Applicability of a nationwide flood forecasting system for Typhoon Hagibis 2019
Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting people and property. Although many techniques are used to forecast floods, sufficient validation of the use of a forecast system for operationa...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 10213 - 12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.05.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting people and property. Although many techniques are used to forecast floods, sufficient validation of the use of a forecast system for operational alert purposes is lacking. In this study, we validated the flooding locations and times of dike breaking that had occurred during Typhoon Hagibis, which caused severe flooding in Japan in 2019. To achieve the goal of the study, we combined a hydrodynamic model with statistical analysis under forcing by a 39-h prediction of the Japan Meteorological Agency's Meso-scale model Grid Point Value (MSM-GPV) and obtained dike-break times for all flooded locations for validation. The results showed that this method was accurate in predicting floods at 130 locations, approximately 91.6% of the total of 142 flooded locations, with a lead time of approximately 32.75 h. In terms of precision, these successfully predicted locations accounted for 24.0% of the total of 542 locations under a flood warning, and on average, the predicted flood time was approximately 8.53 h earlier than a given dike-break time. More warnings were issued for major rivers with severe flooding, indicating that the system is sensitive to extreme flood events and can issue warnings for rivers subject to high risk of flooding. |
---|---|
AbstractList | Abstract Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting people and property. Although many techniques are used to forecast floods, sufficient validation of the use of a forecast system for operational alert purposes is lacking. In this study, we validated the flooding locations and times of dike breaking that had occurred during Typhoon Hagibis, which caused severe flooding in Japan in 2019. To achieve the goal of the study, we combined a hydrodynamic model with statistical analysis under forcing by a 39-h prediction of the Japan Meteorological Agency's Meso-scale model Grid Point Value (MSM-GPV) and obtained dike-break times for all flooded locations for validation. The results showed that this method was accurate in predicting floods at 130 locations, approximately 91.6% of the total of 142 flooded locations, with a lead time of approximately 32.75 h. In terms of precision, these successfully predicted locations accounted for 24.0% of the total of 542 locations under a flood warning, and on average, the predicted flood time was approximately 8.53 h earlier than a given dike-break time. More warnings were issued for major rivers with severe flooding, indicating that the system is sensitive to extreme flood events and can issue warnings for rivers subject to high risk of flooding. Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting people and property. Although many techniques are used to forecast floods, sufficient validation of the use of a forecast system for operational alert purposes is lacking. In this study, we validated the flooding locations and times of dike breaking that had occurred during Typhoon Hagibis, which caused severe flooding in Japan in 2019. To achieve the goal of the study, we combined a hydrodynamic model with statistical analysis under forcing by a 39-h prediction of the Japan Meteorological Agency's Meso-scale model Grid Point Value (MSM-GPV) and obtained dike-break times for all flooded locations for validation. The results showed that this method was accurate in predicting floods at 130 locations, approximately 91.6% of the total of 142 flooded locations, with a lead time of approximately 32.75 h. In terms of precision, these successfully predicted locations accounted for 24.0% of the total of 542 locations under a flood warning, and on average, the predicted flood time was approximately 8.53 h earlier than a given dike-break time. More warnings were issued for major rivers with severe flooding, indicating that the system is sensitive to extreme flood events and can issue warnings for rivers subject to high risk of flooding. Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting people and property. Although many techniques are used to forecast floods, sufficient validation of the use of a forecast system for operational alert purposes is lacking. In this study, we validated the flooding locations and times of dike breaking that had occurred during Typhoon Hagibis, which caused severe flooding in Japan in 2019. To achieve the goal of the study, we combined a hydrodynamic model with statistical analysis under forcing by a 39-h prediction of the Japan Meteorological Agency's Meso-scale model Grid Point Value (MSM-GPV) and obtained dike-break times for all flooded locations for validation. The results showed that this method was accurate in predicting floods at 130 locations, approximately 91.6% of the total of 142 flooded locations, with a lead time of approximately 32.75 h. In terms of precision, these successfully predicted locations accounted for 24.0% of the total of 542 locations under a flood warning, and on average, the predicted flood time was approximately 8.53 h earlier than a given dike-break time. More warnings were issued for major rivers with severe flooding, indicating that the system is sensitive to extreme flood events and can issue warnings for rivers subject to high risk of flooding.Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting people and property. Although many techniques are used to forecast floods, sufficient validation of the use of a forecast system for operational alert purposes is lacking. In this study, we validated the flooding locations and times of dike breaking that had occurred during Typhoon Hagibis, which caused severe flooding in Japan in 2019. To achieve the goal of the study, we combined a hydrodynamic model with statistical analysis under forcing by a 39-h prediction of the Japan Meteorological Agency's Meso-scale model Grid Point Value (MSM-GPV) and obtained dike-break times for all flooded locations for validation. The results showed that this method was accurate in predicting floods at 130 locations, approximately 91.6% of the total of 142 flooded locations, with a lead time of approximately 32.75 h. In terms of precision, these successfully predicted locations accounted for 24.0% of the total of 542 locations under a flood warning, and on average, the predicted flood time was approximately 8.53 h earlier than a given dike-break time. More warnings were issued for major rivers with severe flooding, indicating that the system is sensitive to extreme flood events and can issue warnings for rivers subject to high risk of flooding. Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting people and property. Although many techniques are used to forecast floods, sufficient validation of the use of a forecast system for operational alert purposes is lacking. In this study, we validated the flooding locations and times of dike breaking that had occurred during Typhoon Hagibis, which caused severe flooding in Japan in 2019. To achieve the goal of the study, we combined a hydrodynamic model with statistical analysis under forcing by a 39-h prediction of the Japan Meteorological Agency's Meso-scale model Grid Point Value (MSM-GPV) and obtained dike-break times for all flooded locations for validation. The results showed that this method was accurate in predicting floods at 130 locations, approximately 91.6% of the total of 142 flooded locations, with a lead time of approximately 32.75 h. In terms of precision, these successfully predicted locations accounted for 24.0% of the total of 542 locations under a flood warning, and on average, the predicted flood time was approximately 8.53 h earlier than a given dike-break time. More warnings were issued for major rivers with severe flooding, indicating that the system is sensitive to extreme flood events and can issue warnings for rivers subject to high risk of flooding. |
ArticleNumber | 10213 |
Author | Ma, Wenchao Ishitsuka, Yuta Yoshimura, Kei Yamazaki, Dai Oki, Riko Kachi, Misako Takeshima, Akira Yamamoto, Kosuke Hibino, Kenshi Oki, Taikan |
Author_xml | – sequence: 1 givenname: Wenchao surname: Ma fullname: Ma, Wenchao email: wma@iis.u-tokyo.ac.jp organization: IIS, The University of Tokyo – sequence: 2 givenname: Yuta surname: Ishitsuka fullname: Ishitsuka, Yuta organization: University of Massachusetts – sequence: 3 givenname: Akira surname: Takeshima fullname: Takeshima, Akira organization: IIS, The University of Tokyo – sequence: 4 givenname: Kenshi surname: Hibino fullname: Hibino, Kenshi organization: IIS, The University of Tokyo – sequence: 5 givenname: Dai surname: Yamazaki fullname: Yamazaki, Dai organization: IIS, The University of Tokyo – sequence: 6 givenname: Kosuke surname: Yamamoto fullname: Yamamoto, Kosuke organization: Japan Aerospace Exploration Agency (JAXA) – sequence: 7 givenname: Misako surname: Kachi fullname: Kachi, Misako organization: Japan Aerospace Exploration Agency (JAXA) – sequence: 8 givenname: Riko surname: Oki fullname: Oki, Riko organization: Japan Aerospace Exploration Agency (JAXA) – sequence: 9 givenname: Taikan surname: Oki fullname: Oki, Taikan organization: United Nations University, Graduate School of Engineering, The University of Tokyo – sequence: 10 givenname: Kei surname: Yoshimura fullname: Yoshimura, Kei email: kei@iis.u-tokyo.ac.jp organization: IIS, The University of Tokyo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33986352$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1to_4MJM4sbNKFxgBjYmTaO2SZNu6powfEx5mQcjzNO8fy_vvVrbLsoGcjnn3AP3vEVHMUWH0HuCPxNMxZfCCJeixUBaITlAK16hE8CMt0ABjh6dj9FZKStcFwfJiHyDjimVoqMcTtDN-TxPweghTGHZNsk3uol6CSn-CdY1fkrJNj5lZ3RZQhybsi2LW-9Kze12vkspNpd6DEMoDWAi36HXXk_Fnd3vp-jn92-3F5ft9c2Pq4vz69Z0HC9tB1xKiq0hFIO0xhBCmGdeg3eD6yzFuvPOSkyMGzoDsnOeWk7FwGEYDKOn6Oqga5NeqTmHtc5blXRQ-0LKo9J5CWZySrDeip6CkL1knDhZLVDpe2CDprJ3VevrQWveDGtnjYtL1tMT0ac3MdypMf1WghDJYGfm071ATr82rixqHYpx06SjS5uigIMgvegxr9CPz6CrtMmxftUO1bG-eiMV9eGxowcr_-ZWAXAAmJxKyc4_QAhWu3yoQz5UzYfa50OJShLPSCYs-1nXV4XpZSo9UEvtE0eX_9t-gfUXqufNtg |
CitedBy_id | crossref_primary_10_3390_su15064909 crossref_primary_10_2208_jscejhe_78_1_7 crossref_primary_10_2208_jscejhe_78_2_I_565 crossref_primary_10_5363_tits_27_1_12 crossref_primary_10_1029_2023JD038903 crossref_primary_10_2208_jscejj_24_16051 crossref_primary_10_3390_w16182577 crossref_primary_10_3178_hrl_24_00022 crossref_primary_10_1080_19475705_2022_2162443 crossref_primary_10_3390_w15061199 crossref_primary_10_1029_2021MS002944 crossref_primary_10_1007_s10236_023_01551_1 crossref_primary_10_1016_j_pdisas_2023_100310 crossref_primary_10_2208_jscejhe_77_2_I_295 crossref_primary_10_3178_jjshwr_35_104 |
Cites_doi | 10.1038/s41467-020-15734-7 10.1016/j.pce.2011.07.037 10.1016/j.jhydrol.2004.03.042 10.5194/nhess-2019-393 10.5194/hess-22-1957-2018 10.5194/hess-13-141-2009 10.1016/0022-1694(92)90002-D 10.1080/02626667.2015.1027710 10.1016/j.dsr.2017.12.007 10.1002/met.1649 10.1016/j.jenvrad.2012.02.006 10.1175/BAMS-D-12-00081.1 10.1016/j.atmosenv.2009.08.022 10.1029/2010WR009726 10.1007/s13369-017-2507-1 10.1016/j.envsci.2018.03.014 10.1016/j.solener.2012.10.007 10.1016/S0022-1694(96)03223-4 10.1016/j.apcbee.2012.03.059 10.1126/science.1112121 10.1186/s40645-017-0122-0 10.1175/2011JHM1324.1 10.1017/S0376892997000088 10.1002/2017GL072874 10.1080/13658810802549154 10.5194/hess-17-1161-2013 10.1016/S0309-1708(02)00056-8 10.1002/tee.21788 10.2151/jmsj1965.77.1B_235 10.1016/S0022-1694(03)00241-5 10.1061/(ASCE)1084-0699(2007)12:5(482) 10.3178/hrl.2.22 10.1038/nclimate1911 10.1038/srep36584 10.1016/j.jhydrol.2010.03.027 10.1002/wat2.1137 10.1038/srep36021 10.1038/nclimate2893 10.1016/j.atmosres.2014.02.015 10.1002/2013WR014710 10.1002/eej.22338 10.1080/01431161.2010.483489 10.1109/PVSC.2011.6186427 10.1016/S0921-8181(03)00030-4 10.1007/s10584-013-0948-4 10.1029/1999WR900330 10.4186/ej.2018.22.3.257 10.1256/qj.03.23 10.2208/prohe.51.403 10.1029/2019WR024873 10.1016/S0022-1694(00)00354-1 10.3390/jmse7110413 10.1175/MWR3120.1 10.21203/rs.3.rs-40714/v1 10.1007/978-94-017-1431-0_7 10.1016/B978-0-12-801884-2.09999-0 10.1109/ISUMA.1993.366750 10.1155/2015/379361 10.1038/s41467-018-04253-1 10.1214/aoms/1177731747 10.1029/2003JD003517 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-89522-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_847d87328979451e9c6539f724ba397e PMC8119424 33986352 10_1038_s41598_021_89522_8 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c650t-6259930dc13029dcc1114f4fa2febe6d30a6fed901ceb6c296ef3d538b52bbc43 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:19:18 EDT 2025 Thu Aug 21 14:11:09 EDT 2025 Thu Jul 10 22:48:19 EDT 2025 Sat Aug 23 14:03:50 EDT 2025 Thu Apr 03 07:05:42 EDT 2025 Tue Jul 01 03:48:24 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Fri Feb 21 02:39:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c650t-6259930dc13029dcc1114f4fa2febe6d30a6fed901ceb6c296ef3d538b52bbc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2526476531?pq-origsite=%requestingapplication% |
PMID | 33986352 |
PQID | 2526476531 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_847d87328979451e9c6539f724ba397e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8119424 proquest_miscellaneous_2528178705 proquest_journals_2526476531 pubmed_primary_33986352 crossref_primary_10_1038_s41598_021_89522_8 crossref_citationtrail_10_1038_s41598_021_89522_8 springer_journals_10_1038_s41598_021_89522_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-13 |
PublicationDateYYYYMMDD | 2021-05-13 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Bartholmes, Thielen, Ramos, Gentilini (CR12) 2009; 13 Haktanir (CR23) 1992; 136 Akatsuka, Susaki, Takagi (CR43) 2018; 257 Demargne (CR13) 2014; 95 Fielding, Bell (CR67) 1997; 24 Yamazaki (CR22) 2019; 55 Ohtake (CR50) 2013; 98 Biondi, Freni, Iacobellis, Mascaro, Montanari (CR17) 2012; 42–44 Ishitsuka (CR19) 2016 Tanoue, Hirabayashi, Ikeuchi (CR38) 2016; 6 Chang (CR2) 2020 Alfieri (CR15) 2013; 17 Rasmussen, Gautam (CR25) 2003; 280 Haddeland (CR57) 2011; 12 Chaibandit, Konyai (CR62) 2012; 1 Tada, Uchiyama, Masunaga (CR45) 2018; I CR3 CR5 Takemi, Unuma (CR4) 2020; 16 CR7 Yamazaki, Kanae, Kim, Oki (CR30) 2011; 47 Mills (CR34) 2005; 309 CR47 Yamazaki (CR21) 2017; 44 CR44 CR41 CR40 Wang (CR59) 1997; 194 Golding (CR65) 2000; 239 Yilmaz, Adler, Tian, Hong, Pierce (CR11) 2010; 31 Endo, Kitoh, Mizuta, Ishii (CR37) 2017; 13 Suzuki, Goto, Terazono, Wakao, Oozeki (CR48) 2013; 182 Winsemius (CR36) 2016; 6 Wu (CR10) 2014; 50 Onen, Bagatur (CR24) 2017; 42 Metin (CR33) 2019 Ishitsuka (CR31) 2018 van der Knijff, Younis, de Roo (CR8) 2010; 24 Yoshimura, Sakimura, Oki, Kanae, Seto (CR26) 2008; 2 Alfieri (CR9) 2018; 84 Shimadera (CR53) 2009; 43 Griffis, Stedinger (CR63) 2007; 12 CR18 Yoshikane, Yoshimura, Chang, Saya, Oki (CR42) 2016; 6 CR16 CR58 Martins (CR60) 2000; 36 Butts, Payne, Kristensen, Madsen (CR56) 2004; 298 Yoshimura, Okazawa, Kim, Seto, Koiwa, Oki (CR20) 2007; 51 Goto, Suzuki, Shimoo, Hayashi, Wakao (CR49) 2011 Hirabayashi (CR1) 2013; 3 Emerton (CR6) 2016; 3 Katz, Parlange, Naveau (CR27) 2002; 25 Tsurushima, Sakaida, Honma (CR52) 2017 Takata, Emori, Watanabe (CR29) 2003; 38 Bates, Horritt, Fewtrell (CR39) 2010; 387 Bhomia, Jaiswal, Kishtawal (CR32) 2017; 24 Ishida (CR51) 2014; 143 CR28 Donnelly, Andersson, Arheimer (CR14) 2016; 61 CR66 Oki, Nishimura, Dirmeyer (CR55) 1999; II CR61 Jha, Shrestha, Stadnyk, Coulibaly (CR68) 2018; 22 Arnell, Lloyd-Hughes (CR35) 2014; 122 Kitajima, Member (CR46) 2013; 33 Katata, Ota, Terada, Chino, Nagai (CR54) 2012; 109 Atger (CR64) 2004; 130 C Donnelly (89522_CR14) 2016; 61 L Alfieri (89522_CR15) 2013; 17 S Akatsuka (89522_CR43) 2018; 257 89522_CR58 89522_CR16 D Yamazaki (89522_CR30) 2011; 47 QJ Wang (89522_CR59) 1997; 194 T Yoshikane (89522_CR42) 2016; 6 M Tanoue (89522_CR38) 2016; 6 AD Metin (89522_CR33) 2019 E Mills (89522_CR34) 2005; 309 Y Ishitsuka (89522_CR31) 2018 D Yamazaki (89522_CR21) 2017; 44 Y Ishitsuka (89522_CR19) 2016 89522_CR61 T Kitajima (89522_CR46) 2013; 33 JC Bartholmes (89522_CR12) 2009; 13 T Haktanir (89522_CR23) 1992; 136 H Endo (89522_CR37) 2017; 13 89522_CR66 H Tada (89522_CR45) 2018; I D Biondi (89522_CR17) 2012; 42–44 L Alfieri (89522_CR9) 2018; 84 89522_CR18 T Suzuki (89522_CR48) 2013; 182 H Shimadera (89522_CR53) 2009; 43 H Ohtake (89522_CR50) 2013; 98 T Oki (89522_CR55) 1999; II K Yoshimura (89522_CR20) 2007; 51 RW Katz (89522_CR27) 2002; 25 D Tsurushima (89522_CR52) 2017 L Chang (89522_CR2) 2020 D Yamazaki (89522_CR22) 2019; 55 H Wu (89522_CR10) 2014; 50 Y Goto (89522_CR49) 2011 G Katata (89522_CR54) 2012; 109 HC Winsemius (89522_CR36) 2016; 6 J Demargne (89522_CR13) 2014; 95 PF Rasmussen (89522_CR25) 2003; 280 89522_CR28 K Chaibandit (89522_CR62) 2012; 1 RE Emerton (89522_CR6) 2016; 3 H Ishida (89522_CR51) 2014; 143 AH Fielding (89522_CR67) 1997; 24 SK Jha (89522_CR68) 2018; 22 I Haddeland (89522_CR57) 2011; 12 MB Butts (89522_CR56) 2004; 298 S Bhomia (89522_CR32) 2017; 24 89522_CR40 89522_CR41 KK Yilmaz (89522_CR11) 2010; 31 89522_CR44 F Onen (89522_CR24) 2017; 42 89522_CR47 F Atger (89522_CR64) 2004; 130 BW Golding (89522_CR65) 2000; 239 NW Arnell (89522_CR35) 2014; 122 Y Hirabayashi (89522_CR1) 2013; 3 T Takemi (89522_CR4) 2020; 16 S Martins (89522_CR60) 2000; 36 89522_CR7 VW Griffis (89522_CR63) 2007; 12 PD Bates (89522_CR39) 2010; 387 89522_CR3 K Yoshimura (89522_CR26) 2008; 2 JM van der Knijff (89522_CR8) 2010; 24 K Takata (89522_CR29) 2003; 38 89522_CR5 |
References_xml | – year: 2020 ident: CR2 article-title: flood forecasts up to two days in advance publication-title: Nat. Commun. doi: 10.1038/s41467-020-15734-7 – volume: 42–44 start-page: 70 year: 2012 end-page: 76 ident: CR17 article-title: Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2011.07.037 – volume: 298 start-page: 242 year: 2004 end-page: 266 ident: CR56 article-title: An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.03.042 – year: 2019 ident: CR33 publication-title: Nat. Hazards Earth Syst. Sci. Discuss. doi: 10.5194/nhess-2019-393 – ident: CR16 – volume: 22 start-page: 1957 year: 2018 end-page: 1969 ident: CR68 article-title: Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-1957-2018 – ident: CR61 – volume: 13 start-page: 141 year: 2009 end-page: 153 ident: CR12 article-title: The european flood alert system EFAS ĝ€" Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-141-2009 – year: 2018 ident: CR31 publication-title: Toward a seamless application of global flood forecasting: a development and validation of global and regional prediction systems – ident: CR58 – volume: 136 start-page: 1 year: 1992 end-page: 31 ident: CR23 article-title: Comparison of various flood frequency distributions using annual flood peaks data of rivers in Anatolia publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90002-D – volume: 61 start-page: 255 year: 2016 end-page: 273 ident: CR14 article-title: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2015.1027710 – volume: I start-page: 80 issue: 132 year: 2018 end-page: 93 ident: CR45 article-title: Deep-Sea Research Part I Impacts of two super typhoons on the Kuroshio and marginal seas on the Paci fi c coast of Japan publication-title: Deep. Res. Part doi: 10.1016/j.dsr.2017.12.007 – volume: 24 start-page: 503 year: 2017 end-page: 511 ident: CR32 article-title: Accuracy assessment of rainfall prediction by global models during the landfall of tropical cyclones in the North Indian Ocean publication-title: Meteorol. Appl. doi: 10.1002/met.1649 – volume: 109 start-page: 103 year: 2012 end-page: 113 ident: CR54 article-title: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I : Source term estimation and local-scale atmospheric dispersion in early phase of the accident publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2012.02.006 – volume: 95 start-page: 79 year: 2014 end-page: 98 ident: CR13 article-title: The science of NOAA’s operational hydrologic ensemble forecast service publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-12-00081.1 – volume: 43 start-page: 5894 year: 2009 end-page: 5907 ident: CR53 article-title: Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.08.022 – volume: 47 start-page: 1 year: 2011 end-page: 21 ident: CR30 article-title: A physically based description of floodplain inundation dynamics in a global river routing model publication-title: Water Resour. Res. doi: 10.1029/2010WR009726 – volume: 42 start-page: 3895 year: 2017 end-page: 3906 ident: CR24 article-title: Prediction of flood frequency factor for gumbel distribution using regression and GEP model publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-017-2507-1 – ident: CR5 – volume: 84 start-page: 149 year: 2018 end-page: 158 ident: CR9 article-title: A global network for operational flood risk reduction publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2018.03.014 – volume: 98 start-page: 138 year: 2013 end-page: 152 ident: CR50 article-title: Accuracy of the solar irradiance forecasts of the Japan Meteorological Agency mesoscale model for the Kanto region Japan publication-title: Sol. Energy doi: 10.1016/j.solener.2012.10.007 – volume: 194 start-page: 95 year: 1997 end-page: 106 ident: CR59 article-title: Using higher probability weighted moments for flood frequency analysis publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03223-4 – volume: 1 start-page: 356 year: 2012 end-page: 362 ident: CR62 article-title: Using Statistics in Hydrology for Analyzing the Discharge of Yom River publication-title: APCBEE Proc. doi: 10.1016/j.apcbee.2012.03.059 – volume: 309 start-page: 1040 year: 2005 end-page: 1044 ident: CR34 article-title: Insurance in a climate of change publication-title: Science doi: 10.1126/science.1112121 – ident: CR18 – ident: CR66 – ident: CR47 – year: 2017 ident: CR52 article-title: Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan publication-title: Prog. Earth Planetary Sci. doi: 10.1186/s40645-017-0122-0 – volume: 12 start-page: 869 year: 2011 end-page: 884 ident: CR57 article-title: Multimodel estimate of the global terrestrial water balance: setup and first results publication-title: J. Hydrometeorol. doi: 10.1175/2011JHM1324.1 – volume: 24 start-page: 38 year: 1997 end-page: 49 ident: CR67 article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models publication-title: Environ. Conserv. doi: 10.1017/S0376892997000088 – volume: 44 start-page: 5844 year: 2017 end-page: 5853 ident: CR21 article-title: A high-accuracy map of global terrain elevations publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072874 – volume: 24 start-page: 189 year: 2010 end-page: 212 ident: CR8 article-title: LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810802549154 – volume: 17 start-page: 1161 year: 2013 end-page: 1175 ident: CR15 article-title: GloFAS-global ensemble streamflow forecasting and flood early warning publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-1161-2013 – volume: 25 start-page: 1287 year: 2002 end-page: 1304 ident: CR27 article-title: Statistics of extremes in hydrology publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(02)00056-8 – year: 2016 ident: CR19 publication-title: Building an ensemble flood prediction system in Japan using numerical weather prediction datasets – volume: 33 start-page: 39 year: 2013 ident: CR46 article-title: Study on output prediction system of wind power generation using complex-valued neural network with multipoint GPV data publication-title: IEEJ. Trans. Electr. Electron. Eng. doi: 10.1002/tee.21788 – volume: II start-page: 235 issue: 77 year: 1999 end-page: 255 ident: CR55 article-title: Assessment of Annual Runoff from Land Surface Models Using Total Runoff Integrating Pathways (TRIP) publication-title: J. Meteorol. Soc. Japan. Ser. doi: 10.2151/jmsj1965.77.1B_235 – volume: 280 start-page: 265 year: 2003 end-page: 271 ident: CR25 article-title: Alternative PWM-estimators of the gumbel distribution publication-title: J. Hydrol. doi: 10.1016/S0022-1694(03)00241-5 – volume: 12 start-page: 482 year: 2007 end-page: 491 ident: CR63 article-title: Log-pearson type 3 distribution and its application in flood frequency analysis. I: Distribution characteristics publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2007)12:5(482) – volume: 2 start-page: 22 year: 2008 end-page: 26 ident: CR26 article-title: Toward flood risk prediction: a statistical approach using a 29-year river discharge simulation over Japan publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.2.22 – volume: 3 start-page: 816 year: 2013 end-page: 821 ident: CR1 article-title: Global flood risk under climate change publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1911 – volume: 6 start-page: 1 year: 2016 end-page: 7 ident: CR42 article-title: Long-distance transport of radioactive plume by nocturnal local winds publication-title: Sci. Rep. doi: 10.1038/srep36584 – ident: CR40 – volume: 387 start-page: 33 year: 2010 end-page: 45 ident: CR39 article-title: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.03.027 – volume: 3 start-page: 391 year: 2016 end-page: 418 ident: CR6 article-title: Continental and global scale flood forecasting systems publication-title: Wiley Interdiscip. Rev. Water doi: 10.1002/wat2.1137 – volume: 6 start-page: 1 year: 2016 end-page: 9 ident: CR38 article-title: Global-scale river flood vulnerability in the last 50 years publication-title: Sci. Rep. doi: 10.1038/srep36021 – ident: CR44 – volume: 6 start-page: 381 year: 2016 end-page: 385 ident: CR36 article-title: Global drivers of future river flood risk publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2893 – volume: 13 start-page: 7 year: 2017 end-page: 12 ident: CR37 article-title: Future changes in precipitation extremes in East Asia and their uncertainty based on large ensemble simulations with a high-resolution AGCM publication-title: Sci. Online Lett. Atmos. – ident: CR3 – volume: 143 start-page: 250 year: 2014 end-page: 264 ident: CR51 article-title: Scheme for detection of low clouds from geostationary weather satellite imagery publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.02.015 – volume: 50 start-page: 2693 year: 2014 end-page: 2717 ident: CR10 article-title: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model publication-title: Water Resour. Res. doi: 10.1002/2013WR014710 – volume: 182 start-page: 912 year: 2013 end-page: 919 ident: CR48 article-title: Forecasting of solar irradiance with just-in-time modeling publication-title: Electr. Eng. Jpn. doi: 10.1002/eej.22338 – volume: 16 start-page: 30 year: 2020 end-page: 36 ident: CR4 article-title: Environmental factors for the development of heavy rainfall in the eastern part of Japan during Typhoon Hagibis (2019) publication-title: Sci. Online Lett. Atmos. – volume: 31 start-page: 3763 year: 2010 end-page: 3782 ident: CR11 article-title: Evaluation of a satellite-based global flood monitoring system publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.483489 – year: 2011 ident: CR49 article-title: Operation design of PV system with storage battery by using next-day residential load forecast publication-title: Conf. Rec. IEEE Photovolt. Spec. Conf. doi: 10.1109/PVSC.2011.6186427 – volume: 38 start-page: 209 year: 2003 end-page: 222 ident: CR29 article-title: Development of the minimal advanced treatments of surface interaction and runoff publication-title: Glob. Planet. Change doi: 10.1016/S0921-8181(03)00030-4 – volume: 122 start-page: 127 year: 2014 end-page: 140 ident: CR35 article-title: The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios publication-title: Clim. Change doi: 10.1007/s10584-013-0948-4 – volume: 36 start-page: 737 year: 2000 end-page: 744 ident: CR60 article-title: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data publication-title: Water Resour. Res. doi: 10.1029/1999WR900330 – ident: CR7 – volume: 257 start-page: 268 year: 2018 ident: CR43 article-title: Estimation of precipitable water using numerical prediction data publication-title: Eng J doi: 10.4186/ej.2018.22.3.257 – ident: CR28 – ident: CR41 – volume: 130 start-page: 627 year: 2004 end-page: 646 ident: CR64 article-title: Estimation of the reliability of ensemble-based probabilistic forecasts publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.03.23 – volume: 51 start-page: 403 year: 2007 end-page: 408 ident: CR20 article-title: Development and verification of a predicting system of river discharge of Japan using JMA-MSM-GPV publication-title: Proc. Hydraul. Eng. doi: 10.2208/prohe.51.403 – volume: 55 start-page: 5053 year: 2019 end-page: 5073 ident: CR22 article-title: MERIT hydro: a high-resolution global hydrography map based on latest topography dataset publication-title: Water Resour. Res. doi: 10.1029/2019WR024873 – volume: 239 start-page: 286 year: 2000 end-page: 305 ident: CR65 article-title: Quantitative precipitation forecasting in the UK publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00354-1 – ident: 89522_CR18 – volume: 239 start-page: 286 year: 2000 ident: 89522_CR65 publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00354-1 – volume: 24 start-page: 38 year: 1997 ident: 89522_CR67 publication-title: Environ. Conserv. doi: 10.1017/S0376892997000088 – ident: 89522_CR47 doi: 10.3390/jmse7110413 – volume: II start-page: 235 issue: 77 year: 1999 ident: 89522_CR55 publication-title: J. Meteorol. Soc. Japan. Ser. doi: 10.2151/jmsj1965.77.1B_235 – volume: 25 start-page: 1287 year: 2002 ident: 89522_CR27 publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(02)00056-8 – volume: 98 start-page: 138 year: 2013 ident: 89522_CR50 publication-title: Sol. Energy doi: 10.1016/j.solener.2012.10.007 – volume: 16 start-page: 30 year: 2020 ident: 89522_CR4 publication-title: Sci. Online Lett. Atmos. – volume: 194 start-page: 95 year: 1997 ident: 89522_CR59 publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03223-4 – volume: 43 start-page: 5894 year: 2009 ident: 89522_CR53 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.08.022 – ident: 89522_CR41 doi: 10.1175/MWR3120.1 – year: 2019 ident: 89522_CR33 doi: 10.5194/nhess-2019-393 – volume: 2 start-page: 22 year: 2008 ident: 89522_CR26 publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.2.22 – volume: 12 start-page: 869 year: 2011 ident: 89522_CR57 publication-title: J. Hydrometeorol. doi: 10.1175/2011JHM1324.1 – volume: 38 start-page: 209 year: 2003 ident: 89522_CR29 publication-title: Glob. Planet. Change doi: 10.1016/S0921-8181(03)00030-4 – volume: 6 start-page: 1 year: 2016 ident: 89522_CR42 publication-title: Sci. Rep. doi: 10.1038/srep36584 – volume-title: Toward a seamless application of global flood forecasting: a development and validation of global and regional prediction systems year: 2018 ident: 89522_CR31 – volume: 61 start-page: 255 year: 2016 ident: 89522_CR14 publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2015.1027710 – ident: 89522_CR5 doi: 10.21203/rs.3.rs-40714/v1 – volume: 95 start-page: 79 year: 2014 ident: 89522_CR13 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-12-00081.1 – ident: 89522_CR61 doi: 10.1007/978-94-017-1431-0_7 – volume: 13 start-page: 7 year: 2017 ident: 89522_CR37 publication-title: Sci. Online Lett. Atmos. – ident: 89522_CR7 doi: 10.1016/B978-0-12-801884-2.09999-0 – ident: 89522_CR66 doi: 10.1109/ISUMA.1993.366750 – volume: 6 start-page: 381 year: 2016 ident: 89522_CR36 publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2893 – volume: 31 start-page: 3763 year: 2010 ident: 89522_CR11 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.483489 – volume: 13 start-page: 141 year: 2009 ident: 89522_CR12 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-141-2009 – volume: 44 start-page: 5844 year: 2017 ident: 89522_CR21 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072874 – volume: 24 start-page: 189 year: 2010 ident: 89522_CR8 publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810802549154 – volume: 33 start-page: 39 year: 2013 ident: 89522_CR46 publication-title: IEEJ. Trans. Electr. Electron. Eng. doi: 10.1002/tee.21788 – volume: 42 start-page: 3895 year: 2017 ident: 89522_CR24 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-017-2507-1 – volume: 1 start-page: 356 year: 2012 ident: 89522_CR62 publication-title: APCBEE Proc. doi: 10.1016/j.apcbee.2012.03.059 – volume: 47 start-page: 1 year: 2011 ident: 89522_CR30 publication-title: Water Resour. Res. doi: 10.1029/2010WR009726 – volume: 136 start-page: 1 year: 1992 ident: 89522_CR23 publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90002-D – volume-title: Building an ensemble flood prediction system in Japan using numerical weather prediction datasets year: 2016 ident: 89522_CR19 – volume: 387 start-page: 33 year: 2010 ident: 89522_CR39 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.03.027 – volume: 12 start-page: 482 year: 2007 ident: 89522_CR63 publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2007)12:5(482) – volume: 182 start-page: 912 year: 2013 ident: 89522_CR48 publication-title: Electr. Eng. Jpn. doi: 10.1002/eej.22338 – ident: 89522_CR16 – volume: 280 start-page: 265 year: 2003 ident: 89522_CR25 publication-title: J. Hydrol. doi: 10.1016/S0022-1694(03)00241-5 – volume: 109 start-page: 103 year: 2012 ident: 89522_CR54 publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2012.02.006 – volume: 24 start-page: 503 year: 2017 ident: 89522_CR32 publication-title: Meteorol. Appl. doi: 10.1002/met.1649 – volume: 51 start-page: 403 year: 2007 ident: 89522_CR20 publication-title: Proc. Hydraul. Eng. doi: 10.2208/prohe.51.403 – ident: 89522_CR44 doi: 10.1155/2015/379361 – volume: 17 start-page: 1161 year: 2013 ident: 89522_CR15 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-1161-2013 – ident: 89522_CR3 doi: 10.1038/s41467-018-04253-1 – volume: I start-page: 80 issue: 132 year: 2018 ident: 89522_CR45 publication-title: Deep. Res. Part doi: 10.1016/j.dsr.2017.12.007 – volume: 143 start-page: 250 year: 2014 ident: 89522_CR51 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.02.015 – ident: 89522_CR40 – volume: 55 start-page: 5053 year: 2019 ident: 89522_CR22 publication-title: Water Resour. Res. doi: 10.1029/2019WR024873 – volume: 42–44 start-page: 70 year: 2012 ident: 89522_CR17 publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2011.07.037 – ident: 89522_CR28 doi: 10.1214/aoms/1177731747 – volume: 50 start-page: 2693 year: 2014 ident: 89522_CR10 publication-title: Water Resour. Res. doi: 10.1002/2013WR014710 – volume: 309 start-page: 1040 year: 2005 ident: 89522_CR34 publication-title: Science doi: 10.1126/science.1112121 – volume: 36 start-page: 737 year: 2000 ident: 89522_CR60 publication-title: Water Resour. Res. doi: 10.1029/1999WR900330 – volume: 22 start-page: 1957 year: 2018 ident: 89522_CR68 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-1957-2018 – year: 2020 ident: 89522_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15734-7 – ident: 89522_CR58 doi: 10.1029/2003JD003517 – volume: 6 start-page: 1 year: 2016 ident: 89522_CR38 publication-title: Sci. Rep. doi: 10.1038/srep36021 – volume: 257 start-page: 268 year: 2018 ident: 89522_CR43 publication-title: Eng J doi: 10.4186/ej.2018.22.3.257 – volume: 298 start-page: 242 year: 2004 ident: 89522_CR56 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.03.042 – year: 2017 ident: 89522_CR52 publication-title: Prog. Earth Planetary Sci. doi: 10.1186/s40645-017-0122-0 – volume: 3 start-page: 816 year: 2013 ident: 89522_CR1 publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1911 – volume: 3 start-page: 391 year: 2016 ident: 89522_CR6 publication-title: Wiley Interdiscip. Rev. Water doi: 10.1002/wat2.1137 – volume: 130 start-page: 627 year: 2004 ident: 89522_CR64 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.03.23 – volume: 122 start-page: 127 year: 2014 ident: 89522_CR35 publication-title: Clim. Change doi: 10.1007/s10584-013-0948-4 – volume: 84 start-page: 149 year: 2018 ident: 89522_CR9 publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2018.03.014 – year: 2011 ident: 89522_CR49 publication-title: Conf. Rec. IEEE Photovolt. Spec. Conf. doi: 10.1109/PVSC.2011.6186427 |
SSID | ssj0000529419 |
Score | 2.4191303 |
Snippet | Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for protecting... Abstract Floods can be devastating in densely populated regions along rivers, so attaining a longer forecast lead time with high accuracy is essential for... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10213 |
SubjectTerms | 704/172 704/242 704/4111 704/844 Environmental risk Flood forecasting Flooding Floods Humanities and Social Sciences Mathematical models multidisciplinary Population density Rivers Science Science (multidisciplinary) Statistical analysis Typhoons |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIrVXXthKhNw3dfO1Ljq1YHoJ6sdBbyObDFmRXfK9I__vOJPuefWrrxWs-lvDLZGayM_kNIYdwnwa153uWeVRMqd4zL7NmOQjwHlLotMYHzh8_dfMz9eFcn98q9YU5YZUeuAJ3BNozGmSUsSA5micbkEw1zwR8FmxpQu0LNu_WZaqyeguruJ1eybTSHC3AUuFrMsGZseB0MLNhiQph_9-8zD-TJX-LmBZDdPqEPJ48SHpcV75NHqRhhzysNSWvn5LPxzUkXZJer-mYqaf1j9_Py5hoxkR1Cp5qCn6BKc-0cjljE4VL6cU4DnTuv2KFIAoA211ydvr-y7s5m6omMECmXTK80FjZxoAhSRtDAG2msspeZNiwLsrWdzlF8ANC6rsgbJeyjKD3ei36Pij5jGwN45BeEKp0tN4Y2_M2KSWCj9rMQmy1BgihoyF8haALE6U4Vrb45kpoWxpXUXeAuiuoO5jzZj3neyXUuHf0CW7MeiSSYZcGEBE3iYj7l4g0ZH-1rW46oQsnNLiCMxjIG_J63Q1nCwMmfkjjVRljOGo03ZDnVQrWK5HSGnDWRENmG_KxsdTNnuHyovB3G86tEqohb1eS9GtZd0Px8n9AsUceCTwCSD8r98nW8sdVOgCvatm_KgfoBho7GeE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxUxEA5aEXwR726tEsE3Dd3NZTd5kiqWg6C-WDhvIZtLWyi7tecU6b_vTDZny_HS100C2cmXmUlm8g0h7-A8DWrP9Sw1QTIpe8ecSIolz8F7iL5VCh84f_veLo7k16Valgu3VUmr3OjErKjD6PGOfJ8rMN1dC5D5eP6LYdUojK6WEhp3yT2kLkNUd8tuvmPBKJZsTHkrUwu9vwJ7hW_KeMO0AdeD6S17lGn7_-Vr_p0y-UfcNJujw0fkYfEj6cG08I_JnTg8IfenypJXT8mPgykwnVNfr-iYqKPTvd_v0xBpwnR1Cv5q9G6Fic90YnTGTxSOpifjONCFO8Y6QRTEbJ6Ro8MvPz8vWKmdwEC89ZrhscaIOngMTJrgPeg0mWRyPMGytUHUrk0xgDfgY996btqYRADt1yve916K52RnGIf4klCpgnFam76po5Tcu6B050OtFIgQGirSbCRofSEWx_oWZzYHuIW2k9QtSN1mqVsY834ecz7Ratza-xMuzNwTKbHzh_Hi2JYdZsHMBo3UQwZUjGqi8ci6mzoO-AOnK1Zkb7OstuzTlb1BVUXezs2wwzBs4oY4XuY-ukG9piryYkLBPBMhjAaXjVek28LH1lS3W4bTk8zirQGxksuKfNgg6WZa_xfF7u1_8Yo84AhupJcVe2RnfXEZX4PXtO7f5K1xDR2WEtc priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61RfBFvLtaJYJvGtzc9iSPR7EcDqgPWuhbyObSFsqu9Jwi_ffOZC9ytAq-JhMIk8nkS2bmCyGv4T4Nbs-3LPOomFKtZ15mzXIQgB5SaLTGAudPn5vVsVqf6JM9IqZamJK0Xygti5uessPebeCgwWIwwZmxgBmYuUUOkKodbPtguVx_Xc8vKxi7UtyOFTK1NDcM3jmFCln_TQjzz0TJ36Kl5RA6ukfujuiRLof53id7qXtAbg__SV4_JF-WQzi6JLxe0z5TT4fXvh_nMdGMSeoUUGoKfoPpznTgccYmChfSs77v6Mqf4u9AFJRrH5Hjo4_fPqzY-GMCA6XWW4aXGSvrGDAcaWMI4MlUVtmLDIvVRFn7JqcIGCCktgnCNinLCD6v1aJtg5KPyX7Xd-kpoUpH642xLa-TUiL4qM0ixFprUCF0VIRPGnRhpBPHXy0uXAlrS-MGrTvQuitadzDmzTzm-0Cm8U_p97gwsyQSYZeG_vLUjYbh4HCNBgmHLDgWzZMNyLWbFwKsDqBWqsjhtKxu3J0bJzTAwAUI8oq8mrthX2GwxHepvyoyhqM30xV5MljBPBMprQGgJiqy2LGPnanu9nTnZ4W723BulVAVeTtZ0q9p_V0Vz_5P_Dm5I9DYkWRWHpL97eVVegHYadu-HDfLTwU3EhQ priority: 102 providerName: Springer Nature |
Title | Applicability of a nationwide flood forecasting system for Typhoon Hagibis 2019 |
URI | https://link.springer.com/article/10.1038/s41598-021-89522-8 https://www.ncbi.nlm.nih.gov/pubmed/33986352 https://www.proquest.com/docview/2526476531 https://www.proquest.com/docview/2528178705 https://pubmed.ncbi.nlm.nih.gov/PMC8119424 https://doaj.org/article/847d87328979451e9c6539f724ba397e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9ID5HYFRG4g0CiWMn9gNCXbWpqrSBgEp9ixx_bJOmBNpO0P-es5MUCh1PkfwhWb7z3c853-8AXuF9Gs2eqmKXGhYzVqlYZY7HTlNED1bnnPsE57PzfDxlkxmf7UBf7qjbwMXWq52vJzWdX7_9-X31AQ_8-zZlXLxboBPyiWI0jYVEPBGLXdhHz1T4igZnHdxvub6pZKnscme2Tz2Au1kmRR5Skf5wVYHRfxsM_fc15V8h1eCpTu_DvQ5ikmGrEw9gx9YP4U5bdHL1CD4O25h1eBW7Io0jirS_BH9cGUucf8lOEMparRb-TTRpyZ59E8Fb62XT1GSsLnwJIYISkI9henrydTSOu7IKMe58soz9jUdmidE-ZimN1mjumGNOUYcSzU2WqNxZg0BB2yrXVObWZQYNY8VpVWmWPYG9uqntUyCMG6mEkFWaWMaoVoaLQpuEc9xN7Igg7Xew1B3nuC99cV2G2HcmylYAJQqgDAIocc7r9ZxvLePGf0cfe8GsR3q27NDQzC_K7vCV6IGN8KxEEq0PT63UnpDXFRRVE_GYjeCoF2vZa2BJOWLFAgemEbxcd-Ph8xEVVdvmJowRqTd5PILDVgvWK-m1KIJiQz82lrrZU19dBoJvkaaSURbBm16Tfi_r9q14dusSnsMB9SruSWezI9hbzm_sC8RSy2oAu8WsGMD-cDj5MsHv8cn5p8_YOspHg_B_YhCO0C_WwxvP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELZKEYILYi2BAkaCE0RNvCT2AaGyVK904dJK72YcL20llJS-V1XvT_EbmclWPZbeeo2dxB7P8tkzniHkNeynQe3ZKo25F6kQlU0tjzKNjgF6CK6QEi847-0Xk0PxdSqnK-TXcBcGwyoHndgqat84PCPfYBJMd1kAy3w4_Zli1Sj0rg4lNDq22AmLC9iyzd5vf4b1fcPY1peDT5O0ryqQwo-zeYqAX_PMO3TZae8cSLuIIloWYUKF55ktYvBgJ12oCsd0ESL3oBcqyarKCQ7fvUFuguHNcLNXTsvxTAe9ZiLX_d2cjKuNGdhHvMPG8lRpgDqpWrJ_bZmAf2Hbv0M0__DTtuZv6x652-NWutkx2n2yEuoH5FZXyXLxkHzb7BzhbajtgjaRWtqdM16c-EAjhsdTwMfB2RkGWtMugzQ-orAVPm6amk7sEdYlorCs-hE5vBaqPiardVOHJ4QK6bVVSld5FoRgznqpSuczKYGE0JCQfKCgcX0ic6yn8cO0DnWuTEd1A1Q3LdUNvPN2fOe0S-NxZe-PuDBjT0zB3T5ozo5ML9EGzLpXmOpIg0qTedAOs_zGkgG_A8gLCVkfltX0emFmLrk4Ia_GZpBodNPYOjTnbR-Vox6VCVnruGAcCedaAURkCSmX-GNpqMst9clxmzVc5bkWTCTk3cBJl8P6PymeXj2Ll-T25GBv1-xu7-88I3cYMjqmtuXrZHV-dh6eA2KbVy9aMaHk-3XL5W-U_VDU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8IG4CBYwETxBt4thZ-wGhlnbVUlgqRKW-uYmPthJKSnerav8av46ZHFstR9_66iNyxnN89oxnAF7jeRrVXlHGIXUiFqIs4iILMg6WI3rwNpeSHjh_meTb--LTgTxYgV_9WxgKq-x1YqOoXW3pjnzIJZruUY4sMwxdWMTe5vjD6c-YKkiRp7Uvp9GyyK6fX-Dxbfp-ZxP3-g3n463vH7fjrsJAjItIZjGBf50lzpL7TjtrUfJFEKHgAX8ud1lS5ME7tJnWl7nlOvchc6gjSsnL0ooMv3sDVkd0KhrA6sbWZO_b4oaHfGgi1d1LnSRTwylaS3rRxtNYaQQ-sVqyhk3RgH8h3b8DNv_w2jbGcHwX7nQolq23bHcPVnx1H262dS3nD-DreusWbwJv56wOrGDtrePFifMsULA8Q7TsbTGlsGvW5pOmJoYH4-O6rth2cURVihhusn4I-9dC10cwqOrKPwEmpNOFUrpMEy8Et4WTamRdIiWSEDsiSHsKGtulNafqGj9M417PlGmpbpDqpqG6wTlvF3NO26QeV47eoI1ZjKSE3E1DfXZkOvk2aOSdosRHGhWcTL22lPM3jDhyP0I-H8Fav62m0xJTc8nTEbxadKN8k9OmqHx93oxRKWlVGcHjlgsWK8kyrRAw8ghGS_yxtNTlnurkuMkhrtJUCy4ieNdz0uWy_k-Kp1f_xUu4hTJpPu9Mdp_BbU58TnluszUYzM7O_XOEb7PyRScnDA6vWzR_AynEVm8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applicability+of+a+nationwide+flood+forecasting+system+for+Typhoon+Hagibis+2019&rft.jtitle=Scientific+reports&rft.au=Ma%2C+Wenchao&rft.au=Ishitsuka%2C+Yuta&rft.au=Takeshima%2C+Akira&rft.au=Hibino%2C+Kenshi&rft.date=2021-05-13&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=10213&rft_id=info:doi/10.1038%2Fs41598-021-89522-8&rft_id=info%3Apmid%2F33986352&rft.externalDocID=33986352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |