The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction

Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 203 - 26
Main Authors Luqman-Fatah, Ahmad, Watanabe, Yuzo, Uno, Kazuko, Ishikawa, Fuyuki, Moran, John V., Miyoshi, Tomoichiro
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.01.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-022-35757-6

Cover

Abstract Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2′−5′-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5′UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from “triggering” IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms. Proteomic analyses revealed that a group of interferon-stimulated genes suppresses LINE-1 retrotransposon activities, including HELZ2, which reduces LINE-1 RNA and the associated innate immune response levels.
AbstractList Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2′−5′-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5′UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from “triggering” IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms. Proteomic analyses revealed that a group of interferon-stimulated genes suppresses LINE-1 retrotransposon activities, including HELZ2, which reduces LINE-1 RNA and the associated innate immune response levels.
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
Proteomic analyses revealed that a group of interferon-stimulated genes suppresses LINE-1 retrotransposon activities, including HELZ2, which reduces LINE-1 RNA and the associated innate immune response levels.
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2′−5′-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5′UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from “triggering” IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.Proteomic analyses revealed that a group of interferon-stimulated genes suppresses LINE-1 retrotransposon activities, including HELZ2, which reduces LINE-1 RNA and the associated innate immune response levels.
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2′−5′-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5′UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from “triggering” IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
ArticleNumber 203
Author Watanabe, Yuzo
Ishikawa, Fuyuki
Miyoshi, Tomoichiro
Luqman-Fatah, Ahmad
Uno, Kazuko
Moran, John V.
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0001-9220-0912
  surname: Luqman-Fatah
  fullname: Luqman-Fatah, Ahmad
  organization: Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
– sequence: 2
  givenname: Yuzo
  surname: Watanabe
  fullname: Watanabe, Yuzo
  organization: Proteomics Facility, Graduate School of Biostudies, Kyoto University
– sequence: 3
  givenname: Kazuko
  surname: Uno
  fullname: Uno, Kazuko
  organization: Division of Basic Research, Louis Pasteur Center for Medical Research
– sequence: 4
  givenname: Fuyuki
  surname: Ishikawa
  fullname: Ishikawa, Fuyuki
  organization: Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
– sequence: 5
  givenname: John V.
  surname: Moran
  fullname: Moran, John V.
  organization: Department of Human Genetics, University of Michigan Medical School, Department of Internal Medicine, University of Michigan Medical School
– sequence: 6
  givenname: Tomoichiro
  orcidid: 0000-0002-5319-7877
  surname: Miyoshi
  fullname: Miyoshi, Tomoichiro
  email: miyoshi.tomoichiro.5e@kyoto-u.ac.jp
  organization: Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36639706$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEUhkeoiJbSF2CBRmLDZsC3sT0bpKoKNFJUJFQ2bCyPfSZxNbGD7anUx-CNcZK2pF3UG9_-__PxOedtdeSDh6p6j9FnjKj8khhmXDSIkIa2ohUNf1WdEMRwgwWhRwfr4-ospRtUBu2wZOxNdUw5p51A_KT6e72C2vkMcYAYfJ2yW0-jzmDrJXhowJtgy2YTQwbn68vZ4jcphpXrXU71alprXy_mV7MG1xFyUUXt0yYkl13BaW8fbn9enTdrsG7HzncbqOeHDztvJ7P1vKteD3pMcHY_n1a_vs2uLy6bxY_v84vzRWN4i3LDe6CGArOt7HorGRXaMkE4kdQCG5jkrAPWEkOsBYO0xFobSyXqjUGYC3pazfdcG_SN2kS31vFOBe3U7iDEpdIxOzOCwtC31tpBaIwZxUiTbSZNq2lhYjoU1tc9azP15Y8GfEnD-AT69Ma7lVqGW9XJUgeJCuDTPSCGPxOkrNYuGRhH7SFMSRHBWyEIk7JIPz6T3oQp-pKqnYqQDtG2qD4cRvQYykPli4DsBSaGlCIMjxKM1LbD1L7DVOkwteswtTXJZybjst5WrfzKjS9b6d6ayjt-CfF_2C-4_gEpMeY2
CitedBy_id crossref_primary_10_1016_j_molcel_2024_07_010
crossref_primary_10_1126_science_ads8412
crossref_primary_10_1261_rna_079942_124
crossref_primary_10_1101_gad_351051_123
crossref_primary_10_1371_journal_pgen_1010797
crossref_primary_10_1093_nar_gkad1251
crossref_primary_10_1093_nar_gkae1106
crossref_primary_10_1371_journal_pgen_1011311
crossref_primary_10_1155_2024_4118218
crossref_primary_10_1080_15476286_2024_2409607
crossref_primary_10_1093_nar_gkad673
crossref_primary_10_3390_biom13121706
crossref_primary_10_3390_cancers15174340
Cites_doi 10.1128/MCB.25.17.7780-7795.2005
10.1038/s41467-020-19170-5
10.1371/journal.pgen.1001150
10.1210/en.2005-0450
10.1038/nsmb1107
10.1016/j.cmet.2019.02.014
10.1006/abio.2000.4675
10.1038/s41598-017-11344-4
10.1021/bi981858s
10.1038/ng.343
10.1016/j.jmb.2006.05.043
10.1016/0092-8674(93)90078-5
10.1074/jbc.M601716200
10.1006/jmbi.1994.0121
10.1093/nar/gkx1312
10.1093/nar/gkh698
10.1074/jbc.M113.465856
10.1007/978-1-4939-3372-3_10
10.1038/ni.2872
10.7554/eLife.30058
10.1134/S0026893307030119
10.1074/jbc.M709989200
10.1093/hmg/ddi354
10.1038/332164a0
10.1016/S0092-8674(00)81998-4
10.1038/nsmb.2097
10.1083/jcb.200212128
10.1016/j.febslet.2005.12.077
10.1038/ng0597-37
10.1016/S0092-8674(02)00828-0
10.1534/genetics.119.302601
10.1016/S0021-9258(19)84886-X
10.1074/jbc.M114.612374
10.1038/nature03238
10.1073/pnas.0506580102
10.1371/journal.pgen.1005121
10.1093/nar/gkx880
10.1126/science.1722352
10.1002/j.1460-2075.1982.tb01276.x
10.1186/s13100-016-0065-9
10.1016/j.gene.2006.08.032
10.1016/S0092-8674(00)81997-2
10.1074/jbc.M115.650176
10.1093/nar/gkw834
10.1073/pnas.1100275108
10.1093/nar/gkx178
10.1002/pro.3943
10.1073/pnas.182426699
10.1093/nar/gkt898
10.1128/JB.01368-09
10.1242/jcs.115.16.3227
10.1093/nar/gkac194
10.1038/nprot.2008.211
10.1016/j.cell.2018.07.022
10.1093/nar/gkt1308
10.1093/nar/28.6.1418
10.1038/35057062
10.3109/08916930903374865
10.1038/nature02886
10.1038/nature08248
10.1128/MCB.06785-11
10.1016/j.molcel.2015.10.012
10.1073/pnas.0603313103
10.1016/0888-7543(87)90003-6
10.1002/art.39795
10.1186/1742-4690-9-53
10.1128/MCB.21.4.1429-1439.2001
10.1016/j.cell.2013.10.021
10.15252/embj.201798506
10.1093/nar/28.2.411
10.1371/journal.pgen.1005367
10.1016/j.cell.2019.02.050
10.1186/s13100-021-00233-3
10.1016/j.tcb.2016.05.004
10.1016/j.molcel.2019.07.018
10.1038/ng898
10.1146/annurev-genom-082509-141802
10.1093/nar/gkv1342
10.1128/MCB.00332-07
10.1002/biot.201400821
10.1093/nar/gkt1223
10.1101/gr.275323.121
10.1002/j.1460-2075.1984.tb02042.x
10.1371/journal.pbio.2003067
10.7554/eLife.02008
10.1016/j.cell.2010.05.021
10.1093/nar/gkg663
10.1038/74184
10.1073/pnas.1722565115
10.1101/gr.205701
10.1016/j.molcel.2020.10.024
10.1128/MCB.21.2.467-475.2001
10.1093/nar/gks1215
10.1016/j.celrep.2013.08.019
10.1038/ng1223
10.1002/wrna.1180
10.1016/j.cell.2008.06.032
10.1073/pnas.0831042100
10.1126/science.1662412
10.1002/j.1460-2075.1996.tb00395.x
10.1073/pnas.0601954103
10.1038/nmeth.2089
10.1056/NEJMra1510092
10.1038/s41594-020-0372-1
10.1371/journal.pgen.1002941
10.1016/j.jaut.2018.02.007
10.1038/nature05080
10.1093/nar/gky1131
10.1093/emboj/cdf592
10.1038/s41467-020-19430-4
10.1016/j.stem.2017.07.009
10.1038/nature13760
10.1126/science.1246981
10.1073/pnas.0502390102
10.1111/j.1749-6632.2009.05006.x
10.1016/j.tibs.2013.07.004
10.1016/j.virep.2016.06.001
10.1128/microbiolspec.MDNA3-0061-2014
10.1038/s41586-018-0784-9
10.1371/journal.pgen.1005252
10.1155/2016/9294307
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-35757-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database ProQuest
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 26
ExternalDocumentID oai_doaj_org_article_1eb5dddf7a114310a23918c5a3aac13f
PMC9839780
36639706
10_1038_s41467_022_35757_6
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: GM060518
  funderid: https://doi.org/10.13039/100000002
– fundername: Japan Foundation for Applied Enzymology
  funderid: https://doi.org/10.13039/100008695
– fundername: Sumitomo Foundation
  funderid: https://doi.org/10.13039/100008608
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP19H05655
  funderid: https://doi.org/10.13039/501100001691
– fundername: Japan Student Services Organization (JASSO)
  funderid: https://doi.org/10.13039/501100010485
– fundername: Astellas Foundation for Research on Metabolic Disorders
  funderid: https://doi.org/10.13039/501100007263
– fundername: Takeda Science Foundation
  funderid: https://doi.org/10.13039/100007449
– fundername: NIGMS NIH HHS
  grantid: R01 GM060518
– fundername: ;
– fundername: ;
  grantid: JP19H05655
– fundername: ;
  grantid: GM060518
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c650t-6be3c3e4d589bd8437ad4726283de4f48649e452c2ddec0a81aacd380bcc01673
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:01 EDT 2025
Thu Aug 21 18:38:41 EDT 2025
Thu Sep 04 16:23:18 EDT 2025
Wed Aug 13 01:45:53 EDT 2025
Mon Jul 21 05:37:53 EDT 2025
Tue Jul 01 00:58:37 EDT 2025
Thu Apr 24 22:50:25 EDT 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c650t-6be3c3e4d589bd8437ad4726283de4f48649e452c2ddec0a81aacd380bcc01673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9220-0912
0000-0002-5319-7877
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35757-6
PMID 36639706
PQID 2765229035
PQPubID 546298
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_1eb5dddf7a114310a23918c5a3aac13f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839780
proquest_miscellaneous_2765772488
proquest_journals_2765229035
pubmed_primary_36639706
crossref_primary_10_1038_s41467_022_35757_6
crossref_citationtrail_10_1038_s41467_022_35757_6
springer_journals_10_1038_s41467_022_35757_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-13
PublicationDateYYYYMMDD 2023-01-13
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Usdin, Furano (CR113) 1989; 264
Hancks, Kazazian (CR38) 2016; 7
Kammerer (CR58) 2005; 102
Bogerd (CR72) 2006; 103
Arjan-Odedra, Swanson, Sherer, Wolinsky, Malim (CR68) 2012; 9
Tunbak (CR46) 2020; 11
Kopera (CR61) 2016; 1400
Zhao (CR42) 2018; 90
Cost, Feng, Jacquier, Boeke (CR19) 2002; 21
Cost, Boeke (CR30) 1998; 37
Mavragani (CR40) 2016; 68
Surapureddi (CR108) 2002; 99
Huang, Sherman, Lempicki (CR55) 2009; 4
Tourrière (CR62) 2003; 160
Moldovan, Moran (CR50) 2015; 11
Yang, Zhang, Zhang, Kazazian (CR111) 2003; 31
Gilbert, Lutz-Prigge, Moran (CR33) 2002; 110
Brouha (CR6) 2003; 100
Tristán-Ramos (CR66) 2020; 11
Hohjoh, Singer (CR13) 1996; 15
Protter, Parker (CR52) 2016; 26
Bourc’his, Bestor (CR103) 2004; 431
Goodier, Cheung, Kazazian (CR53) 2012; 8
Kopera, Moldovan, Morrish, Garcia-Perez, Moran (CR117) 2011; 108
Beck (CR7) 2010; 141
Wei, Morrish, Alisch, Moran (CR60) 2000; 284
Yu (CR67) 2015; 290
Stetson, Ko, Heidmann, Medzhitov (CR79) 2008; 134
Larson (CR107) 2018; 16
Grimaldi, Skowronski, Singer (CR2) 1984; 3
Subramanian (CR57) 2005; 102
Olovnikov (CR23) 2007; 41
Lovšin, Peterlin (CR75) 2009; 1178
Choi, Hwang, Ahn (CR85) 2018; 46
Sun (CR112) 2018; 115
Dai, Taylor, O’Donnell, Boeke (CR64) 2012; 32
Esnault (CR71) 2005; 433
Volkman, Stetson (CR115) 2014; 15
Szklarczyk (CR88) 2019; 47
Richardson, Narvaiza, Planegger, Weitzman, Moran (CR77) 2014; 3
CR54
Martin, Bushman (CR11) 2001; 21
CR51
Feng, Goubran, Follack, Chelico (CR78) 2017; 7
Finn (CR94) 2014; 42
Zhao (CR81) 2013; 4
Esnault, Maestre, Heidmann (CR24) 2000; 24
Mita (CR29) 2018; 7
Khazina (CR12) 2011; 18
Hu (CR82) 2015; 11
Barbas (CR92) 2008; 283
White (CR83) 2016; 6
Kazazian (CR36) 1988; 332
Awano (CR100) 2010; 192
Martı́n, Marañón, Olivares, Alonso, López (CR15) 1995; 247
Hossain, Malhotra, Deutscher (CR101) 2015; 290
Luan, Korman, Jakubczak, Eickbush (CR18) 1993; 72
Swergold (CR21) 1990; 10
Kulpa, Moran (CR32) 2006; 13
Briggs (CR63) 2021; 12
Muckenfuss (CR73) 2006; 281
Sassaman (CR5) 1997; 16
Sherman (CR56) 2022; 50
Wang, Wei, Sabatini, Lander (CR116) 2014; 343
Schneider, Rasband, Eliceiri (CR122) 2012; 9
Piskareva, Schmatchenko (CR35) 2006; 580
Lander (CR1) 2001; 409
Moran (CR17) 1996; 87
Li (CR69) 2013; 288
Hulme, Bogerd, Cullen, Moran (CR74) 2007; 390
Thomas (CR80) 2017; 21
CR4
Adney (CR59) 2019; 213
Flasch (CR20) 2019; 177
Mathias, Scott, Kazazian, Boeke, Gabriel (CR14) 1991; 254
Gilbert, Lutz, Morrish, Moran (CR34) 2005; 25
Wei (CR25) 2001; 21
Ewing (CR105) 2020; 80
Tomaru (CR109) 2006; 147
Chuang (CR8) 2021; 31
Simon (CR44) 2019; 29
Jacobs (CR106) 2014; 516
Kazazian, Moran (CR39) 2017; 377
Coufal (CR104) 2009; 460
Miyoshi, Makino, Moran (CR97) 2019; 75
Kowarz, Löscher, Marschalek (CR118) 2015; 10
Kubo (CR28) 2006; 103
Chu (CR98) 2017; 45
Pettersen (CR121) 2021; 30
Anderson, Kedersha (CR47) 2002; 115
Athanikar, Badge, Moran (CR22) 2004; 32
Morrish (CR31) 2002; 31
Crow (CR114) 2010; 43
Dewannieux, Esnault, Heidmann (CR96) 2003; 35
Ostertag, Kazazian (CR3) 2001; 11
Ostertag, Luning Prak, DeBerardinis, Moran, Kazazian (CR120) 2000; 28
Frazão (CR91) 2006; 443
Li (CR41) 2017; 45
Benitez‐Guijarro (CR84) 2018; 37
Tchenio, Casella, Heidmann (CR110) 2000; 28
Amblar, Barbas, Fialho, Arraiano (CR90) 2006; 360
Reis, Pobre, Silva, Malecki, Arraiano (CR99) 2013; 4
Cecco (CR43) 2019; 566
Mátés (CR119) 2009; 41
Rusinova (CR87) 2013; 41
CR95
Goodier, Zhang, Vetter, Kazazian (CR48) 2007; 27
Doucet, Wilusz, Miyoshi, Liu, Moran (CR27) 2015; 60
Horn (CR76) 2014; 42
Naufer (CR102) 2016; 44
Beck, Garcia-Perez, Badge, Moran (CR37) 2011; 12
Scott (CR9) 1987; 1
Feng, Moran, Kazazian, Boeke (CR16) 1996; 87
Taylor (CR65) 2013; 155
Kulpa, Moran (CR26) 2005; 14
Doucet (CR49) 2010; 6
Ardeljan (CR45) 2020; 27
Zhang (CR86) 2014; 42
Dombroski, Mathias, Nanthakumar, Scott, Kazazian (CR10) 1991; 254
Warkocki (CR89) 2018; 174
Walker, Saraste, Runswick, Gay (CR93) 1982; 1
Orecchini (CR70) 2017; 45
O Piskareva (35757_CR35) 2006; 580
HC Kopera (35757_CR61) 2016; 1400
I Rusinova (35757_CR87) 2013; 41
H Muckenfuss (35757_CR73) 2006; 281
DW Huang (35757_CR55) 2009; 4
AD Ewing (35757_CR105) 2020; 80
EM Ostertag (35757_CR3) 2001; 11
J Choi (35757_CR85) 2018; 46
ES Lander (35757_CR1) 2001; 409
AE Hulme (35757_CR74) 2007; 390
T Tomaru (35757_CR109) 2006; 147
JE Walker (35757_CR93) 1982; 1
P Li (35757_CR41) 2017; 45
RA Kammerer (35757_CR58) 2005; 102
A Zhang (35757_CR86) 2014; 42
FMJ Jacobs (35757_CR106) 2014; 516
35757_CR54
N Lovšin (35757_CR75) 2009; 1178
DC Hancks (35757_CR38) 2016; 7
SL Mathias (35757_CR14) 1991; 254
S Kubo (35757_CR28) 2006; 103
35757_CR51
TE White (35757_CR83) 2016; 6
K Zhao (35757_CR81) 2013; 4
GJ Cost (35757_CR30) 1998; 37
DM Sassaman (35757_CR5) 1997; 16
L Dai (35757_CR64) 2012; 32
DA Flasch (35757_CR20) 2019; 177
M Amblar (35757_CR90) 2006; 360
BA Dombroski (35757_CR10) 1991; 254
E Kowarz (35757_CR118) 2015; 10
HP Bogerd (35757_CR72) 2006; 103
BT Sherman (35757_CR56) 2022; 50
H Tunbak (35757_CR46) 2020; 11
EF Pettersen (35757_CR121) 2021; 30
JN Athanikar (35757_CR22) 2004; 32
DB Stetson (35757_CR79) 2008; 134
DA Kulpa (35757_CR26) 2005; 14
GD Swergold (35757_CR21) 1990; 10
IA Olovnikov (35757_CR23) 2007; 41
P Tristán-Ramos (35757_CR66) 2020; 11
F Martı́n (35757_CR15) 1995; 247
D Ardeljan (35757_CR45) 2020; 27
P Mita (35757_CR29) 2018; 7
S Arjan-Odedra (35757_CR68) 2012; 9
S Hu (35757_CR82) 2015; 11
X Li (35757_CR69) 2013; 288
H Hohjoh (35757_CR13) 1996; 15
HH Kazazian (35757_CR39) 2017; 377
SR Richardson (35757_CR77) 2014; 3
X Sun (35757_CR112) 2018; 115
E Khazina (35757_CR12) 2011; 18
W Wei (35757_CR60) 2000; 284
MK Crow (35757_CR114) 2010; 43
CR Beck (35757_CR37) 2011; 12
HH Kazazian (35757_CR36) 1988; 332
EM Adney (35757_CR59) 2019; 213
SL Martin (35757_CR11) 2001; 21
N Gilbert (35757_CR33) 2002; 110
S Surapureddi (35757_CR108) 2002; 99
EM Ostertag (35757_CR120) 2000; 28
T Wang (35757_CR116) 2014; 343
C Esnault (35757_CR71) 2005; 433
A Barbas (35757_CR92) 2008; 283
K Usdin (35757_CR113) 1989; 264
35757_CR4
MN Naufer (35757_CR102) 2016; 44
ST Hossain (35757_CR101) 2015; 290
FP Reis (35757_CR99) 2013; 4
NT Chuang (35757_CR8) 2021; 31
A Subramanian (35757_CR57) 2005; 102
AV Horn (35757_CR76) 2014; 42
D Szklarczyk (35757_CR88) 2019; 47
AF Scott (35757_CR9) 1987; 1
RD Finn (35757_CR94) 2014; 42
C Esnault (35757_CR24) 2000; 24
Q Feng (35757_CR16) 1996; 87
AJ Doucet (35757_CR49) 2010; 6
T Tchenio (35757_CR110) 2000; 28
L Mátés (35757_CR119) 2009; 41
M Benitez‐Guijarro (35757_CR84) 2018; 37
35757_CR95
JL Goodier (35757_CR48) 2007; 27
N Yang (35757_CR111) 2003; 31
K Zhao (35757_CR42) 2018; 90
B Brouha (35757_CR6) 2003; 100
TA Morrish (35757_CR31) 2002; 31
C Frazão (35757_CR91) 2006; 443
HC Kopera (35757_CR117) 2011; 108
JV Moran (35757_CR17) 1996; 87
DA Kulpa (35757_CR32) 2006; 13
MS Taylor (35757_CR65) 2013; 155
N Awano (35757_CR100) 2010; 192
DD Luan (35757_CR18) 1993; 72
M Dewannieux (35757_CR96) 2003; 35
GJ Cost (35757_CR19) 2002; 21
EM Briggs (35757_CR63) 2021; 12
CA Schneider (35757_CR122) 2012; 9
MD Cecco (35757_CR43) 2019; 566
JB Moldovan (35757_CR50) 2015; 11
DSW Protter (35757_CR52) 2016; 26
CA Thomas (35757_CR80) 2017; 21
P Anderson (35757_CR47) 2002; 115
Q Yu (35757_CR67) 2015; 290
CP Mavragani (35757_CR40) 2016; 68
L-Y Chu (35757_CR98) 2017; 45
Z Warkocki (35757_CR89) 2018; 174
D Bourc’his (35757_CR103) 2004; 431
H Tourrière (35757_CR62) 2003; 160
NG Coufal (35757_CR104) 2009; 460
Y Feng (35757_CR78) 2017; 7
G Grimaldi (35757_CR2) 1984; 3
M Simon (35757_CR44) 2019; 29
JL Goodier (35757_CR53) 2012; 8
AJ Doucet (35757_CR27) 2015; 60
HE Volkman (35757_CR115) 2014; 15
N Gilbert (35757_CR34) 2005; 25
T Miyoshi (35757_CR97) 2019; 75
PA Larson (35757_CR107) 2018; 16
CR Beck (35757_CR7) 2010; 141
W Wei (35757_CR25) 2001; 21
E Orecchini (35757_CR70) 2017; 45
36717557 - Nat Commun. 2023 Jan 30;14(1):493
References_xml – volume: 25
  start-page: 7780
  year: 2005
  end-page: 7795
  ident: CR34
  article-title: Multiple fates of L1 retrotransposition intermediates in cultured human cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.17.7780-7795.2005
– volume: 10
  start-page: 6718
  year: 1990
  end-page: 6729
  ident: CR21
  article-title: Identification, characterization, and cell specificity of a human LINE-1 promoter
  publication-title: Mol. Cell. Biol.
– volume: 11
  year: 2020
  ident: CR46
  article-title: The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19170-5
– volume: 6
  start-page: e1001150
  year: 2010
  ident: CR49
  article-title: Characterization of LINE-1 ribonucleoprotein particles
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001150
– ident: CR51
– volume: 147
  start-page: 377
  year: 2006
  end-page: 388
  ident: CR109
  article-title: Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-γ
  publication-title: Endocrinology
  doi: 10.1210/en.2005-0450
– ident: CR54
– volume: 13
  start-page: 655
  year: 2006
  end-page: 660
  ident: CR32
  article-title: Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1107
– volume: 29
  start-page: 871
  year: 2019
  end-page: 885.e5
  ident: CR44
  article-title: LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.02.014
– volume: 284
  start-page: 435
  year: 2000
  end-page: 438
  ident: CR60
  article-title: A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2000.4675
– volume: 7
  year: 2017
  ident: CR78
  article-title: Deamination-independent restriction of LINE-1 retrotransposition by APOBEC3H
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11344-4
– volume: 37
  start-page: 18081
  year: 1998
  end-page: 18093
  ident: CR30
  article-title: Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure
  publication-title: Biochemistry
  doi: 10.1021/bi981858s
– volume: 41
  start-page: 753
  year: 2009
  end-page: 761
  ident: CR119
  article-title: Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates
  publication-title: Nat. Genet.
  doi: 10.1038/ng.343
– volume: 360
  start-page: 921
  year: 2006
  end-page: 933
  ident: CR90
  article-title: Characterization of the functional domains of RNase II
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.05.043
– volume: 72
  start-page: 595
  year: 1993
  end-page: 605
  ident: CR18
  article-title: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90078-5
– volume: 281
  start-page: 22161
  year: 2006
  end-page: 22172
  ident: CR73
  article-title: APOBEC3 proteins inhibit human LINE-1 retrotransposition
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M601716200
– volume: 247
  start-page: 49
  year: 1995
  end-page: 59
  ident: CR15
  article-title: Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from trypanosoma cruzi: homology of the first ORF with the Ape aamily of DNA repair enzymes
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.0121
– volume: 6
  start-page: 53
  year: 2016
  end-page: 60
  ident: CR83
  article-title: Modulation of LINE-1 retrotransposition by a human SAMHD1 polymorphism
  publication-title: Virol. Rep.
– volume: 46
  start-page: 1912
  year: 2018
  end-page: 1926
  ident: CR85
  article-title: Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1312
– volume: 32
  start-page: 3846
  year: 2004
  end-page: 3855
  ident: CR22
  article-title: A YY1-binding site is required for accurate human LINE-1 transcription initiation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh698
– volume: 288
  start-page: 21148
  year: 2013
  end-page: 21160
  ident: CR69
  article-title: The MOV10 helicase inhibits LINE-1 mobility
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.465856
– volume: 1400
  start-page: 139
  year: 2016
  end-page: 156
  ident: CR61
  article-title: LINE-1 cultured cell retrotransposition assay
  publication-title: Methods Mol. Biol. Clifton NJ
  doi: 10.1007/978-1-4939-3372-3_10
– volume: 15
  start-page: 415
  year: 2014
  end-page: 422
  ident: CR115
  article-title: The enemy within: endogenous retroelements and autoimmune disease
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2872
– volume: 7
  start-page: e30058
  year: 2018
  ident: CR29
  article-title: LINE-1 protein localization and functional dynamics during the cell cycle
  publication-title: eLife
  doi: 10.7554/eLife.30058
– volume: 41
  start-page: 453
  year: 2007
  end-page: 458
  ident: CR23
  article-title: Key role of the internal 5′-UTR segment in the transcription activity of the human L1 retrotransposon
  publication-title: Mol. Biol.
  doi: 10.1134/S0026893307030119
– volume: 283
  start-page: 13070
  year: 2008
  end-page: 13076
  ident: CR92
  article-title: New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709989200
– volume: 14
  start-page: 3237
  year: 2005
  end-page: 3248
  ident: CR26
  article-title: Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi354
– volume: 332
  start-page: 164
  year: 1988
  end-page: 166
  ident: CR36
  article-title: Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man
  publication-title: Nature
  doi: 10.1038/332164a0
– volume: 87
  start-page: 917
  year: 1996
  end-page: 927
  ident: CR17
  article-title: High frequency retrotransposition in cultured mammalian cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81998-4
– volume: 18
  start-page: 1006
  year: 2011
  end-page: 1014
  ident: CR12
  article-title: Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2097
– volume: 160
  start-page: 823
  year: 2003
  end-page: 831
  ident: CR62
  article-title: The RasGAP-associated endoribonuclease G3BP assembles stress granules
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200212128
– volume: 580
  start-page: 661
  year: 2006
  end-page: 668
  ident: CR35
  article-title: DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.12.077
– volume: 16
  start-page: 37
  year: 1997
  end-page: 43
  ident: CR5
  article-title: Many human L1 elements are capable of retrotransposition
  publication-title: Nat. Genet.
  doi: 10.1038/ng0597-37
– volume: 110
  start-page: 315
  year: 2002
  end-page: 325
  ident: CR33
  article-title: Genomic deletions created upon LINE-1 retrotransposition
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00828-0
– volume: 213
  start-page: 1401
  year: 2019
  end-page: 1414
  ident: CR59
  article-title: Comprehensive scanning mutagenesis of human retrotransposon LINE-1 identifies motifs essential for function
  publication-title: Genetics
  doi: 10.1534/genetics.119.302601
– volume: 264
  start-page: 15681
  year: 1989
  end-page: 15687
  ident: CR113
  article-title: The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1 (LINE) element
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84886-X
– volume: 290
  start-page: 10191
  year: 2015
  end-page: 10199
  ident: CR67
  article-title: Type I interferon controls propagation of long interspersed element-1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.612374
– volume: 433
  start-page: 430
  year: 2005
  end-page: 433
  ident: CR71
  article-title: APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses
  publication-title: Nature
  doi: 10.1038/nature03238
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: CR57
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 11
  start-page: e1005121
  year: 2015
  ident: CR50
  article-title: The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition
  publication-title: PLOS Genet.
  doi: 10.1371/journal.pgen.1005121
– volume: 45
  start-page: 12015
  year: 2017
  end-page: 12024
  ident: CR98
  article-title: Structural insights into RNA unwinding and degradation by RNase R
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx880
– volume: 254
  start-page: 1808
  year: 1991
  end-page: 1810
  ident: CR14
  article-title: Reverse transcriptase encoded by a human transposable element
  publication-title: Science
  doi: 10.1126/science.1722352
– volume: 1
  start-page: 945
  year: 1982
  end-page: 951
  ident: CR93
  article-title: Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1982.tb01276.x
– volume: 7
  year: 2016
  ident: CR38
  article-title: Roles for retrotransposon insertions in human disease
  publication-title: Mob. DNA
  doi: 10.1186/s13100-016-0065-9
– volume: 390
  start-page: 199
  year: 2007
  end-page: 205
  ident: CR74
  article-title: Selective inhibition of Alu retrotransposition by APOBEC3G
  publication-title: Gene
  doi: 10.1016/j.gene.2006.08.032
– volume: 87
  start-page: 905
  year: 1996
  end-page: 916
  ident: CR16
  article-title: Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81997-2
– volume: 290
  start-page: 15697
  year: 2015
  end-page: 15706
  ident: CR101
  article-title: The helicase activity of ribonuclease R is essential for efficient nuclease activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.650176
– volume: 45
  start-page: 155
  year: 2017
  end-page: 168
  ident: CR70
  article-title: ADAR1 restricts LINE-1 retrotransposition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw834
– volume: 108
  start-page: 20345
  year: 2011
  end-page: 20350
  ident: CR117
  article-title: Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1100275108
– volume: 45
  start-page: 4619
  year: 2017
  end-page: 4631
  ident: CR41
  article-title: Aicardi–Goutières syndrome protein TREX1 suppresses L1 and maintains genome integrity through exonuclease-independent ORF1p depletion
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx178
– volume: 30
  start-page: 70
  year: 2021
  end-page: 82
  ident: CR121
  article-title: UCSF ChimeraX: structure visualization for researchers, educators, and developers
  publication-title: Protein Sci.
  doi: 10.1002/pro.3943
– volume: 99
  start-page: 11836
  year: 2002
  end-page: 11841
  ident: CR108
  article-title: Identification of a transcriptionally active peroxisome proliferator-activated receptor α-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.182426699
– volume: 42
  start-page: 396
  year: 2014
  end-page: 416
  ident: CR76
  article-title: Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt898
– volume: 192
  start-page: 1344
  year: 2010
  end-page: 1352
  ident: CR100
  article-title: RNase R has dual activities, helicase and RNase
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01368-09
– volume: 115
  start-page: 3227
  year: 2002
  end-page: 3234
  ident: CR47
  article-title: Stressful initiations
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.115.16.3227
– volume: 50
  start-page: W216
  year: 2022
  end-page: W221
  ident: CR56
  article-title: DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac194
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  ident: CR55
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 174
  start-page: 1537
  year: 2018
  end-page: 1548.e29
  ident: CR89
  article-title: Uridylation by TUT4/7 restricts retrotransposition of human LINE-1s
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.022
– ident: CR4
– volume: 42
  start-page: 3803
  year: 2014
  end-page: 3820
  ident: CR86
  article-title: RNase L restricts the mobility of engineered retrotransposons in cultured human cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1308
– volume: 28
  start-page: 1418
  year: 2000
  end-page: 1423
  ident: CR120
  article-title: Determination of L1 retrotransposition kinetics in cultured cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.6.1418
– volume: 409
  start-page: 860
  year: 2001
  end-page: 921
  ident: CR1
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 43
  start-page: 7
  year: 2010
  end-page: 16
  ident: CR114
  article-title: Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease
  publication-title: Autoimmunity
  doi: 10.3109/08916930903374865
– volume: 431
  start-page: 96
  year: 2004
  end-page: 99
  ident: CR103
  article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L
  publication-title: Nature
  doi: 10.1038/nature02886
– volume: 460
  start-page: 1127
  year: 2009
  end-page: 1131
  ident: CR104
  article-title: L1 retrotransposition in human neural progenitor cells
  publication-title: Nature
  doi: 10.1038/nature08248
– volume: 32
  start-page: 4323
  year: 2012
  end-page: 4336
  ident: CR64
  article-title: Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06785-11
– volume: 60
  start-page: 728
  year: 2015
  end-page: 741
  ident: CR27
  article-title: A 3′ Poly(A) tract is required for LINE-1 retrotransposition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.012
– volume: 103
  start-page: 8780
  year: 2006
  end-page: 8785
  ident: CR72
  article-title: Cellular inhibitors of long interspersed element 1 and Alu retrotransposition
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0603313103
– volume: 1
  start-page: 113
  year: 1987
  end-page: 125
  ident: CR9
  article-title: Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence
  publication-title: Genomics
  doi: 10.1016/0888-7543(87)90003-6
– volume: 68
  start-page: 2686
  year: 2016
  end-page: 2696
  ident: CR40
  article-title: Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease
  publication-title: Arthritis Rheumatol. Hoboken NJ
  doi: 10.1002/art.39795
– volume: 9
  year: 2012
  ident: CR68
  article-title: Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-9-53
– volume: 21
  start-page: 1429
  year: 2001
  end-page: 1439
  ident: CR25
  article-title: Human L1 retrotransposition: cis preference versus trans complementation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.4.1429-1439.2001
– volume: 155
  start-page: 1034
  year: 2013
  end-page: 1048
  ident: CR65
  article-title: Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.021
– volume: 37
  start-page: e98506
  year: 2018
  ident: CR84
  article-title: RNase H2, mutated in Aicardi‐Goutières syndrome, promotes LINE‐1 retrotransposition
  publication-title: EMBO J.
  doi: 10.15252/embj.201798506
– volume: 28
  start-page: 411
  year: 2000
  end-page: 415
  ident: CR110
  article-title: Members of the SRY family regulate the human LINE retrotransposons
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.2.411
– volume: 11
  start-page: e1005367
  year: 2015
  ident: CR82
  article-title: SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005367
– volume: 177
  start-page: 837
  year: 2019
  end-page: 851.e28
  ident: CR20
  article-title: Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.050
– volume: 12
  year: 2021
  ident: CR63
  article-title: RIP-seq reveals LINE-1 ORF1p association with p-body enriched mRNAs
  publication-title: Mob. DNA
  doi: 10.1186/s13100-021-00233-3
– volume: 26
  start-page: 668
  year: 2016
  end-page: 679
  ident: CR52
  article-title: Principles and properties of stress granules
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.05.004
– volume: 75
  start-page: 1286
  year: 2019
  end-page: 1298.e12
  ident: CR97
  article-title: Poly(ADP-Ribose) polymerase 2 recruits replication protein A to sites of LINE-1 integration to facilitate retrotransposition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.07.018
– volume: 31
  start-page: 159
  year: 2002
  end-page: 165
  ident: CR31
  article-title: DNA repair mediated by endonuclease-independent LINE-1 retrotransposition
  publication-title: Nat. Genet.
  doi: 10.1038/ng898
– volume: 12
  start-page: 187
  year: 2011
  end-page: 215
  ident: CR37
  article-title: LINE-1 elements in structural variation and disease
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev-genom-082509-141802
– volume: 44
  start-page: 281
  year: 2016
  end-page: 293
  ident: CR102
  article-title: L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved despite extensive remodeling
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1342
– volume: 27
  start-page: 6469
  year: 2007
  end-page: 6483
  ident: CR48
  article-title: LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00332-07
– volume: 10
  start-page: 647
  year: 2015
  end-page: 653
  ident: CR118
  article-title: Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400821
– volume: 42
  start-page: D222
  year: 2014
  end-page: D230
  ident: CR94
  article-title: Pfam: the protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1223
– volume: 31
  start-page: 2225
  year: 2021
  end-page: 2235
  ident: CR8
  article-title: Mutagenesis of human genomes by endogenous mobile elements on a population scale
  publication-title: Genome Res.
  doi: 10.1101/gr.275323.121
– volume: 3
  start-page: 1753
  year: 1984
  end-page: 1759
  ident: CR2
  article-title: Defining the beginning and end of KpnI family segments
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1984.tb02042.x
– volume: 16
  start-page: e2003067
  year: 2018
  ident: CR107
  article-title: Spliced integrated retrotransposed element (SpIRE) formation in the human genome
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.2003067
– ident: CR95
– volume: 3
  start-page: e02008
  year: 2014
  ident: CR77
  article-title: APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition
  publication-title: eLife
  doi: 10.7554/eLife.02008
– volume: 141
  start-page: 1159
  year: 2010
  end-page: 1170
  ident: CR7
  article-title: LINE-1 retrotransposition activity in human genomes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.021
– volume: 31
  start-page: 4929
  year: 2003
  end-page: 4940
  ident: CR111
  article-title: An important role for RUNX3 in human L1 transcription and retrotransposition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg663
– volume: 24
  start-page: 363
  year: 2000
  end-page: 367
  ident: CR24
  article-title: Human LINE retrotransposons generate processed pseudogenes
  publication-title: Nat. Genet.
  doi: 10.1038/74184
– volume: 115
  start-page: E5526
  year: 2018
  end-page: E5535
  ident: CR112
  article-title: Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1722565115
– volume: 11
  start-page: 2059
  year: 2001
  end-page: 2065
  ident: CR3
  article-title: Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition
  publication-title: Genome Res.
  doi: 10.1101/gr.205701
– volume: 80
  start-page: 915
  year: 2020
  end-page: 928.e5
  ident: CR105
  article-title: Nanopore sequencing enables comprehensive transposable element epigenomic profiling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.024
– volume: 21
  start-page: 467
  year: 2001
  end-page: 475
  ident: CR11
  article-title: Nucleic acid Chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.2.467-475.2001
– volume: 41
  start-page: D1040
  year: 2013
  end-page: D1046
  ident: CR87
  article-title: INTERFEROME v2.0: an updated database of annotated interferon-regulated genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1215
– volume: 4
  start-page: 1108
  year: 2013
  end-page: 1115
  ident: CR81
  article-title: Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutières syndrome-related SAMHD1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.08.019
– volume: 35
  start-page: 41
  year: 2003
  end-page: 48
  ident: CR96
  article-title: LINE-mediated retrotransposition of marked Alu sequences
  publication-title: Nat. Genet.
  doi: 10.1038/ng1223
– volume: 4
  start-page: 607
  year: 2013
  end-page: 615
  ident: CR99
  article-title: The RNase II/RNB family of exoribonucleases: putting the ‘Dis’ in disease
  publication-title: WIREs RNA
  doi: 10.1002/wrna.1180
– volume: 134
  start-page: 587
  year: 2008
  end-page: 598
  ident: CR79
  article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.032
– volume: 100
  start-page: 5280
  year: 2003
  end-page: 5285
  ident: CR6
  article-title: Hot L1s account for the bulk of retrotransposition in the human population
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0831042100
– volume: 254
  start-page: 1805
  year: 1991
  end-page: 1808
  ident: CR10
  article-title: Isolation of an active human transposable element
  publication-title: Science
  doi: 10.1126/science.1662412
– volume: 15
  start-page: 630
  year: 1996
  end-page: 639
  ident: CR13
  article-title: Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00395.x
– volume: 103
  start-page: 8036
  year: 2006
  end-page: 8041
  ident: CR28
  article-title: L1 retrotransposition in nondividing and primary human somatic cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0601954103
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: CR122
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 377
  start-page: 361
  year: 2017
  end-page: 370
  ident: CR39
  article-title: Mobile DNA in health and disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1510092
– volume: 27
  start-page: 168
  year: 2020
  end-page: 178
  ident: CR45
  article-title: Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0372-1
– volume: 8
  start-page: e1002941
  year: 2012
  ident: CR53
  article-title: MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002941
– volume: 90
  start-page: 105
  year: 2018
  end-page: 115
  ident: CR42
  article-title: LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways
  publication-title: J. Autoimmun.
  doi: 10.1016/j.jaut.2018.02.007
– volume: 443
  start-page: 110
  year: 2006
  end-page: 114
  ident: CR91
  article-title: Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex
  publication-title: Nature
  doi: 10.1038/nature05080
– volume: 47
  start-page: D607
  year: 2019
  end-page: D613
  ident: CR88
  article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 21
  start-page: 5899
  year: 2002
  end-page: 5910
  ident: CR19
  article-title: Human L1 element target-primed reverse transcription in vitro
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf592
– volume: 11
  year: 2020
  ident: CR66
  article-title: The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19430-4
– volume: 566
  start-page: 73
  year: 2019
  end-page: 78
  ident: CR43
  article-title: LINE-1 derepression in senescent cells triggers interferon and inflammaging
  publication-title: Nature
– volume: 21
  start-page: 319
  year: 2017
  end-page: 331.e8
  ident: CR80
  article-title: Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.07.009
– volume: 516
  start-page: 242
  year: 2014
  end-page: 245
  ident: CR106
  article-title: An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons
  publication-title: Nature
  doi: 10.1038/nature13760
– volume: 343
  start-page: 80
  year: 2014
  end-page: 84
  ident: CR116
  article-title: Genetic screens in human cells using the CRISPR-Cas9 system
  publication-title: Science
  doi: 10.1126/science.1246981
– volume: 102
  start-page: 13891
  year: 2005
  end-page: 13896
  ident: CR58
  article-title: A conserved trimerization motif controls the topology of short coiled coils
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502390102
– volume: 1178
  start-page: 268
  year: 2009
  end-page: 275
  ident: CR75
  article-title: APOBEC3 proteins inhibit LINE-1 retrotransposition in the absence of ORF1p binding
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.05006.x
– volume: 7
  start-page: e30058
  year: 2018
  ident: 35757_CR29
  publication-title: eLife
  doi: 10.7554/eLife.30058
– volume: 31
  start-page: 159
  year: 2002
  ident: 35757_CR31
  publication-title: Nat. Genet.
  doi: 10.1038/ng898
– volume: 7
  year: 2016
  ident: 35757_CR38
  publication-title: Mob. DNA
  doi: 10.1186/s13100-016-0065-9
– volume: 72
  start-page: 595
  year: 1993
  ident: 35757_CR18
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90078-5
– volume: 37
  start-page: e98506
  year: 2018
  ident: 35757_CR84
  publication-title: EMBO J.
  doi: 10.15252/embj.201798506
– volume: 1400
  start-page: 139
  year: 2016
  ident: 35757_CR61
  publication-title: Methods Mol. Biol. Clifton NJ
  doi: 10.1007/978-1-4939-3372-3_10
– ident: 35757_CR51
  doi: 10.1016/j.tibs.2013.07.004
– volume: 6
  start-page: 53
  year: 2016
  ident: 35757_CR83
  publication-title: Virol. Rep.
  doi: 10.1016/j.virep.2016.06.001
– volume: 27
  start-page: 6469
  year: 2007
  ident: 35757_CR48
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00332-07
– volume: 343
  start-page: 80
  year: 2014
  ident: 35757_CR116
  publication-title: Science
  doi: 10.1126/science.1246981
– volume: 3
  start-page: 1753
  year: 1984
  ident: 35757_CR2
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1984.tb02042.x
– volume: 75
  start-page: 1286
  year: 2019
  ident: 35757_CR97
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.07.018
– volume: 30
  start-page: 70
  year: 2021
  ident: 35757_CR121
  publication-title: Protein Sci.
  doi: 10.1002/pro.3943
– volume: 9
  start-page: 671
  year: 2012
  ident: 35757_CR122
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 99
  start-page: 11836
  year: 2002
  ident: 35757_CR108
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.182426699
– volume: 147
  start-page: 377
  year: 2006
  ident: 35757_CR109
  publication-title: Endocrinology
  doi: 10.1210/en.2005-0450
– volume: 390
  start-page: 199
  year: 2007
  ident: 35757_CR74
  publication-title: Gene
  doi: 10.1016/j.gene.2006.08.032
– volume: 12
  year: 2021
  ident: 35757_CR63
  publication-title: Mob. DNA
  doi: 10.1186/s13100-021-00233-3
– volume: 332
  start-page: 164
  year: 1988
  ident: 35757_CR36
  publication-title: Nature
  doi: 10.1038/332164a0
– volume: 103
  start-page: 8036
  year: 2006
  ident: 35757_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0601954103
– volume: 174
  start-page: 1537
  year: 2018
  ident: 35757_CR89
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.022
– volume: 25
  start-page: 7780
  year: 2005
  ident: 35757_CR34
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.17.7780-7795.2005
– volume: 4
  start-page: 1108
  year: 2013
  ident: 35757_CR81
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.08.019
– volume: 47
  start-page: D607
  year: 2019
  ident: 35757_CR88
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 10
  start-page: 6718
  year: 1990
  ident: 35757_CR21
  publication-title: Mol. Cell. Biol.
– volume: 90
  start-page: 105
  year: 2018
  ident: 35757_CR42
  publication-title: J. Autoimmun.
  doi: 10.1016/j.jaut.2018.02.007
– volume: 9
  year: 2012
  ident: 35757_CR68
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-9-53
– volume: 46
  start-page: 1912
  year: 2018
  ident: 35757_CR85
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1312
– volume: 6
  start-page: e1001150
  year: 2010
  ident: 35757_CR49
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001150
– volume: 37
  start-page: 18081
  year: 1998
  ident: 35757_CR30
  publication-title: Biochemistry
  doi: 10.1021/bi981858s
– volume: 360
  start-page: 921
  year: 2006
  ident: 35757_CR90
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.05.043
– volume: 110
  start-page: 315
  year: 2002
  ident: 35757_CR33
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00828-0
– volume: 281
  start-page: 22161
  year: 2006
  ident: 35757_CR73
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M601716200
– volume: 45
  start-page: 12015
  year: 2017
  ident: 35757_CR98
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx880
– ident: 35757_CR4
  doi: 10.1128/microbiolspec.MDNA3-0061-2014
– volume: 1
  start-page: 113
  year: 1987
  ident: 35757_CR9
  publication-title: Genomics
  doi: 10.1016/0888-7543(87)90003-6
– volume: 566
  start-page: 73
  year: 2019
  ident: 35757_CR43
  publication-title: Nature
  doi: 10.1038/s41586-018-0784-9
– volume: 68
  start-page: 2686
  year: 2016
  ident: 35757_CR40
  publication-title: Arthritis Rheumatol. Hoboken NJ
  doi: 10.1002/art.39795
– volume: 28
  start-page: 1418
  year: 2000
  ident: 35757_CR120
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.6.1418
– volume: 44
  start-page: 281
  year: 2016
  ident: 35757_CR102
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1342
– volume: 8
  start-page: e1002941
  year: 2012
  ident: 35757_CR53
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002941
– volume: 213
  start-page: 1401
  year: 2019
  ident: 35757_CR59
  publication-title: Genetics
  doi: 10.1534/genetics.119.302601
– volume: 160
  start-page: 823
  year: 2003
  ident: 35757_CR62
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200212128
– volume: 254
  start-page: 1808
  year: 1991
  ident: 35757_CR14
  publication-title: Science
  doi: 10.1126/science.1722352
– volume: 1178
  start-page: 268
  year: 2009
  ident: 35757_CR75
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.05006.x
– volume: 100
  start-page: 5280
  year: 2003
  ident: 35757_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0831042100
– volume: 288
  start-page: 21148
  year: 2013
  ident: 35757_CR69
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.465856
– volume: 460
  start-page: 1127
  year: 2009
  ident: 35757_CR104
  publication-title: Nature
  doi: 10.1038/nature08248
– volume: 28
  start-page: 411
  year: 2000
  ident: 35757_CR110
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.2.411
– volume: 11
  start-page: e1005121
  year: 2015
  ident: 35757_CR50
  publication-title: PLOS Genet.
  doi: 10.1371/journal.pgen.1005121
– volume: 4
  start-page: 607
  year: 2013
  ident: 35757_CR99
  publication-title: WIREs RNA
  doi: 10.1002/wrna.1180
– volume: 15
  start-page: 415
  year: 2014
  ident: 35757_CR115
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2872
– volume: 16
  start-page: e2003067
  year: 2018
  ident: 35757_CR107
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.2003067
– volume: 284
  start-page: 435
  year: 2000
  ident: 35757_CR60
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2000.4675
– volume: 31
  start-page: 2225
  year: 2021
  ident: 35757_CR8
  publication-title: Genome Res.
  doi: 10.1101/gr.275323.121
– volume: 12
  start-page: 187
  year: 2011
  ident: 35757_CR37
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev-genom-082509-141802
– volume: 433
  start-page: 430
  year: 2005
  ident: 35757_CR71
  publication-title: Nature
  doi: 10.1038/nature03238
– volume: 45
  start-page: 4619
  year: 2017
  ident: 35757_CR41
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx178
– volume: 43
  start-page: 7
  year: 2010
  ident: 35757_CR114
  publication-title: Autoimmunity
  doi: 10.3109/08916930903374865
– volume: 155
  start-page: 1034
  year: 2013
  ident: 35757_CR65
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.021
– volume: 41
  start-page: 753
  year: 2009
  ident: 35757_CR119
  publication-title: Nat. Genet.
  doi: 10.1038/ng.343
– volume: 247
  start-page: 49
  year: 1995
  ident: 35757_CR15
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.0121
– volume: 87
  start-page: 917
  year: 1996
  ident: 35757_CR17
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81998-4
– volume: 115
  start-page: 3227
  year: 2002
  ident: 35757_CR47
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.115.16.3227
– volume: 134
  start-page: 587
  year: 2008
  ident: 35757_CR79
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.032
– volume: 41
  start-page: D1040
  year: 2013
  ident: 35757_CR87
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1215
– volume: 29
  start-page: 871
  year: 2019
  ident: 35757_CR44
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.02.014
– volume: 11
  year: 2020
  ident: 35757_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19170-5
– volume: 115
  start-page: E5526
  year: 2018
  ident: 35757_CR112
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1722565115
– volume: 102
  start-page: 15545
  year: 2005
  ident: 35757_CR57
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 31
  start-page: 4929
  year: 2003
  ident: 35757_CR111
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg663
– ident: 35757_CR54
  doi: 10.1371/journal.pgen.1005252
– volume: 50
  start-page: W216
  year: 2022
  ident: 35757_CR56
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac194
– volume: 16
  start-page: 37
  year: 1997
  ident: 35757_CR5
  publication-title: Nat. Genet.
  doi: 10.1038/ng0597-37
– volume: 42
  start-page: D222
  year: 2014
  ident: 35757_CR94
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1223
– volume: 35
  start-page: 41
  year: 2003
  ident: 35757_CR96
  publication-title: Nat. Genet.
  doi: 10.1038/ng1223
– volume: 42
  start-page: 3803
  year: 2014
  ident: 35757_CR86
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1308
– volume: 41
  start-page: 453
  year: 2007
  ident: 35757_CR23
  publication-title: Mol. Biol.
  doi: 10.1134/S0026893307030119
– volume: 108
  start-page: 20345
  year: 2011
  ident: 35757_CR117
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1100275108
– volume: 45
  start-page: 155
  year: 2017
  ident: 35757_CR70
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw834
– volume: 32
  start-page: 3846
  year: 2004
  ident: 35757_CR22
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh698
– volume: 26
  start-page: 668
  year: 2016
  ident: 35757_CR52
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.05.004
– volume: 14
  start-page: 3237
  year: 2005
  ident: 35757_CR26
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi354
– volume: 103
  start-page: 8780
  year: 2006
  ident: 35757_CR72
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0603313103
– volume: 7
  year: 2017
  ident: 35757_CR78
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11344-4
– volume: 580
  start-page: 661
  year: 2006
  ident: 35757_CR35
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.12.077
– volume: 80
  start-page: 915
  year: 2020
  ident: 35757_CR105
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.024
– volume: 377
  start-page: 361
  year: 2017
  ident: 35757_CR39
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1510092
– volume: 24
  start-page: 363
  year: 2000
  ident: 35757_CR24
  publication-title: Nat. Genet.
  doi: 10.1038/74184
– volume: 516
  start-page: 242
  year: 2014
  ident: 35757_CR106
  publication-title: Nature
  doi: 10.1038/nature13760
– volume: 254
  start-page: 1805
  year: 1991
  ident: 35757_CR10
  publication-title: Science
  doi: 10.1126/science.1662412
– volume: 13
  start-page: 655
  year: 2006
  ident: 35757_CR32
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1107
– volume: 11
  year: 2020
  ident: 35757_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19430-4
– volume: 102
  start-page: 13891
  year: 2005
  ident: 35757_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502390102
– volume: 15
  start-page: 630
  year: 1996
  ident: 35757_CR13
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00395.x
– volume: 283
  start-page: 13070
  year: 2008
  ident: 35757_CR92
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709989200
– volume: 3
  start-page: e02008
  year: 2014
  ident: 35757_CR77
  publication-title: eLife
  doi: 10.7554/eLife.02008
– volume: 264
  start-page: 15681
  year: 1989
  ident: 35757_CR113
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84886-X
– volume: 443
  start-page: 110
  year: 2006
  ident: 35757_CR91
  publication-title: Nature
  doi: 10.1038/nature05080
– volume: 11
  start-page: e1005367
  year: 2015
  ident: 35757_CR82
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005367
– volume: 32
  start-page: 4323
  year: 2012
  ident: 35757_CR64
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06785-11
– volume: 1
  start-page: 945
  year: 1982
  ident: 35757_CR93
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1982.tb01276.x
– volume: 11
  start-page: 2059
  year: 2001
  ident: 35757_CR3
  publication-title: Genome Res.
  doi: 10.1101/gr.205701
– volume: 409
  start-page: 860
  year: 2001
  ident: 35757_CR1
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 18
  start-page: 1006
  year: 2011
  ident: 35757_CR12
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2097
– volume: 177
  start-page: 837
  year: 2019
  ident: 35757_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.050
– volume: 42
  start-page: 396
  year: 2014
  ident: 35757_CR76
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt898
– volume: 21
  start-page: 467
  year: 2001
  ident: 35757_CR11
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.2.467-475.2001
– volume: 60
  start-page: 728
  year: 2015
  ident: 35757_CR27
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.012
– volume: 431
  start-page: 96
  year: 2004
  ident: 35757_CR103
  publication-title: Nature
  doi: 10.1038/nature02886
– volume: 192
  start-page: 1344
  year: 2010
  ident: 35757_CR100
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01368-09
– volume: 21
  start-page: 5899
  year: 2002
  ident: 35757_CR19
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf592
– volume: 27
  start-page: 168
  year: 2020
  ident: 35757_CR45
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0372-1
– volume: 21
  start-page: 1429
  year: 2001
  ident: 35757_CR25
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.4.1429-1439.2001
– volume: 4
  start-page: 44
  year: 2009
  ident: 35757_CR55
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 290
  start-page: 10191
  year: 2015
  ident: 35757_CR67
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.612374
– volume: 87
  start-page: 905
  year: 1996
  ident: 35757_CR16
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81997-2
– volume: 290
  start-page: 15697
  year: 2015
  ident: 35757_CR101
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.650176
– ident: 35757_CR95
  doi: 10.1155/2016/9294307
– volume: 141
  start-page: 1159
  year: 2010
  ident: 35757_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.021
– volume: 10
  start-page: 647
  year: 2015
  ident: 35757_CR118
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400821
– volume: 21
  start-page: 319
  year: 2017
  ident: 35757_CR80
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.07.009
– reference: 36717557 - Nat Commun. 2023 Jan 30;14(1):493
SSID ssj0000391844
Score 2.4900444
Snippet Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid...
Proteomic analyses revealed that a group of interferon-stimulated genes suppresses LINE-1 retrotransposon activities, including HELZ2, which reduces LINE-1 RNA...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 203
SubjectTerms 13
13/21
13/31
13/89
14/35
14/63
38/1
38/44
38/88
38/90
5' Untranslated Regions
631/208/211
631/250/262
631/337/1645
82/1
82/58
82/83
Binding
DNA helicase
Genes
Humanities and Social Sciences
Humans
Immune response
Immune system
Immunoprecipitation
Innate immunity
Interferon
Interferon Type I - genetics
Liquid chromatography
Localization
Long Interspersed Nucleotide Elements - genetics
Mass spectrometry
Mass spectroscopy
multidisciplinary
Proteins
Proteins - genetics
Proteomics
Retrotransposition
Ribonucleic acid
RNA
RNA - genetics
RNA Helicases - genetics
RNA-directed DNA polymerase
RNA-Directed DNA Polymerase - genetics
Science
Science (multidisciplinary)
Ubiquitin
Ubiquitin-protein ligase
Zinc finger proteins
α-Interferon
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG8CCzISN7A2ju3YOS6oqy5aekCstOJi-RVtJTZFbffAz-AfM2OnpeV54Zh4nIw84_Hn1zeEvHSN7zvfO9aZmBjyk7CuVZLppofxI8oYFF5wfj9rp-fy3YW62En1hWfCCj1wabgjnryKMfbaAXIHLOIa0XETlBPOBS56jL51V-9MpnIMRiEpx1sytTBHK5ljQjm8rpVm7d5IlAn7f4cyfz0s-dOOaR6ITu6Q2yOCpMdF87vkRhrukZslp-TX--QbGJ4iCcSyT8vFQKELX2GKrhQp-EpiSFwZ4SETNMwHOp2cfWqgwuXcz9crmnP20bPT2YRxukxrkCr05-VsF3VD3JR-mB2zfPEEv41LufR098cw2S_MtA_I-cnk49spG_MusAB4bc1an0QQSUZlOh-NFNpFqZsWkEhMspemlV2SqgkNxMZQO8PBFFGY2oeAtxrEQ3IwLIb0mFCH_IUA2mB8DJJr3kWpeJI-eNdrrkxF-MYGNoyk5Jgb47PNm-PC2GI3C3az2W62rcirbZ0vhZLjr9Jv0LRbSaTTzi_AyezoZPZfTlaRw41j2LGPr2yjW4Vs-UJV5MW2GHonbrm4IS2uiwzMXyBKVuRR8aOtJqLFTdUaNNR7Hran6n7JML_MDOAdwFpt6oq83vjiD7X-3BRP_kdTPCW3GrAorkJxcUgO1svr9Axw2do_z13wO9qCNDE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlbXsR07J1TQLltU9oCoVHGJHNtpV4KkzaYHfgb_mBnnUZZHj4mdxM48PWN_Q8grm5ZVXlaW5cYHhvgkLM-UZDqtwH546Z3CA86fVtnyWH48USdDwG0zbKscdWJU1L5xGCPfT3WmEJtcqLfnFwyrRmF2dSihcZPc4mBpkM_N4sMUY0H0cyPlcFZmJsz-RkbN0G9h10qzbMseRdj-f_maf2-Z_CNvGs3R4h65O_iR9KAn_H1yI9QPyO2-suSPh-QnkJ8iFERbhbapKQjydyzUFTwFjgkM4Ss9XESYhnVNl_Ojryk8cLYu192Gxsp99OhwNWectqGDXj0Ier_Di9raj62fVwcsHj_Bd2NAlx7-_mFY8vf4tI_I8WL-5f2SDdUXmAOvrWNZGYQTQXpl8tIbKbT1UqcZ-CM-yEqaTOZBqtSloCHdzBpurfPCzErn8GyDeEx26qYOTwm1iGIIrhtYSSe55rmXigdZutJWmiuTED7SoHADNDlWyPhWxBS5MEVPtwLoVkS6FVlCXk_PnPfAHNf2foeknXoiqHa80bSnxSCjBQ-l8t5X2sIiEdxemyL_OGUFzIyLKiF7I2MUg6Rviiu-TMjLqRlkFBMvtg7NZd8HVjGgKxPypOejaSQiw9TqDEaotzhsa6jbLfX6LOKA5-DcajNLyJuRF6-G9f9fsXv9LJ6ROynQCqNMXOyRna69DM_B7-rKF1G4fgGMGisP
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaWrpC4IN4EFmQkbmARv2LnWFBX3WrpAVhpxSVybIetBClKswd-Bv-YsZ0ECgsSx8bjdNqZ8YztmW8Qem5Y3ZR1Y0ipnScBn4SUhRREsQb8hxPOylDg_HZdLM_E6lyeHyA21sLEpP0IaRmX6TE77NVORJNOuedKKlJcQ4ca3B-bocP5fPV-NZ2sBMxzLcRQIZNzfcXkPS8UwfqvijD_TJT87bY0OqHjW-jmED3ieeL3Njrw7R10PfWT_HYXfQeh4wAA0TW-27YYzPdLaM_lHQY98SSAVjr4EMEZNi1eLk4_Mphwsak3_Q7Hfn349GS9IBR3vgeqBH2e8rqwad04-m49J7HoJLw7HOPik1-_GDb6CZX2Hjo7Xnx4syRDzwViIVbrSVF7brkXTuqydlpwZZxQrIAoxHnRCF2I0gvJLIN10eZGU2Os4zqvrQ0VDfw-mrXb1j9E2ATsQgjYwDdaQRUtnZDUi9rWplFU6gzRUQaVHQDJQ1-Mz1W8GOe6SnKrQG5VlFtVZOjFNOdrguP4J_XrINqJMkBpxwfb7lM1qFZFfS2dc40ysDWEYNewoD9WGg6_jPImQ0ejYlSDfe8qpgoZkPK5zNCzaRgsM1y3mNZvLxMN7F1ghczQg6RHEye8CBeqOXCo9jRsj9X9kXZzEdG_Swhplc4z9HLUxZ9s_f2vePR_5I_RDQayC2dNlB-hWd9d-icQffX108HcfgCtlSpI
  priority: 102
  providerName: Springer Nature
Title The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction
URI https://link.springer.com/article/10.1038/s41467-022-35757-6
https://www.ncbi.nlm.nih.gov/pubmed/36639706
https://www.proquest.com/docview/2765229035
https://www.proquest.com/docview/2765772488
https://pubmed.ncbi.nlm.nih.gov/PMC9839780
https://doaj.org/article/1eb5dddf7a114310a23918c5a3aac13f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ6C9IN4ElipI3MDQxK_kgFC3aulWuxVaqFRxiRzbYSstKaRdif0Z_GPGTlK2UDhwadXYTtzMN54ZP74BeK7ivEjzQpE0MZY4fhKSCs6IjAu0H4YZzd0B59OJGE3ZeMZnO9CmO2pe4HJraOfySU2ri1ffv129RYV_Ux8ZT14vmVf3el-65JKIXdhHyyRcMHbauPt-ZKYpBjSsOTuzvekB3KTCrXa5HEjXTJVn9N_mhv65m_K3JVVvqYa34VbjYoa9GhN3YMeWd-FGnXTy6h78QGSEjiWiKmy1KEPU8S8uh5c1IYLJEsdsafCHZ3CYl-FocPIpxgbn83y-WoY-qV94cjwZkCis7Apr1fzo9eavUJWmLT2b9Ig_meLu7eZ6w-PrD56XpqauvQ_T4eBjf0SaxAxEo0O3IiK3VFPLDE_S3CSMSmWYjAW6KsaygiWCpZbxWMc4eOquSiKltKFJN9faHXugD2CvXJT2EYTKERyiV4cGVLNIRqlhPLIs17kqZMSTAKJWBpluWMtd8oyLzK-e0ySrRZihCDMvwkwE8GLd5mvN2fHP2kdOtOuajm_bX1hUn7NGfbPI5twYU0iF8SN6xCp2UNJcUfxnES0COGyBkbUYzmIpuKPTpzyAZ-tiVF-3JqNKu7is62CAg8NoAA9rHK170uIwALmBsI2ubpaU83NPEZ6i3yuTbgAvWyz-6tbfX8Xj_37QEziIUYxubiqih7C3qi7tU_TWVnkHduVM4mcyfNeB_V5v_GGM30eDyfszvNoX_Y6fB-l4Vf0JhgVCeg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGEIIXxH8CA4wET2Ctie3YeUBoQKeWdX1Am1TxYhzbYZUgHW0ntI_BF-EzcuckHeXP3vaY2kmc3s_n8935d4Q8s1lZFWVlWaF9YMhPwopcCqayCtYPL7yTeMB5f5wPDsX7iZxskJ_dWRhMq-x0YlTUfubQR76dqVwiNzmXr4-_MawahdHVroRGA4u9cPodtmyLV8N3IN_nWbbbP3g7YG1VAebAGlmyvAzc8SC81EXpteDKeqGyHNZZH0QldC6KIGTmMpj5rmd1aq3zXPdK5zBnn8NzL5HLAj3jMH_URK18Osi2roVoz-b0uN5eiKiJmpR5JRXL19a_WCbgX7bt3ymaf8Rp4_K3e4Ncb-1WutMA7SbZCPUtcqWpZHl6m_wAuFGknphXYT6rKSiOr1gYLHgKCA0M6TI9XERaiGlNB_3RxwxuOJqW0-WCxkqBdDQc91lK52EJvRrS9SajjNrad60fxjssHnfBZ6MDmQ5_f_G09g0f7h1yeCFyuUs261kd7hNqkTURTEVYlZ1IVVp4IdMgSlfaSqVSJyTtZGBcS4WOFTm-mBiS59o0cjMgNxPlZvKEvFjdc9wQgZzb-w2KdtUTSbzjD7P5Z9PqBJOGUnrvK2VhUwpwshnix0nL4ctSXiVkqwOGaTXLwpzNg4Q8XTWDTsBAj63D7KTpA7sm0M0JudfgaDUSnmMotwcjVGsIWxvqeks9PYq84wUY00r3EvKyw-LZsP7_Vzw4_yuekKuDg_2RARDtPSTXMpAberhSvkU2l_OT8AhsvmX5OE40Sj5d9Mz-BdOoaG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACPBE1htfImdB4QGa9WyUSHEpIkX49gOqwTpaDuh_Qz-Dr-OYzvpKJe97TG1kzg937nYPv4OQk8Mreqyqg0plfMk8JOQshCcSFqD_3DcWREOOL-dFKN9_uZAHGygn91ZmJBW2dnEaKjdzIY18h6VhQjc5Ez06jYt4t3O8OXRNxIqSIWd1q6cRoLIrj_5DtO3xYvxDsj6KaXDwYfXI9JWGCAWIpMlKSrPLPPcCVVWTnEmjeOSFuBznec1VwUvPRfUUrACtm9Ubox1TPUra0P-PoPnXkAXJYOoCnRJHsjV-k5gXlect-d0-kz1FjxapZQ-L4UkxZovjCUD_hXn_p2u-ceebXSFw2voahvD4u0Euutowzc30KVU1fLkJvoB0MOBhmJe-_mswWBEvoYiYd5hQKsngTrTwUWkiJg2eDTY-0jhhsNpNV0ucKwaiPfGkwHJ8dwvoVciYE_ZZdg0rmt9P9km8ehLeHZYTMbj3188bVzixr2F9s9FLrfRZjNr_F2ETWBQhLARPLTlucxLx0XueWUrU8tcqAzlnQy0bWnRQ3WOLzpuzzOlk9w0yE1HuekiQ89W9xwlUpAze78Kol31DITe8YfZ_LNu7YPOfSWcc7U0MEGFkNvQgB8rDIMvy1mdoa0OGLq1Mgt9qhMZerxqBvsQNn1M42fHqQ_MoMBOZ-hOwtFqJKwI27p9GKFcQ9jaUNdbmulh5CAvIbCWqp-h5x0WT4f1_7_i3tlf8QhdBp3WgKHd--gKBbGFxa6cbaHN5fzYP4Dwb1k9jHqG0afzVuxf2mJsrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+interferon+stimulated+gene-encoded+protein+HELZ2+inhibits+human+LINE-1+retrotransposition+and+LINE-1+RNA-mediated+type+I+interferon+induction&rft.jtitle=Nature+communications&rft.au=Luqman-Fatah%2C+Ahmad&rft.au=Watanabe%2C+Yuzo&rft.au=Uno%2C+Kazuko&rft.au=Ishikawa%2C+Fuyuki&rft.date=2023-01-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft_id=info:doi/10.1038%2Fs41467-022-35757-6&rft_id=info%3Apmid%2F36639706&rft.externalDocID=PMC9839780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon