Antitumor Activity of Doxorubicin Encapsulated in Poly (ethylene glycol)-Coated Liposomes

The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly (ethylene glycol) (PEG)-coated long-circulating liposomes was examined in mice inoculated with colon 26 carcinoma cells. Six mol% of the distearoylphosphatidylethanolamine derivative of PEGs with different molecular weig...

Full description

Saved in:
Bibliographic Details
Published inBiological & pharmaceutical bulletin Vol. 18; no. 9; pp. 1234 - 1237
Main Authors MARUYAMA, Kazuo, UNEZAKI, Sakae, IWATSURU, Motoharu, HOSODA, Junichi, TSUCHIYA, Seishi
Format Journal Article
LanguageEnglish
Published Tokyo The Pharmaceutical Society of Japan 1995
Maruzen
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0918-6158
1347-5215
DOI10.1248/bpb.18.1234

Cover

Abstract The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly (ethylene glycol) (PEG)-coated long-circulating liposomes was examined in mice inoculated with colon 26 carcinoma cells. Six mol% of the distearoylphosphatidylethanolamine derivative of PEGs with different molecular weights was incorporated in liposomes (90-110nm, mean diameter) composed of distearoylphosphatidylcholine/cholesterol (1/1, molar ratio), and the encapsulating efficiency of DXR in liposomes was more than 98% by the pH gradient method. Each concentration of DXR in blood and tumor tissue was significantly greater after administration of the drug encapsulated in PEG-coated liposomes (DXR-PEG-liposome) compared to the non-coated control liposomes or non-encapsulated free drug. DXR-PEG-liposome prepared with PEG1000 (DXR-PEG1000-liposome) more effectively increased the level of DXR in blood and tumor than did the preparations with PEG5000 or PEG12000. A single treatment with DXR-PEG1000-liposome (10mg DXR/kg) resulted in increased survival time. Further therapeutic improvement in terms of tumor growth retardation and prolongation of survival time were observed following multiple treatments with DXR-PEG1000-liposome (3×5mg DXR/kg). Long-circulating liposome coating optimized PEGs should be useful for the delivery of chemotherapeutic agents for the treatment of solid tumors.
AbstractList The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly (ethylene glycol) (PEG)-coated long-circulating liposomes was examined in mice inoculated with colon 26 carcinoma cells. Six mol% of the distearoylphosphatidylethanolamine derivative of PEGs with different molecular weights was incorporated in liposomes (90-110nm, mean diameter) composed of distearoylphosphatidylcholine/cholesterol (1/1, molar ratio), and the encapsulating efficiency of DXR in liposomes was more than 98% by the pH gradient method. Each concentration of DXR in blood and tumor tissue was significantly greater after administration of the drug encapsulated in PEG-coated liposomes (DXR-PEG-liposome) compared to the non-coated control liposomes or non-encapsulated free drug. DXR-PEG-liposome prepared with PEG1000 (DXR-PEG1000-liposome) more effectively increased the level of DXR in blood and tumor than did the preparations with PEG5000 or PEG12000. A single treatment with DXR-PEG1000-liposome (10mg DXR/kg) resulted in increased survival time. Further therapeutic improvement in terms of tumor growth retardation and prolongation of survival time were observed following multiple treatments with DXR-PEG1000-liposome (3×5mg DXR/kg). Long-circulating liposome coating optimized PEGs should be useful for the delivery of chemotherapeutic agents for the treatment of solid tumors.
The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly(ethylene glycol) (PEP)-coated long-circulating liposomes was examined in mice inoculated with colon 26 carcinoma cells. Six mol% of the distearoylphosphatidylethanolamine derivative of PEGs with different molecular weights was incorporated in liposomes (90-110 nm, mean diameter) composed of distearoylphosphatidylcholine/cholesterol (1/1, molar ratio), and the encapsulating efficiency of DXR in liposomes was more than 98% by the pH gradient method. Each concentration of DXR in blood and tumor tissue was significantly greater after administration of the drug encapsulated in PEG-coated liposomes (DXR-PEG-liposome) compared to the non-coated control liposomes or non-encapsulated free drug. DXR-PEG-liposome prepared with PEG1000 (DXR-PEG1000-liposome) more effectively increased the level of DXR in blood and tumor than did the preparations with PEG5000 or PEG 12000. A single treatment with DXR-PEG1000-liposome (10 mg DXR/kg) resulted in increased survival time. Further therapeutic improvement in terms of tumor growth retardation and prolongation of survival time were observed following multiple treatments with DXR-PEG1000-liposome (3 x 5 mg DXR/kg). Long-circulating liposome coating optimized PEGs should be useful for the delivery of chemotherapeutic agents for the treatment of solid tumors.
The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly(ethylene glycol) (PEP)-coated long-circulating liposomes was examined in mice inoculated with colon 26 carcinoma cells. Six mol% of the distearoylphosphatidylethanolamine derivative of PEGs with different molecular weights was incorporated in liposomes (90-110 nm, mean diameter) composed of distearoylphosphatidylcholine/cholesterol (1/1, molar ratio), and the encapsulating efficiency of DXR in liposomes was more than 98% by the pH gradient method. Each concentration of DXR in blood and tumor tissue was significantly greater after administration of the drug encapsulated in PEG-coated liposomes (DXR-PEG-liposome) compared to the non-coated control liposomes or non-encapsulated free drug. DXR-PEG-liposome prepared with PEG1000 (DXR-PEG1000-liposome) more effectively increased the level of DXR in blood and tumor than did the preparations with PEG5000 or PEG 12000. A single treatment with DXR-PEG1000-liposome (10 mg DXR/kg) resulted in increased survival time. Further therapeutic improvement in terms of tumor growth retardation and prolongation of survival time were observed following multiple treatments with DXR-PEG1000-liposome (3 x 5 mg DXR/kg). Long-circulating liposome coating optimized PEGs should be useful for the delivery of chemotherapeutic agents for the treatment of solid tumors.The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly(ethylene glycol) (PEP)-coated long-circulating liposomes was examined in mice inoculated with colon 26 carcinoma cells. Six mol% of the distearoylphosphatidylethanolamine derivative of PEGs with different molecular weights was incorporated in liposomes (90-110 nm, mean diameter) composed of distearoylphosphatidylcholine/cholesterol (1/1, molar ratio), and the encapsulating efficiency of DXR in liposomes was more than 98% by the pH gradient method. Each concentration of DXR in blood and tumor tissue was significantly greater after administration of the drug encapsulated in PEG-coated liposomes (DXR-PEG-liposome) compared to the non-coated control liposomes or non-encapsulated free drug. DXR-PEG-liposome prepared with PEG1000 (DXR-PEG1000-liposome) more effectively increased the level of DXR in blood and tumor than did the preparations with PEG5000 or PEG 12000. A single treatment with DXR-PEG1000-liposome (10 mg DXR/kg) resulted in increased survival time. Further therapeutic improvement in terms of tumor growth retardation and prolongation of survival time were observed following multiple treatments with DXR-PEG1000-liposome (3 x 5 mg DXR/kg). Long-circulating liposome coating optimized PEGs should be useful for the delivery of chemotherapeutic agents for the treatment of solid tumors.
Author UNEZAKI, Sakae
TSUCHIYA, Seishi
IWATSURU, Motoharu
HOSODA, Junichi
MARUYAMA, Kazuo
Author_xml – sequence: 1
  fullname: MARUYAMA, Kazuo
– sequence: 1
  fullname: UNEZAKI, Sakae
– sequence: 1
  fullname: IWATSURU, Motoharu
– sequence: 1
  fullname: HOSODA, Junichi
– sequence: 1
  fullname: TSUCHIYA, Seishi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2903666$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/8845812$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEcxYNU6rZ68iwMKEWRqcn8SnJctvUHLOhBD57CdzKZNksmGZOMOP99M91hDwUJ5Afv815C3gU6s84qhF4TfE2Kin1qx_aasLQvq2doQ8qK5nVB6jO0wZywvCE1e4EuQjhgjCkuynN0zlhVM1Js0O-tjTpOg_PZVkb9V8c5c3124_45P7VaapvdWgljmAxE1WXp_MOZOXuv4v1slFXZnZmlMx_ynXsE9np0wQ0qvETPezBBvVrXS_Tr8-3P3dd8__3Lt912n8umxjFvOYMeA62gBUZrysqWYNZSoF0BpK1w2bA0Cqxkp7q-aJtGsl5WTc-7rgFcXqKrY-7o3Z9JhSgGHaQyBqxyUxCUUk5SSgLfPgEPbvI2vU2QquKkIbxZqDcrNbWD6sTo9QB-FuuPJf3dqkOQYHoPVupwwgqernqM-XjEpHcheNWfCILF0ppIrQnCxNJaoskTWuoIUTsbPWjzH8_N0XMIEe7UKR981NKohSWclwvP1ynZTrK8By-ULR8ADcWyNA
CitedBy_id crossref_primary_10_53879_id_58_11_12216
crossref_primary_10_2217_nnm_2019_0192
crossref_primary_10_2174_2452271606666221117163317
crossref_primary_10_1002_1097_0142_20011001_92_7_1936__AID_CNCR1712_3_0_CO_2_H
crossref_primary_10_1155_2018_2952085
crossref_primary_10_1016_j_plipres_2016_08_005
crossref_primary_10_1002_cam4_76
crossref_primary_10_1155_2014_895986
crossref_primary_10_2174_0929867325666181116143713
crossref_primary_10_1016_S0168_3659_96_01501_5
crossref_primary_10_3109_10717549809052036
crossref_primary_10_1080_1061186X_2017_1327593
ContentType Journal Article
Copyright The Pharmaceutical Society of Japan
1996 INIST-CNRS
Copyright Japan Science and Technology Agency 1995
Copyright_xml – notice: The Pharmaceutical Society of Japan
– notice: 1996 INIST-CNRS
– notice: Copyright Japan Science and Technology Agency 1995
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
DOI 10.1248/bpb.18.1234
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5215
EndPage 1237
ExternalDocumentID 3120314611
8845812
2903666
10_1248_bpb_18_1234
article_bpb1993_18_9_18_9_1234_article_char_en
Genre Journal Article
GroupedDBID ---
.55
2WC
53G
5GY
6J9
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TKC
TR2
VH1
X7M
ZXP
1CY
23N
AAYXX
ABJNI
BKOMP
CITATION
JMI
MOJWN
XSB
ZY4
IQODW
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c650t-b98af0a74aba875783b108b7a7d2a1b4036868620ecdedf2b66c8fc46f9dd6a03
ISSN 0918-6158
IngestDate Fri Jul 11 16:12:09 EDT 2025
Mon Jun 30 09:54:03 EDT 2025
Sat Sep 28 08:40:39 EDT 2024
Mon Jul 21 09:14:39 EDT 2025
Tue Jul 01 02:29:10 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Sep 03 06:05:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Antineoplastic agent
Control release polymer
Rodentia
Liposome
Drug carrier
Biological activity
Ethylene oxide polymer
Vertebrata
Mammalia
Mouse
Animal
Formulation
Dosage form
Anthracyclins
Pharmacokinetics
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c650t-b98af0a74aba875783b108b7a7d2a1b4036868620ecdedf2b66c8fc46f9dd6a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/bpb1993/18/9/18_9_1234/_article/-char/en
PMID 8845812
PQID 1449161966
PQPubID 1966364
PageCount 4
ParticipantIDs proquest_miscellaneous_77791036
proquest_journals_1449161966
pubmed_primary_8845812
pascalfrancis_primary_2903666
crossref_primary_10_1248_bpb_18_1234
crossref_citationtrail_10_1248_bpb_18_1234
jstage_primary_article_bpb1993_18_9_18_9_1234_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1995-00-00
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – year: 1995
  text: 1995-00-00
PublicationDecade 1990
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Japan
PublicationTitle Biological & pharmaceutical bulletin
PublicationTitleAlternate Biol Pharm Bull
PublicationYear 1995
Publisher The Pharmaceutical Society of Japan
Maruzen
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Maruzen
– name: Japan Science and Technology Agency
References 10) Blume G., Cevec G., Biochim. Biophys. Acta, 1029, 91 (1990).
2) Mayhew E., Rustum Y., Vail W.J., Cancer Drug Deliv., 1, 43 (1983).
8) Gabizon A., Price D.C., Huberty J., Bresalier R.S., Papahadjopoulos D., Cancer Res., 50, 6371 (1990).
22) Gabizon A., Cancer Res., 52, 891 (1992).
14) Unezaki S., Maruyama K., Ishida O., Takahashi N., Iwatsuru M., J. Drug Target., 1, 287 (1993).
20) Woodle M.C., Lasic D.D., Biochim. Biophys. Acta, 1113, 171 (1992).
24) Maruyama K., Unezaki S., Takahashi N., Iwatsuru M., Biochim. Biophys. Acta, 1149, 209 (1993).
1) Olson F., Mayhew E., Maslow D., Rustum Y., Szoka F., Eur. J. Cancer Clin. Oncol., 18, 167 (1982).
25) Unezaki S., Maruyama K., Takahashi N., Koyama M., Yuda T., Suginaka A., Iwatsuru M., Pharm. Res., 11, 1180 (1994).
21) Mayhew E., Lasic D., Babbar S., Martin F.J., Int. J. Cancer, 51, 302 (1992).
5) Allen T.M., Chonn A., FEBS Lett., 223, 42 (1987).
6) Allen T.M., Hansen C., Rutledge J., Biochim. Biophys. Acta, 981, 27 (1989).
19) Vaage J., Mayhew E., Lasic D., Martin F., Int. J. Cancer, 51, 942 (1992).
13) Maruyama K., Yuda T., Okamoto A., Kojima S., Suginaka A., Iwatsuru M., Biochim. Biophys. Acta, 1128, 44 (1992).
17) Mayer L.D., Bally M.B., Cullis P.R., Biochim. Biophys. Acta, 857, 123 (1986).
18) Masuike J., Odake J., Kohagura M., Noda T., Takemoto T., Yakugaku Zasshi, 104, 620 (1984).
11) Klibanov A.L., Maruyama K., Beckerleg A.M., Torchilin V.P., Huang L., Biochim. Biophys. Acta, 1062, 142 (1991).
4) Gabizon A., Meshorer A., Barenholz Y., J. Nat. Cancer Inst., 77, 459 (1986).
15) Papahadjopoulos D., Allen T.M., Gabizon A., Mayhew E., Matthay K., Huang S.K., Lee K.D., Woodle M.C., Lasic D.D., Redemann C., Martin F.J., Proc. Natl. Acad. Sci. U.S.A., 88, 11460 (1991).
26) Senior J., Delgado C., Fisher D., Tilcock C., Gregoriadis G., Biochim. Biophys. Acta, 1062, 77 (1991).
12) Allen T.M., Hansen C., Martin F., Redemann C., Young A.Y., Biochim. Biophys. Acta, 1066, 29 (1991).
9) Klivanov A.L., Maruyama K., Torchilin V.P., Huang L., FEBS Lett., 268, 235 (1990).
16) Szoka F., Papahadjopoulos D., Proc. Natl. Acad. Sci. U.S.A., 75, 4149 (1978).
23) Vaage J., Donovan D., Mayhew E., Uster P., Woodle M., Int. J. Cancer, 54, 959 (1993).
7) Gabizon A., Papahadjopoulos D., Proc. Natl. Acad. Sci. U.S.A., 85, 6949 (1988).
27) Mori A., Klivanov A.L., Torchilin V.P., Huang L., FEBS Lett., 284, 263 (1991).
3) Gabizon A., Goren D., Fuks Z., Meshorer A., Barenholz Y., Br. J. Cancer, 51, 681 (1985).
References_xml – reference: 8) Gabizon A., Price D.C., Huberty J., Bresalier R.S., Papahadjopoulos D., Cancer Res., 50, 6371 (1990).
– reference: 1) Olson F., Mayhew E., Maslow D., Rustum Y., Szoka F., Eur. J. Cancer Clin. Oncol., 18, 167 (1982).
– reference: 18) Masuike J., Odake J., Kohagura M., Noda T., Takemoto T., Yakugaku Zasshi, 104, 620 (1984).
– reference: 24) Maruyama K., Unezaki S., Takahashi N., Iwatsuru M., Biochim. Biophys. Acta, 1149, 209 (1993).
– reference: 17) Mayer L.D., Bally M.B., Cullis P.R., Biochim. Biophys. Acta, 857, 123 (1986).
– reference: 11) Klibanov A.L., Maruyama K., Beckerleg A.M., Torchilin V.P., Huang L., Biochim. Biophys. Acta, 1062, 142 (1991).
– reference: 22) Gabizon A., Cancer Res., 52, 891 (1992).
– reference: 7) Gabizon A., Papahadjopoulos D., Proc. Natl. Acad. Sci. U.S.A., 85, 6949 (1988).
– reference: 9) Klivanov A.L., Maruyama K., Torchilin V.P., Huang L., FEBS Lett., 268, 235 (1990).
– reference: 10) Blume G., Cevec G., Biochim. Biophys. Acta, 1029, 91 (1990).
– reference: 25) Unezaki S., Maruyama K., Takahashi N., Koyama M., Yuda T., Suginaka A., Iwatsuru M., Pharm. Res., 11, 1180 (1994).
– reference: 4) Gabizon A., Meshorer A., Barenholz Y., J. Nat. Cancer Inst., 77, 459 (1986).
– reference: 14) Unezaki S., Maruyama K., Ishida O., Takahashi N., Iwatsuru M., J. Drug Target., 1, 287 (1993).
– reference: 16) Szoka F., Papahadjopoulos D., Proc. Natl. Acad. Sci. U.S.A., 75, 4149 (1978).
– reference: 2) Mayhew E., Rustum Y., Vail W.J., Cancer Drug Deliv., 1, 43 (1983).
– reference: 6) Allen T.M., Hansen C., Rutledge J., Biochim. Biophys. Acta, 981, 27 (1989).
– reference: 23) Vaage J., Donovan D., Mayhew E., Uster P., Woodle M., Int. J. Cancer, 54, 959 (1993).
– reference: 20) Woodle M.C., Lasic D.D., Biochim. Biophys. Acta, 1113, 171 (1992).
– reference: 5) Allen T.M., Chonn A., FEBS Lett., 223, 42 (1987).
– reference: 15) Papahadjopoulos D., Allen T.M., Gabizon A., Mayhew E., Matthay K., Huang S.K., Lee K.D., Woodle M.C., Lasic D.D., Redemann C., Martin F.J., Proc. Natl. Acad. Sci. U.S.A., 88, 11460 (1991).
– reference: 26) Senior J., Delgado C., Fisher D., Tilcock C., Gregoriadis G., Biochim. Biophys. Acta, 1062, 77 (1991).
– reference: 27) Mori A., Klivanov A.L., Torchilin V.P., Huang L., FEBS Lett., 284, 263 (1991).
– reference: 12) Allen T.M., Hansen C., Martin F., Redemann C., Young A.Y., Biochim. Biophys. Acta, 1066, 29 (1991).
– reference: 13) Maruyama K., Yuda T., Okamoto A., Kojima S., Suginaka A., Iwatsuru M., Biochim. Biophys. Acta, 1128, 44 (1992).
– reference: 19) Vaage J., Mayhew E., Lasic D., Martin F., Int. J. Cancer, 51, 942 (1992).
– reference: 3) Gabizon A., Goren D., Fuks Z., Meshorer A., Barenholz Y., Br. J. Cancer, 51, 681 (1985).
– reference: 21) Mayhew E., Lasic D., Babbar S., Martin F.J., Int. J. Cancer, 51, 302 (1992).
SSID ssj0007023
Score 1.5116875
Snippet The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly (ethylene glycol) (PEG)-coated long-circulating liposomes was examined in mice...
The antitumor activity of doxorubicin (DXR) which had been encapsulated in poly(ethylene glycol) (PEP)-coated long-circulating liposomes was examined in mice...
SourceID proquest
pubmed
pascalfrancis
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1234
SubjectTerms Animals
Antibiotics, Antineoplastic - administration & dosage
Antineoplastic agents
Biological and medical sciences
Chemotherapy
doxorubicin
Doxorubicin - administration & dosage
Doxorubicin - pharmacokinetics
Drug Carriers
drug delivery system
liposome
Liposomes
long-circulating liposome
Male
Medical sciences
Mice
Mice, Inbred BALB C
Neoplasms, Experimental - drug therapy
Pharmacology. Drug treatments
poly (ethylene glycol)
Polyethylene Glycols - administration & dosage
Title Antitumor Activity of Doxorubicin Encapsulated in Poly (ethylene glycol)-Coated Liposomes
URI https://www.jstage.jst.go.jp/article/bpb1993/18/9/18_9_1234/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/8845812
https://www.proquest.com/docview/1449161966
https://www.proquest.com/docview/77791036
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biological and Pharmaceutical Bulletin, 1995/09/15, Vol.18(9), pp.1234-1237
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfKQAIJIdiYKGzgh2kCtpQkTRPngYdoG9oGbGhrxcZLZCcxK3RxtTYS3d_HH8adk7gtKhKDl6iJP_Lx-9W-O_vuCNlwpRQ-D1OLSRZanvAdK8y8wJIdEEcDNwOZAU0DH4_8_Z53eNY5azR-zuxaKsailVwv9Cv5F1ThGuCKXrI3QNZ0ChfgN-ALR0AYjn-FcYQ-tsWlwm3uVRYIkP121Q91VQhcMt_ayxMOevCAo2AJ55_UQC_vZ4APzDfZ1tfBJMEkW6G1o3SlD_2hGqnaL6Re7u2bMVJ7F1zMGcLnQngjeNFJ7xxN93q3xnWh6oLe0d6X6P1BaYn-zg2nDj5H3dPeSU9bZ9VYQfeF4dvx6fFuVDqQ5P3koj-1U6Dft-EU8v2356p3pMI3OQSZIJ81SzoM1NkynHsrKwflNpAHxIzO4lG7qPell0MwTMXezHQOp8HCqcL10P1BDEXLYa1po7nY2xWyMdTCjY6xw-KwOkCDuC5GBzng4y1y2w0CR8ca3p8qYYGtkwyaN6u8ROH-b2buPicX3fkGqgHGfLg_5CP4YLJMsvJnLUhLQ92H5EGlxtCofLRHpJHly2QlyvlYXU7oJtUbi_WKzTK5u1MnFVwmmxVEk23anXr-jbZ1ExNEfbJCzg23ac1tqiSd4Tad5TaFc-Q2fVkzm5bMflXxmhpePya9d3vdnX2rSgNiJaA-jC0RMi5tHnhccJ1-oS0cm4mAB6nLHeGBDMbQz8nOkjRLpSt8P2Ey8XwZpqnP7fYqWcpVnj0hFGR_7ndk6IJe6bEE1UsXhFxpM-m6qd1pktc1CHFSxcjHVC2DGHVlaIJMQAIgYk2yYSoPy9Awi6u9LdE0lW7GqiZZnyOB6cYN4c19v0nWalLE1dg0AoXeA70PZlcofmGKAWtcDuR5popRHAQB6AptqLFaUsn0zJjXAcH_6X8--TNyrwwAgQbLNbI0viqydRDhx-K5_of8AgEJ9tk
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antitumor+Activity+of+Doxorubicin+Encapsulated+in+Poly+%28ethylene+glycol%29-Coated+Liposomes&rft.jtitle=Biological+and+Pharmaceutical+Bulletin&rft.au=MARUYAMA%2C+Kazuo&rft.au=UNEZAKI%2C+Sakae&rft.au=IWATSURU%2C+Motoharu&rft.au=HOSODA%2C+Junichi&rft.date=1995&rft.pub=The+Pharmaceutical+Society+of+Japan&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=18&rft.issue=9&rft.spage=1234&rft.epage=1237&rft_id=info:doi/10.1248%2Fbpb.18.1234&rft.externalDocID=article_bpb1993_18_9_18_9_1234_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon