Machine learning for data integration in human gut microbiome
Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatransc...
Saved in:
Published in | Microbial cell factories Vol. 21; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
23.11.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine. |
---|---|
AbstractList | Abstract Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine. Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine. Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine. Keywords: Gut microbiome, Data integration, Machine learning, Precision medicine, Multi-omics Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine.Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to characterize the microbial ecosystems, which led to an explosion of different types of molecular profiling data, such as metagenomics, metatranscriptomics and metabolomics. For analysis of such data, machine learning algorithms have shown to be useful for identifying key molecular signatures, discovering potential patient stratifications, and particularly for generating models that can accurately predict phenotypes. In this review, we first discuss how dysbiosis of the intestinal microbiota is linked to human disease development and how potential modulation strategies of the gut microbial ecosystem can be used for disease treatment. In addition, we introduce categories and workflows of different machine learning approaches, and how they can be used to perform integrative analysis of multi-omics data. Finally, we review advances of machine learning in gut microbiome applications and discuss related challenges. Based on this we conclude that machine learning is very well suited for analysis of gut microbiome and that these approaches can be useful for development of gut microbe-targeted therapies, which ultimately can help in achieving personalized and precision medicine. |
ArticleNumber | 241 |
Audience | Academic |
Author | Nielsen, Jens Ji, Boyang Luo, Hao Li, Peishun |
Author_xml | – sequence: 1 givenname: Peishun surname: Li fullname: Li, Peishun – sequence: 2 givenname: Hao surname: Luo fullname: Luo, Hao – sequence: 3 givenname: Boyang surname: Ji fullname: Ji, Boyang – sequence: 4 givenname: Jens surname: Nielsen fullname: Nielsen, Jens |
BackLink | https://research.chalmers.se/publication/533431$$DView record from Swedish Publication Index |
BookMark | eNp9kktv1DAUhSNURB_wB1hFYgOLFD_jeAFSVfEYqQiJwtpy7OuMq8QudsLj3-OZKYJUCHlhyz7n89W957Q6CjFAVT3F6Bzjrn2ZMZGUNYiQBmEpaMMeVCeYCd6Qjsujv87H1WnONwhh0Qn6qDqmLcMSUXZSvfqgzdYHqEfQKfgw1C6m2upZ1z7MMCQ9-xjKud4ukw71sMz15E2KvY8TPK4eOj1meHK3n1Vf3r75fPm-ufr4bnN5cdWYlqO54YYKgnHvCMNCWuNAdK5lvOfWWQvUIiklMBCt1H1HNO0cEtT2PRVI9xrTs2pz4Nqob9Rt8pNOP1XUXu0vYhqUTrM3IyhkJROSIAE9ZthKidqOikK0DmOQprCuD6z8HW6XfkVLkEsbzFaZrR4nSFllUAY04dIZZRA4xThwJW1LlS3FSVfq6_muwtcHakFOYA2EOelxBV-_BL9VQ_ymZFvmI0QBPL8DpPh1gTyryWcD46gDxCUrIqgUDHesK9Jn96Q3cUmhDKCoOBeCtZT8UQ26tMUHF8u_ZgdVF4IIgRDpdqrzf6jKslDGXPLmfLlfGV6sDEUzw4950EvOanP9aa3tDtqSl5xT6Z7x8z5Q5RM_KozULsjqEGRVgqz2QVasWMk96-9W_sf0Cwst9D8 |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109098 crossref_primary_10_3390_jcm14062040 crossref_primary_10_1053_j_gastro_2024_05_004 crossref_primary_10_1080_14737159_2024_2316756 crossref_primary_10_7717_peerj_16304 crossref_primary_10_1128_cmr_00060_22 crossref_primary_10_3390_microorganisms12091828 crossref_primary_10_7759_cureus_45738 crossref_primary_10_12998_wjcc_v12_i14_2293 crossref_primary_10_1016_j_microb_2025_100299 crossref_primary_10_1016_j_jinf_2023_07_006 crossref_primary_10_1016_j_biosystems_2024_105283 crossref_primary_10_1016_j_nutos_2023_07_001 crossref_primary_10_1021_acs_jafc_3c03834 crossref_primary_10_1186_s12866_024_03266_9 crossref_primary_10_3389_fmicb_2024_1516667 crossref_primary_10_3390_synbio3010002 crossref_primary_10_1016_j_biopha_2025_117905 crossref_primary_10_1016_j_ymben_2023_06_006 crossref_primary_10_1016_j_crbiot_2024_100211 crossref_primary_10_3389_frchs_2023_1215831 crossref_primary_10_1016_j_nutos_2024_12_009 crossref_primary_10_1080_19490976_2024_2394166 crossref_primary_10_3390_ijms25116022 crossref_primary_10_1080_19490976_2025_2452277 crossref_primary_10_3389_fcimb_2024_1397717 crossref_primary_10_1016_j_trac_2024_117872 crossref_primary_10_1002_jmri_29491 crossref_primary_10_1038_s41598_024_60427_6 crossref_primary_10_1002_advs_202400458 crossref_primary_10_3390_ijms24032458 crossref_primary_10_3390_microorganisms11102509 crossref_primary_10_1002_pmic_202400242 crossref_primary_10_1080_19490976_2023_2297815 crossref_primary_10_3389_fimmu_2024_1519498 crossref_primary_10_1016_j_bonr_2024_101809 crossref_primary_10_3389_fmicb_2024_1507537 crossref_primary_10_1007_s42452_024_06381_4 crossref_primary_10_1186_s12916_023_03095_z crossref_primary_10_3390_foods13182937 crossref_primary_10_3389_fcimb_2024_1377012 crossref_primary_10_1016_j_csbj_2024_04_025 crossref_primary_10_1016_j_nutres_2024_09_010 crossref_primary_10_1016_j_jare_2024_03_005 crossref_primary_10_3390_diagnostics14050484 |
Cites_doi | 10.1093/bioinformatics/bti1007 10.1038/s41586-018-0617-x 10.1016/j.nutres.2020.07.004 10.1016/j.cell.2019.05.004 10.1186/s12859-020-3453-6 10.1186/gm39 10.1038/s41591-020-1116-9 10.1038/nm.4345 10.1093/bioinformatics/bth294 10.1080/19490976.2020.1778261 10.1038/s41588-020-00763-1 10.1007/BF02478259 10.1016/j.cell.2015.11.001 10.1016/j.ebiom.2019.08.048 10.1038/s41575-018-0061-2 10.1093/bioinformatics/btl170 10.1038/s41564-018-0306-4 10.1111/joim.12892 10.1038/s41586-019-1058-x 10.1016/j.chom.2019.07.004 10.1038/s41591-018-0164-x 10.1186/s12859-015-0793-8 10.1093/bib/bbq090 10.1038/s41591-020-01183-8 10.1098/rsif.2017.0387 10.1016/j.ymben.2020.10.005 10.1038/nature16961 10.1038/nbt.2942 10.1002/jbm4.10478 10.1186/s12911-019-1004-8 10.1016/j.inffus.2018.09.012 10.1038/s41587-019-0233-9 10.1038/nmicrobiol.2017.57 10.1038/nbt.2939 10.1126/science.1124234 10.1145/2939672.2939785 10.1016/S1474-4422(19)30356-4 10.1038/s41467-019-12476-z 10.1186/1756-0381-6-23 10.1038/s41586-019-1237-9 10.1161/HYPERTENSIONAHA.120.15885 10.1038/s41467-022-29843-y 10.1038/s41467-017-01973-8 10.15252/msb.20156651 10.2337/dc20-1536 10.1007/978-0-387-88615-2_4 10.1016/j.molcel.2020.03.005 10.15252/msb.20178124 10.1016/S2213-8587(18)30051-2 10.1016/j.isci.2022.104081 10.1186/s40168-020-00821-0 10.1016/j.medmic.2020.100013 10.1126/science.1208344 10.1186/s40168-016-0222-x 10.1038/s41467-020-18127-y 10.1038/nature11450 10.1136/gut.2010.223263 10.1038/nature05414 10.1136/gutjnl-2015-309800 10.1007/BF00116251 10.1186/s12915-021-01180-4 10.1214/aos/1013203451 10.1038/nrc2294 10.1016/j.copbio.2014.11.002 10.1038/s41579-020-0433-9 10.1136/gut.2003.025403 10.1038/s41586-018-0620-2 10.1038/s41598-020-63159-5 10.1371/journal.pcbi.1010050 10.1016/j.cell.2019.01.001 10.1097/MCG.0000000000000244 10.1038/s41586-019-0965-1 10.1126/scitranslmed.aax4905 10.1109/BIBM47256.2019.8983228 10.1016/j.diabet.2016.04.009 10.1038/nature09944 10.3389/fgene.2020.620143 10.1001/jama.2017.18391 10.1093/bioinformatics/bty535 10.1371/journal.pcbi.1004977 10.3389/fgene.2018.00477 10.1038/nature09922 10.1016/j.chom.2019.05.005 10.1109/5.58325 10.1038/s41598-021-83922-6 10.1093/bioinformatics/bty1054 10.1038/s41591-019-0414-6 10.1016/j.clnu.2018.08.009 10.1038/nature25973 10.1109/TPAMI.2005.159 10.1038/nmeth1113 10.1038/4441022a 10.1126/science.1241214 10.1038/nature18646 10.1038/ncomms2266 10.1093/bioinformatics/btaa598 10.1109/JBHI.2020.2993761 10.1038/s41587-020-0603-3 10.1155/2012/895462 10.1128/mSystems.00031-18 10.1038/s41586-019-1238-8 10.1038/nrg3868 10.1038/s41591-018-0160-1 10.1016/j.synbio.2016.08.004 10.1038/nature13568 10.1002/hep4.1601 10.1038/s41467-019-13056-x 10.15252/msb.20145645 10.1023/A:1007465528199 10.4093/dmj.2015.39.4.291 10.1136/gutjnl-2019-319654 10.1023/A:1010933404324 10.1038/nature12506 10.1038/s41586-019-1923-7 10.1038/s12276-020-0459-0 10.1038/nrd2505 10.1038/s41587-020-00777-4 10.1136/gut.2005.073817 10.1101/286419 10.1186/s12859-019-2833-2 10.1016/j.cell.2018.05.015 10.1038/nature08821 10.1016/j.cmet.2016.05.005 10.1007/BF00994018 10.1038/s42255-021-00348-0 10.1128/mSystems.00188-17 10.1101/507780 10.1038/s41591-018-0128-1 10.1136/gutjnl-2018-316307 10.1186/s40364-017-0082-y 10.1172/jci.insight.140940 10.1038/nature12198 10.1161/CIRCRESAHA.118.314642 10.1186/s12859-018-2033-5 10.1109/TNNLS.2018.2790388 10.1016/j.chom.2014.08.014 10.1038/s41586-019-1236-x 10.1186/s40168-021-01199-3 10.1038/s41467-020-17180-x 10.1101/464743 10.1136/gutjnl-2017-315084 10.1038/s41598-021-85285-4 10.1093/infdis/jiy192 10.1002/hep4.1537 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). The Author(s) 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). – notice: The Author(s) 2022 |
DBID | AAYXX CITATION ISR 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC DOA |
DOI | 10.1186/s12934-022-01973-4 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1475-2859 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_0d9479207eb141d990683738fdf11e9c oai_research_chalmers_se_cea259fc_c0ef_45e5_9d63_d70a9fabab51 PMC9685977 A727700282 10_1186_s12934_022_01973_4 |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: NNF15OC0016798 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SCM SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M PMFND 3V. 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM 2VQ 4.4 ABBSD ADTPV AHSBF AOWAS C1A D8T EJD F1S H13 IPNFZ RIG ZZAVC PUEGO |
ID | FETCH-LOGICAL-c650t-5c37211bf24179dcfe78f645b5dfdde3d0999e4e769ab82a38f073dbb370aba13 |
IEDL.DBID | M48 |
ISSN | 1475-2859 |
IngestDate | Wed Aug 27 01:26:48 EDT 2025 Thu Aug 21 06:34:51 EDT 2025 Thu Aug 21 18:39:29 EDT 2025 Tue Aug 05 10:09:31 EDT 2025 Fri Jul 25 09:19:01 EDT 2025 Tue Jun 17 21:49:44 EDT 2025 Tue Jun 10 20:44:57 EDT 2025 Fri Jun 27 03:54:17 EDT 2025 Tue Jul 01 02:30:26 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c650t-5c37211bf24179dcfe78f645b5dfdde3d0999e4e769ab82a38f073dbb370aba13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12934-022-01973-4 |
PMID | 36419034 |
PQID | 2755774632 |
PQPubID | 42699 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d9479207eb141d990683738fdf11e9c swepub_primary_oai_research_chalmers_se_cea259fc_c0ef_45e5_9d63_d70a9fabab51 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685977 proquest_miscellaneous_2739741848 proquest_journals_2755774632 gale_infotracmisc_A727700282 gale_infotracacademiconefile_A727700282 gale_incontextgauss_ISR_A727700282 crossref_citationtrail_10_1186_s12934_022_01973_4 crossref_primary_10_1186_s12934_022_01973_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-23 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Microbial cell factories |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | S Uddin (1973_CR98) 2019; 19 L Zhang (1973_CR112) 2018; 9 HMPRNC Integrative (1973_CR29) 2014; 16 JR Quinlan (1973_CR108) 1986; 1 SM Schussler-Fiorenza Rose (1973_CR28) 2019; 25 W Jia (1973_CR68) 2008; 7 FH Karlsson (1973_CR5) 2013; 498 H Chu (1973_CR13) 2019; 68 M Karamali (1973_CR79) 2016; 42 M Arumugam (1973_CR94) 2011; 473 R Quiroga (1973_CR38) 2020; 52 A Kurilshikov (1973_CR64) 2019; 124 J Shang (1973_CR115) 2021; 19 1973_CR83 D Fioravanti (1973_CR140) 2018; 19 AJ Johnson (1973_CR142) 2019; 25 M Deschasaux (1973_CR30) 2018; 24 CJ Stewart (1973_CR25) 2018; 562 HK Pedersen (1973_CR22) 2016; 535 Y He (1973_CR37) 2018; 24 T Wilmanski (1973_CR49) 2019; 37 C Cortes (1973_CR99) 1995; 20 Y Long (1973_CR53) 2020; 36 Z Wang (1973_CR81) 2011; 472 WY Zhou (1973_CR23) 2019; 569 1973_CR17 AW Senior (1973_CR51) 2020; 577 D Rothschild (1973_CR39) 2018; 555 H Zhong (1973_CR59) 2019; 47 A Hulot (1973_CR91) 2020; 21 Z Ren (1973_CR14) 2019; 68 L Kall (1973_CR114) 2007; 4 JA Hartigan (1973_CR90) 1979; 28 T Vatanen (1973_CR6) 2018; 562 1973_CR119 SJ Ott (1973_CR61) 2004; 53 E Le Chatelier (1973_CR8) 2013; 500 1973_CR92 1973_CR110 Z Liu (1973_CR146) 2020; 82 A Kurilshikov (1973_CR31) 2021; 53 S Yuvaraj (1973_CR82) 2012; 2012 R Clarke (1973_CR139) 2008; 8 H Wu (1973_CR36) 2017; 23 LVD Maaten (1973_CR87) 2008; 9 D Zeevi (1973_CR118) 2015; 163 J Qin (1973_CR4) 2012; 490 M Mahmud (1973_CR116) 2018; 29 EA Franzosa (1973_CR12) 2019; 4 HB Shen (1973_CR126) 2006; 22 1973_CR106 AL Beam (1973_CR43) 2018; 319 A Wahlstrom (1973_CR67) 2016; 24 1973_CR103 1973_CR104 D McDonald (1973_CR130) 2018 XW Wang (1973_CR105) 2020; 4 N Qin (1973_CR135) 2014; 513 W Gou (1973_CR48) 2021; 44 S Ma (1973_CR85) 2011; 12 M Le Barz (1973_CR71) 2015; 39 GD Wu (1973_CR74) 2011; 334 PW O’Toole (1973_CR73) 2017; 2 Y Zhou (1973_CR96) 2018; 3 M Joossens (1973_CR62) 2011; 60 M Tsubaki (1973_CR109) 2019; 35 GR Lanckriet (1973_CR123) 2004; 20 N Kazemian (1973_CR18) 2020; 8 J Qin (1973_CR21) 2010; 464 C Duvallet (1973_CR57) 2017; 8 G Cammarota (1973_CR70) 2014; 48 Y Shi (1973_CR93) 2022; 10 RE Ley (1973_CR7) 2006; 444 FS Midani (1973_CR132) 2018; 218 E Pasolli (1973_CR133) 2016; 12 S Pan (1973_CR113) 2022; 13 M Zitnik (1973_CR46) 2019; 50 N Friedman (1973_CR100) 1997; 29 A Almeida (1973_CR2) 2021; 39 J Lloyd-Price (1973_CR11) 2019; 569 1973_CR33 R Wagner (1973_CR145) 2021; 27 S Aryal (1973_CR19) 2020; 76 D Silver (1973_CR50) 2016; 529 S Sabico (1973_CR78) 2019; 38 S Nayfach (1973_CR27) 2019; 568 G Ianiro (1973_CR75) 2020; 11 PJ Turnbaugh (1973_CR10) 2006; 444 A Daemen (1973_CR122) 2009; 1 J Li (1973_CR3) 2014; 32 P Li (1973_CR88) 2021; 5 MT Hira (1973_CR111) 2021; 11 D Kobak (1973_CR89) 2019; 10 1973_CR45 T Hendrikx (1973_CR66) 2019; 286 DM Camacho (1973_CR44) 2018; 173 J Yu (1973_CR20) 2017; 66 VK Ridaura (1973_CR9) 2013; 341 B Gao (1973_CR121) 2020; 4 TS Ghosh (1973_CR69) 2020; 69 H Peng (1973_CR138) 2005; 27 CE Lawson (1973_CR40) 2021; 63 D Reiman (1973_CR141) 2020; 24 X Xu (1973_CR148) 2020; 11 A Singh (1973_CR120) 2019; 35 MZ Ding (1973_CR84) 2016; 1 F Asnicar (1973_CR35) 2021; 27 1973_CR52 X Chen (1973_CR136) 2022; 25 A Mucherino (1973_CR101) 2009 AF Zuur (1973_CR86) 2007 1973_CR56 L Breiman (1973_CR102) 2001; 45 KM Borgwardt (1973_CR124) 2005; 21 LB Thingholm (1973_CR58) 2019; 26 T Wilmanski (1973_CR32) 2021; 3 RA Rastall (1973_CR72) 2015; 32 C Menni (1973_CR97) 2020; 11 Y Fan (1973_CR55) 2021; 19 A Koh (1973_CR65) 2020; 78 1973_CR143 1973_CR144 AB Roberts (1973_CR80) 2018; 24 MD Ritchie (1973_CR128) 2015; 16 F Grazioli (1973_CR134) 2022; 18 C Manichanh (1973_CR60) 2006; 55 E Pasolli (1973_CR26) 2019; 176 WS McCulloch (1973_CR107) 1943; 5 R Argelaguet (1973_CR125) 2018; 14 AP Carrieri (1973_CR47) 2021; 11 SR Gill (1973_CR1) 2006; 312 A Visconti (1973_CR63) 2019; 10 G Zeller (1973_CR129) 2014; 10 D Kim (1973_CR127) 2013; 6 C Lo (1973_CR131) 2019; 20 HMPRNC Integrative (1973_CR24) 2019; 569 A Almeida (1973_CR147) 2019; 568 M Oh (1973_CR54) 2020; 10 HB Nielsen (1973_CR95) 2014; 32 N Zmora (1973_CR34) 2019; 16 G Ditzler (1973_CR117) 2015; 16 E Lin (1973_CR42) 2017; 5 1973_CR137 G Sharon (1973_CR15) 2019; 177 C Angermueller (1973_CR41) 2016; 12 JF Cryan (1973_CR16) 2020; 19 Y Xiao (1973_CR76) 2020; 11 1973_CR77 |
References_xml | – volume: 21 start-page: i47 issue: Suppl 1 year: 2005 ident: 1973_CR124 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1007 – volume: 562 start-page: 583 year: 2018 ident: 1973_CR25 publication-title: Nature doi: 10.1038/s41586-018-0617-x – volume: 82 start-page: 1 year: 2020 ident: 1973_CR146 publication-title: Nutr Res doi: 10.1016/j.nutres.2020.07.004 – volume: 177 start-page: 1600-+ year: 2019 ident: 1973_CR15 publication-title: Cell doi: 10.1016/j.cell.2019.05.004 – volume: 21 start-page: 120 year: 2020 ident: 1973_CR91 publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-3453-6 – start-page: 259 volume-title: Principal coordinate analysis and non-metric multidimensional scaling. In Analysing Ecological Data year: 2007 ident: 1973_CR86 – volume: 1 start-page: 39 year: 2009 ident: 1973_CR122 publication-title: Genome Med doi: 10.1186/gm39 – volume: 27 start-page: 49 year: 2021 ident: 1973_CR145 publication-title: Nat Med doi: 10.1038/s41591-020-1116-9 – volume: 23 start-page: 850 year: 2017 ident: 1973_CR36 publication-title: Nat Med doi: 10.1038/nm.4345 – volume: 20 start-page: 2626 year: 2004 ident: 1973_CR123 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth294 – volume: 11 start-page: 1632 year: 2020 ident: 1973_CR97 publication-title: Gut Microbes doi: 10.1080/19490976.2020.1778261 – volume: 53 start-page: 156 year: 2021 ident: 1973_CR31 publication-title: Nat Genet doi: 10.1038/s41588-020-00763-1 – volume: 5 start-page: 115 year: 1943 ident: 1973_CR107 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 163 start-page: 1079 year: 2015 ident: 1973_CR118 publication-title: Cell doi: 10.1016/j.cell.2015.11.001 – volume: 47 start-page: 373 year: 2019 ident: 1973_CR59 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.08.048 – volume: 16 start-page: 35 year: 2019 ident: 1973_CR34 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-018-0061-2 – volume: 22 start-page: 1717 year: 2006 ident: 1973_CR126 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl170 – volume: 4 start-page: 293 year: 2019 ident: 1973_CR12 publication-title: Nat Microbiol doi: 10.1038/s41564-018-0306-4 – volume: 286 start-page: 32 year: 2019 ident: 1973_CR66 publication-title: J Intern Med doi: 10.1111/joim.12892 – volume: 568 start-page: 505 year: 2019 ident: 1973_CR27 publication-title: Nature doi: 10.1038/s41586-019-1058-x – volume: 26 start-page: 252 year: 2019 ident: 1973_CR58 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.07.004 – volume: 24 start-page: 1532 year: 2018 ident: 1973_CR37 publication-title: Nat Med doi: 10.1038/s41591-018-0164-x – volume: 16 start-page: 358 year: 2015 ident: 1973_CR117 publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0793-8 – volume: 12 start-page: 714 year: 2011 ident: 1973_CR85 publication-title: Brief Bioinform doi: 10.1093/bib/bbq090 – volume: 27 start-page: 321 year: 2021 ident: 1973_CR35 publication-title: Nat Med doi: 10.1038/s41591-020-01183-8 – ident: 1973_CR45 doi: 10.1098/rsif.2017.0387 – volume: 63 start-page: 34 year: 2021 ident: 1973_CR40 publication-title: Metab Eng doi: 10.1016/j.ymben.2020.10.005 – volume: 529 start-page: 484 year: 2016 ident: 1973_CR50 publication-title: Nature doi: 10.1038/nature16961 – volume: 32 start-page: 834 year: 2014 ident: 1973_CR3 publication-title: Nat Biotechnol doi: 10.1038/nbt.2942 – volume: 5 start-page: e10478 year: 2021 ident: 1973_CR88 publication-title: JBMR Plus doi: 10.1002/jbm4.10478 – volume: 19 start-page: 281 year: 2019 ident: 1973_CR98 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-1004-8 – volume: 50 start-page: 71 year: 2019 ident: 1973_CR46 publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.09.012 – ident: 1973_CR103 – volume: 37 start-page: 1217 year: 2019 ident: 1973_CR49 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0233-9 – volume: 2 start-page: 17057 year: 2017 ident: 1973_CR73 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.57 – volume: 32 start-page: 822 year: 2014 ident: 1973_CR95 publication-title: Nat Biotechnol doi: 10.1038/nbt.2939 – volume: 312 start-page: 1355 year: 2006 ident: 1973_CR1 publication-title: Science doi: 10.1126/science.1124234 – ident: 1973_CR104 doi: 10.1145/2939672.2939785 – volume: 19 start-page: 179 year: 2020 ident: 1973_CR16 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(19)30356-4 – volume: 10 start-page: 4505 year: 2019 ident: 1973_CR63 publication-title: Nat Commun doi: 10.1038/s41467-019-12476-z – volume: 6 start-page: 23 year: 2013 ident: 1973_CR127 publication-title: BioData Min doi: 10.1186/1756-0381-6-23 – volume: 569 start-page: 655 year: 2019 ident: 1973_CR11 publication-title: Nature doi: 10.1038/s41586-019-1237-9 – volume: 76 start-page: 1555 year: 2020 ident: 1973_CR19 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15885 – volume: 13 start-page: 2326 year: 2022 ident: 1973_CR113 publication-title: Nat Commun doi: 10.1038/s41467-022-29843-y – volume: 8 start-page: 1784 year: 2017 ident: 1973_CR57 publication-title: Nat Commun doi: 10.1038/s41467-017-01973-8 – volume: 12 start-page: 878 year: 2016 ident: 1973_CR41 publication-title: Mol Syst Biol doi: 10.15252/msb.20156651 – volume: 44 start-page: 358 year: 2021 ident: 1973_CR48 publication-title: Diabetes Care doi: 10.2337/dc20-1536 – volume-title: Nearest neighbor classification year: 2009 ident: 1973_CR101 doi: 10.1007/978-0-387-88615-2_4 – volume: 78 start-page: 584 year: 2020 ident: 1973_CR65 publication-title: Mol Cell doi: 10.1016/j.molcel.2020.03.005 – volume: 14 start-page: e8124 year: 2018 ident: 1973_CR125 publication-title: Mol Syst Biol doi: 10.15252/msb.20178124 – ident: 1973_CR143 doi: 10.1016/S2213-8587(18)30051-2 – volume: 25 start-page: 104081 year: 2022 ident: 1973_CR136 publication-title: iScience doi: 10.1016/j.isci.2022.104081 – volume: 8 start-page: 36 year: 2020 ident: 1973_CR18 publication-title: Microbiome doi: 10.1186/s40168-020-00821-0 – volume: 4 start-page: 100013 year: 2020 ident: 1973_CR105 publication-title: Med Microecol. doi: 10.1016/j.medmic.2020.100013 – volume: 334 start-page: 105 year: 2011 ident: 1973_CR74 publication-title: Science doi: 10.1126/science.1208344 – ident: 1973_CR119 doi: 10.1186/s40168-016-0222-x – volume: 11 start-page: 4333 year: 2020 ident: 1973_CR75 publication-title: Nat Commun doi: 10.1038/s41467-020-18127-y – volume: 490 start-page: 55 year: 2012 ident: 1973_CR4 publication-title: Nature doi: 10.1038/nature11450 – volume: 60 start-page: 631 year: 2011 ident: 1973_CR62 publication-title: Gut doi: 10.1136/gut.2010.223263 – volume: 444 start-page: 1027 year: 2006 ident: 1973_CR10 publication-title: Nature doi: 10.1038/nature05414 – volume: 66 start-page: 70 year: 2017 ident: 1973_CR20 publication-title: Gut doi: 10.1136/gutjnl-2015-309800 – volume: 1 start-page: 81 year: 1986 ident: 1973_CR108 publication-title: Mach Learn doi: 10.1007/BF00116251 – volume: 19 start-page: 250 year: 2021 ident: 1973_CR115 publication-title: BMC Biol doi: 10.1186/s12915-021-01180-4 – ident: 1973_CR106 doi: 10.1214/aos/1013203451 – volume: 8 start-page: 37 year: 2008 ident: 1973_CR139 publication-title: Nat Rev Cancer doi: 10.1038/nrc2294 – volume: 32 start-page: 42 year: 2015 ident: 1973_CR72 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2014.11.002 – volume: 19 start-page: 55 year: 2021 ident: 1973_CR55 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-0433-9 – volume: 53 start-page: 685 year: 2004 ident: 1973_CR61 publication-title: Gut doi: 10.1136/gut.2003.025403 – volume: 562 start-page: 589 year: 2018 ident: 1973_CR6 publication-title: Nature doi: 10.1038/s41586-018-0620-2 – volume: 10 start-page: 6026 year: 2020 ident: 1973_CR54 publication-title: Sci Rep doi: 10.1038/s41598-020-63159-5 – volume: 18 start-page: e1010050 year: 2022 ident: 1973_CR134 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1010050 – volume: 176 start-page: 649 year: 2019 ident: 1973_CR26 publication-title: Cell doi: 10.1016/j.cell.2019.01.001 – volume: 48 start-page: 80 issue: Suppl 1 year: 2014 ident: 1973_CR70 publication-title: J Clin Gastroenterol doi: 10.1097/MCG.0000000000000244 – volume: 568 start-page: 499 year: 2019 ident: 1973_CR147 publication-title: Nature doi: 10.1038/s41586-019-0965-1 – ident: 1973_CR83 doi: 10.1126/scitranslmed.aax4905 – ident: 1973_CR110 doi: 10.1109/BIBM47256.2019.8983228 – volume: 42 start-page: 234 year: 2016 ident: 1973_CR79 publication-title: Diabetes Metab doi: 10.1016/j.diabet.2016.04.009 – volume: 473 start-page: 174 year: 2011 ident: 1973_CR94 publication-title: Nature doi: 10.1038/nature09944 – volume: 11 start-page: 620143 year: 2020 ident: 1973_CR148 publication-title: Front Genet doi: 10.3389/fgene.2020.620143 – volume: 319 start-page: 1317 year: 2018 ident: 1973_CR43 publication-title: JAMA doi: 10.1001/jama.2017.18391 – volume: 35 start-page: 309 year: 2019 ident: 1973_CR109 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty535 – volume: 12 start-page: e1004977 year: 2016 ident: 1973_CR133 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004977 – volume: 9 start-page: 477 year: 2018 ident: 1973_CR112 publication-title: Front Genet doi: 10.3389/fgene.2018.00477 – volume: 472 start-page: 57 year: 2011 ident: 1973_CR81 publication-title: Nature doi: 10.1038/nature09922 – volume: 25 start-page: 789 year: 2019 ident: 1973_CR142 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.05.005 – ident: 1973_CR92 doi: 10.1109/5.58325 – volume: 28 start-page: 100 year: 1979 ident: 1973_CR90 publication-title: JSTOR: Appl Stat – volume: 11 start-page: 4565 year: 2021 ident: 1973_CR47 publication-title: Sci Rep doi: 10.1038/s41598-021-83922-6 – volume: 35 start-page: 3055 year: 2019 ident: 1973_CR120 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1054 – volume: 25 start-page: 792 year: 2019 ident: 1973_CR28 publication-title: Nat Med doi: 10.1038/s41591-019-0414-6 – volume: 38 start-page: 1561 year: 2019 ident: 1973_CR78 publication-title: Clin Nutr doi: 10.1016/j.clnu.2018.08.009 – volume: 555 start-page: 210 year: 2018 ident: 1973_CR39 publication-title: Nature doi: 10.1038/nature25973 – volume: 27 start-page: 1226 year: 2005 ident: 1973_CR138 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 4 start-page: 923 year: 2007 ident: 1973_CR114 publication-title: Nat Methods doi: 10.1038/nmeth1113 – volume: 444 start-page: 1022 year: 2006 ident: 1973_CR7 publication-title: Nature doi: 10.1038/4441022a – volume: 341 start-page: 1241214 year: 2013 ident: 1973_CR9 publication-title: Science doi: 10.1126/science.1241214 – volume: 535 start-page: 376 year: 2016 ident: 1973_CR22 publication-title: Nature doi: 10.1038/nature18646 – ident: 1973_CR17 doi: 10.1038/ncomms2266 – volume: 36 start-page: 4918 year: 2020 ident: 1973_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa598 – volume: 24 start-page: 2993 year: 2020 ident: 1973_CR141 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2993761 – volume: 39 start-page: 105 year: 2021 ident: 1973_CR2 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0603-3 – volume: 2012 start-page: 895462 year: 2012 ident: 1973_CR82 publication-title: Gastroenterol Res Pract doi: 10.1155/2012/895462 – year: 2018 ident: 1973_CR130 publication-title: mSystems doi: 10.1128/mSystems.00031-18 – volume: 569 start-page: 641 year: 2019 ident: 1973_CR24 publication-title: Nature doi: 10.1038/s41586-019-1238-8 – volume: 16 start-page: 85 year: 2015 ident: 1973_CR128 publication-title: Nat Rev Genet doi: 10.1038/nrg3868 – volume: 24 start-page: 1526 year: 2018 ident: 1973_CR30 publication-title: Nat Med doi: 10.1038/s41591-018-0160-1 – volume: 1 start-page: 230 year: 2016 ident: 1973_CR84 publication-title: Synth Syst Biotechnol doi: 10.1016/j.synbio.2016.08.004 – volume: 513 start-page: 59 year: 2014 ident: 1973_CR135 publication-title: Nature doi: 10.1038/nature13568 – ident: 1973_CR77 doi: 10.1002/hep4.1601 – volume: 10 start-page: 5416 year: 2019 ident: 1973_CR89 publication-title: Nat Commun doi: 10.1038/s41467-019-13056-x – volume: 10 start-page: 766 year: 2014 ident: 1973_CR129 publication-title: Mol Syst Biol doi: 10.15252/msb.20145645 – volume: 29 start-page: 131 year: 1997 ident: 1973_CR100 publication-title: Mach Learn doi: 10.1023/A:1007465528199 – volume: 39 start-page: 291 year: 2015 ident: 1973_CR71 publication-title: Diabetes Metab J doi: 10.4093/dmj.2015.39.4.291 – volume: 69 start-page: 1218 year: 2020 ident: 1973_CR69 publication-title: Gut doi: 10.1136/gutjnl-2019-319654 – volume: 45 start-page: 5 year: 2001 ident: 1973_CR102 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 500 start-page: 541 year: 2013 ident: 1973_CR8 publication-title: Nature doi: 10.1038/nature12506 – volume: 577 start-page: 706 year: 2020 ident: 1973_CR51 publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 52 start-page: 1048 year: 2020 ident: 1973_CR38 publication-title: Exp Mol Med doi: 10.1038/s12276-020-0459-0 – volume: 7 start-page: 123 year: 2008 ident: 1973_CR68 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2505 – ident: 1973_CR52 doi: 10.1038/s41587-020-00777-4 – volume: 55 start-page: 205 year: 2006 ident: 1973_CR60 publication-title: Gut doi: 10.1136/gut.2005.073817 – volume: 9 start-page: 2579 year: 2008 ident: 1973_CR87 publication-title: J Mach Learn Res – ident: 1973_CR56 doi: 10.1101/286419 – volume: 20 start-page: 314 year: 2019 ident: 1973_CR131 publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2833-2 – volume: 173 start-page: 1581 year: 2018 ident: 1973_CR44 publication-title: Cell doi: 10.1016/j.cell.2018.05.015 – volume: 464 start-page: 59 year: 2010 ident: 1973_CR21 publication-title: Nature doi: 10.1038/nature08821 – volume: 24 start-page: 41 year: 2016 ident: 1973_CR67 publication-title: Cell Metab doi: 10.1016/j.cmet.2016.05.005 – volume: 20 start-page: 273 year: 1995 ident: 1973_CR99 publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 3 start-page: 274 year: 2021 ident: 1973_CR32 publication-title: Nat Metab doi: 10.1038/s42255-021-00348-0 – volume: 3 start-page: e00188 issue: 1 year: 2018 ident: 1973_CR96 publication-title: mSystems doi: 10.1128/mSystems.00188-17 – ident: 1973_CR33 doi: 10.1101/507780 – volume: 24 start-page: 1407 year: 2018 ident: 1973_CR80 publication-title: Nat Med doi: 10.1038/s41591-018-0128-1 – volume: 68 start-page: 359 year: 2019 ident: 1973_CR13 publication-title: Gut doi: 10.1136/gutjnl-2018-316307 – volume: 5 start-page: 2 year: 2017 ident: 1973_CR42 publication-title: Biomark Res doi: 10.1186/s40364-017-0082-y – ident: 1973_CR137 doi: 10.1172/jci.insight.140940 – volume: 498 start-page: 99 year: 2013 ident: 1973_CR5 publication-title: Nature doi: 10.1038/nature12198 – volume: 124 start-page: 1808 year: 2019 ident: 1973_CR64 publication-title: Circul Res doi: 10.1161/CIRCRESAHA.118.314642 – volume: 19 start-page: 49 year: 2018 ident: 1973_CR140 publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2033-5 – volume: 29 start-page: 2063 year: 2018 ident: 1973_CR116 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2790388 – volume: 16 start-page: 276 year: 2014 ident: 1973_CR29 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.08.014 – volume: 569 start-page: 663 year: 2019 ident: 1973_CR23 publication-title: Nature doi: 10.1038/s41586-019-1236-x – volume: 10 start-page: 25 year: 2022 ident: 1973_CR93 publication-title: Microbiome doi: 10.1186/s40168-021-01199-3 – volume: 11 start-page: 3329 year: 2020 ident: 1973_CR76 publication-title: Nat Commun doi: 10.1038/s41467-020-17180-x – ident: 1973_CR144 doi: 10.1101/464743 – volume: 68 start-page: 1014 year: 2019 ident: 1973_CR14 publication-title: Gut doi: 10.1136/gutjnl-2017-315084 – volume: 11 start-page: 6265 year: 2021 ident: 1973_CR111 publication-title: Sci Rep doi: 10.1038/s41598-021-85285-4 – volume: 218 start-page: 645 year: 2018 ident: 1973_CR132 publication-title: J Infect Dis doi: 10.1093/infdis/jiy192 – volume: 4 start-page: 1168 year: 2020 ident: 1973_CR121 publication-title: Hepatol Commun doi: 10.1002/hep4.1537 |
SSID | ssj0017873 |
Score | 2.561411 |
SecondaryResourceType | review_article |
Snippet | Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely applied to... Abstract Recent studies have demonstrated that gut microbiota plays critical roles in various human diseases. High-throughput technology has been widely... |
SourceID | doaj swepub pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Algorithms Artificial intelligence Autism Biomarkers Complications and side effects Data analysis Data integration Data mining Deep learning Development and progression Diabetes Digestive system Disease Dysbacteriosis Dysbiosis E coli Enzymes Gastrointestinal tract Genes Genomes Gut microbiome Gut microbiota Inflammatory bowel disease Insulin resistance Intestinal microflora Intestines Learning algorithms Liver Machine learning Medical research Medical treatment Medicine, Experimental Metabolism Metabolites Metabolomics Metagenomics Methods Microbiology Microbiomes Microbiota Microbiota (Symbiotic organisms) Microorganisms Multi-omics Obesity Phenotypes Precision medicine Probiotics Review Synthetic biology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJz2I8YGjUUYRPEiTmen3MYohinpQA7k1M_3YDZhZcXb_f6p6epY0Ab14292uhp3qr1671V8R8iZGSIKFCrQ3zlPOnaHGN5oGCJ0eQixrI95G_vpNnp3zzxfi4saoL-wJm-mBZ8UdN95wZbpGgVPhrQfnKTWy8UQf2zYYh94XYt5STOX_DwCGbLkio-XxhFGNU-xch5RGMcqLMJTY-m_75Nt9kgWbaIpApw_I_Zw61ifzVz4kd8L4kNy7QSj4iOAPy2t4W-dhEKsactIau0DrhRcCzgFe12k2X73abeury5mL6So8JuenH39-OKN5QAJ1kFhtqXAMC7ghdjhHzLsYlI6Si0H4CG6LeUz_Ag9Kmn7QXQ9aA4v2w8BU0w99y56Qg3EzhqekhsKi01IOoGrFQ2S6cRI2ChOECx3rK9Iu-rIus4fjEItfNlURWtpZxxZ0bJOOLa_Iu_2e3zN3xl-l3-Mx7CWR9zp9AGiwGQ32X2ioyGs8RIvMFiO2zqz63TTZTz--2xPI1FQqMSvyNgvFDTyD6_NNBNAEkmEVkkeFJJieK5cXrNhs-pPtEPuKSwbLr_bLuBPb2caw2aEMpIEcimtdEVVgrHj8cmW8XCf6byM1kgZW5MuMxmJLpohaW7dO83cmOwXrQg9VbnTWNXAUXARhjZfMeoCBiYCEQbTP_of6n5O7HRpZ29KOHZGD7Z9deAFJ23Z4mezzGgMSPQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIrQggJC4oCsJvH7hAqiKgg4AJX2ZiV-7FZqs22z-_-ZcZyFqFJvm_U4Ws_DM-Mdf0PIuxghCBYq0NY4Tzl3hhpfaRrAdXpwsayOeBv5x095csq_LcQiH7gNuaxy2hPTRu3XDs_IDxt8peKSNR8vryh2jcJ_V3MLjbvkHkKXYUmXWuwSrhqUkU0XZbQ8HNC3cYr16xDYKEb5zBklzP6bO_PNaskZpmjyQ8ePyMMcQJZHo8Qfkzuhf0Ie_Acr-JTg8fIKHsvcEmJZQmRaYi1oOaFDgDTgc5k69JXL7aa8OBsRmS7CM3J6_OXP5xOa2yRQB-HVhgrHMI3rYoPdxLyLQekoueiEj7B5MY9BYOBBSdN2ummZjmDXvuuYqtqurdlzstev-_CClJBeNFrKThlIVkNkunISJgoThAsNawtST_yyLmOIYyuLc5tyCS3tyGMLPLaJx5YX5MNuzuWIoHEr9ScUw44S0a_TF-vrpc3GZCtvOPzESoGj4bUHhyo1IjRFH-s6GFeQtyhEi_gWPRbQLNvtMNivv3_ZI4jXVEo0C_I-E8U1rMG1-T4CcAIhsWaUBzNKMEA3H550xeYNYLD_1LUgb3bDOBOL2vqw3iINBIMcUmxdEDXTsdny5yP92SqBgBupETqwIN9HbZxNyUBRK-tWqQvPYIdgXWgh143OugpEwUUQ1njJrAc1MBE0oRP1y9vXsk_uN2g-dU0bdkD2Ntfb8AqCsk33OlneX9vINXk priority: 102 providerName: ProQuest |
Title | Machine learning for data integration in human gut microbiome |
URI | https://www.proquest.com/docview/2755774632 https://www.proquest.com/docview/2739741848 https://pubmed.ncbi.nlm.nih.gov/PMC9685977 https://research.chalmers.se/publication/533431 https://doaj.org/article/0d9479207eb141d990683738fdf11e9c |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_6AVIfxE-MrUcUwQeJJtnNfjyIXKWlHrZI68G9Lcl-3BXanL3cgf73zuwlp6HFB5_ysTOwmZ3JzCSzvyHkjfcQBBfCJaUyNmHMqETZVCYOXKcFF0szj7uRT8_4yZiNJsVki3TtjloBNnemdthPary4ev_z5tcnMPiPweAl_9Cgz2IJ1qVDwCJowrbJLngmgYZ6yv78VQDlpN3GmTv59sg9yhn4SMp6firA-d9-ad8upOzBjQYXdfyQPGhjy3i4VoZHZMvVj8n9vxAHnxD88jyDy7jtFjGNIWiNsUw07oAjYKHgPA7N--LpahlfX67Bmq7dUzI-Pvr--SRpOygkBiKvZVIYihle5VEayhrvhPScFVVhPbzXqMX40DEnuCormZdUejB5W1VUpGVVZvQZ2anntXtOYsg8csl5JRTksc5TmRoOjIVyhXE5LSOSdfLSpoUXxy4XVzqkGZLrtbg1iFsHcWsWkXcbnh9rcI1_Uh_iMmwoERg73Jgvprq1M51axWCKqQAfxDILvpZLBG_y1meZUyYir3ERNUJf1FhbMy1XTaO_XJzrIYRyIuSgEXnbEvk5PIMp260KIAlEy-pRHvQowTZNf7jTFd2pts7ROATjFIZfbYaRE-vdajdfIQ3EiQyybxkR0dOx3uP3R-rLWcAHV1wiqmBEvq61scfSYkjNtJmFBj2Nbpw2roQ02BttUlgKVrhCK8uptqAGyoMmVEX24r8nsk_2cjSyLEtyekB2louVewmh3LIakG0xEQOyOxyOLkZwPDw6-3Y-CB9GBsF2fwMHDkr7 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcKp7CtIBBIA5oVdu7XtsHhFpoldA0QqWVetva-0gqUafUiRB_it_IjB8Bq1JvvTneWSs7j50Ze_YbgLfOYRAcJ5blmTZMCJ2xzAQps-g6DbpYHjo6jXw4kcMT8fU0Pl2DP91ZGCqr7PbEeqM2c03vyLcjemQiJI8-Xf5k1DWKvq52LTQatTiwv39hylZ9HH1B-b6Lov29489D1nYVYBqjkQWLNaesp3ARNd8y2tkkdVLERWwc2jo3FDNZYROZ5UUa5Tx1aAamKHgS5EUecnzuHVgXHFOZAazv7k2-Ha2-W6D68-5oTiq3K_KmglHFPIZSCWei5_7qLgHXfcH1-sweimnt-fYfwEYbsvo7jY49hDVbPoL7_wEZPgZ6oT3Dn37bhGLqYyzsU_Wp3-FRoPzx2q97AvrT5cK_OG8woC7sEzi5FRY-hUE5L-0z8DGhiVIpiyTD9Ng6ngZa4sQ4s7G2Ec89CDt-Kd2illPzjB-qzl5SqRoeK-SxqnmshAcfVnMuG8yOG6l3SQwrSsLbrm_Mr6aqNV8VmEzgXwwSdG0iNOjCZUqYUM64MLSZ9uANCVERokZJJTvTfFlVavT9SO1ghJjUqa0H71siN8c16Lw9AYGcIBCuHuVWjxJNXveHO11R7ZZTqX8G4sHr1TDNpDK60s6XRIPhp8CkPvUg6elYb_n9kfJ8VsOOZzIlsEIPxo029qa00FQzpWd1359KVVZpm2N27bTSAYpCxDZWmZFcGVSDzKEmFHH4_Oa1vIK7w-PDsRqPJgebcC8iUwpDFvEtGCyulvYFhoSL4mVrhz6c3bbp_wVtlHSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+data+integration+in+human+gut+microbiome&rft.jtitle=Microbial+cell+factories&rft.au=Li%2C+Peishun&rft.au=Luo%2C+Hao&rft.au=Ji%2C+Boyang&rft.au=Nielsen%2C+Jens&rft.date=2022-11-23&rft.pub=BioMed+Central&rft.eissn=1475-2859&rft.volume=21&rft_id=info:doi/10.1186%2Fs12934-022-01973-4&rft_id=info%3Apmid%2F36419034&rft.externalDocID=PMC9685977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon |