • brain measurement • Demographic Data
Technology Type(s)
functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging
Factor Type(s)
age • sex • site • disorder
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14716329 |
---|---|
AbstractList | Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants ("traveling subjects") visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset. Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset. Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging Factor Type(s) age • sex • site • disorder Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14716329 Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset. Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging Factor Type(s) age • sex • site • disorder Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.14716329 Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants ("traveling subjects") visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants ("traveling subjects") visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset. Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance Imaging Factor Type(s) age • sex • site • disorder Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14716329 Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants (“traveling subjects”) visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.Measurement(s)mental or behavioural disorder • brain measurement • Demographic DataTechnology Type(s)functional magnetic resonance imaging • magnetic resonance imaging • Resting State Functional Connectivity Magnetic Resonance ImagingFactor Type(s)age • sex • site • disorderSample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14716329 |
ArticleNumber | 227 |
Author | Ichikawa, Naho Yamada, Takashi Shimizu, Takeshi Narumoto, Jin Lisi, Giuseppe Okada, Go Yoshida, Wako Tanaka, Saori C. Takahashi, Hidehiko Saitoh, Youichi Yamashita, Ayumu Kasai, Kiyoto Okamoto, Yasumasa Shimada, Yasuhiro Yahata, Noriaki Sakai, Yuki Kunimatsu, Akira Kawato, Mitsuo Hosomi, Koichi Itahashi, Takashi Okada, Naohiro Hashimoto, Ryuichiro Yoshihara, Yujiro Kato, Nobumasa Takamura, Masahiro Morimoto, Jun Seymour, Ben Imamizu, Hiroshi Mano, Hiroaki Yamashita, Okito |
Author_xml | – sequence: 1 givenname: Saori C. orcidid: 0000-0002-7001-5051 surname: Tanaka fullname: Tanaka, Saori C. email: xsaori@atr.jp organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International – sequence: 2 givenname: Ayumu orcidid: 0000-0003-3825-2919 surname: Yamashita fullname: Yamashita, Ayumu organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Psychiatry, Boston University School of Medicine – sequence: 3 givenname: Noriaki surname: Yahata fullname: Yahata, Noriaki organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology – sequence: 4 givenname: Takashi orcidid: 0000-0001-7606-7090 surname: Itahashi fullname: Itahashi, Takashi organization: Medical Institute of Developmental Disabilities Research, Showa University – sequence: 5 givenname: Giuseppe surname: Lisi fullname: Lisi, Giuseppe organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International – sequence: 6 givenname: Takashi surname: Yamada fullname: Yamada, Takashi organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Medical Institute of Developmental Disabilities Research, Showa University – sequence: 7 givenname: Naho orcidid: 0000-0003-2659-329X surname: Ichikawa fullname: Ichikawa, Naho organization: Brain, Mind and KANSEI Sciences Research Center, Hiroshima University – sequence: 8 givenname: Masahiro orcidid: 0000-0001-9742-152X surname: Takamura fullname: Takamura, Masahiro organization: Brain, Mind and KANSEI Sciences Research Center, Hiroshima University – sequence: 9 givenname: Yujiro surname: Yoshihara fullname: Yoshihara, Yujiro organization: Department of Psychiatry, Kyoto University Graduate School of Medicine – sequence: 10 givenname: Akira orcidid: 0000-0002-7141-2585 surname: Kunimatsu fullname: Kunimatsu, Akira organization: Department of Radiology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Department of Radiology, Graduate School of Medicine, The University of Tokyo – sequence: 11 givenname: Naohiro surname: Okada fullname: Okada, Naohiro organization: Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, The International Research Center for Neurointelligence (WPI-IRCN) at the University of Tokyo Institutes for Advanced Study (UTIAS) – sequence: 12 givenname: Ryuichiro orcidid: 0000-0002-9661-3412 surname: Hashimoto fullname: Hashimoto, Ryuichiro organization: Medical Institute of Developmental Disabilities Research, Showa University, Department of Language Sciences, Tokyo Metropolitan University – sequence: 13 givenname: Go surname: Okada fullname: Okada, Go organization: Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University – sequence: 14 givenname: Yuki surname: Sakai fullname: Sakai, Yuki organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine – sequence: 15 givenname: Jun surname: Morimoto fullname: Morimoto, Jun organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Systems Science, Graduate School of Informatics, Kyoto University – sequence: 16 givenname: Jin surname: Narumoto fullname: Narumoto, Jin organization: Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine – sequence: 17 givenname: Yasuhiro orcidid: 0000-0001-9281-0200 surname: Shimada fullname: Shimada, Yasuhiro organization: Brain Activity Imaging Center, ATR-Promotions Inc – sequence: 18 givenname: Hiroaki surname: Mano fullname: Mano, Hiroaki organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Laboratory of Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University – sequence: 19 givenname: Wako surname: Yoshida fullname: Yoshida, Wako organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Systems Science, Graduate School of Informatics, Kyoto University – sequence: 20 givenname: Ben surname: Seymour fullname: Seymour, Ben organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Laboratory of Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University, The Wellcome Centre for Integrative Neuroimaging, University of Oxford – sequence: 21 givenname: Takeshi orcidid: 0000-0002-0122-5186 surname: Shimizu fullname: Shimizu, Takeshi organization: Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 22 givenname: Koichi surname: Hosomi fullname: Hosomi, Koichi organization: Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 23 givenname: Youichi surname: Saitoh fullname: Saitoh, Youichi organization: Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 24 givenname: Kiyoto surname: Kasai fullname: Kasai, Kiyoto organization: Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, The International Research Center for Neurointelligence (WPI-IRCN) at the University of Tokyo Institutes for Advanced Study (UTIAS) – sequence: 25 givenname: Nobumasa surname: Kato fullname: Kato, Nobumasa organization: Medical Institute of Developmental Disabilities Research, Showa University – sequence: 26 givenname: Hidehiko surname: Takahashi fullname: Takahashi, Hidehiko organization: Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University – sequence: 27 givenname: Yasumasa surname: Okamoto fullname: Okamoto, Yasumasa organization: Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University – sequence: 28 givenname: Okito surname: Yamashita fullname: Yamashita, Okito organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Advanced Intelligence Project, RIKEN – sequence: 29 givenname: Mitsuo orcidid: 0000-0001-8185-1197 surname: Kawato fullname: Kawato, Mitsuo organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Center for Advanced Intelligence Project, RIKEN – sequence: 30 givenname: Hiroshi orcidid: 0000-0003-1024-0051 surname: Imamizu fullname: Imamizu, Hiroshi organization: Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34462444$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustq3TAUFCUlSW_zA10UQzdd1K3eljeFEPoIXMgmeyHJx64uvlIq2YX8feX45rnIRhKjmdHonPMOHYUYAKEPBH8lmKlvmRPRNjWmpMYEY16rN-iUYkFrziU7enI-QWc57zDGhHEsGnyMTljBKef8FG3Pq_08Tr7OfoIvh3Pnc0wdpCpBnnwY6jyZCaq9GQJM3i1wDCY4qHzBoOrMZKzJ8B697c2Y4eywb9D1zx_XF7_r7dWvy4vzbe2kwFMNTU8Es9hRxXvJO6kYOGNag5nkuKeN6Zu-ByUcNY1rHe-tlZTZlmPreMs26HK17aLZ6ZtUQqRbHY3Xd0BMgzap5BxBc24bI5RsCQdugbaSFmsKolMFcLZ4fV-9bma7h85BmJIZn5k-vwn-jx7iP62WWipaDD4fDFL8O5d66b3PDsbRBIhz1lTIplWqLIX66QV1F-cUSqUWliRciNLaDfr4NNFDlPueFQJdCS7FnBP0DxSC9TIbep0NXWZD382GVkWkXoicL031cfmVH1-XslWayzthgPQY-xXVf2r0zYY |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120594 crossref_primary_10_1016_j_biopsych_2024_10_007 crossref_primary_10_1016_j_neuroimage_2022_119800 crossref_primary_10_3389_fnins_2024_1385920 crossref_primary_10_1162_imag_a_00042 crossref_primary_10_1016_j_media_2024_103388 crossref_primary_10_1038_s41467_024_50267_3 crossref_primary_10_1111_ejn_16120 crossref_primary_10_1016_j_ins_2024_121376 crossref_primary_10_1126_sciadv_adk6063 crossref_primary_10_1002_hbm_26558 crossref_primary_10_1080_27706710_2024_2403477 crossref_primary_10_1016_j_jad_2023_04_082 crossref_primary_10_1016_j_neuroimage_2023_120125 crossref_primary_10_1109_TMI_2024_3419041 crossref_primary_10_1111_pcn_13717 crossref_primary_10_3390_app13031753 crossref_primary_10_1016_j_eclinm_2023_102276 crossref_primary_10_1080_00952990_2022_2116712 crossref_primary_10_1186_s13293_024_00615_1 crossref_primary_10_3389_fpsyt_2024_1288808 crossref_primary_10_1038_s41598_023_46073_4 crossref_primary_10_1109_JIOT_2023_3325822 crossref_primary_10_1002_hbm_25899 crossref_primary_10_1016_j_cmpb_2024_108419 crossref_primary_10_1016_j_neunet_2024_106147 crossref_primary_10_3390_bioengineering10040397 crossref_primary_10_1016_j_neunet_2024_107039 crossref_primary_10_1016_j_neunet_2025_107335 crossref_primary_10_1111_pcn_13542 crossref_primary_10_1016_j_media_2023_102799 crossref_primary_10_1038_s41467_023_39142_9 crossref_primary_10_1038_s41386_025_02064_9 crossref_primary_10_1038_s41598_024_84152_2 crossref_primary_10_1017_S0033291724000254 crossref_primary_10_1126_sciadv_ado8837 crossref_primary_10_1016_j_nicl_2023_103345 crossref_primary_10_3389_fnins_2022_889105 crossref_primary_10_1016_j_neubiorev_2025_106063 crossref_primary_10_1016_j_biopsych_2023_03_024 crossref_primary_10_1016_j_patter_2024_101081 crossref_primary_10_1016_j_ipm_2024_103961 crossref_primary_10_1016_j_neuroimage_2022_119297 crossref_primary_10_1093_cercor_bhad178 crossref_primary_10_54097_hset_v30i_4978 crossref_primary_10_1371_journal_pbio_3001627 crossref_primary_10_3390_app12146925 crossref_primary_10_1016_j_jbi_2025_104784 crossref_primary_10_57197_JDR_2024_0101 crossref_primary_10_3390_brainsci12091219 crossref_primary_10_1016_j_media_2025_103455 crossref_primary_10_3390_brainsci15030313 crossref_primary_10_1038_s41380_024_02759_3 crossref_primary_10_1093_schbul_sbad022 crossref_primary_10_1016_j_bbr_2024_115386 crossref_primary_10_1017_S0033291725000418 |
Cites_doi | 10.1162/jocn_a_00077 10.1038/sdata.2016.44 10.1073/pnas.0905267106 10.1371/journal.pbio.3000042 10.7303/syn22317079 10.1016/j.biopsych.2009.10.008 10.1093/schbul/sbaa021 10.7303/syn22317082 10.1176/appi.ajp.2015.14091200 10.1038/s41598-020-60527-z 10.1038/ng.2711 10.7303/syn22317078 10.7303/syn22317081 10.1016/j.neuroimage.2011.10.018 10.1038/s41598-017-07792-7 10.1038/nature15692 10.1038/ncomms11254 10.1111/j.1440-1819.1995.tb01875.x 10.1176/appi.books.9780890425596 10.1017/S0033291703001399 10.1016/j.neuroimage.2016.02.079 10.1001/jamapsychiatry.2014.2206 10.1176/appi.ajp.2017.16040400 10.12688/wellcomeopenres.15191.2 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41597-021-01004-8 |
DatabaseName | Springer Nature Link Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_44b7a586914e4be29627ff2e5d84e4cb PMC8405782 34462444 10_1038_s41597_021_01004_8 |
Genre | Research Support, Non-U.S. Gov't Dataset Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20dm0307008; JP20dm0307002; JP20dm0307009; JP20dm0307004 funderid: https://doi.org/10.13039/100009619 – fundername: JP17dm0107044, JP20dm0307004, JP20dm0307008, JP20dm0307002, and JP20dm0307009 by the Japan Agency for Medical Research and Development (AMED) – fundername: Versus Arthritis grantid: 21537 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20dm0307004 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20dm0307008 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20dm0307009 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20dm0307002 – fundername: ; – fundername: ; grantid: JP20dm0307008; JP20dm0307002; JP20dm0307009; JP20dm0307004 |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c650t-e7f153b0c284f64d683ecaa9a03640f27af7ffe85c2a7c9c4fbb623b940bc493 |
IEDL.DBID | M48 |
ISSN | 2052-4463 |
IngestDate | Wed Aug 27 01:30:57 EDT 2025 Thu Aug 21 18:15:48 EDT 2025 Thu Jul 10 20:34:54 EDT 2025 Wed Aug 13 01:46:10 EDT 2025 Mon Jul 21 06:03:09 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 03:49:00 EDT 2025 Fri Feb 21 02:37:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c650t-e7f153b0c284f64d683ecaa9a03640f27af7ffe85c2a7c9c4fbb623b940bc493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0001-9742-152X 0000-0001-8185-1197 0000-0003-2659-329X 0000-0001-9281-0200 0000-0003-1024-0051 0000-0003-3825-2919 0000-0002-0122-5186 0000-0002-9661-3412 0000-0002-7141-2585 0000-0002-7001-5051 0000-0001-7606-7090 |
OpenAccessLink | https://www.proquest.com/docview/2566145510?pq-origsite=%requestingapplication% |
PMID | 34462444 |
PQID | 2566145510 |
PQPubID | 2041912 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_44b7a586914e4be29627ff2e5d84e4cb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8405782 proquest_miscellaneous_2567988679 proquest_journals_2566145510 pubmed_primary_34462444 crossref_primary_10_1038_s41597_021_01004_8 crossref_citationtrail_10_1038_s41597_021_01004_8 springer_journals_10_1038_s41597_021_01004_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-30 |
PublicationDateYYYYMMDD | 2021-08-30 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | InselTRCuthbertBNEndophenotypes: bridging genomic complexity and disorder heterogeneityBiol. Psychiatry20096698898910.1016/j.biopsych.2009.10.008 NakajimaTReliability and validity of the Japanese version of the Yale-Brown Obsessive-Compulsive ScalePsychiatry Clin Neurosci1995491211261:STN:280:DyaK28zksVegtQ%3D%3D10.1111/j.1440-1819.1995.tb01875.x PoldrackRAFarahMJProgress and challenges in probing the human brainNature20155263713792015Natur.526..371P1:CAS:528:DC%2BC2MXhs1KqtL%2FO10.1038/nature15692 World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems. 10th Revision. 2nd edn (World Health Organization, 2004). McTeagueLMIdentification of common neural circuit disruptions in cognitive control across psychiatric disordersAm. J. Psychiatry201717467668510.1176/appi.ajp.2017.16040400 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Association, 2013). SheehanDVThe Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10J Clin Psychiatry.199859Suppl 2022339881538 YamashitaAHarmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement biasPLoS Biol.201917e30000421:CAS:528:DC%2BC1MXhtlWmt7zM10.1371/journal.pbio.3000042 SmithSMCorrespondence of the brain’s functional architecture during activation and restProc. Natl. Acad. Sci. USA200910613040130452009PNAS..10613040S1:CAS:528:DC%2BD1MXhtVKru7%2FJ10.1073/pnas.0905267106 ClementzBAIdentification of distinct psychosis biotypes using brain-based biomarkersAm. J. Psychiatry201617337338410.1176/appi.ajp.2015.14091200 GorgolewskiKJThe brain imaging data structure, a format for organizing and describing outputs of neuroimaging experimentsSci. Data2016310.1038/sdata.2016.44 ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: Promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079 JacobiFPrevalence, co-morbidity and correlates of mental disorders in the general population: Results from the German Health Interview and Examination Survey (GHS)Psychol. Med.2004345976111:STN:280:DC%2BD2c3gtleitA%3D%3D10.1017/S0033291703001399 GoodkindMIdentification of a common neurobiological substrate for mental illnessJAMA Psychiatry20157230531510.1001/jamapsychiatry.2014.2206 TanakaSCSRPBS Multi-disorder MRI Dataset (unrestricted)202010.7303/syn22317081Synapse AllenMRaincloud plots: a multi-platform tool for robust data visualizationWellcome Open Res.202146310.12688/wellcomeopenres.15191.2 TakagiYA neural marker of obsessive-compulsive disorder from whole-brain functional connectivitySci. Rep.201772017NatSR...7.7538T10.1038/s41598-017-07792-7 IchikawaNPrimary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressantsSci. Rep.2020102020NatSR..10.3542I1:CAS:528:DC%2BB3cXlvVKrs7c%3D10.1038/s41598-020-60527-z YahataNA small number of abnormal brain connections predicts adult autism spectrum disorderNat. Commun.201672016NatCo...711254Y1:CAS:528:DC%2BC28Xmt1SisL0%3D10.1038/ncomms11254 PowerJDSpurious but systematic correlations in functional connectivity MRI networks arise from subject motionNeuroimage2012592142215410.1016/j.neuroimage.2011.10.018 TanakaS. CSRPBS Multi-disorder Connectivity Dataset201710.7303/syn22317078Synapse TanakaSCSRPBS Multi-disorder MRI Dataset (restricted)201910.7303/syn22317079Synapse Cross-Disorder Group of the Psychiatric Genomics ConsortiumGenetic relationship between five psychiatric disorders estimated from genome-wide SNPsNat. Genet.20134598499410.1038/ng.2711 Merskey, H. and Bogduk, N. Classification of Chronic Pain. 2nd Edition, IASP Task Force on Taxonomy. IASP Press, Seattle (1994). YoshiharaYOverlapping but asymmetrical relationships between schizophrenia and autism revealed by brain connectivitySchizophr. Bull.2020461210121810.1093/schbul/sbaa021 LairdARBehavioral interpretations of intrinsic connectivity networksJ. Cogn. Neurosci.2011234022403710.1162/jocn_a_00077 TanakaSCSRPBS Traveling Subject MRI Dataset201910.7303/syn22317082Synapse LM McTeague (1004_CR6) 2017; 174 M Goodkind (1004_CR3) 2015; 72 Y Takagi (1004_CR16) 2017; 7 TR Insel (1004_CR7) 2009; 66 Cross-Disorder Group of the Psychiatric Genomics Consortium (1004_CR5) 2013; 45 N Yahata (1004_CR13) 2016; 7 S. C Tanaka (1004_CR18) 2017 1004_CR23 BA Clementz (1004_CR11) 2016; 173 KJ Gorgolewski (1004_CR26) 2016; 3 AR Laird (1004_CR9) 2011; 23 Y Yoshihara (1004_CR15) 2020; 46 SM Smith (1004_CR8) 2009; 106 N Ichikawa (1004_CR14) 2020; 10 A Yamashita (1004_CR17) 2019; 17 SC Tanaka (1004_CR20) 2020 1004_CR1 MR Arbabshirani (1004_CR12) 2017; 145 SC Tanaka (1004_CR21) 2019 1004_CR2 T Nakajima (1004_CR24) 1995; 49 DV Sheehan (1004_CR22) 1998; 59 SC Tanaka (1004_CR19) 2019 M Allen (1004_CR27) 2021; 4 F Jacobi (1004_CR4) 2004; 34 RA Poldrack (1004_CR10) 2015; 526 JD Power (1004_CR25) 2012; 59 |
References_xml | – reference: GorgolewskiKJThe brain imaging data structure, a format for organizing and describing outputs of neuroimaging experimentsSci. Data2016310.1038/sdata.2016.44 – reference: TanakaSCSRPBS Multi-disorder MRI Dataset (restricted)201910.7303/syn22317079Synapse – reference: TanakaSCSRPBS Traveling Subject MRI Dataset201910.7303/syn22317082Synapse – reference: YoshiharaYOverlapping but asymmetrical relationships between schizophrenia and autism revealed by brain connectivitySchizophr. Bull.2020461210121810.1093/schbul/sbaa021 – reference: McTeagueLMIdentification of common neural circuit disruptions in cognitive control across psychiatric disordersAm. J. Psychiatry201717467668510.1176/appi.ajp.2017.16040400 – reference: JacobiFPrevalence, co-morbidity and correlates of mental disorders in the general population: Results from the German Health Interview and Examination Survey (GHS)Psychol. Med.2004345976111:STN:280:DC%2BD2c3gtleitA%3D%3D10.1017/S0033291703001399 – reference: Cross-Disorder Group of the Psychiatric Genomics ConsortiumGenetic relationship between five psychiatric disorders estimated from genome-wide SNPsNat. Genet.20134598499410.1038/ng.2711 – reference: LairdARBehavioral interpretations of intrinsic connectivity networksJ. Cogn. Neurosci.2011234022403710.1162/jocn_a_00077 – reference: SheehanDVThe Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10J Clin Psychiatry.199859Suppl 2022339881538 – reference: YamashitaAHarmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement biasPLoS Biol.201917e30000421:CAS:528:DC%2BC1MXhtlWmt7zM10.1371/journal.pbio.3000042 – reference: AllenMRaincloud plots: a multi-platform tool for robust data visualizationWellcome Open Res.202146310.12688/wellcomeopenres.15191.2 – reference: TanakaS. CSRPBS Multi-disorder Connectivity Dataset201710.7303/syn22317078Synapse – reference: PoldrackRAFarahMJProgress and challenges in probing the human brainNature20155263713792015Natur.526..371P1:CAS:528:DC%2BC2MXhs1KqtL%2FO10.1038/nature15692 – reference: TakagiYA neural marker of obsessive-compulsive disorder from whole-brain functional connectivitySci. Rep.201772017NatSR...7.7538T10.1038/s41598-017-07792-7 – reference: PowerJDSpurious but systematic correlations in functional connectivity MRI networks arise from subject motionNeuroimage2012592142215410.1016/j.neuroimage.2011.10.018 – reference: Merskey, H. and Bogduk, N. Classification of Chronic Pain. 2nd Edition, IASP Task Force on Taxonomy. IASP Press, Seattle (1994). – reference: NakajimaTReliability and validity of the Japanese version of the Yale-Brown Obsessive-Compulsive ScalePsychiatry Clin Neurosci1995491211261:STN:280:DyaK28zksVegtQ%3D%3D10.1111/j.1440-1819.1995.tb01875.x – reference: YahataNA small number of abnormal brain connections predicts adult autism spectrum disorderNat. Commun.201672016NatCo...711254Y1:CAS:528:DC%2BC28Xmt1SisL0%3D10.1038/ncomms11254 – reference: American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Association, 2013). – reference: ClementzBAIdentification of distinct psychosis biotypes using brain-based biomarkersAm. J. Psychiatry201617337338410.1176/appi.ajp.2015.14091200 – reference: ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: Promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079 – reference: IchikawaNPrimary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressantsSci. Rep.2020102020NatSR..10.3542I1:CAS:528:DC%2BB3cXlvVKrs7c%3D10.1038/s41598-020-60527-z – reference: World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems. 10th Revision. 2nd edn (World Health Organization, 2004). – reference: SmithSMCorrespondence of the brain’s functional architecture during activation and restProc. Natl. Acad. Sci. USA200910613040130452009PNAS..10613040S1:CAS:528:DC%2BD1MXhtVKru7%2FJ10.1073/pnas.0905267106 – reference: InselTRCuthbertBNEndophenotypes: bridging genomic complexity and disorder heterogeneityBiol. Psychiatry20096698898910.1016/j.biopsych.2009.10.008 – reference: GoodkindMIdentification of a common neurobiological substrate for mental illnessJAMA Psychiatry20157230531510.1001/jamapsychiatry.2014.2206 – reference: TanakaSCSRPBS Multi-disorder MRI Dataset (unrestricted)202010.7303/syn22317081Synapse – ident: 1004_CR23 – ident: 1004_CR2 – volume: 23 start-page: 4022 year: 2011 ident: 1004_CR9 publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00077 – volume: 3 year: 2016 ident: 1004_CR26 publication-title: Sci. Data doi: 10.1038/sdata.2016.44 – volume: 106 start-page: 13040 year: 2009 ident: 1004_CR8 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0905267106 – volume: 17 start-page: e3000042 year: 2019 ident: 1004_CR17 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000042 – year: 2019 ident: 1004_CR19 doi: 10.7303/syn22317079 – volume: 66 start-page: 988 year: 2009 ident: 1004_CR7 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2009.10.008 – volume: 46 start-page: 1210 year: 2020 ident: 1004_CR15 publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbaa021 – year: 2019 ident: 1004_CR21 doi: 10.7303/syn22317082 – volume: 173 start-page: 373 year: 2016 ident: 1004_CR11 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2015.14091200 – volume: 10 year: 2020 ident: 1004_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-020-60527-z – volume: 45 start-page: 984 year: 2013 ident: 1004_CR5 publication-title: Nat. Genet. doi: 10.1038/ng.2711 – year: 2017 ident: 1004_CR18 doi: 10.7303/syn22317078 – year: 2020 ident: 1004_CR20 doi: 10.7303/syn22317081 – volume: 59 start-page: 2142 year: 2012 ident: 1004_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 7 year: 2017 ident: 1004_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-017-07792-7 – volume: 59 start-page: 22 issue: Suppl 20 year: 1998 ident: 1004_CR22 publication-title: J Clin Psychiatry. – volume: 526 start-page: 371 year: 2015 ident: 1004_CR10 publication-title: Nature doi: 10.1038/nature15692 – volume: 7 year: 2016 ident: 1004_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms11254 – volume: 49 start-page: 121 year: 1995 ident: 1004_CR24 publication-title: Psychiatry Clin Neurosci doi: 10.1111/j.1440-1819.1995.tb01875.x – ident: 1004_CR1 doi: 10.1176/appi.books.9780890425596 – volume: 34 start-page: 597 year: 2004 ident: 1004_CR4 publication-title: Psychol. Med. doi: 10.1017/S0033291703001399 – volume: 145 start-page: 137 year: 2017 ident: 1004_CR12 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 72 start-page: 305 year: 2015 ident: 1004_CR3 publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2014.2206 – volume: 174 start-page: 676 year: 2017 ident: 1004_CR6 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2017.16040400 – volume: 4 start-page: 63 year: 2021 ident: 1004_CR27 publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.15191.2 |
SSID | ssj0001340570 |
Score | 2.5300727 |
Snippet | Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as... Measurement(s) mental or behavioural disorder • brain measurement • Demographic Data Technology Type(s) functional magnetic resonance imaging • magnetic... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 227 |
SubjectTerms | 631/378/3920 692/53/2421 692/699/375 692/699/476 Adult Brain - diagnostic imaging Brain mapping Data Descriptor Databases, Factual Datasets Female Functional magnetic resonance imaging Humanities and Social Sciences Humans Learning algorithms Machine Learning Magnetic Resonance Imaging Male Medical imaging Mental disorders Mental Disorders - diagnostic imaging Middle Aged multidisciplinary Neural networks Neuroimaging Patients Science Science (multidisciplinary) Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLfQnnhBG1_rGKhIPIBYtFybNunjQEwT2ni6SXuL8uGOSayHuNv_j53mjruxjRdeqspJ1cixa6e2fwZ4RxZXYlQookYvVFRB-IluRfSdR4WG5Iarkc--tSfn6utFc7HW6otzwkZ44JFxh0p57RrTdhOFymPFzWL6vsImGiIEz19fsnlrh6n0d6VmR0TmKhlZm8M5WSoGHq349MzZF2bDEiXA_ru8zL-TJW9FTJMhOt6GJ9mDLI_Gle_AIxyewk7W0Xn5PgNJf3gGp0dlyhcUHCE-yPcxw22W3JSDXiBSSVF57S4Hrmdk8oxBOLC8IhqWnELKpu45TI-_TD-fiNw9QQTyuhYCdU9fMy8DGaC-VbE1NQbnOseRR9lX2vXESDRNqJwOXVC99-QL-Y52J6iufgFbw2zAXShDQ0ou0Td9VErGzreBjDoaTdtsnNYFTJaMtCEji3ODix82RbhrY0fmW2K-Tcy3poCPq2d-jrgaD87-xPuzmsmY2IlAkmKzpNh_SUoB-8vdtVlR55Y8vpax2ieygLerYVIxjpu4AWc3aQ6jutGlgJejMKxWUtNxmjwkVYDeEJONpW6ODFffE4y3YRE1VQEHS4H6s6z7WbH3P1jxCh5XSROMqOU-bC1-3eBrcq4W_k3So9_cph-S priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BuXBBLc_0gYLEAUStZhMndk5VQVQVAk5F2pvlx7hUKknpbv9_Z7zeXS2PXqLIcRRnHp6xZ_wNwFuyuBUGiSIodEIG6YWbqE4E1zuUqElu-DTyt-_d2Q_5ZdpO84bbLKdVLufENFGH0fMe-RGZ5o5BtSfV8fVvwVWjOLqaS2g8hEcMXcYpXWqq1nssDbsjVT4rUzX6aEb2iuFHa15Dcw6G3rBHCbb_X77m3ymTf8RNkzk63YYn2Y8sTxaM34EHODyFnayps_JdhpN-_wy-npQpa1Dwnxzm-5BBN0suzUEfEOlgUfnLXgx8qpGbR4biwPKS2rDkRFI2eM_h_PTz-aczkWsoCE--11ygijSnucqTGYqdDJ1u0FvbW44_VrFWNqoYUbe-tsr3XkbnyCNyPfHIy755AVvDOOArKH1Lql6ha2OQsgq96zwxBLUiZmurVAGTJSGNz_jiXObiyqQ4d6PNgviGiG8S8Y0u4MPqnesFusa9vT8yf1Y9GRk7NYw3FyYrmpHSKdvqrqexSYc1FxeKscY2aGrwroD9JXdNVteZWQtXAW9Wj0nROHpiBxxvUx_GdqNLAS8XwrAaSUOLavKTZAFqQ0w2hrr5ZLj8mcC8NYuorgs4XArUelj_J8Xu_X-xB4_rJONaNNU-bM1vbvGAnKe5e5005A5XWRbN priority: 102 providerName: ProQuest – databaseName: Springer Nature Link Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcuGCWp6BgoLEAUQtvIkTO8eyoqoQcCpSb5Yf41IJsqi7_f-d8TpbLRQkLlHkOMpo_E1mkpn5DPCaPK7EqFBEjV6oqILwM92L6AePCg3hhruRv3ztT76pT2fd2Q40Uy9MLtrPlJb5NT1Vh71fkqNh3tCGP365eMLcgbtM3c6onvfzm_8qLYcgsvTHyNbccuuWD8pU_bfFl3-WSf6WK80u6HgP7pfYsT5aS7sPOzg-gP1incv6TaGQfvsQPh_VuVJQcG74sJzHQrRZ83Yc9ACRm4nqn-585E5GHl4w_QbWFzSGNRePspN7BKfHH0_nJ6LsmyACxVsrgTrRe8zLQK4n9Sr2psXg3OA45yhTo13SKaHpQuN0GIJK3lMU5Adal6CG9jHsjosRn0IdOjJvib5LUSkZB98HcudoNC2wcVpXMJsUaUPhFOetLX7YnNtujV0r35LybVa-NRW829zza82o8c_ZH3h9NjOZDTsPLC7PbUGHVcpr15l-INmUx4Y3FEqpwS4aGgi-goNpdW0x0aWlWK9nlvaZrODV5jIZF2dM3IiLqzyH-dzoUMGTNRg2krSEPYqNVAV6CyZbom5fGS--ZwJvwxA1TQWHE6BuxPq7Kp793_TncK_JmDeilQewu7q8whcUQK38y2wx15KqFI8 priority: 102 providerName: Springer Nature |
Title | A multi-site, multi-disorder resting-state magnetic resonance image database |
URI | https://link.springer.com/article/10.1038/s41597-021-01004-8 https://www.ncbi.nlm.nih.gov/pubmed/34462444 https://www.proquest.com/docview/2566145510 https://www.proquest.com/docview/2567988679 https://pubmed.ncbi.nlm.nih.gov/PMC8405782 https://doaj.org/article/44b7a586914e4be29627ff2e5d84e4cb |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t44UXxPgMjCpIPICYIXWc2HlAqKs2TRWbEGxS36zYscekkULbSfDfc-c4RYWCeGmqi9Oezne5s8_3O4Dn6HEz1wjHGukME42wzAxlyRpTGSecQr2hauTTs_LkQkymxXQL-nZHUYCLjUs76id1Mb9-_f3bj3do8G-7knH1ZoFOiDBFOS2M6WCF2oZd9EySDPU0hvthzyWn8IS2XXhWcIYroTzW0Wz-mTVfFSD9N8Whfx6n_C2nGlzV8R24HWPMdNQpxR5sufYu7EUrXqQvItT0y3vwfpSGE4WMcsgH8XsTATlTatuBf8BC0VH6pb5sqeKRyDOC6XDpFdJcSodMyRneh_Pjo_PxCYv9FZjFuGzJnPT4vjOZRRflS9GUKne2rquacpOZ57L20nunCstraSsrvDEYLZkK58-KKn8AO-2sdY8gtQW-BjJnCt8IkTWVKS26fackKoKqpUxg2AtS24g9Ti0wrnXIgedKd8LXKHwdhK9VAq9Wz3ztkDf-OfqQ5mc1klCzA2E2v9TRCLUQRtaFKivkTRjHqfGQ99wVjUKCNQns97Ore03UGBOWhOY-zBJ4trqNRkiZlbp1s5swhnDf8COBh50yrDjJUc0whhIJyDU1WWN1_U579TkAfStSV8UTOOgV6hdbfxfF4_9g8wnc4kHRFcuzfdhZzm_cU4yulmYA23IqB7A7Gk0-TfB6eHT24SNSx-V4EHYsBsGofgLyxyPU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEOUZKBAkkEDUajZxYueAUAuttnS7QmiRerNix24rQVK6WyF-FP-RGcfZ1fLorZdV5DhaZ_zNw7HnG4AX6HETW3PLamE14zU3TA9FwWpdasutRNxQNvLRpBh94R-P8-M1-NXnwtCxyt4mekNdt4a-kW-jay6IVHuYvDv_zqhqFO2u9iU0Olgc2p8_cMk2e3vwAef3ZZru703fj1ioKsAMRiNzZoVDLdeJQcPsCl4XMrOmqsqKduQSl4rKCeeszE1aCVMa7rTGGEGXOGrDiXsJLf46z3AlM4D13b3Jp8_LjzoZxT9JSM5JMrk9QwdJfKcpLdrp0IdccYC-TsC_gtu_z2j-sVHr_d_-bbgVAtd4p0PaBqzZ5g5sBNMwi18F_urXd2G8E_tjioxEtxWu68DyGVMtEPwD5jOZ4m_VSUNplNTcEveHjc-wzcZ0cpU87D2YXod478OgaRv7EGKTo21JrM5dzXlSl7owiAArBaJLVkJEMOwFqUwgNKe6Gl-V31jPpOqEr1D4ygtfyQjeLJ457-g8ruy9S_Oz6ElU3L6hvThRQbMV51pUuSxKHBvXNqVqRs6lNq8lNhgdwWY_uyrYh5laojmC54vbqNm0XVM1tr30fYhMDn8ieNCBYTGSDFfxGJjxCMQKTFaGunqnOTv17OGSICrTCLZ6QC2H9X9RPLr6LZ7BjdH0aKzGB5PDx3Az9XiXLEs2YTC_uLRPMHKb66dBX2JQ16yhvwG-NVWO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJcEOUZKBAkkEDU2mzixM4BoUJZtbRUHIq0Nyt-tZUgKd2tED-Nf8eM4-xqefTWyypyHK0z_ubhePwNwHP0uJmz3DErnGbccsP0WFTM6lo77iTihk4jfzqsdr_wj9Nyuga_hrMwlFY52MRgqG1n6Bv5CF1zRaTa42zkY1rE553J27PvjCpI0U7rUE6jh8i--_kDl2-zN3s7ONcv8nzy4ej9LosVBpjByGTOnPCo8TozaKR9xW0lC2eapm5ody7zuWi88N7J0uSNMLXhXmuMF3SNb2A48TCh9b8minJMKiamYvl5p6BIKIvHdLJCjmboKon5NKflO6V_yBVXGCoG_CvM_Ttb848t2-AJJ7fgZgxh0-0ecxuw5trbsBGNxCx9GZmsX92Bg-00JCwyEtxWvLaR7zOlqiD4ByycaUq_NcctHaik5o5YQFx6im0upRxW8rV34egqhHsP1tuudQ8gNSVamczp0lvOM1vryiAWnBSIM9kIkcB4EKQykdqcKmx8VWGLvZCqF75C4asgfCUTeL145qwn9ri09zuan0VPIuUODd35sYo6rjjXoillVePYuHY51TXyPnelldhgdAKbw-yqaClmaonrBJ4tbqOO08ZN07ruIvQhWjn8SeB-D4bFSApcz2OIxhMQKzBZGerqnfb0JPCIS4KozBPYGgC1HNb_RfHw8rd4CtdRL9XB3uH-I7iRB7hLVmSbsD4_v3CPMYSb6ydBWVJQV6ycvwHe0Vhe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-site%2C+multi-disorder+resting-state+magnetic+resonance+image+database&rft.jtitle=Scientific+data&rft.au=Tanaka%2C+Saori+C&rft.au=Yamashita%2C+Ayumu&rft.au=Yahata%2C+Noriaki&rft.au=Itahashi%2C+Takashi&rft.date=2021-08-30&rft.issn=2052-4463&rft.eissn=2052-4463&rft.volume=8&rft.issue=1&rft.spage=227&rft_id=info:doi/10.1038%2Fs41597-021-01004-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |