Machine learning for data integration in human gut microbiome

Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatransc...

Full description

Saved in:
Bibliographic Details
Published inMicrobial cell factories Vol. 21; no. 1; pp. 1 - 16
Main Authors Li, Peishun, Luo, Hao, Ji, Boyang, Nielsen, Jens
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 23.11.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine.
AbstractList Abstract Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine.
Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine.
Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine. Keywords: Gut microbiome, Data integration, Machine learning, Precision medicine, Multi-omics
Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine.Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine.
ArticleNumber 241
Audience Academic
Author Nielsen, Jens
Ji, Boyang
Luo, Hao
Li, Peishun
Author_xml – sequence: 1
  givenname: Peishun
  surname: Li
  fullname: Li, Peishun
– sequence: 2
  givenname: Hao
  surname: Luo
  fullname: Luo, Hao
– sequence: 3
  givenname: Boyang
  surname: Ji
  fullname: Ji, Boyang
– sequence: 4
  givenname: Jens
  surname: Nielsen
  fullname: Nielsen, Jens
BackLink https://research.chalmers.se/publication/533431$$DView record from Swedish Publication Index
BookMark eNp9kktv1DAUhSNURB_wB1hFYgOLFD_jeAFSVfEYqQiJwtpy7OuMq8QudsLj3-OZKYJUCHlhyz7n89W957Q6CjFAVT3F6Bzjrn2ZMZGUNYiQBmEpaMMeVCeYCd6Qjsujv87H1WnONwhh0Qn6qDqmLcMSUXZSvfqgzdYHqEfQKfgw1C6m2upZ1z7MMCQ9-xjKud4ukw71sMz15E2KvY8TPK4eOj1meHK3n1Vf3r75fPm-ufr4bnN5cdWYlqO54YYKgnHvCMNCWuNAdK5lvOfWWQvUIiklMBCt1H1HNO0cEtT2PRVI9xrTs2pz4Nqob9Rt8pNOP1XUXu0vYhqUTrM3IyhkJROSIAE9ZthKidqOikK0DmOQprCuD6z8HW6XfkVLkEsbzFaZrR4nSFllUAY04dIZZRA4xThwJW1LlS3FSVfq6_muwtcHakFOYA2EOelxBV-_BL9VQ_ymZFvmI0QBPL8DpPh1gTyryWcD46gDxCUrIqgUDHesK9Jn96Q3cUmhDKCoOBeCtZT8UQ26tMUHF8u_ZgdVF4IIgRDpdqrzf6jKslDGXPLmfLlfGV6sDEUzw4950EvOanP9aa3tDtqSl5xT6Z7x8z5Q5RM_KozULsjqEGRVgqz2QVasWMk96-9W_sf0Cwst9D8
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109098
crossref_primary_10_3390_jcm14062040
crossref_primary_10_1053_j_gastro_2024_05_004
crossref_primary_10_1080_14737159_2024_2316756
crossref_primary_10_7717_peerj_16304
crossref_primary_10_1128_cmr_00060_22
crossref_primary_10_3390_microorganisms12091828
crossref_primary_10_7759_cureus_45738
crossref_primary_10_12998_wjcc_v12_i14_2293
crossref_primary_10_1016_j_microb_2025_100299
crossref_primary_10_1016_j_jinf_2023_07_006
crossref_primary_10_1016_j_biosystems_2024_105283
crossref_primary_10_1016_j_nutos_2023_07_001
crossref_primary_10_1021_acs_jafc_3c03834
crossref_primary_10_1186_s12866_024_03266_9
crossref_primary_10_3389_fmicb_2024_1516667
crossref_primary_10_3390_synbio3010002
crossref_primary_10_1016_j_biopha_2025_117905
crossref_primary_10_1016_j_ymben_2023_06_006
crossref_primary_10_1016_j_crbiot_2024_100211
crossref_primary_10_3389_frchs_2023_1215831
crossref_primary_10_1016_j_nutos_2024_12_009
crossref_primary_10_1080_19490976_2024_2394166
crossref_primary_10_3390_ijms25116022
crossref_primary_10_1080_19490976_2025_2452277
crossref_primary_10_3389_fcimb_2024_1397717
crossref_primary_10_1016_j_trac_2024_117872
crossref_primary_10_1002_jmri_29491
crossref_primary_10_1038_s41598_024_60427_6
crossref_primary_10_1002_advs_202400458
crossref_primary_10_3390_ijms24032458
crossref_primary_10_3390_microorganisms11102509
crossref_primary_10_1002_pmic_202400242
crossref_primary_10_1080_19490976_2023_2297815
crossref_primary_10_3389_fimmu_2024_1519498
crossref_primary_10_1016_j_bonr_2024_101809
crossref_primary_10_3389_fmicb_2024_1507537
crossref_primary_10_1007_s42452_024_06381_4
crossref_primary_10_1186_s12916_023_03095_z
crossref_primary_10_3390_foods13182937
crossref_primary_10_3389_fcimb_2024_1377012
crossref_primary_10_1016_j_csbj_2024_04_025
crossref_primary_10_1016_j_nutres_2024_09_010
crossref_primary_10_1016_j_jare_2024_03_005
crossref_primary_10_3390_diagnostics14050484
Cites_doi 10.1093/bioinformatics/bti1007
10.1038/s41586-018-0617-x
10.1016/j.nutres.2020.07.004
10.1016/j.cell.2019.05.004
10.1186/s12859-020-3453-6
10.1186/gm39
10.1038/s41591-020-1116-9
10.1038/nm.4345
10.1093/bioinformatics/bth294
10.1080/19490976.2020.1778261
10.1038/s41588-020-00763-1
10.1007/BF02478259
10.1016/j.cell.2015.11.001
10.1016/j.ebiom.2019.08.048
10.1038/s41575-018-0061-2
10.1093/bioinformatics/btl170
10.1038/s41564-018-0306-4
10.1111/joim.12892
10.1038/s41586-019-1058-x
10.1016/j.chom.2019.07.004
10.1038/s41591-018-0164-x
10.1186/s12859-015-0793-8
10.1093/bib/bbq090
10.1038/s41591-020-01183-8
10.1098/rsif.2017.0387
10.1016/j.ymben.2020.10.005
10.1038/nature16961
10.1038/nbt.2942
10.1002/jbm4.10478
10.1186/s12911-019-1004-8
10.1016/j.inffus.2018.09.012
10.1038/s41587-019-0233-9
10.1038/nmicrobiol.2017.57
10.1038/nbt.2939
10.1126/science.1124234
10.1145/2939672.2939785
10.1016/S1474-4422(19)30356-4
10.1038/s41467-019-12476-z
10.1186/1756-0381-6-23
10.1038/s41586-019-1237-9
10.1161/HYPERTENSIONAHA.120.15885
10.1038/s41467-022-29843-y
10.1038/s41467-017-01973-8
10.15252/msb.20156651
10.2337/dc20-1536
10.1007/978-0-387-88615-2_4
10.1016/j.molcel.2020.03.005
10.15252/msb.20178124
10.1016/S2213-8587(18)30051-2
10.1016/j.isci.2022.104081
10.1186/s40168-020-00821-0
10.1016/j.medmic.2020.100013
10.1126/science.1208344
10.1186/s40168-016-0222-x
10.1038/s41467-020-18127-y
10.1038/nature11450
10.1136/gut.2010.223263
10.1038/nature05414
10.1136/gutjnl-2015-309800
10.1007/BF00116251
10.1186/s12915-021-01180-4
10.1214/aos/1013203451
10.1038/nrc2294
10.1016/j.copbio.2014.11.002
10.1038/s41579-020-0433-9
10.1136/gut.2003.025403
10.1038/s41586-018-0620-2
10.1038/s41598-020-63159-5
10.1371/journal.pcbi.1010050
10.1016/j.cell.2019.01.001
10.1097/MCG.0000000000000244
10.1038/s41586-019-0965-1
10.1126/scitranslmed.aax4905
10.1109/BIBM47256.2019.8983228
10.1016/j.diabet.2016.04.009
10.1038/nature09944
10.3389/fgene.2020.620143
10.1001/jama.2017.18391
10.1093/bioinformatics/bty535
10.1371/journal.pcbi.1004977
10.3389/fgene.2018.00477
10.1038/nature09922
10.1016/j.chom.2019.05.005
10.1109/5.58325
10.1038/s41598-021-83922-6
10.1093/bioinformatics/bty1054
10.1038/s41591-019-0414-6
10.1016/j.clnu.2018.08.009
10.1038/nature25973
10.1109/TPAMI.2005.159
10.1038/nmeth1113
10.1038/4441022a
10.1126/science.1241214
10.1038/nature18646
10.1038/ncomms2266
10.1093/bioinformatics/btaa598
10.1109/JBHI.2020.2993761
10.1038/s41587-020-0603-3
10.1155/2012/895462
10.1128/mSystems.00031-18
10.1038/s41586-019-1238-8
10.1038/nrg3868
10.1038/s41591-018-0160-1
10.1016/j.synbio.2016.08.004
10.1038/nature13568
10.1002/hep4.1601
10.1038/s41467-019-13056-x
10.15252/msb.20145645
10.1023/A:1007465528199
10.4093/dmj.2015.39.4.291
10.1136/gutjnl-2019-319654
10.1023/A:1010933404324
10.1038/nature12506
10.1038/s41586-019-1923-7
10.1038/s12276-020-0459-0
10.1038/nrd2505
10.1038/s41587-020-00777-4
10.1136/gut.2005.073817
10.1101/286419
10.1186/s12859-019-2833-2
10.1016/j.cell.2018.05.015
10.1038/nature08821
10.1016/j.cmet.2016.05.005
10.1007/BF00994018
10.1038/s42255-021-00348-0
10.1128/mSystems.00188-17
10.1101/507780
10.1038/s41591-018-0128-1
10.1136/gutjnl-2018-316307
10.1186/s40364-017-0082-y
10.1172/jci.insight.140940
10.1038/nature12198
10.1161/CIRCRESAHA.118.314642
10.1186/s12859-018-2033-5
10.1109/TNNLS.2018.2790388
10.1016/j.chom.2014.08.014
10.1038/s41586-019-1236-x
10.1186/s40168-021-01199-3
10.1038/s41467-020-17180-x
10.1101/464743
10.1136/gutjnl-2017-315084
10.1038/s41598-021-85285-4
10.1093/infdis/jiy192
10.1002/hep4.1537
ContentType Journal Article
Copyright COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
The Author(s) 2022
Copyright_xml – notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
– notice: The Author(s) 2022
DBID AAYXX
CITATION
ISR
3V.
7QL
7T7
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOA
DOI 10.1186/s12934-022-01973-4
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef


Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1475-2859
EndPage 16
ExternalDocumentID oai_doaj_org_article_0d9479207eb141d990683738fdf11e9c
oai_research_chalmers_se_cea259fc_c0ef_45e5_9d63_d70a9fabab51
PMC9685977
A727700282
10_1186_s12934_022_01973_4
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: NNF15OC0016798
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SCM
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
PMFND
3V.
7QL
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ABBSD
ADTPV
AHSBF
AOWAS
C1A
D8T
EJD
F1S
H13
IPNFZ
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-c650t-5c37211bf24179dcfe78f645b5dfdde3d0999e4e769ab82a38f073dbb370aba13
IEDL.DBID M48
ISSN 1475-2859
IngestDate Wed Aug 27 01:26:48 EDT 2025
Thu Aug 21 06:34:51 EDT 2025
Thu Aug 21 18:39:29 EDT 2025
Tue Aug 05 10:09:31 EDT 2025
Fri Jul 25 09:19:01 EDT 2025
Tue Jun 17 21:49:44 EDT 2025
Tue Jun 10 20:44:57 EDT 2025
Fri Jun 27 03:54:17 EDT 2025
Tue Jul 01 02:30:26 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c650t-5c37211bf24179dcfe78f645b5dfdde3d0999e4e769ab82a38f073dbb370aba13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12934-022-01973-4
PMID 36419034
PQID 2755774632
PQPubID 42699
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_0d9479207eb141d990683738fdf11e9c
swepub_primary_oai_research_chalmers_se_cea259fc_c0ef_45e5_9d63_d70a9fabab51
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685977
proquest_miscellaneous_2739741848
proquest_journals_2755774632
gale_infotracmisc_A727700282
gale_infotracacademiconefile_A727700282
gale_incontextgauss_ISR_A727700282
crossref_citationtrail_10_1186_s12934_022_01973_4
crossref_primary_10_1186_s12934_022_01973_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-23
PublicationDateYYYYMMDD 2022-11-23
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Microbial cell factories
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References S Uddin (1973_CR98) 2019; 19
L Zhang (1973_CR112) 2018; 9
HMPRNC Integrative (1973_CR29) 2014; 16
JR Quinlan (1973_CR108) 1986; 1
SM Schussler-Fiorenza Rose (1973_CR28) 2019; 25
W Jia (1973_CR68) 2008; 7
FH Karlsson (1973_CR5) 2013; 498
H Chu (1973_CR13) 2019; 68
M Karamali (1973_CR79) 2016; 42
M Arumugam (1973_CR94) 2011; 473
R Quiroga (1973_CR38) 2020; 52
A Kurilshikov (1973_CR64) 2019; 124
J Shang (1973_CR115) 2021; 19
1973_CR83
D Fioravanti (1973_CR140) 2018; 19
AJ Johnson (1973_CR142) 2019; 25
M Deschasaux (1973_CR30) 2018; 24
CJ Stewart (1973_CR25) 2018; 562
HK Pedersen (1973_CR22) 2016; 535
Y He (1973_CR37) 2018; 24
T Wilmanski (1973_CR49) 2019; 37
C Cortes (1973_CR99) 1995; 20
Y Long (1973_CR53) 2020; 36
Z Wang (1973_CR81) 2011; 472
WY Zhou (1973_CR23) 2019; 569
1973_CR17
AW Senior (1973_CR51) 2020; 577
D Rothschild (1973_CR39) 2018; 555
H Zhong (1973_CR59) 2019; 47
A Hulot (1973_CR91) 2020; 21
Z Ren (1973_CR14) 2019; 68
L Kall (1973_CR114) 2007; 4
JA Hartigan (1973_CR90) 1979; 28
T Vatanen (1973_CR6) 2018; 562
1973_CR119
SJ Ott (1973_CR61) 2004; 53
E Le Chatelier (1973_CR8) 2013; 500
1973_CR92
1973_CR110
Z Liu (1973_CR146) 2020; 82
A Kurilshikov (1973_CR31) 2021; 53
S Yuvaraj (1973_CR82) 2012; 2012
R Clarke (1973_CR139) 2008; 8
H Wu (1973_CR36) 2017; 23
LVD Maaten (1973_CR87) 2008; 9
D Zeevi (1973_CR118) 2015; 163
J Qin (1973_CR4) 2012; 490
M Mahmud (1973_CR116) 2018; 29
EA Franzosa (1973_CR12) 2019; 4
HB Shen (1973_CR126) 2006; 22
1973_CR106
AL Beam (1973_CR43) 2018; 319
A Wahlstrom (1973_CR67) 2016; 24
1973_CR103
1973_CR104
D McDonald (1973_CR130) 2018
XW Wang (1973_CR105) 2020; 4
N Qin (1973_CR135) 2014; 513
W Gou (1973_CR48) 2021; 44
S Ma (1973_CR85) 2011; 12
M Le Barz (1973_CR71) 2015; 39
GD Wu (1973_CR74) 2011; 334
PW O’Toole (1973_CR73) 2017; 2
Y Zhou (1973_CR96) 2018; 3
M Joossens (1973_CR62) 2011; 60
M Tsubaki (1973_CR109) 2019; 35
GR Lanckriet (1973_CR123) 2004; 20
N Kazemian (1973_CR18) 2020; 8
J Qin (1973_CR21) 2010; 464
C Duvallet (1973_CR57) 2017; 8
G Cammarota (1973_CR70) 2014; 48
Y Shi (1973_CR93) 2022; 10
RE Ley (1973_CR7) 2006; 444
FS Midani (1973_CR132) 2018; 218
E Pasolli (1973_CR133) 2016; 12
S Pan (1973_CR113) 2022; 13
M Zitnik (1973_CR46) 2019; 50
N Friedman (1973_CR100) 1997; 29
A Almeida (1973_CR2) 2021; 39
J Lloyd-Price (1973_CR11) 2019; 569
1973_CR33
R Wagner (1973_CR145) 2021; 27
S Aryal (1973_CR19) 2020; 76
D Silver (1973_CR50) 2016; 529
S Sabico (1973_CR78) 2019; 38
S Nayfach (1973_CR27) 2019; 568
G Ianiro (1973_CR75) 2020; 11
PJ Turnbaugh (1973_CR10) 2006; 444
A Daemen (1973_CR122) 2009; 1
J Li (1973_CR3) 2014; 32
P Li (1973_CR88) 2021; 5
MT Hira (1973_CR111) 2021; 11
D Kobak (1973_CR89) 2019; 10
1973_CR45
T Hendrikx (1973_CR66) 2019; 286
DM Camacho (1973_CR44) 2018; 173
J Yu (1973_CR20) 2017; 66
VK Ridaura (1973_CR9) 2013; 341
B Gao (1973_CR121) 2020; 4
TS Ghosh (1973_CR69) 2020; 69
H Peng (1973_CR138) 2005; 27
CE Lawson (1973_CR40) 2021; 63
D Reiman (1973_CR141) 2020; 24
X Xu (1973_CR148) 2020; 11
A Singh (1973_CR120) 2019; 35
MZ Ding (1973_CR84) 2016; 1
F Asnicar (1973_CR35) 2021; 27
1973_CR52
X Chen (1973_CR136) 2022; 25
A Mucherino (1973_CR101) 2009
AF Zuur (1973_CR86) 2007
1973_CR56
L Breiman (1973_CR102) 2001; 45
KM Borgwardt (1973_CR124) 2005; 21
LB Thingholm (1973_CR58) 2019; 26
T Wilmanski (1973_CR32) 2021; 3
RA Rastall (1973_CR72) 2015; 32
C Menni (1973_CR97) 2020; 11
Y Fan (1973_CR55) 2021; 19
A Koh (1973_CR65) 2020; 78
1973_CR143
1973_CR144
AB Roberts (1973_CR80) 2018; 24
MD Ritchie (1973_CR128) 2015; 16
F Grazioli (1973_CR134) 2022; 18
C Manichanh (1973_CR60) 2006; 55
E Pasolli (1973_CR26) 2019; 176
WS McCulloch (1973_CR107) 1943; 5
R Argelaguet (1973_CR125) 2018; 14
AP Carrieri (1973_CR47) 2021; 11
SR Gill (1973_CR1) 2006; 312
A Visconti (1973_CR63) 2019; 10
G Zeller (1973_CR129) 2014; 10
D Kim (1973_CR127) 2013; 6
C Lo (1973_CR131) 2019; 20
HMPRNC Integrative (1973_CR24) 2019; 569
A Almeida (1973_CR147) 2019; 568
M Oh (1973_CR54) 2020; 10
HB Nielsen (1973_CR95) 2014; 32
N Zmora (1973_CR34) 2019; 16
G Ditzler (1973_CR117) 2015; 16
E Lin (1973_CR42) 2017; 5
1973_CR137
G Sharon (1973_CR15) 2019; 177
C Angermueller (1973_CR41) 2016; 12
JF Cryan (1973_CR16) 2020; 19
Y Xiao (1973_CR76) 2020; 11
1973_CR77
References_xml – volume: 21
  start-page: i47
  issue: Suppl 1
  year: 2005
  ident: 1973_CR124
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1007
– volume: 562
  start-page: 583
  year: 2018
  ident: 1973_CR25
  publication-title: Nature
  doi: 10.1038/s41586-018-0617-x
– volume: 82
  start-page: 1
  year: 2020
  ident: 1973_CR146
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2020.07.004
– volume: 177
  start-page: 1600-+
  year: 2019
  ident: 1973_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.004
– volume: 21
  start-page: 120
  year: 2020
  ident: 1973_CR91
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-3453-6
– start-page: 259
  volume-title: Principal coordinate analysis and non-metric multidimensional scaling.  In Analysing Ecological Data
  year: 2007
  ident: 1973_CR86
– volume: 1
  start-page: 39
  year: 2009
  ident: 1973_CR122
  publication-title: Genome Med
  doi: 10.1186/gm39
– volume: 27
  start-page: 49
  year: 2021
  ident: 1973_CR145
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1116-9
– volume: 23
  start-page: 850
  year: 2017
  ident: 1973_CR36
  publication-title: Nat Med
  doi: 10.1038/nm.4345
– volume: 20
  start-page: 2626
  year: 2004
  ident: 1973_CR123
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth294
– volume: 11
  start-page: 1632
  year: 2020
  ident: 1973_CR97
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1778261
– volume: 53
  start-page: 156
  year: 2021
  ident: 1973_CR31
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-00763-1
– volume: 5
  start-page: 115
  year: 1943
  ident: 1973_CR107
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– volume: 163
  start-page: 1079
  year: 2015
  ident: 1973_CR118
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.001
– volume: 47
  start-page: 373
  year: 2019
  ident: 1973_CR59
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.08.048
– volume: 16
  start-page: 35
  year: 2019
  ident: 1973_CR34
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-018-0061-2
– volume: 22
  start-page: 1717
  year: 2006
  ident: 1973_CR126
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl170
– volume: 4
  start-page: 293
  year: 2019
  ident: 1973_CR12
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0306-4
– volume: 286
  start-page: 32
  year: 2019
  ident: 1973_CR66
  publication-title: J Intern Med
  doi: 10.1111/joim.12892
– volume: 568
  start-page: 505
  year: 2019
  ident: 1973_CR27
  publication-title: Nature
  doi: 10.1038/s41586-019-1058-x
– volume: 26
  start-page: 252
  year: 2019
  ident: 1973_CR58
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.07.004
– volume: 24
  start-page: 1532
  year: 2018
  ident: 1973_CR37
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0164-x
– volume: 16
  start-page: 358
  year: 2015
  ident: 1973_CR117
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0793-8
– volume: 12
  start-page: 714
  year: 2011
  ident: 1973_CR85
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbq090
– volume: 27
  start-page: 321
  year: 2021
  ident: 1973_CR35
  publication-title: Nat Med
  doi: 10.1038/s41591-020-01183-8
– ident: 1973_CR45
  doi: 10.1098/rsif.2017.0387
– volume: 63
  start-page: 34
  year: 2021
  ident: 1973_CR40
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2020.10.005
– volume: 529
  start-page: 484
  year: 2016
  ident: 1973_CR50
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 32
  start-page: 834
  year: 2014
  ident: 1973_CR3
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2942
– volume: 5
  start-page: e10478
  year: 2021
  ident: 1973_CR88
  publication-title: JBMR Plus
  doi: 10.1002/jbm4.10478
– volume: 19
  start-page: 281
  year: 2019
  ident: 1973_CR98
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-019-1004-8
– volume: 50
  start-page: 71
  year: 2019
  ident: 1973_CR46
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.09.012
– ident: 1973_CR103
– volume: 37
  start-page: 1217
  year: 2019
  ident: 1973_CR49
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0233-9
– volume: 2
  start-page: 17057
  year: 2017
  ident: 1973_CR73
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.57
– volume: 32
  start-page: 822
  year: 2014
  ident: 1973_CR95
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2939
– volume: 312
  start-page: 1355
  year: 2006
  ident: 1973_CR1
  publication-title: Science
  doi: 10.1126/science.1124234
– ident: 1973_CR104
  doi: 10.1145/2939672.2939785
– volume: 19
  start-page: 179
  year: 2020
  ident: 1973_CR16
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(19)30356-4
– volume: 10
  start-page: 4505
  year: 2019
  ident: 1973_CR63
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12476-z
– volume: 6
  start-page: 23
  year: 2013
  ident: 1973_CR127
  publication-title: BioData Min
  doi: 10.1186/1756-0381-6-23
– volume: 569
  start-page: 655
  year: 2019
  ident: 1973_CR11
  publication-title: Nature
  doi: 10.1038/s41586-019-1237-9
– volume: 76
  start-page: 1555
  year: 2020
  ident: 1973_CR19
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.120.15885
– volume: 13
  start-page: 2326
  year: 2022
  ident: 1973_CR113
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29843-y
– volume: 8
  start-page: 1784
  year: 2017
  ident: 1973_CR57
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01973-8
– volume: 12
  start-page: 878
  year: 2016
  ident: 1973_CR41
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156651
– volume: 44
  start-page: 358
  year: 2021
  ident: 1973_CR48
  publication-title: Diabetes Care
  doi: 10.2337/dc20-1536
– volume-title: Nearest neighbor classification
  year: 2009
  ident: 1973_CR101
  doi: 10.1007/978-0-387-88615-2_4
– volume: 78
  start-page: 584
  year: 2020
  ident: 1973_CR65
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.03.005
– volume: 14
  start-page: e8124
  year: 2018
  ident: 1973_CR125
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178124
– ident: 1973_CR143
  doi: 10.1016/S2213-8587(18)30051-2
– volume: 25
  start-page: 104081
  year: 2022
  ident: 1973_CR136
  publication-title: iScience
  doi: 10.1016/j.isci.2022.104081
– volume: 8
  start-page: 36
  year: 2020
  ident: 1973_CR18
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00821-0
– volume: 4
  start-page: 100013
  year: 2020
  ident: 1973_CR105
  publication-title: Med Microecol.
  doi: 10.1016/j.medmic.2020.100013
– volume: 334
  start-page: 105
  year: 2011
  ident: 1973_CR74
  publication-title: Science
  doi: 10.1126/science.1208344
– ident: 1973_CR119
  doi: 10.1186/s40168-016-0222-x
– volume: 11
  start-page: 4333
  year: 2020
  ident: 1973_CR75
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18127-y
– volume: 490
  start-page: 55
  year: 2012
  ident: 1973_CR4
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 60
  start-page: 631
  year: 2011
  ident: 1973_CR62
  publication-title: Gut
  doi: 10.1136/gut.2010.223263
– volume: 444
  start-page: 1027
  year: 2006
  ident: 1973_CR10
  publication-title: Nature
  doi: 10.1038/nature05414
– volume: 66
  start-page: 70
  year: 2017
  ident: 1973_CR20
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309800
– volume: 1
  start-page: 81
  year: 1986
  ident: 1973_CR108
  publication-title: Mach Learn
  doi: 10.1007/BF00116251
– volume: 19
  start-page: 250
  year: 2021
  ident: 1973_CR115
  publication-title: BMC Biol
  doi: 10.1186/s12915-021-01180-4
– ident: 1973_CR106
  doi: 10.1214/aos/1013203451
– volume: 8
  start-page: 37
  year: 2008
  ident: 1973_CR139
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2294
– volume: 32
  start-page: 42
  year: 2015
  ident: 1973_CR72
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2014.11.002
– volume: 19
  start-page: 55
  year: 2021
  ident: 1973_CR55
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-020-0433-9
– volume: 53
  start-page: 685
  year: 2004
  ident: 1973_CR61
  publication-title: Gut
  doi: 10.1136/gut.2003.025403
– volume: 562
  start-page: 589
  year: 2018
  ident: 1973_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0620-2
– volume: 10
  start-page: 6026
  year: 2020
  ident: 1973_CR54
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63159-5
– volume: 18
  start-page: e1010050
  year: 2022
  ident: 1973_CR134
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1010050
– volume: 176
  start-page: 649
  year: 2019
  ident: 1973_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.001
– volume: 48
  start-page: 80
  issue: Suppl 1
  year: 2014
  ident: 1973_CR70
  publication-title: J Clin Gastroenterol
  doi: 10.1097/MCG.0000000000000244
– volume: 568
  start-page: 499
  year: 2019
  ident: 1973_CR147
  publication-title: Nature
  doi: 10.1038/s41586-019-0965-1
– ident: 1973_CR83
  doi: 10.1126/scitranslmed.aax4905
– ident: 1973_CR110
  doi: 10.1109/BIBM47256.2019.8983228
– volume: 42
  start-page: 234
  year: 2016
  ident: 1973_CR79
  publication-title: Diabetes Metab
  doi: 10.1016/j.diabet.2016.04.009
– volume: 473
  start-page: 174
  year: 2011
  ident: 1973_CR94
  publication-title: Nature
  doi: 10.1038/nature09944
– volume: 11
  start-page: 620143
  year: 2020
  ident: 1973_CR148
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.620143
– volume: 319
  start-page: 1317
  year: 2018
  ident: 1973_CR43
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: 35
  start-page: 309
  year: 2019
  ident: 1973_CR109
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty535
– volume: 12
  start-page: e1004977
  year: 2016
  ident: 1973_CR133
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004977
– volume: 9
  start-page: 477
  year: 2018
  ident: 1973_CR112
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00477
– volume: 472
  start-page: 57
  year: 2011
  ident: 1973_CR81
  publication-title: Nature
  doi: 10.1038/nature09922
– volume: 25
  start-page: 789
  year: 2019
  ident: 1973_CR142
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.05.005
– ident: 1973_CR92
  doi: 10.1109/5.58325
– volume: 28
  start-page: 100
  year: 1979
  ident: 1973_CR90
  publication-title: JSTOR: Appl Stat
– volume: 11
  start-page: 4565
  year: 2021
  ident: 1973_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-83922-6
– volume: 35
  start-page: 3055
  year: 2019
  ident: 1973_CR120
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1054
– volume: 25
  start-page: 792
  year: 2019
  ident: 1973_CR28
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0414-6
– volume: 38
  start-page: 1561
  year: 2019
  ident: 1973_CR78
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2018.08.009
– volume: 555
  start-page: 210
  year: 2018
  ident: 1973_CR39
  publication-title: Nature
  doi: 10.1038/nature25973
– volume: 27
  start-page: 1226
  year: 2005
  ident: 1973_CR138
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 4
  start-page: 923
  year: 2007
  ident: 1973_CR114
  publication-title: Nat Methods
  doi: 10.1038/nmeth1113
– volume: 444
  start-page: 1022
  year: 2006
  ident: 1973_CR7
  publication-title: Nature
  doi: 10.1038/4441022a
– volume: 341
  start-page: 1241214
  year: 2013
  ident: 1973_CR9
  publication-title: Science
  doi: 10.1126/science.1241214
– volume: 535
  start-page: 376
  year: 2016
  ident: 1973_CR22
  publication-title: Nature
  doi: 10.1038/nature18646
– ident: 1973_CR17
  doi: 10.1038/ncomms2266
– volume: 36
  start-page: 4918
  year: 2020
  ident: 1973_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa598
– volume: 24
  start-page: 2993
  year: 2020
  ident: 1973_CR141
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2993761
– volume: 39
  start-page: 105
  year: 2021
  ident: 1973_CR2
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0603-3
– volume: 2012
  start-page: 895462
  year: 2012
  ident: 1973_CR82
  publication-title: Gastroenterol Res Pract
  doi: 10.1155/2012/895462
– year: 2018
  ident: 1973_CR130
  publication-title: mSystems
  doi: 10.1128/mSystems.00031-18
– volume: 569
  start-page: 641
  year: 2019
  ident: 1973_CR24
  publication-title: Nature
  doi: 10.1038/s41586-019-1238-8
– volume: 16
  start-page: 85
  year: 2015
  ident: 1973_CR128
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3868
– volume: 24
  start-page: 1526
  year: 2018
  ident: 1973_CR30
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0160-1
– volume: 1
  start-page: 230
  year: 2016
  ident: 1973_CR84
  publication-title: Synth Syst Biotechnol
  doi: 10.1016/j.synbio.2016.08.004
– volume: 513
  start-page: 59
  year: 2014
  ident: 1973_CR135
  publication-title: Nature
  doi: 10.1038/nature13568
– ident: 1973_CR77
  doi: 10.1002/hep4.1601
– volume: 10
  start-page: 5416
  year: 2019
  ident: 1973_CR89
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13056-x
– volume: 10
  start-page: 766
  year: 2014
  ident: 1973_CR129
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20145645
– volume: 29
  start-page: 131
  year: 1997
  ident: 1973_CR100
  publication-title: Mach Learn
  doi: 10.1023/A:1007465528199
– volume: 39
  start-page: 291
  year: 2015
  ident: 1973_CR71
  publication-title: Diabetes Metab J
  doi: 10.4093/dmj.2015.39.4.291
– volume: 69
  start-page: 1218
  year: 2020
  ident: 1973_CR69
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319654
– volume: 45
  start-page: 5
  year: 2001
  ident: 1973_CR102
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 500
  start-page: 541
  year: 2013
  ident: 1973_CR8
  publication-title: Nature
  doi: 10.1038/nature12506
– volume: 577
  start-page: 706
  year: 2020
  ident: 1973_CR51
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 52
  start-page: 1048
  year: 2020
  ident: 1973_CR38
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-020-0459-0
– volume: 7
  start-page: 123
  year: 2008
  ident: 1973_CR68
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2505
– ident: 1973_CR52
  doi: 10.1038/s41587-020-00777-4
– volume: 55
  start-page: 205
  year: 2006
  ident: 1973_CR60
  publication-title: Gut
  doi: 10.1136/gut.2005.073817
– volume: 9
  start-page: 2579
  year: 2008
  ident: 1973_CR87
  publication-title: J Mach Learn Res
– ident: 1973_CR56
  doi: 10.1101/286419
– volume: 20
  start-page: 314
  year: 2019
  ident: 1973_CR131
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2833-2
– volume: 173
  start-page: 1581
  year: 2018
  ident: 1973_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.015
– volume: 464
  start-page: 59
  year: 2010
  ident: 1973_CR21
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 24
  start-page: 41
  year: 2016
  ident: 1973_CR67
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.05.005
– volume: 20
  start-page: 273
  year: 1995
  ident: 1973_CR99
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 3
  start-page: 274
  year: 2021
  ident: 1973_CR32
  publication-title: Nat Metab
  doi: 10.1038/s42255-021-00348-0
– volume: 3
  start-page: e00188
  issue: 1
  year: 2018
  ident: 1973_CR96
  publication-title: mSystems
  doi: 10.1128/mSystems.00188-17
– ident: 1973_CR33
  doi: 10.1101/507780
– volume: 24
  start-page: 1407
  year: 2018
  ident: 1973_CR80
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0128-1
– volume: 68
  start-page: 359
  year: 2019
  ident: 1973_CR13
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-316307
– volume: 5
  start-page: 2
  year: 2017
  ident: 1973_CR42
  publication-title: Biomark Res
  doi: 10.1186/s40364-017-0082-y
– ident: 1973_CR137
  doi: 10.1172/jci.insight.140940
– volume: 498
  start-page: 99
  year: 2013
  ident: 1973_CR5
  publication-title: Nature
  doi: 10.1038/nature12198
– volume: 124
  start-page: 1808
  year: 2019
  ident: 1973_CR64
  publication-title: Circul Res
  doi: 10.1161/CIRCRESAHA.118.314642
– volume: 19
  start-page: 49
  year: 2018
  ident: 1973_CR140
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2033-5
– volume: 29
  start-page: 2063
  year: 2018
  ident: 1973_CR116
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2790388
– volume: 16
  start-page: 276
  year: 2014
  ident: 1973_CR29
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.08.014
– volume: 569
  start-page: 663
  year: 2019
  ident: 1973_CR23
  publication-title: Nature
  doi: 10.1038/s41586-019-1236-x
– volume: 10
  start-page: 25
  year: 2022
  ident: 1973_CR93
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01199-3
– volume: 11
  start-page: 3329
  year: 2020
  ident: 1973_CR76
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17180-x
– ident: 1973_CR144
  doi: 10.1101/464743
– volume: 68
  start-page: 1014
  year: 2019
  ident: 1973_CR14
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-315084
– volume: 11
  start-page: 6265
  year: 2021
  ident: 1973_CR111
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85285-4
– volume: 218
  start-page: 645
  year: 2018
  ident: 1973_CR132
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiy192
– volume: 4
  start-page: 1168
  year: 2020
  ident: 1973_CR121
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1537
SSID ssj0017873
Score 2.561411
SecondaryResourceType review_article
Snippet Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to...
Abstract Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely...
SourceID doaj
swepub
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Autism
Biomarkers
Complications and side effects
Data analysis
Data integration
Data mining
Deep learning
Development and progression
Diabetes
Digestive system
Disease
Dysbacteriosis
Dysbiosis
E coli
Enzymes
Gastrointestinal tract
Genes
Genomes
Gut microbiome
Gut microbiota
Inflammatory bowel disease
Insulin resistance
Intestinal microflora
Intestines
Learning algorithms
Liver
Machine learning
Medical research
Medical treatment
Medicine, Experimental
Metabolism
Metabolites
Metabolomics
Metagenomics
Methods
Microbiology
Microbiomes
Microbiota
Microbiota (Symbiotic organisms)
Microorganisms
Multi-omics
Obesity
Phenotypes
Precision medicine
Probiotics
Review
Synthetic biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJz2I8YGjUUYRPEiTmen3MYohinpQA7k1M_3YDZhZcXb_f6p6epY0Ab14292uhp3qr1671V8R8iZGSIKFCrQ3zlPOnaHGN5oGCJ0eQixrI95G_vpNnp3zzxfi4saoL-wJm-mBZ8UdN95wZbpGgVPhrQfnKTWy8UQf2zYYh94XYt5STOX_DwCGbLkio-XxhFGNU-xch5RGMcqLMJTY-m_75Nt9kgWbaIpApw_I_Zw61ifzVz4kd8L4kNy7QSj4iOAPy2t4W-dhEKsactIau0DrhRcCzgFe12k2X73abeury5mL6So8JuenH39-OKN5QAJ1kFhtqXAMC7ghdjhHzLsYlI6Si0H4CG6LeUz_Ag9Kmn7QXQ9aA4v2w8BU0w99y56Qg3EzhqekhsKi01IOoGrFQ2S6cRI2ChOECx3rK9Iu-rIus4fjEItfNlURWtpZxxZ0bJOOLa_Iu_2e3zN3xl-l3-Mx7CWR9zp9AGiwGQ32X2ioyGs8RIvMFiO2zqz63TTZTz--2xPI1FQqMSvyNgvFDTyD6_NNBNAEkmEVkkeFJJieK5cXrNhs-pPtEPuKSwbLr_bLuBPb2caw2aEMpIEcimtdEVVgrHj8cmW8XCf6byM1kgZW5MuMxmJLpohaW7dO83cmOwXrQg9VbnTWNXAUXARhjZfMeoCBiYCEQbTP_of6n5O7HRpZ29KOHZGD7Z9deAFJ23Z4mezzGgMSPQQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIrQggJC4oCsJvH7hAqiKgg4AJX2ZiV-7FZqs22z-_-ZcZyFqFJvm_U4Ws_DM-Mdf0PIuxghCBYq0NY4Tzl3hhpfaRrAdXpwsayOeBv5x095csq_LcQiH7gNuaxy2hPTRu3XDs_IDxt8peKSNR8vryh2jcJ_V3MLjbvkHkKXYUmXWuwSrhqUkU0XZbQ8HNC3cYr16xDYKEb5zBklzP6bO_PNaskZpmjyQ8ePyMMcQJZHo8Qfkzuhf0Ie_Acr-JTg8fIKHsvcEmJZQmRaYi1oOaFDgDTgc5k69JXL7aa8OBsRmS7CM3J6_OXP5xOa2yRQB-HVhgrHMI3rYoPdxLyLQekoueiEj7B5MY9BYOBBSdN2ummZjmDXvuuYqtqurdlzstev-_CClJBeNFrKThlIVkNkunISJgoThAsNawtST_yyLmOIYyuLc5tyCS3tyGMLPLaJx5YX5MNuzuWIoHEr9ScUw44S0a_TF-vrpc3GZCtvOPzESoGj4bUHhyo1IjRFH-s6GFeQtyhEi_gWPRbQLNvtMNivv3_ZI4jXVEo0C_I-E8U1rMG1-T4CcAIhsWaUBzNKMEA3H550xeYNYLD_1LUgb3bDOBOL2vqw3iINBIMcUmxdEDXTsdny5yP92SqBgBupETqwIN9HbZxNyUBRK-tWqQvPYIdgXWgh143OugpEwUUQ1njJrAc1MBE0oRP1y9vXsk_uN2g-dU0bdkD2Ntfb8AqCsk33OlneX9vINXk
  priority: 102
  providerName: ProQuest
Title Machine learning for data integration in human gut microbiome
URI https://www.proquest.com/docview/2755774632
https://www.proquest.com/docview/2739741848
https://pubmed.ncbi.nlm.nih.gov/PMC9685977
https://research.chalmers.se/publication/533431
https://doaj.org/article/0d9479207eb141d990683738fdf11e9c
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_6AVIfxE-MrUcUwQeJJtnNfjyIXKWlHrZI68G9Lcl-3BXanL3cgf73zuwlp6HFB5_ysTOwmZ3JzCSzvyHkjfcQBBfCJaUyNmHMqETZVCYOXKcFF0szj7uRT8_4yZiNJsVki3TtjloBNnemdthPary4ev_z5tcnMPiPweAl_9Cgz2IJ1qVDwCJowrbJLngmgYZ6yv78VQDlpN3GmTv59sg9yhn4SMp6firA-d9-ad8upOzBjQYXdfyQPGhjy3i4VoZHZMvVj8n9vxAHnxD88jyDy7jtFjGNIWiNsUw07oAjYKHgPA7N--LpahlfX67Bmq7dUzI-Pvr--SRpOygkBiKvZVIYihle5VEayhrvhPScFVVhPbzXqMX40DEnuCormZdUejB5W1VUpGVVZvQZ2anntXtOYsg8csl5JRTksc5TmRoOjIVyhXE5LSOSdfLSpoUXxy4XVzqkGZLrtbg1iFsHcWsWkXcbnh9rcI1_Uh_iMmwoERg73Jgvprq1M51axWCKqQAfxDILvpZLBG_y1meZUyYir3ERNUJf1FhbMy1XTaO_XJzrIYRyIuSgEXnbEvk5PIMp260KIAlEy-pRHvQowTZNf7jTFd2pts7ROATjFIZfbYaRE-vdajdfIQ3EiQyybxkR0dOx3uP3R-rLWcAHV1wiqmBEvq61scfSYkjNtJmFBj2Nbpw2roQ02BttUlgKVrhCK8uptqAGyoMmVEX24r8nsk_2cjSyLEtyekB2louVewmh3LIakG0xEQOyOxyOLkZwPDw6-3Y-CB9GBsF2fwMHDkr7
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcKp7CtIBBIA5oVdu7XtsHhFpoldA0QqWVetva-0gqUafUiRB_it_IjB8Bq1JvvTneWSs7j50Ze_YbgLfOYRAcJ5blmTZMCJ2xzAQps-g6DbpYHjo6jXw4kcMT8fU0Pl2DP91ZGCqr7PbEeqM2c03vyLcjemQiJI8-Xf5k1DWKvq52LTQatTiwv39hylZ9HH1B-b6Lov29489D1nYVYBqjkQWLNaesp3ARNd8y2tkkdVLERWwc2jo3FDNZYROZ5UUa5Tx1aAamKHgS5EUecnzuHVgXHFOZAazv7k2-Ha2-W6D68-5oTiq3K_KmglHFPIZSCWei5_7qLgHXfcH1-sweimnt-fYfwEYbsvo7jY49hDVbPoL7_wEZPgZ6oT3Dn37bhGLqYyzsU_Wp3-FRoPzx2q97AvrT5cK_OG8woC7sEzi5FRY-hUE5L-0z8DGhiVIpiyTD9Ng6ngZa4sQ4s7G2Ec89CDt-Kd2illPzjB-qzl5SqRoeK-SxqnmshAcfVnMuG8yOG6l3SQwrSsLbrm_Mr6aqNV8VmEzgXwwSdG0iNOjCZUqYUM64MLSZ9uANCVERokZJJTvTfFlVavT9SO1ghJjUqa0H71siN8c16Lw9AYGcIBCuHuVWjxJNXveHO11R7ZZTqX8G4sHr1TDNpDK60s6XRIPhp8CkPvUg6elYb_n9kfJ8VsOOZzIlsEIPxo029qa00FQzpWd1359KVVZpm2N27bTSAYpCxDZWmZFcGVSDzKEmFHH4_Oa1vIK7w-PDsRqPJgebcC8iUwpDFvEtGCyulvYFhoSL4mVrhz6c3bbp_wVtlHSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+data+integration+in+human+gut+microbiome&rft.jtitle=Microbial+cell+factories&rft.au=Li%2C+Peishun&rft.au=Luo%2C+Hao&rft.au=Ji%2C+Boyang&rft.au=Nielsen%2C+Jens&rft.date=2022-11-23&rft.pub=BioMed+Central&rft.eissn=1475-2859&rft.volume=21&rft_id=info:doi/10.1186%2Fs12934-022-01973-4&rft_id=info%3Apmid%2F36419034&rft.externalDocID=PMC9685977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon