Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature
Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, w...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 2065 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In
Arabidopsis halleri
, the flowering regulator
AhgFLC
shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at
AhgFLC
in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at
AhgFLC
provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the
AhgFLC
system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at
AhgFLC
in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at
AhgFLC
in a complex natural environment.
The flowering regulator
FLC
shows upregulation and downregulation phases along with long-term past temperature in
Arabidopsis
halleri
. Here, the authors reveal that H3K27me3-mediated chromatin regulation at
AhgFLC
provides the ability to respond to both the seasonal temperature trends and the perennial life cycle. |
---|---|
AbstractList | Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsis halleri. Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle. Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsis halleri . Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle. Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment.Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment.The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsishalleri. Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle. |
ArticleNumber | 2065 |
Author | Buzas, Diana M. Nagano, Atsushi J. Nishio, Haruki Iwayama, Koji Ushio, Masayuki Kudoh, Hiroshi |
Author_xml | – sequence: 1 givenname: Haruki orcidid: 0000-0002-6124-782X surname: Nishio fullname: Nishio, Haruki email: harukin218@gmail.com organization: Center for Ecological Research, Kyoto University – sequence: 2 givenname: Diana M. orcidid: 0000-0002-8625-7872 surname: Buzas fullname: Buzas, Diana M. organization: Tsukuba-Plant Innovation Research Center and Faculty of Life and Environmental Sciences, University of Tsukuba – sequence: 3 givenname: Atsushi J. surname: Nagano fullname: Nagano, Atsushi J. organization: Center for Ecological Research, Kyoto University, Faculty of Agriculture, Ryukoku University – sequence: 4 givenname: Koji orcidid: 0000-0001-5008-8379 surname: Iwayama fullname: Iwayama, Koji organization: Faculty of Data Science, Shiga University, PRESTO, Japan Science and Technology Agency – sequence: 5 givenname: Masayuki surname: Ushio fullname: Ushio, Masayuki organization: Center for Ecological Research, Kyoto University, PRESTO, Japan Science and Technology Agency, Hakubi Center, Kyoto University – sequence: 6 givenname: Hiroshi orcidid: 0000-0001-9777-4886 surname: Kudoh fullname: Kudoh, Hiroshi email: kudoh@ecology.kyoto-u.ac.jp organization: Center for Ecological Research, Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32358518$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAYtFARLUv_AAdkiQuXgF95-IKEKh6VKiEhOFuO_XnXq8QOdlLg3-PdlNL2UF_8yZ4ZjT3zHJ2EGAChl5S8pYR377KgomkrwkhF6042lXiCzhgRtKIt4yd35lN0nvOelMUl7YR4hk4543VX0-4MpW8wJcjZXwM2uxRHPfuAx2i986bMMeAlWEiTDxnPO8BDDNtqhjRi-L0yC2ROECyODms8QZmD1wN2Q_wFyYct3kIAXGSDnpcEL9BTp4cM5zf7Bv349PH7xZfq6uvny4sPV5VpajJXVgpJeycMZZxy14NzfdsbCqbRFmoGzDnKmHWmFU1DWuKkaSQ0QnRALRF8gy5XXRv1Xk3Jjzr9UVF7dTyIaat0mr0ZQFkunBTO0L7WorONpIb0Let6Wfc1c1C03q9a09KPYA2EOenhnuj9m-B3ahuvVUtlLUpgG_TmRiDFnwvkWY0-GxgGHSAuWTEu26bpRMlrg14_gO7jkkL5qiOKsWLvIPjqrqNbK_-iLQC2AkyKOSdwtxBK1KFCaq2QKhVSxwqpw591D0jGz8calFf54XEqX6l5OoQO6b_tR1h_Ad5T3Vg |
CitedBy_id | crossref_primary_10_1016_j_pbi_2021_102012 crossref_primary_10_1016_j_gde_2022_102016 crossref_primary_10_1111_nph_17897 crossref_primary_10_1093_aobpla_plad032 crossref_primary_10_1093_treephys_tpaa122 crossref_primary_10_1038_s41598_020_72566_7 crossref_primary_10_1073_pnas_2402697121 crossref_primary_10_1038_s41477_020_00757_1 crossref_primary_10_3389_fpls_2021_628726 crossref_primary_10_1016_j_cub_2021_03_046 crossref_primary_10_1146_annurev_arplant_070523_041445 crossref_primary_10_3390_biom11060852 crossref_primary_10_3390_plants10061165 crossref_primary_10_1038_s41467_023_41260_3 crossref_primary_10_3389_fpls_2021_640442 crossref_primary_10_1073_pnas_2311474121 crossref_primary_10_3389_fpls_2021_627258 crossref_primary_10_1093_plphys_kiad558 |
Cites_doi | 10.1016/j.cell.2007.02.053 10.1073/pnas.0914293107 10.1038/nature07988 10.1186/s12885-017-3256-y 10.1038/s41477-018-0338-z 10.1002/bies.201700053 10.1038/nature19362 10.1111/j.1365-3040.2012.02548.x 10.1111/j.1365-313X.2010.04471.x 10.1371/journal.pone.0131226 10.2307/3214721 10.1038/ncomms5457 10.1126/science.1227079 10.1101/gad.1499407 10.1038/nature10241 10.1201/9780415876179.ch41 10.7554/eLife.07205 10.1007/978-3-642-38212-3_13 10.1016/j.cub.2014.06.047 10.1530/REP-08-0045 10.1111/mec.14084 10.1016/j.jtbi.2012.02.009 10.1016/j.cub.2007.10.026 10.1038/nature08618 10.1073/pnas.1605862113 10.1073/pnas.1607747113 10.1038/nmeth0305-213 10.1038/s41598-019-51212-x 10.1038/276565a0 10.1073/pnas.0808687105 10.1073/pnas.1503100112 10.1126/science.1165826 10.1101/gad.1493306 10.1007/s11284-017-1469-9 10.1016/S0092-8674(02)00976-5 10.1038/srep14750 10.1073/pnas.1419030111 10.1073/pnas.97.7.3753 10.7554/eLife.06620 10.1038/ng.159 10.1104/pp.104.058974 10.1038/nature02195 10.1105/tpc.11.5.949 10.1111/j.1469-8137.2012.04378.x 10.1038/s41467-018-03065-7 10.1038/ncomms3303 10.1007/BFb0091924 10.1016/j.cels.2018.10.011 10.1016/j.cels.2017.02.013 10.1073/pnas.1211172109 10.1007/978-3-319-58895-7_27 10.1266/ggs.15-00071 10.1038/ncomms13031 10.1007/978-3-319-24277-4 10.1111/nph.13733 10.1126/science.aan1121 10.1242/dev.101.1.1 10.1038/nature25504 10.1038/344734a0 10.3390/genes10070544 10.1371/journal.pone.0021513 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-15896-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_d34f94fc1b5a48d691c0b728b95b52fe PMC7195410 32358518 10_1038_s41467_020_15896_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST) grantid: JPMJCR15O1 funderid: https://doi.org/10.13039/501100003382 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: Grant-in-Aid for Scientific Research (S) 26221106 funderid: https://doi.org/10.13039/501100001691 – fundername: ; grantid: Grant-in-Aid for Scientific Research (S) 26221106 – fundername: ; grantid: JPMJCR15O1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c650t-d9491bf4c12313fbeffb7bc1ec6ade52e2ff122dfc7466070f9c69e6448e1d043 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:40 EDT 2025 Thu Aug 21 14:02:02 EDT 2025 Fri Jul 11 02:50:36 EDT 2025 Wed Aug 13 09:50:09 EDT 2025 Thu Apr 03 06:55:14 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Tue Jul 01 04:08:55 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c650t-d9491bf4c12313fbeffb7bc1ec6ade52e2ff122dfc7466070f9c69e6448e1d043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8625-7872 0000-0001-5008-8379 0000-0001-9777-4886 0000-0002-6124-782X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15896-4 |
PMID | 32358518 |
PQID | 2397226910 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d34f94fc1b5a48d691c0b728b95b52fe pubmedcentral_primary_oai_pubmedcentral_nih_gov_7195410 proquest_miscellaneous_2397668472 proquest_journals_2397226910 pubmed_primary_32358518 crossref_primary_10_1038_s41467_020_15896_4 crossref_citationtrail_10_1038_s41467_020_15896_4 springer_journals_10_1038_s41467_020_15896_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | BuzasDMRobertsonMFinneganEJHelliwellCATranscription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLCPlant J.2011658728811:CAS:528:DC%2BC3MXkvVaisL4%3D2127610310.1111/j.1365-313X.2010.04471.x AngelASongJDeanCHowardMA Polycomb-based switch underlying quantitative epigenetic memoryNature20114761051081:CAS:528:DC%2BC3MXptlaksb4%3D2178543810.1038/nature10241 BélisleCJPConvergence theorems for a class of simulated annealing algorithms on ℝdJ. Appl. Probab.19922988589511885440765.6505910.2307/3214721 DeyleERMaherMCHernandezRDBasuSSugiharaGGlobal environmental drivers of influenzaProc. Natl Acad. Sci. USA201611313081130861:CAS:528:DC%2BC28XhslKnurfF2779956310.1073/pnas.16077471135135382 ErdelFGreeneECGeneralized nucleation and looping model for epigenetic memory of histone modificationsProc. Natl Acad. Sci. USA2016113E4180E41891:CAS:528:DC%2BC28XhtFentrzL2738217310.1073/pnas.16058621134961120 NgolloMGlobal analysis of H3K27me3 as an epigenetic marker in prostate cancer progressionBMC Cancer20171728403887538899810.1186/s12885-017-3256-y1:CAS:528:DC%2BC1cXitVSns73K KemiURole of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrataNew Phytol.20131973233351:CAS:528:DC%2BC38XhslelsLzO2310647710.1111/j.1469-8137.2012.04378.x FinneganEJDennisESVernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cellsCurr. Biol.200717197819831:CAS:528:DC%2BD2sXhtlWktLbM1798059510.1016/j.cub.2007.10.026 ChangC-WWUshioMHsiehC-HEmpirical dynamic modeling for beginnersEcol. Res.20173278579610.1007/s11284-017-1469-9 LewisEBA gene complex controlling segmentation in DrosophilaNature19782765655701978Natur.276..565L1:STN:280:DyaE1M%2FntlWgsQ%3D%3D10300010.1038/276565a0 SatakeAForecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genesNat. Commun.201342013NatCo...4.2303S2394197310.1038/ncomms33031:CAS:528:DC%2BC3sXhsVOru7zL HelliwellCARobertsonMFinneganEJBuzasDMDennisESVernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcriptsPLoS ONE20116e215132011PLoSO...621513H1:CAS:528:DC%2BC3MXotFalsLc%3D21713009311969810.1371/journal.pone.0021513 BerrySHartleyMOlssonTSDeanCHowardMLocal chromatin environment of a Polycomb target gene instructs its own epigenetic inheritanceeLife20154e07205445044110.7554/eLife.072051:CAS:528:DC%2BC28XltV2rsbs%3D KondoYGene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylationNat. Genet.2008407417501:CAS:528:DC%2BD1cXmsVejtro%3D1848802910.1038/ng.159 SungSAmasinoRMVernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3Nature20044271591642004Natur.427..159S1:CAS:528:DC%2BD2cXhtFOnsA%3D%3D1471227610.1038/nature02195 SchiesslSVQuezada-MartinezDTebartzESnowdonRJQianLThe vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napusSci. Rep.201992019NatSR...914911S31624282679775010.1038/s41598-019-51212-x1:CAS:528:DC%2BC1MXitVSmu7rJ YangHHowardMDeanCAntagonistic roles for H3K36me3 and H3K27me3 in the cold-Induced epigenetic switch at Arabidopsis FLCCurr. Biol.201424179317971:CAS:528:DC%2BC2cXht1ags7nP25065750412316310.1016/j.cub.2014.06.047 UshioMFluctuating interaction network and time-varying stability of a natural fish communityNature20185543603632018Natur.554..360U1:CAS:528:DC%2BC1cXisVKjs74%3D2941494010.1038/nature25504 LinS-IDifferential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and ArabidopsisPlant Physiol.2005137103710481:CAS:528:DC%2BD2MXislOqsrY%3D15734903106540410.1104/pp.104.058974 SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM229971341355.9214410.1126/science.1227079 Wickham, H. ggplot2 (Springer-Verlag, 2016). ItoTSeasonal stability and dynamics of DNA methylation in plants in a natural environmentGenes2019105441:CAS:528:DC%2BC1MXhvV2lsr3M667910510.3390/genes10070544 WollenbergACAmasinoRMNatural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thalianaPlant. Cell Environ.201235218121912263979210.1111/j.1365-3040.2012.02548.x DuncanSSeasonal shift in timing of vernalization as an adaptation to extreme wintereLife20154e06620453280110.7554/eLife.06620 SatakeAIwasaYA stochastic model of chromatin modification: cell population coding of winter memory in plantsJ. Theor. Biol.201230261729095111:CAS:528:DC%2BC38Xls12rs70%3D223815391325.9205710.1016/j.jtbi.2012.02.009 HodgesCCrabtreeGRDynamics of inherently bounded histone modification domainsProc. Natl Acad. Sci. USA201210913296133012012PNAS..10913296H1:CAS:528:DC%2BC38XhsValur7L2284742710.1073/pnas.12111721093421184 LiuXDistinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryosNature20165375585622016Natur.537..558L1:CAS:528:DC%2BC28XhsFWiurbO2762637910.1038/nature19362 RosaSDuncanSDeanCMutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repressionNat. Commun.201672016NatCo...713031R1:CAS:528:DC%2BC28Xhs1Gns7bM27713408505976610.1038/ncomms13031 CastaingsLEvolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relativesNat. Commun.201452014NatCo...5.4457C1:CAS:528:DC%2BC2cXitVShs77O2503005610.1038/ncomms5457 GendrelA-VLippmanZMartienssenRColotVProfiling histone modification patterns in plants using genomic tiling microarraysNat. Methods200522132181:CAS:528:DC%2BD2MXisVGisL0%3D1616380210.1038/nmeth0305-213 KieferCDivergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologuesMol. Ecol.201726343734571:CAS:528:DC%2BC2sXhtVKqtLnM28261921548500610.1111/mec.14084 SheldonCCRouseDTFinneganEJPeacockWJDennisESThe molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC)Proc. Natl Acad. Sci. USA200097375337582000PNAS...97.3753S1:CAS:528:DC%2BD3cXitlajsrc%3D1071672310.1073/pnas.97.7.375316312 YangHDistinct phases of Polycomb silencing to hold epigenetic memory of cold in ArabidopsisScience2017357114211452017Sci...357.1142Y1:CAS:528:DC%2BC2sXhsVOitbbL2881896910.1126/science.aan1121 O’Shea, P. in The Measurement, Instrumentation, and Sensors Handbook (CRC Press, 1999). SugiharaGMayRMNonlinear forecasting as a way of distinguishing chaos from measurement error in time seriesNature19903447347411990Natur.344..734S1:STN:280:DyaK3c3jtFCjuw%3D%3D233002910.1038/344734a0 Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L.-S.) 366–381 (Springer, 1981). YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750 BozorgMaghamAEMotesharreiSPennySGKalnayECausality analysis: identifying the leading element in a coupled dynamical systemPLoS ONE201510e013122626125157448835010.1371/journal.pone.01312261:CAS:528:DC%2BC28XosVCru74%3D HepworthJAbsence of warmth permits epigenetic memory of winter in ArabidopsisNat. Commun.201892018NatCo...9..639H29434233580960410.1038/s41467-018-03065-71:CAS:528:DC%2BC1cXhtFSltLjN MüllerJHistone methyltransferase activity of a Drosophila Polycomb group repressor complexCell20021111972081240886410.1016/S0092-8674(02)00976-5 SwiezewskiSLiuFMagusinADeanCCold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb targetNature20094627998022009Natur.462..799S1:CAS:528:DC%2BD1MXhsFersrvM2001068810.1038/nature08618 NaganoAJAnnual transcriptome dynamics in natural environments reveals plant seasonal adaptationNat. Plants2019574833061725210.1038/s41477-018-0338-z AngelAVernalizing cold is registered digitally at FLCProc. Natl Acad. Sci. USA2015112414641512015PNAS..112.4146A1:CAS:528:DC%2BC2MXksF2isbw%3D2577557910.1073/pnas.15031001124386389 Kudoh, H. & Nagano, A. J. in Evolutionary Biology: Exobiology and Evolutionary Mechanisms (ed Pontarotti, P.) 195–215 (Springer, 2013). De LuciaFCrevillenPJonesAMGrebTDeanCA PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalizationProc. Natl Acad. Sci. USA200810516831168362008PNAS..10516831D1885441610.1073/pnas.08086871052579339 NishioHFrom the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleriGenes Genet. Syst.20169115261:CAS:528:DC%2BC1cXkvFKmur0%3D2715071810.1266/ggs.15-00071 KotakeYpRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4α tumor suppressor geneGenes Dev.20072149541:CAS:528:DC%2BD2sXmsFyltw%3D%3D17210787175989910.1101/gad.1499407 ErdelFHow communication between nucleosomes enables spreading and epigenetic memory of histone modificationsBioEssays201739170005310.1002/bies.2017000531:CAS:528:DC%2BC2sXhvFWnu7bE DoddIBMicheelsenMASneppenKThonGTheoretical analysis of epigenetic cell memory by nucleosome modificationCell20071298138221:CAS:528:DC%2BD2sXmtFKjsr0%3D1751241310.1016/j.cell.2007.02.053 Antoniou-KourouniotiRLTemperature sensing is distributed throughout the regulatory network that controls FLC epigenetic silencing in vernalizationCell Syst.20187643655.e91:CAS:528:DC%2BC1cXis1SqsL7I30503646631068610.1016/j.cels.2018.10.011 RossPJPolycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation developmentReproduction20081367777851:CAS:528:DC%2BD1MXns1CrsQ%3D%3D1878424810.1530/REP-08-0045 KudohHMolecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environmentsNew Phytol.20162103994121:CAS:528:DC%2BC28Xks1egsLY%3D2652395710.1111/nph.13733 WangRPEP1 regulates perennial flowering in Arabis alpinaNature20094594234272009Natur.459..423W1:CAS:528:DC%2BD1MXksFemu78%3D1936993810.1038/nature07988 SungSSchmitzRJAmasinoRMA PHD finger protein invo S Swiezewski (15896_CR15) 2009; 462 S Sung (15896_CR21) 2006; 20 CC Sheldon (15896_CR6) 2000; 97 DM Buzas (15896_CR45) 2011; 65 15896_CR60 CA Helliwell (15896_CR18) 2011; 6 M Akam (15896_CR47) 1987; 101 A-V Gendrel (15896_CR54) 2005; 2 G Sugihara (15896_CR37) 1990; 344 C Hodges (15896_CR39) 2012; 109 AM Wilczek (15896_CR31) 2009; 323 X Liu (15896_CR50) 2016; 537 H Yang (15896_CR23) 2017; 357 15896_CR56 15896_CR57 J Hepworth (15896_CR3) 2018; 9 F De Lucia (15896_CR20) 2008; 105 S-I Lin (15896_CR7) 2005; 137 A Satake (15896_CR27) 2013; 4 AJ Nagano (15896_CR32) 2019; 5 H Kudoh (15896_CR2) 2016; 210 T Csorba (15896_CR16) 2014; 111 T Ito (15896_CR33) 2019; 10 F Erdel (15896_CR40) 2016; 113 IB Dodd (15896_CR44) 2007; 129 SD Michaels (15896_CR5) 1999; 11 S Berry (15896_CR42) 2015; 4 EJ Finnegan (15896_CR13) 2007; 17 A Angel (15896_CR28) 2015; 112 C Kiefer (15896_CR25) 2017; 26 J Müller (15896_CR48) 2002; 111 H Ye (15896_CR36) 2015; 5 PJ Ross (15896_CR49) 2008; 136 U Kemi (15896_CR26) 2013; 197 F Erdel (15896_CR41) 2017; 39 C-WW Chang (15896_CR55) 2017; 32 SV Schiessl (15896_CR9) 2019; 9 H Yang (15896_CR14) 2014; 24 S Duncan (15896_CR12) 2015; 4 G Sugihara (15896_CR35) 2012; 338 M Ushio (15896_CR59) 2018; 554 RL Antoniou-Kourounioti (15896_CR4) 2018; 7 15896_CR34 CJP Bélisle (15896_CR61) 1992; 29 15896_CR1 A Angel (15896_CR22) 2011; 476 L Castaings (15896_CR24) 2014; 5 M Ngollo (15896_CR53) 2017; 17 S Rosa (15896_CR17) 2016; 7 AC Wollenberg (15896_CR11) 2012; 35 S Berry (15896_CR29) 2017; 4 S Sung (15896_CR19) 2004; 427 A Satake (15896_CR43) 2012; 302 EB Lewis (15896_CR46) 1978; 276 Y Kotake (15896_CR51) 2007; 21 H Nishio (15896_CR30) 2016; 91 ER Deyle (15896_CR58) 2016; 113 AE BozorgMagham (15896_CR38) 2015; 10 S Aikawa (15896_CR10) 2010; 107 R Wang (15896_CR8) 2009; 459 Y Kondo (15896_CR52) 2008; 40 |
References_xml | – reference: HodgesCCrabtreeGRDynamics of inherently bounded histone modification domainsProc. Natl Acad. Sci. USA201210913296133012012PNAS..10913296H1:CAS:528:DC%2BC38XhsValur7L2284742710.1073/pnas.12111721093421184 – reference: WangRPEP1 regulates perennial flowering in Arabis alpinaNature20094594234272009Natur.459..423W1:CAS:528:DC%2BD1MXksFemu78%3D1936993810.1038/nature07988 – reference: DuncanSSeasonal shift in timing of vernalization as an adaptation to extreme wintereLife20154e06620453280110.7554/eLife.06620 – reference: ItoTSeasonal stability and dynamics of DNA methylation in plants in a natural environmentGenes2019105441:CAS:528:DC%2BC1MXhvV2lsr3M667910510.3390/genes10070544 – reference: SatakeAIwasaYA stochastic model of chromatin modification: cell population coding of winter memory in plantsJ. Theor. Biol.201230261729095111:CAS:528:DC%2BC38Xls12rs70%3D223815391325.9205710.1016/j.jtbi.2012.02.009 – reference: SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM229971341355.9214410.1126/science.1227079 – reference: SatakeAForecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genesNat. Commun.201342013NatCo...4.2303S2394197310.1038/ncomms33031:CAS:528:DC%2BC3sXhsVOru7zL – reference: SungSSchmitzRJAmasinoRMA PHD finger protein involved in both the vernalization and photoperiod pathways in ArabidopsisGenes Dev.200620324432481:CAS:528:DC%2BD28XhtlSmt7vF17114575168660110.1101/gad.1493306 – reference: DeyleERMaherMCHernandezRDBasuSSugiharaGGlobal environmental drivers of influenzaProc. Natl Acad. Sci. USA201611313081130861:CAS:528:DC%2BC28XhslKnurfF2779956310.1073/pnas.16077471135135382 – reference: ErdelFHow communication between nucleosomes enables spreading and epigenetic memory of histone modificationsBioEssays201739170005310.1002/bies.2017000531:CAS:528:DC%2BC2sXhvFWnu7bE – reference: AikawaSKobayashiMJSatakeAShimizuKKKudohHRobust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environmentProc. Natl Acad. Sci. USA201010711632116372010PNAS..10711632A1:CAS:528:DC%2BC3cXot1eksbc%3D2053454110.1073/pnas.09142931072895080 – reference: LinS-IDifferential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and ArabidopsisPlant Physiol.2005137103710481:CAS:528:DC%2BD2MXislOqsrY%3D15734903106540410.1104/pp.104.058974 – reference: KieferCDivergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologuesMol. Ecol.201726343734571:CAS:528:DC%2BC2sXhtVKqtLnM28261921548500610.1111/mec.14084 – reference: ErdelFGreeneECGeneralized nucleation and looping model for epigenetic memory of histone modificationsProc. Natl Acad. Sci. USA2016113E4180E41891:CAS:528:DC%2BC28XhtFentrzL2738217310.1073/pnas.16058621134961120 – reference: CastaingsLEvolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relativesNat. Commun.201452014NatCo...5.4457C1:CAS:528:DC%2BC2cXitVShs77O2503005610.1038/ncomms5457 – reference: KondoYGene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylationNat. Genet.2008407417501:CAS:528:DC%2BD1cXmsVejtro%3D1848802910.1038/ng.159 – reference: RossPJPolycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation developmentReproduction20081367777851:CAS:528:DC%2BD1MXns1CrsQ%3D%3D1878424810.1530/REP-08-0045 – reference: AngelASongJDeanCHowardMA Polycomb-based switch underlying quantitative epigenetic memoryNature20114761051081:CAS:528:DC%2BC3MXptlaksb4%3D2178543810.1038/nature10241 – reference: CsorbaTQuestaJISunQDeanCAntisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalizationProc. Natl Acad. Sci. USA201411116160161652014PNAS..11116160C1:CAS:528:DC%2BC2cXhvVWmsLzF2534942110.1073/pnas.14190301114234544 – reference: RosaSDuncanSDeanCMutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repressionNat. Commun.201672016NatCo...713031R1:CAS:528:DC%2BC28Xhs1Gns7bM27713408505976610.1038/ncomms13031 – reference: WilczekAMEffects of genetic perturbation on seasonal life history plasticityScience20093239309342009Sci...323..930W1:CAS:528:DC%2BD1MXhslSgsb8%3D1915081010.1126/science.1165826 – reference: HepworthJAbsence of warmth permits epigenetic memory of winter in ArabidopsisNat. Commun.201892018NatCo...9..639H29434233580960410.1038/s41467-018-03065-71:CAS:528:DC%2BC1cXhtFSltLjN – reference: SchiesslSVQuezada-MartinezDTebartzESnowdonRJQianLThe vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napusSci. Rep.201992019NatSR...914911S31624282679775010.1038/s41598-019-51212-x1:CAS:528:DC%2BC1MXitVSmu7rJ – reference: KemiURole of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrataNew Phytol.20131973233351:CAS:528:DC%2BC38XhslelsLzO2310647710.1111/j.1469-8137.2012.04378.x – reference: SungSAmasinoRMVernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3Nature20044271591642004Natur.427..159S1:CAS:528:DC%2BD2cXhtFOnsA%3D%3D1471227610.1038/nature02195 – reference: WollenbergACAmasinoRMNatural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thalianaPlant. Cell Environ.201235218121912263979210.1111/j.1365-3040.2012.02548.x – reference: FinneganEJDennisESVernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cellsCurr. Biol.200717197819831:CAS:528:DC%2BD2sXhtlWktLbM1798059510.1016/j.cub.2007.10.026 – reference: LiuXDistinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryosNature20165375585622016Natur.537..558L1:CAS:528:DC%2BC28XhsFWiurbO2762637910.1038/nature19362 – reference: MichaelsSDAmasinoRMFLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of floweringPlant Cell1999119499561:CAS:528:DyaK1MXjvVajsLc%3D1033047814422610.1105/tpc.11.5.949 – reference: Antoniou-KourouniotiRLTemperature sensing is distributed throughout the regulatory network that controls FLC epigenetic silencing in vernalizationCell Syst.20187643655.e91:CAS:528:DC%2BC1cXis1SqsL7I30503646631068610.1016/j.cels.2018.10.011 – reference: BerrySHartleyMOlssonTSDeanCHowardMLocal chromatin environment of a Polycomb target gene instructs its own epigenetic inheritanceeLife20154e07205445044110.7554/eLife.072051:CAS:528:DC%2BC28XltV2rsbs%3D – reference: DoddIBMicheelsenMASneppenKThonGTheoretical analysis of epigenetic cell memory by nucleosome modificationCell20071298138221:CAS:528:DC%2BD2sXmtFKjsr0%3D1751241310.1016/j.cell.2007.02.053 – reference: BerrySDeanCHowardMSlow chromatin dynamics allow polycomb target genes to filter fluctuations in transcription factor activityCell Syst.20174445457.e81:CAS:528:DC%2BC2sXmvVSis74%3D28342717540983110.1016/j.cels.2017.02.013 – reference: ChangC-WWUshioMHsiehC-HEmpirical dynamic modeling for beginnersEcol. Res.20173278579610.1007/s11284-017-1469-9 – reference: BozorgMaghamAEMotesharreiSPennySGKalnayECausality analysis: identifying the leading element in a coupled dynamical systemPLoS ONE201510e013122626125157448835010.1371/journal.pone.01312261:CAS:528:DC%2BC28XosVCru74%3D – reference: BélisleCJPConvergence theorems for a class of simulated annealing algorithms on ℝdJ. Appl. Probab.19922988589511885440765.6505910.2307/3214721 – reference: UshioMFluctuating interaction network and time-varying stability of a natural fish communityNature20185543603632018Natur.554..360U1:CAS:528:DC%2BC1cXisVKjs74%3D2941494010.1038/nature25504 – reference: GendrelA-VLippmanZMartienssenRColotVProfiling histone modification patterns in plants using genomic tiling microarraysNat. Methods200522132181:CAS:528:DC%2BD2MXisVGisL0%3D1616380210.1038/nmeth0305-213 – reference: Wickham, H. ggplot2 (Springer-Verlag, 2016). – reference: O’Shea, P. in The Measurement, Instrumentation, and Sensors Handbook (CRC Press, 1999). – reference: SwiezewskiSLiuFMagusinADeanCCold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb targetNature20094627998022009Natur.462..799S1:CAS:528:DC%2BD1MXhsFersrvM2001068810.1038/nature08618 – reference: SugiharaGMayRMNonlinear forecasting as a way of distinguishing chaos from measurement error in time seriesNature19903447347411990Natur.344..734S1:STN:280:DyaK3c3jtFCjuw%3D%3D233002910.1038/344734a0 – reference: SheldonCCRouseDTFinneganEJPeacockWJDennisESThe molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC)Proc. Natl Acad. Sci. USA200097375337582000PNAS...97.3753S1:CAS:528:DC%2BD3cXitlajsrc%3D1071672310.1073/pnas.97.7.375316312 – reference: Tsonis, A. A., Deyle, E. R., Ye, H. & Sugihara, G. in Advances in Nonlinear Geosciences (ed Tsonis, A. A.) 587–600 (Springer, 2018). – reference: Kudoh, H. & Nagano, A. J. in Evolutionary Biology: Exobiology and Evolutionary Mechanisms (ed Pontarotti, P.) 195–215 (Springer, 2013). – reference: NgolloMGlobal analysis of H3K27me3 as an epigenetic marker in prostate cancer progressionBMC Cancer20171728403887538899810.1186/s12885-017-3256-y1:CAS:528:DC%2BC1cXitVSns73K – reference: LewisEBA gene complex controlling segmentation in DrosophilaNature19782765655701978Natur.276..565L1:STN:280:DyaE1M%2FntlWgsQ%3D%3D10300010.1038/276565a0 – reference: Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L.-S.) 366–381 (Springer, 1981). – reference: NishioHFrom the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleriGenes Genet. Syst.20169115261:CAS:528:DC%2BC1cXkvFKmur0%3D2715071810.1266/ggs.15-00071 – reference: De LuciaFCrevillenPJonesAMGrebTDeanCA PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalizationProc. Natl Acad. Sci. USA200810516831168362008PNAS..10516831D1885441610.1073/pnas.08086871052579339 – reference: YangHDistinct phases of Polycomb silencing to hold epigenetic memory of cold in ArabidopsisScience2017357114211452017Sci...357.1142Y1:CAS:528:DC%2BC2sXhsVOitbbL2881896910.1126/science.aan1121 – reference: KotakeYpRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4α tumor suppressor geneGenes Dev.20072149541:CAS:528:DC%2BD2sXmsFyltw%3D%3D17210787175989910.1101/gad.1499407 – reference: YangHHowardMDeanCAntagonistic roles for H3K36me3 and H3K27me3 in the cold-Induced epigenetic switch at Arabidopsis FLCCurr. Biol.201424179317971:CAS:528:DC%2BC2cXht1ags7nP25065750412316310.1016/j.cub.2014.06.047 – reference: AkamMThe molecular basis for metameric pattern in the Drosophila embryoDevelopment19871011221:CAS:528:DyaL2sXmtFGjtr8%3D2896587 – reference: BuzasDMRobertsonMFinneganEJHelliwellCATranscription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLCPlant J.2011658728811:CAS:528:DC%2BC3MXkvVaisL4%3D2127610310.1111/j.1365-313X.2010.04471.x – reference: KudohHMolecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environmentsNew Phytol.20162103994121:CAS:528:DC%2BC28Xks1egsLY%3D2652395710.1111/nph.13733 – reference: AngelAVernalizing cold is registered digitally at FLCProc. Natl Acad. Sci. USA2015112414641512015PNAS..112.4146A1:CAS:528:DC%2BC2MXksF2isbw%3D2577557910.1073/pnas.15031001124386389 – reference: HelliwellCARobertsonMFinneganEJBuzasDMDennisESVernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcriptsPLoS ONE20116e215132011PLoSO...621513H1:CAS:528:DC%2BC3MXotFalsLc%3D21713009311969810.1371/journal.pone.0021513 – reference: NaganoAJAnnual transcriptome dynamics in natural environments reveals plant seasonal adaptationNat. Plants2019574833061725210.1038/s41477-018-0338-z – reference: MüllerJHistone methyltransferase activity of a Drosophila Polycomb group repressor complexCell20021111972081240886410.1016/S0092-8674(02)00976-5 – reference: YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750 – volume: 129 start-page: 813 year: 2007 ident: 15896_CR44 publication-title: Cell doi: 10.1016/j.cell.2007.02.053 – volume: 107 start-page: 11632 year: 2010 ident: 15896_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0914293107 – volume: 459 start-page: 423 year: 2009 ident: 15896_CR8 publication-title: Nature doi: 10.1038/nature07988 – volume: 17 year: 2017 ident: 15896_CR53 publication-title: BMC Cancer doi: 10.1186/s12885-017-3256-y – volume: 5 start-page: 74 year: 2019 ident: 15896_CR32 publication-title: Nat. Plants doi: 10.1038/s41477-018-0338-z – volume: 39 start-page: 1700053 year: 2017 ident: 15896_CR41 publication-title: BioEssays doi: 10.1002/bies.201700053 – volume: 537 start-page: 558 year: 2016 ident: 15896_CR50 publication-title: Nature doi: 10.1038/nature19362 – volume: 35 start-page: 2181 year: 2012 ident: 15896_CR11 publication-title: Plant. Cell Environ. doi: 10.1111/j.1365-3040.2012.02548.x – volume: 65 start-page: 872 year: 2011 ident: 15896_CR45 publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04471.x – volume: 10 start-page: e0131226 year: 2015 ident: 15896_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0131226 – volume: 29 start-page: 885 year: 1992 ident: 15896_CR61 publication-title: J. Appl. Probab. doi: 10.2307/3214721 – volume: 5 year: 2014 ident: 15896_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms5457 – volume: 338 start-page: 496 year: 2012 ident: 15896_CR35 publication-title: Science doi: 10.1126/science.1227079 – volume: 21 start-page: 49 year: 2007 ident: 15896_CR51 publication-title: Genes Dev. doi: 10.1101/gad.1499407 – volume: 476 start-page: 105 year: 2011 ident: 15896_CR22 publication-title: Nature doi: 10.1038/nature10241 – ident: 15896_CR34 doi: 10.1201/9780415876179.ch41 – volume: 4 start-page: e07205 year: 2015 ident: 15896_CR42 publication-title: eLife doi: 10.7554/eLife.07205 – ident: 15896_CR1 doi: 10.1007/978-3-642-38212-3_13 – volume: 24 start-page: 1793 year: 2014 ident: 15896_CR14 publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.06.047 – volume: 136 start-page: 777 year: 2008 ident: 15896_CR49 publication-title: Reproduction doi: 10.1530/REP-08-0045 – volume: 26 start-page: 3437 year: 2017 ident: 15896_CR25 publication-title: Mol. Ecol. doi: 10.1111/mec.14084 – volume: 302 start-page: 6 year: 2012 ident: 15896_CR43 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2012.02.009 – volume: 17 start-page: 1978 year: 2007 ident: 15896_CR13 publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.10.026 – volume: 462 start-page: 799 year: 2009 ident: 15896_CR15 publication-title: Nature doi: 10.1038/nature08618 – volume: 113 start-page: E4180 year: 2016 ident: 15896_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1605862113 – volume: 113 start-page: 13081 year: 2016 ident: 15896_CR58 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1607747113 – volume: 2 start-page: 213 year: 2005 ident: 15896_CR54 publication-title: Nat. Methods doi: 10.1038/nmeth0305-213 – volume: 9 year: 2019 ident: 15896_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-019-51212-x – volume: 276 start-page: 565 year: 1978 ident: 15896_CR46 publication-title: Nature doi: 10.1038/276565a0 – volume: 105 start-page: 16831 year: 2008 ident: 15896_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0808687105 – volume: 112 start-page: 4146 year: 2015 ident: 15896_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1503100112 – volume: 323 start-page: 930 year: 2009 ident: 15896_CR31 publication-title: Science doi: 10.1126/science.1165826 – volume: 20 start-page: 3244 year: 2006 ident: 15896_CR21 publication-title: Genes Dev. doi: 10.1101/gad.1493306 – volume: 32 start-page: 785 year: 2017 ident: 15896_CR55 publication-title: Ecol. Res. doi: 10.1007/s11284-017-1469-9 – volume: 111 start-page: 197 year: 2002 ident: 15896_CR48 publication-title: Cell doi: 10.1016/S0092-8674(02)00976-5 – volume: 5 year: 2015 ident: 15896_CR36 publication-title: Sci. Rep. doi: 10.1038/srep14750 – volume: 111 start-page: 16160 year: 2014 ident: 15896_CR16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1419030111 – volume: 97 start-page: 3753 year: 2000 ident: 15896_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.7.3753 – volume: 4 start-page: e06620 year: 2015 ident: 15896_CR12 publication-title: eLife doi: 10.7554/eLife.06620 – volume: 40 start-page: 741 year: 2008 ident: 15896_CR52 publication-title: Nat. Genet. doi: 10.1038/ng.159 – volume: 137 start-page: 1037 year: 2005 ident: 15896_CR7 publication-title: Plant Physiol. doi: 10.1104/pp.104.058974 – volume: 427 start-page: 159 year: 2004 ident: 15896_CR19 publication-title: Nature doi: 10.1038/nature02195 – volume: 11 start-page: 949 year: 1999 ident: 15896_CR5 publication-title: Plant Cell doi: 10.1105/tpc.11.5.949 – volume: 197 start-page: 323 year: 2013 ident: 15896_CR26 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04378.x – volume: 9 year: 2018 ident: 15896_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03065-7 – volume: 4 year: 2013 ident: 15896_CR27 publication-title: Nat. Commun. doi: 10.1038/ncomms3303 – ident: 15896_CR56 doi: 10.1007/BFb0091924 – volume: 7 start-page: 643 year: 2018 ident: 15896_CR4 publication-title: Cell Syst. doi: 10.1016/j.cels.2018.10.011 – volume: 4 start-page: 445 year: 2017 ident: 15896_CR29 publication-title: Cell Syst. doi: 10.1016/j.cels.2017.02.013 – volume: 109 start-page: 13296 year: 2012 ident: 15896_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1211172109 – ident: 15896_CR57 doi: 10.1007/978-3-319-58895-7_27 – volume: 91 start-page: 15 year: 2016 ident: 15896_CR30 publication-title: Genes Genet. Syst. doi: 10.1266/ggs.15-00071 – volume: 7 year: 2016 ident: 15896_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms13031 – ident: 15896_CR60 doi: 10.1007/978-3-319-24277-4 – volume: 210 start-page: 399 year: 2016 ident: 15896_CR2 publication-title: New Phytol. doi: 10.1111/nph.13733 – volume: 357 start-page: 1142 year: 2017 ident: 15896_CR23 publication-title: Science doi: 10.1126/science.aan1121 – volume: 101 start-page: 1 year: 1987 ident: 15896_CR47 publication-title: Development doi: 10.1242/dev.101.1.1 – volume: 554 start-page: 360 year: 2018 ident: 15896_CR59 publication-title: Nature doi: 10.1038/nature25504 – volume: 344 start-page: 734 year: 1990 ident: 15896_CR37 publication-title: Nature doi: 10.1038/344734a0 – volume: 10 start-page: 544 year: 2019 ident: 15896_CR33 publication-title: Genes doi: 10.3390/genes10070544 – volume: 6 start-page: e21513 year: 2011 ident: 15896_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0021513 |
SSID | ssj0000391844 |
Score | 2.43036 |
Snippet | Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In
Arabidopsis halleri
, the flowering regulator... Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator... The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsis halleri. Here, the authors reveal... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2065 |
SubjectTerms | 38/15 38/39 38/77 38/90 631/208/176 631/449/1659 631/449/2668 631/449/2679/2681 Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Chromatin Chromatin - chemistry Epigenesis, Genetic Flowering Flowers - genetics Flowers - physiology Gene expression Gene Expression Regulation, Plant Histone Code Histones Histones - metabolism Humanities and Social Sciences Japan Life cycles MADS Domain Proteins - genetics multidisciplinary Natural environment Science Science (multidisciplinary) Seasonal variations Seasons Temperature Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDehBRmJG0SNH7HjI1StKiQ4ICr1ZsX2mCItSbXdovLvmXGyS5fnhevGyY4838x8lufB2ItW6uyyVbU1jaq1SbHuQKoaEF1oTU7GTNXI796b4xP99rQ9vTbqi3LCpvbA08btJ4Uf0zmK0Pa6S8aJ2AQru-Da0MoM5H0x5l07TBUfrBweXfRcJdOobv9CF59ApyXRds7UeisSlYb9v2OZvyZL_nRjWgLR0R12e2aQ_PUk-V12A4Z77OY0U_Lbfbb8MOe2fgUez5YjMdKBfxkT5QQVNXCqG1vSyGqO7I8vxuFTTQ6aw9WcFTvwFaXK8jHznp9TQeCAMOV5QSPVUCiOqAOOn53agj5gJ0eHHw-O63mwQh2RkK3q5LQTIeuIYUuoHCDnYEMUEE2foJUgcxZSphytNgadQnbROKCjHIjUaPWQ7QzjAI8Zz8omkBYaE3pkZuC6JjrbphiRGvbZVEysN9nHues4Db9Y-HL7rTo_KcajYnxRjNcVe7l553zqufHX1W9Id5uV1C-7_IAo8jOK_L9QVLG9teb9bMQXXiJXQ3aKhKpizzeP0fzoTqUfYLyc1hiDIV5W7NEElI0kisqQW9FVzG5BaEvU7SfD57PS4ttSIz7631drsP0Q689b8eR_bMUuuyXJSkpS5x7bWS0v4SkSr1V4VmzsOzcmK_g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlYTx_HjhACxVEhwQFTqzUr8aJGWZMluUfn3zDjeVMuj18RJnMw3M1_seRDyouEimqhqpmRZMyG9YzrwmgVAF2iT4S5iNvKnz_LoWHw8aU7ygts6h1VubWIy1H5wuEZ-yMFxAlUA7_Z69YNh1yjcXc0tNK6TGxV4Ggzp0osP8xoLVj_XQuRcmbLWh2uRLAP-M1WNNpKJHX-Uyvb_i2v-HTL5x75pckeLO-R25pH0zST4u-Ra6O-Rm1NnyV_3yfglR7j-DNSdjQPy0p5-HzxGBiVhUMweG7FxNQUOSJdDf8rQTNNwkWNje7rBgFk6RNrSFaYF9gBWGpfYWA0mRQF7gcJtp-KgD8jx4v3Xd0cst1dgDmjZhnkjTNVF4cB5VXXsQoyd6lwVnGx9aHjgMVac--iUkBJMQzROmoA_dKHypagfkr1-6MNjQmOtfOAqlLJrgZ8Fo0tnVOOdA4LYRlmQavuRrcu1x7EFxtKmPfBa20kwFgRjk2CsKMjL-ZrVVHnjytFvUXbzSKyanQ4M46nNSmh9DcAU0VVd0wrtAUyu7BTXnWm6hsdQkIOt5G1W5bW9BF5Bns-nQQlxZ6Xtw3A-jQH4CcUL8mgCyjyTGpORm0oXRO1AaGequ2f6b2ep0LfCcnz43FdbsF1O6_-fYv_qt3hCbnHEfwraPCB7m_E8PAVitemeJe35Dc7GIu4 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDcpBRmJG0TEj9jxcUFU1UpwACr1ZsWvFmmbVOkW0X_PjJMNWihIXBNnM_J8Y39Zz3xDyKuay2SSFqVWlSilCr5sIhdlBHRBNBnuE1Yjf_ykjo7l8qQ-2SF8UwuTk_azpGVepjfZYW8vZQ5p_NhhdWNUKW-RPZRqB2zvLRbLL8v5nxXUPG-knCpkKtHc8PDWLpTF-m9imH8mSv52Wpo3ocN75O7EHulitPc-2YndA3J77Cd5_ZAMn6e81u-R-rOhRzba0fM-YD5QdgHFmrEB21VTYH501XenJS7ONP6YMmI7usY0Wdon2tILLAbsAKI0rbCdGhhFAXGRws-O8_eIHB9--Pr-qJyaKpQeyNi6DEYa5pL0sGUxkVxMyWnnWfSqDbHmkafEOA_Ja6kULAjJeGUifsZFFiopHpPdru_iU0KT0CFyHSvlWmBl0TSVN7oO3gMtbJMqCNtMsvWT4jg2vljZfPItGjs6xoJjbHaMlQV5PT9zMept_HP0O_TdPBK1svOFfji1E3ZsEABHmTxzdSuboAzzldO8caZ2NU-xIAcbz9spgC8tB54GzBTIVEFezrch9PA8pe1ifzWOUQq2d16QJyNQZksEliDXrCmI3oLQlqnbd7pvZ1neW6MIH773zQZsv8z6-1Ts_9_wZ-QOx3jIqZsHZHc9XMXnQK_W7sUUTz8BAmsiIQ priority: 102 providerName: Springer Nature |
Title | Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature |
URI | https://link.springer.com/article/10.1038/s41467-020-15896-4 https://www.ncbi.nlm.nih.gov/pubmed/32358518 https://www.proquest.com/docview/2397226910 https://www.proquest.com/docview/2397668472 https://pubmed.ncbi.nlm.nih.gov/PMC7195410 https://doaj.org/article/d34f94fc1b5a48d691c0b728b95b52fe |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7th0B7QfwmMCoj8QaBxnHs-AGhrlqZKm1Cg0p9ixLH3pBKMrIObf89d05SKBQeeGmlxGks33f25_ruPoCXCRdOOxWHSg7jUMjShKnlcWgRXehNmhtH2cjHJ_JoJqbzZL4FvdxRN4CXG7d2pCc1axZvrr_dvEeHf9emjKdvL4V3d9oIRUmqZSi2YRdXJkWKBscd3fczc6xxQyO63JnNj-7B7ZjSRxOSAfllqfIV_TfR0D-jKX87UvUr1eQu3OkoJhu1mLgHW7a6D7da0cmbB9CcdsGv3y0z501NlLViX-uSgoa8nRglljWkac2QHrJFXZ2FNIMze92FzVZsSbG0rHYsZxeUMVghjplbkOYadoohLC3Dn23rhj6E2eTw8_go7JQXQoOMbRmWWuiocMLguhbFrrDOFaowkTUyL23CLXcu4rx0RgkpcdZw2khtaa9no3Io4kewU9WVfQLMxaq0XNmhLHKkblanQ6NVUhqD3DF3MoCoH-TMdGXJSR1jkfnj8TjNWhtlaKPM2ygTAbxaPXPRFuX4Z-sDst2qJRXU9hfq5izr_DMrY8SscCYqklykpdSRGRaKp4VOioQ7G8B-b_msB2nGkcwhfUXGFcCL1W30Tzp0yStbX7VtpEQOwAN43AJl1ZMeaAGoNQitdXX9TvXl3NcAV1Spj977ugfbz279fSie_veLnsEeJy_xoZ77sLNsruxzpGPLYgDbaq7wM518GMDuaDT9NMXvg8OTj6d4dSzHA_9Hx8D74g_KpDo4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ1AASPBCaImtuMkB4TYhpYuB9RKvbmJlxZpSIaZKdA_xW_kPSeZalh66zVxkhe_7bP9FoBnGZe-9LmIc5WIWCpr4sJxETuULtSmkhtP2cg7u2pjX346yA5W4NeQC0NhlYNNDIbatob2yNc5Ok6ECujdXk--xdQ1ik5XhxYanVhsudMfuGSbvdp8j_x9zvnow967jbjvKhAbRCPz2JayTGsvDdrsVPjaeV_ntUmdUZV1GXfc-5Rz600ulUKN8KVRpaN1jEttIgW-9xJclgIJosz00cfFng5VWy-k7HNzElGsz2SwRLRGS7OiVLFc8n-hTcC_sO3fIZp_nNMG9ze6Add73MredIJ2E1ZccwuudJ0sT2_D9HMfUfvdMXM8bQkHN-xraykSKTCfUbbalBplM8ScbNw2RzG5BeZ-9rG4DZtTgC5rPavYhNIQG1QO5sfUyA2JYijrjuFru2Kkd2D_Qib-Lqw2bePuA_Mit47nLlF1hXjQlUViyjyzxiAgrbyKIB0mWZu-1jm13BjrcOYuCt0xRiNjdGCMlhG8WDwz6Sp9nDv6LfFuMZKqdIcL7fRI90qvrUBFkN6kdVbJwqLwmqTOeVGXWZ1x7yJYGzive9Mx02eCHsHTxW1UejrJqRrXnnRjlEJgwSO41wnKghJByc9ZWkSQL4nQEqnLd5ovx6GweE7l_-i7LwdhOyPr_1Px4Py_eAJXN_Z2tvX25u7WQ7jGSRdCwOgarM6nJ-4Rgrp5_ThoEoPDi1bd33NQYR4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Bir9e79gEhShu1FKKqolJvi72PFinYIUmB_jV-HTN-pAqP3nq1N_Zm55uZb73zAHiecuFzr5JQySgJhbQmzBxPQofoQm3KufGUjfxxLHcOxfuj9GgNfvW5MBRW2dvExlDb2tA38iFHx4lUAb3b0HdhEftbozfTbyF1kKKT1r6dRguRPXf2A7dv89e7WyjrF5yPtj-92wm7DgOhQWayCG0u8rj0wqD9jhNfOu9LVZrYGVlYl3LHvY85t94oISVqh8-NzB3taVxsI5Hgc6_AuqJd0QDWN7fH-wfLLzxUez0TosvUiZJsOBeNXaIdW5xmuQzFijdsmgb8i-n-HbD5x6lt4wxHN-FGx2LZ2xZ2t2DNVbfhatvX8uwOzA66-NrvjpmTWU2suGJfa0txSQ0UGOWuzahtNkMGyiZ1dRySk2DuZxeZW7EFheuy2rOCTSkpsUJVYX5Cbd1wUgyR7xg-ti1NehcOL2Xp78Ggqiv3AJhPlHVcuUiWBbJDl2eRyVVqjUF6WngZQNwvsjZd5XNqwDHRzQl8kulWMBoFoxvBaBHAy-Vvpm3djwtHb5LsliOpZndzoZ4d684EaJugWghv4jItRGYRyiYqFc_KPC1T7l0AG73kdWdI5voc9gE8W95GE0DnOkXl6tN2jJRIM3gA91ugLGeSUCp0GmcBqBUIrUx19U715aQpM66oGCC991UPtvNp_X8pHl78L57CNVRb_WF3vPcIrnNShSZ6dAMGi9mpe4wMb1E-6VSJwefL1t7fq1hmsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repressive+chromatin+modification+underpins+the+long-term+expression+trend+of+a+perennial+flowering+gene+in+nature&rft.jtitle=Nature+communications&rft.au=Nishio%2C+Haruki&rft.au=Buzas%2C+Diana+M.&rft.au=Nagano%2C+Atsushi+J.&rft.au=Iwayama%2C+Koji&rft.date=2020-05-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-15896-4&rft_id=info%3Apmid%2F32358518&rft.externalDocID=PMC7195410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |