Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature

Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, w...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 2065 - 12
Main Authors Nishio, Haruki, Buzas, Diana M., Nagano, Atsushi J., Iwayama, Koji, Ushio, Masayuki, Kudoh, Hiroshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsis halleri . Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle.
AbstractList Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment.
The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsis halleri. Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle.
Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment.
Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsis halleri . Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle.
Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment.Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment.
Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment.The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsishalleri. Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle.
ArticleNumber 2065
Author Buzas, Diana M.
Nagano, Atsushi J.
Nishio, Haruki
Iwayama, Koji
Ushio, Masayuki
Kudoh, Hiroshi
Author_xml – sequence: 1
  givenname: Haruki
  orcidid: 0000-0002-6124-782X
  surname: Nishio
  fullname: Nishio, Haruki
  email: harukin218@gmail.com
  organization: Center for Ecological Research, Kyoto University
– sequence: 2
  givenname: Diana M.
  orcidid: 0000-0002-8625-7872
  surname: Buzas
  fullname: Buzas, Diana M.
  organization: Tsukuba-Plant Innovation Research Center and Faculty of Life and Environmental Sciences, University of Tsukuba
– sequence: 3
  givenname: Atsushi J.
  surname: Nagano
  fullname: Nagano, Atsushi J.
  organization: Center for Ecological Research, Kyoto University, Faculty of Agriculture, Ryukoku University
– sequence: 4
  givenname: Koji
  orcidid: 0000-0001-5008-8379
  surname: Iwayama
  fullname: Iwayama, Koji
  organization: Faculty of Data Science, Shiga University, PRESTO, Japan Science and Technology Agency
– sequence: 5
  givenname: Masayuki
  surname: Ushio
  fullname: Ushio, Masayuki
  organization: Center for Ecological Research, Kyoto University, PRESTO, Japan Science and Technology Agency, Hakubi Center, Kyoto University
– sequence: 6
  givenname: Hiroshi
  orcidid: 0000-0001-9777-4886
  surname: Kudoh
  fullname: Kudoh, Hiroshi
  email: kudoh@ecology.kyoto-u.ac.jp
  organization: Center for Ecological Research, Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32358518$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAYtFARLUv_AAdkiQuXgF95-IKEKh6VKiEhOFuO_XnXq8QOdlLg3-PdlNL2UF_8yZ4ZjT3zHJ2EGAChl5S8pYR377KgomkrwkhF6042lXiCzhgRtKIt4yd35lN0nvOelMUl7YR4hk4543VX0-4MpW8wJcjZXwM2uxRHPfuAx2i986bMMeAlWEiTDxnPO8BDDNtqhjRi-L0yC2ROECyODms8QZmD1wN2Q_wFyYct3kIAXGSDnpcEL9BTp4cM5zf7Bv349PH7xZfq6uvny4sPV5VpajJXVgpJeycMZZxy14NzfdsbCqbRFmoGzDnKmHWmFU1DWuKkaSQ0QnRALRF8gy5XXRv1Xk3Jjzr9UVF7dTyIaat0mr0ZQFkunBTO0L7WorONpIb0Let6Wfc1c1C03q9a09KPYA2EOenhnuj9m-B3ahuvVUtlLUpgG_TmRiDFnwvkWY0-GxgGHSAuWTEu26bpRMlrg14_gO7jkkL5qiOKsWLvIPjqrqNbK_-iLQC2AkyKOSdwtxBK1KFCaq2QKhVSxwqpw591D0jGz8calFf54XEqX6l5OoQO6b_tR1h_Ad5T3Vg
CitedBy_id crossref_primary_10_1016_j_pbi_2021_102012
crossref_primary_10_1016_j_gde_2022_102016
crossref_primary_10_1111_nph_17897
crossref_primary_10_1093_aobpla_plad032
crossref_primary_10_1093_treephys_tpaa122
crossref_primary_10_1038_s41598_020_72566_7
crossref_primary_10_1073_pnas_2402697121
crossref_primary_10_1038_s41477_020_00757_1
crossref_primary_10_3389_fpls_2021_628726
crossref_primary_10_1016_j_cub_2021_03_046
crossref_primary_10_1146_annurev_arplant_070523_041445
crossref_primary_10_3390_biom11060852
crossref_primary_10_3390_plants10061165
crossref_primary_10_1038_s41467_023_41260_3
crossref_primary_10_3389_fpls_2021_640442
crossref_primary_10_1073_pnas_2311474121
crossref_primary_10_3389_fpls_2021_627258
crossref_primary_10_1093_plphys_kiad558
Cites_doi 10.1016/j.cell.2007.02.053
10.1073/pnas.0914293107
10.1038/nature07988
10.1186/s12885-017-3256-y
10.1038/s41477-018-0338-z
10.1002/bies.201700053
10.1038/nature19362
10.1111/j.1365-3040.2012.02548.x
10.1111/j.1365-313X.2010.04471.x
10.1371/journal.pone.0131226
10.2307/3214721
10.1038/ncomms5457
10.1126/science.1227079
10.1101/gad.1499407
10.1038/nature10241
10.1201/9780415876179.ch41
10.7554/eLife.07205
10.1007/978-3-642-38212-3_13
10.1016/j.cub.2014.06.047
10.1530/REP-08-0045
10.1111/mec.14084
10.1016/j.jtbi.2012.02.009
10.1016/j.cub.2007.10.026
10.1038/nature08618
10.1073/pnas.1605862113
10.1073/pnas.1607747113
10.1038/nmeth0305-213
10.1038/s41598-019-51212-x
10.1038/276565a0
10.1073/pnas.0808687105
10.1073/pnas.1503100112
10.1126/science.1165826
10.1101/gad.1493306
10.1007/s11284-017-1469-9
10.1016/S0092-8674(02)00976-5
10.1038/srep14750
10.1073/pnas.1419030111
10.1073/pnas.97.7.3753
10.7554/eLife.06620
10.1038/ng.159
10.1104/pp.104.058974
10.1038/nature02195
10.1105/tpc.11.5.949
10.1111/j.1469-8137.2012.04378.x
10.1038/s41467-018-03065-7
10.1038/ncomms3303
10.1007/BFb0091924
10.1016/j.cels.2018.10.011
10.1016/j.cels.2017.02.013
10.1073/pnas.1211172109
10.1007/978-3-319-58895-7_27
10.1266/ggs.15-00071
10.1038/ncomms13031
10.1007/978-3-319-24277-4
10.1111/nph.13733
10.1126/science.aan1121
10.1242/dev.101.1.1
10.1038/nature25504
10.1038/344734a0
10.3390/genes10070544
10.1371/journal.pone.0021513
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-15896-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_d34f94fc1b5a48d691c0b728b95b52fe
PMC7195410
32358518
10_1038_s41467_020_15896_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
  grantid: JPMJCR15O1
  funderid: https://doi.org/10.13039/501100003382
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: Grant-in-Aid for Scientific Research (S) 26221106
  funderid: https://doi.org/10.13039/501100001691
– fundername: ;
  grantid: Grant-in-Aid for Scientific Research (S) 26221106
– fundername: ;
  grantid: JPMJCR15O1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c650t-d9491bf4c12313fbeffb7bc1ec6ade52e2ff122dfc7466070f9c69e6448e1d043
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:40 EDT 2025
Thu Aug 21 14:02:02 EDT 2025
Fri Jul 11 02:50:36 EDT 2025
Wed Aug 13 09:50:09 EDT 2025
Thu Apr 03 06:55:14 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Tue Jul 01 04:08:55 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c650t-d9491bf4c12313fbeffb7bc1ec6ade52e2ff122dfc7466070f9c69e6448e1d043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8625-7872
0000-0001-5008-8379
0000-0001-9777-4886
0000-0002-6124-782X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15896-4
PMID 32358518
PQID 2397226910
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_d34f94fc1b5a48d691c0b728b95b52fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7195410
proquest_miscellaneous_2397668472
proquest_journals_2397226910
pubmed_primary_32358518
crossref_primary_10_1038_s41467_020_15896_4
crossref_citationtrail_10_1038_s41467_020_15896_4
springer_journals_10_1038_s41467_020_15896_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BuzasDMRobertsonMFinneganEJHelliwellCATranscription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLCPlant J.2011658728811:CAS:528:DC%2BC3MXkvVaisL4%3D2127610310.1111/j.1365-313X.2010.04471.x
AngelASongJDeanCHowardMA Polycomb-based switch underlying quantitative epigenetic memoryNature20114761051081:CAS:528:DC%2BC3MXptlaksb4%3D2178543810.1038/nature10241
BélisleCJPConvergence theorems for a class of simulated annealing algorithms on ℝdJ. Appl. Probab.19922988589511885440765.6505910.2307/3214721
DeyleERMaherMCHernandezRDBasuSSugiharaGGlobal environmental drivers of influenzaProc. Natl Acad. Sci. USA201611313081130861:CAS:528:DC%2BC28XhslKnurfF2779956310.1073/pnas.16077471135135382
ErdelFGreeneECGeneralized nucleation and looping model for epigenetic memory of histone modificationsProc. Natl Acad. Sci. USA2016113E4180E41891:CAS:528:DC%2BC28XhtFentrzL2738217310.1073/pnas.16058621134961120
NgolloMGlobal analysis of H3K27me3 as an epigenetic marker in prostate cancer progressionBMC Cancer20171728403887538899810.1186/s12885-017-3256-y1:CAS:528:DC%2BC1cXitVSns73K
KemiURole of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrataNew Phytol.20131973233351:CAS:528:DC%2BC38XhslelsLzO2310647710.1111/j.1469-8137.2012.04378.x
FinneganEJDennisESVernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cellsCurr. Biol.200717197819831:CAS:528:DC%2BD2sXhtlWktLbM1798059510.1016/j.cub.2007.10.026
ChangC-WWUshioMHsiehC-HEmpirical dynamic modeling for beginnersEcol. Res.20173278579610.1007/s11284-017-1469-9
LewisEBA gene complex controlling segmentation in DrosophilaNature19782765655701978Natur.276..565L1:STN:280:DyaE1M%2FntlWgsQ%3D%3D10300010.1038/276565a0
SatakeAForecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genesNat. Commun.201342013NatCo...4.2303S2394197310.1038/ncomms33031:CAS:528:DC%2BC3sXhsVOru7zL
HelliwellCARobertsonMFinneganEJBuzasDMDennisESVernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcriptsPLoS ONE20116e215132011PLoSO...621513H1:CAS:528:DC%2BC3MXotFalsLc%3D21713009311969810.1371/journal.pone.0021513
BerrySHartleyMOlssonTSDeanCHowardMLocal chromatin environment of a Polycomb target gene instructs its own epigenetic inheritanceeLife20154e07205445044110.7554/eLife.072051:CAS:528:DC%2BC28XltV2rsbs%3D
KondoYGene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylationNat. Genet.2008407417501:CAS:528:DC%2BD1cXmsVejtro%3D1848802910.1038/ng.159
SungSAmasinoRMVernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3Nature20044271591642004Natur.427..159S1:CAS:528:DC%2BD2cXhtFOnsA%3D%3D1471227610.1038/nature02195
SchiesslSVQuezada-MartinezDTebartzESnowdonRJQianLThe vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napusSci. Rep.201992019NatSR...914911S31624282679775010.1038/s41598-019-51212-x1:CAS:528:DC%2BC1MXitVSmu7rJ
YangHHowardMDeanCAntagonistic roles for H3K36me3 and H3K27me3 in the cold-Induced epigenetic switch at Arabidopsis FLCCurr. Biol.201424179317971:CAS:528:DC%2BC2cXht1ags7nP25065750412316310.1016/j.cub.2014.06.047
UshioMFluctuating interaction network and time-varying stability of a natural fish communityNature20185543603632018Natur.554..360U1:CAS:528:DC%2BC1cXisVKjs74%3D2941494010.1038/nature25504
LinS-IDifferential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and ArabidopsisPlant Physiol.2005137103710481:CAS:528:DC%2BD2MXislOqsrY%3D15734903106540410.1104/pp.104.058974
SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM229971341355.9214410.1126/science.1227079
Wickham, H. ggplot2 (Springer-Verlag, 2016).
ItoTSeasonal stability and dynamics of DNA methylation in plants in a natural environmentGenes2019105441:CAS:528:DC%2BC1MXhvV2lsr3M667910510.3390/genes10070544
WollenbergACAmasinoRMNatural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thalianaPlant. Cell Environ.201235218121912263979210.1111/j.1365-3040.2012.02548.x
DuncanSSeasonal shift in timing of vernalization as an adaptation to extreme wintereLife20154e06620453280110.7554/eLife.06620
SatakeAIwasaYA stochastic model of chromatin modification: cell population coding of winter memory in plantsJ. Theor. Biol.201230261729095111:CAS:528:DC%2BC38Xls12rs70%3D223815391325.9205710.1016/j.jtbi.2012.02.009
HodgesCCrabtreeGRDynamics of inherently bounded histone modification domainsProc. Natl Acad. Sci. USA201210913296133012012PNAS..10913296H1:CAS:528:DC%2BC38XhsValur7L2284742710.1073/pnas.12111721093421184
LiuXDistinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryosNature20165375585622016Natur.537..558L1:CAS:528:DC%2BC28XhsFWiurbO2762637910.1038/nature19362
RosaSDuncanSDeanCMutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repressionNat. Commun.201672016NatCo...713031R1:CAS:528:DC%2BC28Xhs1Gns7bM27713408505976610.1038/ncomms13031
CastaingsLEvolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relativesNat. Commun.201452014NatCo...5.4457C1:CAS:528:DC%2BC2cXitVShs77O2503005610.1038/ncomms5457
GendrelA-VLippmanZMartienssenRColotVProfiling histone modification patterns in plants using genomic tiling microarraysNat. Methods200522132181:CAS:528:DC%2BD2MXisVGisL0%3D1616380210.1038/nmeth0305-213
KieferCDivergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologuesMol. Ecol.201726343734571:CAS:528:DC%2BC2sXhtVKqtLnM28261921548500610.1111/mec.14084
SheldonCCRouseDTFinneganEJPeacockWJDennisESThe molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC)Proc. Natl Acad. Sci. USA200097375337582000PNAS...97.3753S1:CAS:528:DC%2BD3cXitlajsrc%3D1071672310.1073/pnas.97.7.375316312
YangHDistinct phases of Polycomb silencing to hold epigenetic memory of cold in ArabidopsisScience2017357114211452017Sci...357.1142Y1:CAS:528:DC%2BC2sXhsVOitbbL2881896910.1126/science.aan1121
O’Shea, P. in The Measurement, Instrumentation, and Sensors Handbook (CRC Press, 1999).
SugiharaGMayRMNonlinear forecasting as a way of distinguishing chaos from measurement error in time seriesNature19903447347411990Natur.344..734S1:STN:280:DyaK3c3jtFCjuw%3D%3D233002910.1038/344734a0
Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L.-S.) 366–381 (Springer, 1981).
YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750
BozorgMaghamAEMotesharreiSPennySGKalnayECausality analysis: identifying the leading element in a coupled dynamical systemPLoS ONE201510e013122626125157448835010.1371/journal.pone.01312261:CAS:528:DC%2BC28XosVCru74%3D
HepworthJAbsence of warmth permits epigenetic memory of winter in ArabidopsisNat. Commun.201892018NatCo...9..639H29434233580960410.1038/s41467-018-03065-71:CAS:528:DC%2BC1cXhtFSltLjN
MüllerJHistone methyltransferase activity of a Drosophila Polycomb group repressor complexCell20021111972081240886410.1016/S0092-8674(02)00976-5
SwiezewskiSLiuFMagusinADeanCCold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb targetNature20094627998022009Natur.462..799S1:CAS:528:DC%2BD1MXhsFersrvM2001068810.1038/nature08618
NaganoAJAnnual transcriptome dynamics in natural environments reveals plant seasonal adaptationNat. Plants2019574833061725210.1038/s41477-018-0338-z
AngelAVernalizing cold is registered digitally at FLCProc. Natl Acad. Sci. USA2015112414641512015PNAS..112.4146A1:CAS:528:DC%2BC2MXksF2isbw%3D2577557910.1073/pnas.15031001124386389
Kudoh, H. & Nagano, A. J. in Evolutionary Biology: Exobiology and Evolutionary Mechanisms (ed Pontarotti, P.) 195–215 (Springer, 2013).
De LuciaFCrevillenPJonesAMGrebTDeanCA PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalizationProc. Natl Acad. Sci. USA200810516831168362008PNAS..10516831D1885441610.1073/pnas.08086871052579339
NishioHFrom the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleriGenes Genet. Syst.20169115261:CAS:528:DC%2BC1cXkvFKmur0%3D2715071810.1266/ggs.15-00071
KotakeYpRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4α tumor suppressor geneGenes Dev.20072149541:CAS:528:DC%2BD2sXmsFyltw%3D%3D17210787175989910.1101/gad.1499407
ErdelFHow communication between nucleosomes enables spreading and epigenetic memory of histone modificationsBioEssays201739170005310.1002/bies.2017000531:CAS:528:DC%2BC2sXhvFWnu7bE
DoddIBMicheelsenMASneppenKThonGTheoretical analysis of epigenetic cell memory by nucleosome modificationCell20071298138221:CAS:528:DC%2BD2sXmtFKjsr0%3D1751241310.1016/j.cell.2007.02.053
Antoniou-KourouniotiRLTemperature sensing is distributed throughout the regulatory network that controls FLC epigenetic silencing in vernalizationCell Syst.20187643655.e91:CAS:528:DC%2BC1cXis1SqsL7I30503646631068610.1016/j.cels.2018.10.011
RossPJPolycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation developmentReproduction20081367777851:CAS:528:DC%2BD1MXns1CrsQ%3D%3D1878424810.1530/REP-08-0045
KudohHMolecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environmentsNew Phytol.20162103994121:CAS:528:DC%2BC28Xks1egsLY%3D2652395710.1111/nph.13733
WangRPEP1 regulates perennial flowering in Arabis alpinaNature20094594234272009Natur.459..423W1:CAS:528:DC%2BD1MXksFemu78%3D1936993810.1038/nature07988
SungSSchmitzRJAmasinoRMA PHD finger protein invo
S Swiezewski (15896_CR15) 2009; 462
S Sung (15896_CR21) 2006; 20
CC Sheldon (15896_CR6) 2000; 97
DM Buzas (15896_CR45) 2011; 65
15896_CR60
CA Helliwell (15896_CR18) 2011; 6
M Akam (15896_CR47) 1987; 101
A-V Gendrel (15896_CR54) 2005; 2
G Sugihara (15896_CR37) 1990; 344
C Hodges (15896_CR39) 2012; 109
AM Wilczek (15896_CR31) 2009; 323
X Liu (15896_CR50) 2016; 537
H Yang (15896_CR23) 2017; 357
15896_CR56
15896_CR57
J Hepworth (15896_CR3) 2018; 9
F De Lucia (15896_CR20) 2008; 105
S-I Lin (15896_CR7) 2005; 137
A Satake (15896_CR27) 2013; 4
AJ Nagano (15896_CR32) 2019; 5
H Kudoh (15896_CR2) 2016; 210
T Csorba (15896_CR16) 2014; 111
T Ito (15896_CR33) 2019; 10
F Erdel (15896_CR40) 2016; 113
IB Dodd (15896_CR44) 2007; 129
SD Michaels (15896_CR5) 1999; 11
S Berry (15896_CR42) 2015; 4
EJ Finnegan (15896_CR13) 2007; 17
A Angel (15896_CR28) 2015; 112
C Kiefer (15896_CR25) 2017; 26
J Müller (15896_CR48) 2002; 111
H Ye (15896_CR36) 2015; 5
PJ Ross (15896_CR49) 2008; 136
U Kemi (15896_CR26) 2013; 197
F Erdel (15896_CR41) 2017; 39
C-WW Chang (15896_CR55) 2017; 32
SV Schiessl (15896_CR9) 2019; 9
H Yang (15896_CR14) 2014; 24
S Duncan (15896_CR12) 2015; 4
G Sugihara (15896_CR35) 2012; 338
M Ushio (15896_CR59) 2018; 554
RL Antoniou-Kourounioti (15896_CR4) 2018; 7
15896_CR34
CJP Bélisle (15896_CR61) 1992; 29
15896_CR1
A Angel (15896_CR22) 2011; 476
L Castaings (15896_CR24) 2014; 5
M Ngollo (15896_CR53) 2017; 17
S Rosa (15896_CR17) 2016; 7
AC Wollenberg (15896_CR11) 2012; 35
S Berry (15896_CR29) 2017; 4
S Sung (15896_CR19) 2004; 427
A Satake (15896_CR43) 2012; 302
EB Lewis (15896_CR46) 1978; 276
Y Kotake (15896_CR51) 2007; 21
H Nishio (15896_CR30) 2016; 91
ER Deyle (15896_CR58) 2016; 113
AE BozorgMagham (15896_CR38) 2015; 10
S Aikawa (15896_CR10) 2010; 107
R Wang (15896_CR8) 2009; 459
Y Kondo (15896_CR52) 2008; 40
References_xml – reference: HodgesCCrabtreeGRDynamics of inherently bounded histone modification domainsProc. Natl Acad. Sci. USA201210913296133012012PNAS..10913296H1:CAS:528:DC%2BC38XhsValur7L2284742710.1073/pnas.12111721093421184
– reference: WangRPEP1 regulates perennial flowering in Arabis alpinaNature20094594234272009Natur.459..423W1:CAS:528:DC%2BD1MXksFemu78%3D1936993810.1038/nature07988
– reference: DuncanSSeasonal shift in timing of vernalization as an adaptation to extreme wintereLife20154e06620453280110.7554/eLife.06620
– reference: ItoTSeasonal stability and dynamics of DNA methylation in plants in a natural environmentGenes2019105441:CAS:528:DC%2BC1MXhvV2lsr3M667910510.3390/genes10070544
– reference: SatakeAIwasaYA stochastic model of chromatin modification: cell population coding of winter memory in plantsJ. Theor. Biol.201230261729095111:CAS:528:DC%2BC38Xls12rs70%3D223815391325.9205710.1016/j.jtbi.2012.02.009
– reference: SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM229971341355.9214410.1126/science.1227079
– reference: SatakeAForecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genesNat. Commun.201342013NatCo...4.2303S2394197310.1038/ncomms33031:CAS:528:DC%2BC3sXhsVOru7zL
– reference: SungSSchmitzRJAmasinoRMA PHD finger protein involved in both the vernalization and photoperiod pathways in ArabidopsisGenes Dev.200620324432481:CAS:528:DC%2BD28XhtlSmt7vF17114575168660110.1101/gad.1493306
– reference: DeyleERMaherMCHernandezRDBasuSSugiharaGGlobal environmental drivers of influenzaProc. Natl Acad. Sci. USA201611313081130861:CAS:528:DC%2BC28XhslKnurfF2779956310.1073/pnas.16077471135135382
– reference: ErdelFHow communication between nucleosomes enables spreading and epigenetic memory of histone modificationsBioEssays201739170005310.1002/bies.2017000531:CAS:528:DC%2BC2sXhvFWnu7bE
– reference: AikawaSKobayashiMJSatakeAShimizuKKKudohHRobust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environmentProc. Natl Acad. Sci. USA201010711632116372010PNAS..10711632A1:CAS:528:DC%2BC3cXot1eksbc%3D2053454110.1073/pnas.09142931072895080
– reference: LinS-IDifferential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and ArabidopsisPlant Physiol.2005137103710481:CAS:528:DC%2BD2MXislOqsrY%3D15734903106540410.1104/pp.104.058974
– reference: KieferCDivergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologuesMol. Ecol.201726343734571:CAS:528:DC%2BC2sXhtVKqtLnM28261921548500610.1111/mec.14084
– reference: ErdelFGreeneECGeneralized nucleation and looping model for epigenetic memory of histone modificationsProc. Natl Acad. Sci. USA2016113E4180E41891:CAS:528:DC%2BC28XhtFentrzL2738217310.1073/pnas.16058621134961120
– reference: CastaingsLEvolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relativesNat. Commun.201452014NatCo...5.4457C1:CAS:528:DC%2BC2cXitVShs77O2503005610.1038/ncomms5457
– reference: KondoYGene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylationNat. Genet.2008407417501:CAS:528:DC%2BD1cXmsVejtro%3D1848802910.1038/ng.159
– reference: RossPJPolycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation developmentReproduction20081367777851:CAS:528:DC%2BD1MXns1CrsQ%3D%3D1878424810.1530/REP-08-0045
– reference: AngelASongJDeanCHowardMA Polycomb-based switch underlying quantitative epigenetic memoryNature20114761051081:CAS:528:DC%2BC3MXptlaksb4%3D2178543810.1038/nature10241
– reference: CsorbaTQuestaJISunQDeanCAntisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalizationProc. Natl Acad. Sci. USA201411116160161652014PNAS..11116160C1:CAS:528:DC%2BC2cXhvVWmsLzF2534942110.1073/pnas.14190301114234544
– reference: RosaSDuncanSDeanCMutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repressionNat. Commun.201672016NatCo...713031R1:CAS:528:DC%2BC28Xhs1Gns7bM27713408505976610.1038/ncomms13031
– reference: WilczekAMEffects of genetic perturbation on seasonal life history plasticityScience20093239309342009Sci...323..930W1:CAS:528:DC%2BD1MXhslSgsb8%3D1915081010.1126/science.1165826
– reference: HepworthJAbsence of warmth permits epigenetic memory of winter in ArabidopsisNat. Commun.201892018NatCo...9..639H29434233580960410.1038/s41467-018-03065-71:CAS:528:DC%2BC1cXhtFSltLjN
– reference: SchiesslSVQuezada-MartinezDTebartzESnowdonRJQianLThe vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napusSci. Rep.201992019NatSR...914911S31624282679775010.1038/s41598-019-51212-x1:CAS:528:DC%2BC1MXitVSmu7rJ
– reference: KemiURole of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrataNew Phytol.20131973233351:CAS:528:DC%2BC38XhslelsLzO2310647710.1111/j.1469-8137.2012.04378.x
– reference: SungSAmasinoRMVernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3Nature20044271591642004Natur.427..159S1:CAS:528:DC%2BD2cXhtFOnsA%3D%3D1471227610.1038/nature02195
– reference: WollenbergACAmasinoRMNatural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thalianaPlant. Cell Environ.201235218121912263979210.1111/j.1365-3040.2012.02548.x
– reference: FinneganEJDennisESVernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cellsCurr. Biol.200717197819831:CAS:528:DC%2BD2sXhtlWktLbM1798059510.1016/j.cub.2007.10.026
– reference: LiuXDistinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryosNature20165375585622016Natur.537..558L1:CAS:528:DC%2BC28XhsFWiurbO2762637910.1038/nature19362
– reference: MichaelsSDAmasinoRMFLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of floweringPlant Cell1999119499561:CAS:528:DyaK1MXjvVajsLc%3D1033047814422610.1105/tpc.11.5.949
– reference: Antoniou-KourouniotiRLTemperature sensing is distributed throughout the regulatory network that controls FLC epigenetic silencing in vernalizationCell Syst.20187643655.e91:CAS:528:DC%2BC1cXis1SqsL7I30503646631068610.1016/j.cels.2018.10.011
– reference: BerrySHartleyMOlssonTSDeanCHowardMLocal chromatin environment of a Polycomb target gene instructs its own epigenetic inheritanceeLife20154e07205445044110.7554/eLife.072051:CAS:528:DC%2BC28XltV2rsbs%3D
– reference: DoddIBMicheelsenMASneppenKThonGTheoretical analysis of epigenetic cell memory by nucleosome modificationCell20071298138221:CAS:528:DC%2BD2sXmtFKjsr0%3D1751241310.1016/j.cell.2007.02.053
– reference: BerrySDeanCHowardMSlow chromatin dynamics allow polycomb target genes to filter fluctuations in transcription factor activityCell Syst.20174445457.e81:CAS:528:DC%2BC2sXmvVSis74%3D28342717540983110.1016/j.cels.2017.02.013
– reference: ChangC-WWUshioMHsiehC-HEmpirical dynamic modeling for beginnersEcol. Res.20173278579610.1007/s11284-017-1469-9
– reference: BozorgMaghamAEMotesharreiSPennySGKalnayECausality analysis: identifying the leading element in a coupled dynamical systemPLoS ONE201510e013122626125157448835010.1371/journal.pone.01312261:CAS:528:DC%2BC28XosVCru74%3D
– reference: BélisleCJPConvergence theorems for a class of simulated annealing algorithms on ℝdJ. Appl. Probab.19922988589511885440765.6505910.2307/3214721
– reference: UshioMFluctuating interaction network and time-varying stability of a natural fish communityNature20185543603632018Natur.554..360U1:CAS:528:DC%2BC1cXisVKjs74%3D2941494010.1038/nature25504
– reference: GendrelA-VLippmanZMartienssenRColotVProfiling histone modification patterns in plants using genomic tiling microarraysNat. Methods200522132181:CAS:528:DC%2BD2MXisVGisL0%3D1616380210.1038/nmeth0305-213
– reference: Wickham, H. ggplot2 (Springer-Verlag, 2016).
– reference: O’Shea, P. in The Measurement, Instrumentation, and Sensors Handbook (CRC Press, 1999).
– reference: SwiezewskiSLiuFMagusinADeanCCold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb targetNature20094627998022009Natur.462..799S1:CAS:528:DC%2BD1MXhsFersrvM2001068810.1038/nature08618
– reference: SugiharaGMayRMNonlinear forecasting as a way of distinguishing chaos from measurement error in time seriesNature19903447347411990Natur.344..734S1:STN:280:DyaK3c3jtFCjuw%3D%3D233002910.1038/344734a0
– reference: SheldonCCRouseDTFinneganEJPeacockWJDennisESThe molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC)Proc. Natl Acad. Sci. USA200097375337582000PNAS...97.3753S1:CAS:528:DC%2BD3cXitlajsrc%3D1071672310.1073/pnas.97.7.375316312
– reference: Tsonis, A. A., Deyle, E. R., Ye, H. & Sugihara, G. in Advances in Nonlinear Geosciences (ed Tsonis, A. A.) 587–600 (Springer, 2018).
– reference: Kudoh, H. & Nagano, A. J. in Evolutionary Biology: Exobiology and Evolutionary Mechanisms (ed Pontarotti, P.) 195–215 (Springer, 2013).
– reference: NgolloMGlobal analysis of H3K27me3 as an epigenetic marker in prostate cancer progressionBMC Cancer20171728403887538899810.1186/s12885-017-3256-y1:CAS:528:DC%2BC1cXitVSns73K
– reference: LewisEBA gene complex controlling segmentation in DrosophilaNature19782765655701978Natur.276..565L1:STN:280:DyaE1M%2FntlWgsQ%3D%3D10300010.1038/276565a0
– reference: Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L.-S.) 366–381 (Springer, 1981).
– reference: NishioHFrom the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleriGenes Genet. Syst.20169115261:CAS:528:DC%2BC1cXkvFKmur0%3D2715071810.1266/ggs.15-00071
– reference: De LuciaFCrevillenPJonesAMGrebTDeanCA PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalizationProc. Natl Acad. Sci. USA200810516831168362008PNAS..10516831D1885441610.1073/pnas.08086871052579339
– reference: YangHDistinct phases of Polycomb silencing to hold epigenetic memory of cold in ArabidopsisScience2017357114211452017Sci...357.1142Y1:CAS:528:DC%2BC2sXhsVOitbbL2881896910.1126/science.aan1121
– reference: KotakeYpRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4α tumor suppressor geneGenes Dev.20072149541:CAS:528:DC%2BD2sXmsFyltw%3D%3D17210787175989910.1101/gad.1499407
– reference: YangHHowardMDeanCAntagonistic roles for H3K36me3 and H3K27me3 in the cold-Induced epigenetic switch at Arabidopsis FLCCurr. Biol.201424179317971:CAS:528:DC%2BC2cXht1ags7nP25065750412316310.1016/j.cub.2014.06.047
– reference: AkamMThe molecular basis for metameric pattern in the Drosophila embryoDevelopment19871011221:CAS:528:DyaL2sXmtFGjtr8%3D2896587
– reference: BuzasDMRobertsonMFinneganEJHelliwellCATranscription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLCPlant J.2011658728811:CAS:528:DC%2BC3MXkvVaisL4%3D2127610310.1111/j.1365-313X.2010.04471.x
– reference: KudohHMolecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environmentsNew Phytol.20162103994121:CAS:528:DC%2BC28Xks1egsLY%3D2652395710.1111/nph.13733
– reference: AngelAVernalizing cold is registered digitally at FLCProc. Natl Acad. Sci. USA2015112414641512015PNAS..112.4146A1:CAS:528:DC%2BC2MXksF2isbw%3D2577557910.1073/pnas.15031001124386389
– reference: HelliwellCARobertsonMFinneganEJBuzasDMDennisESVernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcriptsPLoS ONE20116e215132011PLoSO...621513H1:CAS:528:DC%2BC3MXotFalsLc%3D21713009311969810.1371/journal.pone.0021513
– reference: NaganoAJAnnual transcriptome dynamics in natural environments reveals plant seasonal adaptationNat. Plants2019574833061725210.1038/s41477-018-0338-z
– reference: MüllerJHistone methyltransferase activity of a Drosophila Polycomb group repressor complexCell20021111972081240886410.1016/S0092-8674(02)00976-5
– reference: YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750
– volume: 129
  start-page: 813
  year: 2007
  ident: 15896_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.053
– volume: 107
  start-page: 11632
  year: 2010
  ident: 15896_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0914293107
– volume: 459
  start-page: 423
  year: 2009
  ident: 15896_CR8
  publication-title: Nature
  doi: 10.1038/nature07988
– volume: 17
  year: 2017
  ident: 15896_CR53
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3256-y
– volume: 5
  start-page: 74
  year: 2019
  ident: 15896_CR32
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0338-z
– volume: 39
  start-page: 1700053
  year: 2017
  ident: 15896_CR41
  publication-title: BioEssays
  doi: 10.1002/bies.201700053
– volume: 537
  start-page: 558
  year: 2016
  ident: 15896_CR50
  publication-title: Nature
  doi: 10.1038/nature19362
– volume: 35
  start-page: 2181
  year: 2012
  ident: 15896_CR11
  publication-title: Plant. Cell Environ.
  doi: 10.1111/j.1365-3040.2012.02548.x
– volume: 65
  start-page: 872
  year: 2011
  ident: 15896_CR45
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04471.x
– volume: 10
  start-page: e0131226
  year: 2015
  ident: 15896_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0131226
– volume: 29
  start-page: 885
  year: 1992
  ident: 15896_CR61
  publication-title: J. Appl. Probab.
  doi: 10.2307/3214721
– volume: 5
  year: 2014
  ident: 15896_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5457
– volume: 338
  start-page: 496
  year: 2012
  ident: 15896_CR35
  publication-title: Science
  doi: 10.1126/science.1227079
– volume: 21
  start-page: 49
  year: 2007
  ident: 15896_CR51
  publication-title: Genes Dev.
  doi: 10.1101/gad.1499407
– volume: 476
  start-page: 105
  year: 2011
  ident: 15896_CR22
  publication-title: Nature
  doi: 10.1038/nature10241
– ident: 15896_CR34
  doi: 10.1201/9780415876179.ch41
– volume: 4
  start-page: e07205
  year: 2015
  ident: 15896_CR42
  publication-title: eLife
  doi: 10.7554/eLife.07205
– ident: 15896_CR1
  doi: 10.1007/978-3-642-38212-3_13
– volume: 24
  start-page: 1793
  year: 2014
  ident: 15896_CR14
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.06.047
– volume: 136
  start-page: 777
  year: 2008
  ident: 15896_CR49
  publication-title: Reproduction
  doi: 10.1530/REP-08-0045
– volume: 26
  start-page: 3437
  year: 2017
  ident: 15896_CR25
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.14084
– volume: 302
  start-page: 6
  year: 2012
  ident: 15896_CR43
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2012.02.009
– volume: 17
  start-page: 1978
  year: 2007
  ident: 15896_CR13
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.10.026
– volume: 462
  start-page: 799
  year: 2009
  ident: 15896_CR15
  publication-title: Nature
  doi: 10.1038/nature08618
– volume: 113
  start-page: E4180
  year: 2016
  ident: 15896_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1605862113
– volume: 113
  start-page: 13081
  year: 2016
  ident: 15896_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1607747113
– volume: 2
  start-page: 213
  year: 2005
  ident: 15896_CR54
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0305-213
– volume: 9
  year: 2019
  ident: 15896_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51212-x
– volume: 276
  start-page: 565
  year: 1978
  ident: 15896_CR46
  publication-title: Nature
  doi: 10.1038/276565a0
– volume: 105
  start-page: 16831
  year: 2008
  ident: 15896_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0808687105
– volume: 112
  start-page: 4146
  year: 2015
  ident: 15896_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1503100112
– volume: 323
  start-page: 930
  year: 2009
  ident: 15896_CR31
  publication-title: Science
  doi: 10.1126/science.1165826
– volume: 20
  start-page: 3244
  year: 2006
  ident: 15896_CR21
  publication-title: Genes Dev.
  doi: 10.1101/gad.1493306
– volume: 32
  start-page: 785
  year: 2017
  ident: 15896_CR55
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-017-1469-9
– volume: 111
  start-page: 197
  year: 2002
  ident: 15896_CR48
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00976-5
– volume: 5
  year: 2015
  ident: 15896_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/srep14750
– volume: 111
  start-page: 16160
  year: 2014
  ident: 15896_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1419030111
– volume: 97
  start-page: 3753
  year: 2000
  ident: 15896_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.7.3753
– volume: 4
  start-page: e06620
  year: 2015
  ident: 15896_CR12
  publication-title: eLife
  doi: 10.7554/eLife.06620
– volume: 40
  start-page: 741
  year: 2008
  ident: 15896_CR52
  publication-title: Nat. Genet.
  doi: 10.1038/ng.159
– volume: 137
  start-page: 1037
  year: 2005
  ident: 15896_CR7
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.058974
– volume: 427
  start-page: 159
  year: 2004
  ident: 15896_CR19
  publication-title: Nature
  doi: 10.1038/nature02195
– volume: 11
  start-page: 949
  year: 1999
  ident: 15896_CR5
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.5.949
– volume: 197
  start-page: 323
  year: 2013
  ident: 15896_CR26
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04378.x
– volume: 9
  year: 2018
  ident: 15896_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03065-7
– volume: 4
  year: 2013
  ident: 15896_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3303
– ident: 15896_CR56
  doi: 10.1007/BFb0091924
– volume: 7
  start-page: 643
  year: 2018
  ident: 15896_CR4
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.10.011
– volume: 4
  start-page: 445
  year: 2017
  ident: 15896_CR29
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.02.013
– volume: 109
  start-page: 13296
  year: 2012
  ident: 15896_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1211172109
– ident: 15896_CR57
  doi: 10.1007/978-3-319-58895-7_27
– volume: 91
  start-page: 15
  year: 2016
  ident: 15896_CR30
  publication-title: Genes Genet. Syst.
  doi: 10.1266/ggs.15-00071
– volume: 7
  year: 2016
  ident: 15896_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13031
– ident: 15896_CR60
  doi: 10.1007/978-3-319-24277-4
– volume: 210
  start-page: 399
  year: 2016
  ident: 15896_CR2
  publication-title: New Phytol.
  doi: 10.1111/nph.13733
– volume: 357
  start-page: 1142
  year: 2017
  ident: 15896_CR23
  publication-title: Science
  doi: 10.1126/science.aan1121
– volume: 101
  start-page: 1
  year: 1987
  ident: 15896_CR47
  publication-title: Development
  doi: 10.1242/dev.101.1.1
– volume: 554
  start-page: 360
  year: 2018
  ident: 15896_CR59
  publication-title: Nature
  doi: 10.1038/nature25504
– volume: 344
  start-page: 734
  year: 1990
  ident: 15896_CR37
  publication-title: Nature
  doi: 10.1038/344734a0
– volume: 10
  start-page: 544
  year: 2019
  ident: 15896_CR33
  publication-title: Genes
  doi: 10.3390/genes10070544
– volume: 6
  start-page: e21513
  year: 2011
  ident: 15896_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021513
SSID ssj0000391844
Score 2.43036
Snippet Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri , the flowering regulator...
Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator...
The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsis halleri. Here, the authors reveal...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2065
SubjectTerms 38/15
38/39
38/77
38/90
631/208/176
631/449/1659
631/449/2668
631/449/2679/2681
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Chromatin
Chromatin - chemistry
Epigenesis, Genetic
Flowering
Flowers - genetics
Flowers - physiology
Gene expression
Gene Expression Regulation, Plant
Histone Code
Histones
Histones - metabolism
Humanities and Social Sciences
Japan
Life cycles
MADS Domain Proteins - genetics
multidisciplinary
Natural environment
Science
Science (multidisciplinary)
Seasonal variations
Seasons
Temperature
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDehBRmJG0SNH7HjI1StKiQ4ICr1ZsX2mCItSbXdovLvmXGyS5fnhevGyY4838x8lufB2ItW6uyyVbU1jaq1SbHuQKoaEF1oTU7GTNXI796b4xP99rQ9vTbqi3LCpvbA08btJ4Uf0zmK0Pa6S8aJ2AQru-Da0MoM5H0x5l07TBUfrBweXfRcJdOobv9CF59ApyXRds7UeisSlYb9v2OZvyZL_nRjWgLR0R12e2aQ_PUk-V12A4Z77OY0U_Lbfbb8MOe2fgUez5YjMdKBfxkT5QQVNXCqG1vSyGqO7I8vxuFTTQ6aw9WcFTvwFaXK8jHznp9TQeCAMOV5QSPVUCiOqAOOn53agj5gJ0eHHw-O63mwQh2RkK3q5LQTIeuIYUuoHCDnYEMUEE2foJUgcxZSphytNgadQnbROKCjHIjUaPWQ7QzjAI8Zz8omkBYaE3pkZuC6JjrbphiRGvbZVEysN9nHues4Db9Y-HL7rTo_KcajYnxRjNcVe7l553zqufHX1W9Id5uV1C-7_IAo8jOK_L9QVLG9teb9bMQXXiJXQ3aKhKpizzeP0fzoTqUfYLyc1hiDIV5W7NEElI0kisqQW9FVzG5BaEvU7SfD57PS4ttSIz7631drsP0Q689b8eR_bMUuuyXJSkpS5x7bWS0v4SkSr1V4VmzsOzcmK_g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlYTx_HjhACxVEhwQFTqzUr8aJGWZMluUfn3zDjeVMuj18RJnMw3M1_seRDyouEimqhqpmRZMyG9YzrwmgVAF2iT4S5iNvKnz_LoWHw8aU7ygts6h1VubWIy1H5wuEZ-yMFxAlUA7_Z69YNh1yjcXc0tNK6TGxV4Ggzp0osP8xoLVj_XQuRcmbLWh2uRLAP-M1WNNpKJHX-Uyvb_i2v-HTL5x75pckeLO-R25pH0zST4u-Ra6O-Rm1NnyV_3yfglR7j-DNSdjQPy0p5-HzxGBiVhUMweG7FxNQUOSJdDf8rQTNNwkWNje7rBgFk6RNrSFaYF9gBWGpfYWA0mRQF7gcJtp-KgD8jx4v3Xd0cst1dgDmjZhnkjTNVF4cB5VXXsQoyd6lwVnGx9aHjgMVac--iUkBJMQzROmoA_dKHypagfkr1-6MNjQmOtfOAqlLJrgZ8Fo0tnVOOdA4LYRlmQavuRrcu1x7EFxtKmPfBa20kwFgRjk2CsKMjL-ZrVVHnjytFvUXbzSKyanQ4M46nNSmh9DcAU0VVd0wrtAUyu7BTXnWm6hsdQkIOt5G1W5bW9BF5Bns-nQQlxZ6Xtw3A-jQH4CcUL8mgCyjyTGpORm0oXRO1AaGequ2f6b2ep0LfCcnz43FdbsF1O6_-fYv_qt3hCbnHEfwraPCB7m_E8PAVitemeJe35Dc7GIu4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDcpBRmJG0TEj9jxcUFU1UpwACr1ZsWvFmmbVOkW0X_PjJMNWihIXBNnM_J8Y39Zz3xDyKuay2SSFqVWlSilCr5sIhdlBHRBNBnuE1Yjf_ykjo7l8qQ-2SF8UwuTk_azpGVepjfZYW8vZQ5p_NhhdWNUKW-RPZRqB2zvLRbLL8v5nxXUPG-knCpkKtHc8PDWLpTF-m9imH8mSv52Wpo3ocN75O7EHulitPc-2YndA3J77Cd5_ZAMn6e81u-R-rOhRzba0fM-YD5QdgHFmrEB21VTYH501XenJS7ONP6YMmI7usY0Wdon2tILLAbsAKI0rbCdGhhFAXGRws-O8_eIHB9--Pr-qJyaKpQeyNi6DEYa5pL0sGUxkVxMyWnnWfSqDbHmkafEOA_Ja6kULAjJeGUifsZFFiopHpPdru_iU0KT0CFyHSvlWmBl0TSVN7oO3gMtbJMqCNtMsvWT4jg2vljZfPItGjs6xoJjbHaMlQV5PT9zMept_HP0O_TdPBK1svOFfji1E3ZsEABHmTxzdSuboAzzldO8caZ2NU-xIAcbz9spgC8tB54GzBTIVEFezrch9PA8pe1ifzWOUQq2d16QJyNQZksEliDXrCmI3oLQlqnbd7pvZ1neW6MIH773zQZsv8z6-1Ts_9_wZ-QOx3jIqZsHZHc9XMXnQK_W7sUUTz8BAmsiIQ
  priority: 102
  providerName: Springer Nature
Title Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature
URI https://link.springer.com/article/10.1038/s41467-020-15896-4
https://www.ncbi.nlm.nih.gov/pubmed/32358518
https://www.proquest.com/docview/2397226910
https://www.proquest.com/docview/2397668472
https://pubmed.ncbi.nlm.nih.gov/PMC7195410
https://doaj.org/article/d34f94fc1b5a48d691c0b728b95b52fe
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7th0B7QfwmMCoj8QaBxnHs-AGhrlqZKm1Cg0p9ixLH3pBKMrIObf89d05SKBQeeGmlxGks33f25_ruPoCXCRdOOxWHSg7jUMjShKnlcWgRXehNmhtH2cjHJ_JoJqbzZL4FvdxRN4CXG7d2pCc1axZvrr_dvEeHf9emjKdvL4V3d9oIRUmqZSi2YRdXJkWKBscd3fczc6xxQyO63JnNj-7B7ZjSRxOSAfllqfIV_TfR0D-jKX87UvUr1eQu3OkoJhu1mLgHW7a6D7da0cmbB9CcdsGv3y0z501NlLViX-uSgoa8nRglljWkac2QHrJFXZ2FNIMze92FzVZsSbG0rHYsZxeUMVghjplbkOYadoohLC3Dn23rhj6E2eTw8_go7JQXQoOMbRmWWuiocMLguhbFrrDOFaowkTUyL23CLXcu4rx0RgkpcdZw2khtaa9no3Io4kewU9WVfQLMxaq0XNmhLHKkblanQ6NVUhqD3DF3MoCoH-TMdGXJSR1jkfnj8TjNWhtlaKPM2ygTAbxaPXPRFuX4Z-sDst2qJRXU9hfq5izr_DMrY8SscCYqklykpdSRGRaKp4VOioQ7G8B-b_msB2nGkcwhfUXGFcCL1W30Tzp0yStbX7VtpEQOwAN43AJl1ZMeaAGoNQitdXX9TvXl3NcAV1Spj977ugfbz279fSie_veLnsEeJy_xoZ77sLNsruxzpGPLYgDbaq7wM518GMDuaDT9NMXvg8OTj6d4dSzHA_9Hx8D74g_KpDo4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ1AASPBCaImtuMkB4TYhpYuB9RKvbmJlxZpSIaZKdA_xW_kPSeZalh66zVxkhe_7bP9FoBnGZe-9LmIc5WIWCpr4sJxETuULtSmkhtP2cg7u2pjX346yA5W4NeQC0NhlYNNDIbatob2yNc5Ok6ECujdXk--xdQ1ik5XhxYanVhsudMfuGSbvdp8j_x9zvnow967jbjvKhAbRCPz2JayTGsvDdrsVPjaeV_ntUmdUZV1GXfc-5Rz600ulUKN8KVRpaN1jEttIgW-9xJclgIJosz00cfFng5VWy-k7HNzElGsz2SwRLRGS7OiVLFc8n-hTcC_sO3fIZp_nNMG9ze6Add73MredIJ2E1ZccwuudJ0sT2_D9HMfUfvdMXM8bQkHN-xraykSKTCfUbbalBplM8ScbNw2RzG5BeZ-9rG4DZtTgC5rPavYhNIQG1QO5sfUyA2JYijrjuFru2Kkd2D_Qib-Lqw2bePuA_Mit47nLlF1hXjQlUViyjyzxiAgrbyKIB0mWZu-1jm13BjrcOYuCt0xRiNjdGCMlhG8WDwz6Sp9nDv6LfFuMZKqdIcL7fRI90qvrUBFkN6kdVbJwqLwmqTOeVGXWZ1x7yJYGzive9Mx02eCHsHTxW1UejrJqRrXnnRjlEJgwSO41wnKghJByc9ZWkSQL4nQEqnLd5ovx6GweE7l_-i7LwdhOyPr_1Px4Py_eAJXN_Z2tvX25u7WQ7jGSRdCwOgarM6nJ-4Rgrp5_ThoEoPDi1bd33NQYR4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Bir9e79gEhShu1FKKqolJvi72PFinYIUmB_jV-HTN-pAqP3nq1N_Zm55uZb73zAHiecuFzr5JQySgJhbQmzBxPQofoQm3KufGUjfxxLHcOxfuj9GgNfvW5MBRW2dvExlDb2tA38iFHx4lUAb3b0HdhEftbozfTbyF1kKKT1r6dRguRPXf2A7dv89e7WyjrF5yPtj-92wm7DgOhQWayCG0u8rj0wqD9jhNfOu9LVZrYGVlYl3LHvY85t94oISVqh8-NzB3taVxsI5Hgc6_AuqJd0QDWN7fH-wfLLzxUez0TosvUiZJsOBeNXaIdW5xmuQzFijdsmgb8i-n-HbD5x6lt4wxHN-FGx2LZ2xZ2t2DNVbfhatvX8uwOzA66-NrvjpmTWU2suGJfa0txSQ0UGOWuzahtNkMGyiZ1dRySk2DuZxeZW7EFheuy2rOCTSkpsUJVYX5Cbd1wUgyR7xg-ti1NehcOL2Xp78Ggqiv3AJhPlHVcuUiWBbJDl2eRyVVqjUF6WngZQNwvsjZd5XNqwDHRzQl8kulWMBoFoxvBaBHAy-Vvpm3djwtHb5LsliOpZndzoZ4d684EaJugWghv4jItRGYRyiYqFc_KPC1T7l0AG73kdWdI5voc9gE8W95GE0DnOkXl6tN2jJRIM3gA91ugLGeSUCp0GmcBqBUIrUx19U715aQpM66oGCC991UPtvNp_X8pHl78L57CNVRb_WF3vPcIrnNShSZ6dAMGi9mpe4wMb1E-6VSJwefL1t7fq1hmsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repressive+chromatin+modification+underpins+the+long-term+expression+trend+of+a+perennial+flowering+gene+in+nature&rft.jtitle=Nature+communications&rft.au=Nishio%2C+Haruki&rft.au=Buzas%2C+Diana+M.&rft.au=Nagano%2C+Atsushi+J.&rft.au=Iwayama%2C+Koji&rft.date=2020-05-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-15896-4&rft_id=info%3Apmid%2F32358518&rft.externalDocID=PMC7195410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon