Transcription of follicle-stimulating hormone subunit genes is modulated by porcine LIM homeobox transcription factors, LHX2 and LHX3

The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactio...

Full description

Saved in:
Bibliographic Details
Published inJournal of Reproduction and Development Vol. 62; no. 3; pp. 241 - 248
Main Authors YOSHIDA, Saishu, KATO, Takako, NISHIMURA, Naoto, KANNO, Naoko, CHEN, Mo, UEHARU, Hiroki, NISHIHARA, Hiroto, KATO, Yukio
Format Journal Article
LanguageEnglish
Published Japan THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT 2016
The Society for Reproduction and Development
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ. However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression.
AbstractList The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ. However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression.
The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ . These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ . However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression.
The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fsh beta . These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fsh beta between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fsh beta varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fsh beta promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage L beta T2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fsh beta . However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fsh beta expression.
Author NISHIHARA, Hiroto
KATO, Yukio
KATO, Takako
NISHIMURA, Naoto
KANNO, Naoko
CHEN, Mo
UEHARU, Hiroki
YOSHIDA, Saishu
Author_xml – sequence: 1
  fullname: YOSHIDA, Saishu
  organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
– sequence: 2
  fullname: KATO, Takako
  organization: Institute of Reproduction and Endocrinology, Meiji University, Kanagawa 214-8571, Japan
– sequence: 3
  fullname: NISHIMURA, Naoto
  organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
– sequence: 4
  fullname: KANNO, Naoko
  organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
– sequence: 5
  fullname: CHEN, Mo
  organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
– sequence: 6
  fullname: UEHARU, Hiroki
  organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
– sequence: 7
  fullname: NISHIHARA, Hiroto
  organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
– sequence: 8
  fullname: KATO, Yukio
  organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26853788$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URB-wY428ZNEUv-I4GySogFYaxKZI7CzHuZnxKLEH20H0B_C_cZjOiCKxsS3f75xj-ZyjEx88IPSSkivKJHuzjf0VI7SuqORP0BnlQlVCEHKCzkhLZaUUVafoPKUtIZzVUjxDp0yqmjdKnaFfd9H4ZKPbZRc8DgMewjg6O0KVspvm0WTn13gT4lRicZq72buM1-AhYZfwFPqFgR5393gXonWFWt1-LooJQhd-4vwoYDA2h5gu8ermG8PG98uBP0dPBzMmePGwX6CvHz_cXd9Uqy-fbq_frSora5Ir0ShOWCcIH2TT9JQbSxQQLnrDhh6okNLUqm6lJaSWnYGurrtyA6pVEmjHL9Dbve9u7iboLfjyulHvoptMvNfBOP144t1Gr8MPLVraMtUUg9cPBjF8nyFlPblkYRyNhzAnTRVRDRWt4gV99XfWMeTw9wVge8DGkFKEQVuXzfJLJdqNmhK9FKxLwXopWJeCi-jyH9HB9z_4-z2-Tdms4QibmJeO_8BFw5flIDoO7cZEDZ7_BtUtwZw
CitedBy_id crossref_primary_10_1016_j_brainres_2018_02_046
crossref_primary_10_1016_j_fct_2023_114085
crossref_primary_10_1262_jrd_2015_138
crossref_primary_10_5194_aab_60_79_2017
crossref_primary_10_1262_jrd_2019_143
Cites_doi 10.1016/S0925-4773(99)00314-7
10.1210/er.2003-0029
10.1016/S0303-7207(99)00078-7
10.1128/MCB.23.21.7585-7599.2003
10.1021/bi00202a001
10.1016/j.mce.2009.03.010
10.1210/en.2006-1390
10.1111/j.1365-2826.2012.02336.x
10.1016/S0303-7207(98)00213-5
10.1210/mend.13.12.0395
10.1242/dev.124.15.2935
10.1093/nar/22.15.3075
10.1210/me.2005-0184
10.1016/j.mce.2009.10.006
10.1262/jrd.2015-138
10.1016/j.ydbio.2009.11.002
10.1152/physrev.00006.2006
10.1073/pnas.92.7.2720
10.1042/BSR20090020
10.1016/j.bbaexp.2006.08.004
10.1038/sj.embor.7400030
10.1242/dev.122.10.3319
10.1210/endo.142.6.8185
10.1126/science.1151695
10.1128/MCB.13.4.2354
10.1002/jcb.22066
10.1007/s11033-007-9088-0
10.1128/MCB.14.5.2985
10.1016/j.bbrc.2004.09.124
10.1126/science.272.5264.1004
10.1262/jrd.11-099S
10.1677/jme.1.02010
10.1074/jbc.274.51.36159
10.1074/jbc.M103888200
10.1262/jrd.20232
10.1126/science.278.5344.1809
10.1093/emboj/16.11.3145
10.1093/nar/22.7.1202
10.1074/jbc.275.18.13336
10.1210/en.2004-0598
10.1016/0092-8674(95)90468-9
10.1074/jbc.273.6.3152
10.1262/jrd.20256
10.1128/MCB.24.4.1439-1452.2004
10.1262/jrd.50.557
10.1016/S0014-5793(98)00787-X
ContentType Journal Article
Copyright 2016 Society for Reproduction and Development
2016 Society for Reproduction and Development 2016
Copyright_xml – notice: 2016 Society for Reproduction and Development
– notice: 2016 Society for Reproduction and Development 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
H94
5PM
DOI 10.1262/jrd.2015-163
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE


AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1348-4400
EndPage 248
ExternalDocumentID PMC4919287
26853788
10_1262_jrd_2015_163
article_jrd_62_3_62_2015_163_article_char_en
Genre Journal Article
GroupedDBID ---
29L
2WC
53G
5GY
ACGFO
ACPRK
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RZJ
TKC
TR2
XSB
AAYXX
B.T
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
H94
5PM
ID FETCH-LOGICAL-c650t-478302b403f677d13ac08e034da2fde1466a58596c0056baeb55ba58e8986e1b3
IEDL.DBID M48
ISSN 0916-8818
IngestDate Thu Aug 21 13:37:08 EDT 2025
Fri Jul 11 12:38:18 EDT 2025
Thu Jan 02 22:21:16 EST 2025
Thu Apr 24 22:54:13 EDT 2025
Tue Jul 01 02:55:17 EDT 2025
Wed Apr 05 03:22:41 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c650t-478302b403f677d13ac08e034da2fde1466a58596c0056baeb55ba58e8986e1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2015-163
PMID 26853788
PQID 1808714983
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4919287
proquest_miscellaneous_1808714983
pubmed_primary_26853788
crossref_citationtrail_10_1262_jrd_2015_163
crossref_primary_10_1262_jrd_2015_163
jstage_primary_article_jrd_62_3_62_2015_163_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Reproduction and Development
PublicationTitleAlternate J. Reprod. Dev.
PublicationYear 2016
Publisher THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
The Society for Reproduction and Development
Publisher_xml – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
– name: The Society for Reproduction and Development
References 17. Damante G, Fabbro D, Pellizzari L, Civitareale D, Guazzi S, Polycarpou-Schwartz M, Cauci S, Quadrifoglio F, Formisano S, Di Lauro R. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res 1994; 22: 3075–3083.
43. Kato Y, Kato T, Ono T, Susa T, Kitahara K, Matsumoto K. Intracellular localization of porcine single-strand binding protein 2. J Cell Biochem 2009; 106: 912–919.
24. Sloop KW, Dwyer CJ, Rhodes SJ. An isoform-specific inhibitory domain regulates the LHX3 LIM homeodomain factor holoprotein and the production of a functional alternate translation form. J Biol Chem 2001; 276: 36311–36319.
2. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87: 933–963.
3. Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62: 195–199.
18. Jagla K, Stanceva I, Dretzen G, Bellard F, Bellard M. A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster. Nucleic Acids Res 1994; 22: 1202–1207.
7. Girardin SE, Benjannet S, Barale JC, Chrétien M, Seidah NG. The LIM homeobox protein mLIM3/Lhx3 induces expression of the prolactin gene by a Pit-1/GHF-1-independent pathway in corticotroph AtT20 cells. FEBS Lett 1998; 431: 333–338.
11. Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, Huang SP, Lee E, Grinberg A, Massalas JS, Bodine D, Alt F, Westphal H. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 1997; 124: 2935–2944.
41. Howard PW, Maurer RA. Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. J Biol Chem 2000; 275: 13336–13342.
30. Pernasetti F, Vasilyev VV, Rosenberg SB, Bailey JS, Huang HJ, Miller WL, Mellon PL. Cell-specific transcriptional regulation of follicle-stimulating hormone-beta by activin and gonadotropin-releasing hormone in the LbetaT2 pituitary gonadotrope cell model. Endocrinology 2001; 142: 2284–2295.
25. Susa T, Ishikawa A, Kato T, Nakayama M, Kitahara K, Kato Y. Regulation of porcine pituitary glycoprotein hormone alpha subunit gene with LIM-homeobox transcription factor Lhx3. J Reprod Dev 2009; 55: 425–432.
33. Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K. Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 2007; 148: 1518–1523.
9. Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, Rhodes SJ. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 1999; 13: 2212–2225.
10. West BE, Parker GE, Savage JJ, Kiratipranon P, Toomey KS, Beach LR, Colvin SC, Sloop KW, Rhodes SJ. Regulation of the follicle-stimulating hormone β gene by the LHX3 LIM-homeodomain transcription factor. Endocrinology 2004; 145: 4866–4879.
39. Jurata LW, Pfaff SL, Gill GN. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem 1998; 273: 3152–3157.
1. Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25: 521–542.
40. Granger A, Bleux C, Kottler ML, Rhodes SJ, Counis R, Laverrière JN. The LIM-homeodomain proteins Isl-1 and Lhx3 act with steroidogenic factor 1 to enhance gonadotrope-specific activity of the gonadotropin-releasing hormone receptor gene promoter. Mol Endocrinol 2006; 20: 2093–2108.
19. Pomerantz JL, Sharp PA. Homeodomain determinants of major groove recognition. Biochemistry 1994; 33: 10851–10858.
15. Bach I. The LIM domain: regulation by association. Mech Dev 2000; 91: 5–17.
34. Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L, Shetty AS, Martynoga B, Paul J, Mai MV, Li Y, Flanagan LA, Tole S, Monuki ES. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008; 319: 304–309.
46. Lahlil R, Lécuyer E, Herblot S, Hoang T. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24: 1439–1452.
35. Glenn DJ, Maurer RA. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone alpha-subunit gene expression. J Biol Chem 1999; 274: 36159–36167.
12. Zhao Y, Mailloux CM, Hermesz E, Palkóvits M, Westphal H. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development. Dev Biol 2010; 337: 313–323.
44. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157.
37. Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 2012; 24: 1201–1212.
20. Wilson DS, Guenther B, Desplan C, Kuriyan J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 1995; 82: 709–719.
23. Aikawa S, Kato T, Susa T, Tomizawa K, Ogawa S, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone β subunit gene expression. Biochem Biophys Res Commun 2004; 324: 946–952.
28. Sato T, Kitahara K, Susa T, Kato T, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression. J Mol Endocrinol 2006; 37: 341–352.
38. Matthews JM, Visvader JE. LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep 2003; 4: 1132–1137.
16. Catron KM, Iler N, Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol 1993; 13: 2354–2365.
27. Kato Y, Koike Y, Tomizawa K, Ogawa S, Hosaka K, Tanaka S, Kato T. Presence of activating transcription factor 4 (ATF4) in the porcine anterior pituitary. Mol Cell Endocrinol 1999; 154: 151–159.
29. Alarid ET, Windle JJ, Whyte DB, Mellon PL. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 1996; 122: 3319–3329.
32. Ogawa S, Aikawa S, Kato T, Tomizawa K, Tsukamura H, Maeda K, Petric N, Elsaesser F, Kato Y. Prominent expression of spinocerebellar ataxia type-1 (SCA1) gene encoding ataxin-1 in LH-producing cells, LbetaT2. J Reprod Dev 2004; 50: 557–563.
6. Bach I, Rhodes SJ, Pearse RV 2nd, Heinzel T, Gloss B, Scully KM, Sawchenko PE, Rosenfeld MG. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 1995; 92: 2720–2724.
5. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997; 278: 1809–1812.
42. Susa T, Ishikawa A, Cai LY, Kato T, Matsumoto K, Kitahara K, Kurokawa R, Ono T, Kato Y. The highly related LIM factors, LMO1, LMO3 and LMO4, play different roles in the regulation of the pituitary glycoprotein hormone α-subunit (α GSU) gene. Biosci Rep 2010; 30: 51–58.
26. Susa T, Ishikawa A, Kato T, Nakayama M, Kato Y. Molecular cloning of paired related homeobox 2 (prx2) as a novel pituitary transcription factor. J Reprod Dev 2009; 55: 502–511.
14. Kato T, Ishikawa A, Yoshida S, Sano Y, Kitahara K, Nakayama M, Susa T, Kato Y. Molecular cloning of LIM homeodomain transcription factor Lhx2 as a transcription factor of porcine follicle-stimulating hormone beta subunit (FSHβ) gene. J Reprod Dev 2012; 58: 147–155.
36. Susa T, Sato T, Ono T, Kato T, Kato Y. Cofactor CLIM2 promotes the repressive action of LIM homeodomain transcription factor Lhx2 in the expression of porcine pituitary glycoprotein hormone alpha subunit gene. Biochim Biophys Acta 2006; 1759: 403–409.
21. Nakayama M, Kato T, Susa T, Sano A, Kitahara K, Kato Y. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity. Mol Cell Endocrinol 2009; 307: 36–42.
4. Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang S-P, Mahon KA, Westphal H. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 1996; 272: 1004–1007.
22. Kato Y, Kimoto F, Susa T, Nakayama M, Ishikawa A, Kato T. Pituitary homeodomain transcription factors HESX1 and PROP1 form a heterodimer on the inverted TAAT motif. Mol Cell Endocrinol 2010; 315: 168–173.
45. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599.
8. Meier BC, Price JR, Parker GE, Bridwell JL, Rhodes SJ. Characterization of the porcine Lhx3/LIM-3/P-Lim LIM homeodomain transcription factor. Mol Cell Endocrinol 1999; 147: 65–74.
13. Roberson MS, Schoderbek WE, Tremml G, Maurer RA. Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 1994; 14: 2985–2993.
31. Susa T, Kato T, Kato Y. Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine2000. Mol Biol Rep 2008; 35: 313–319.
22
44
23
45
24
46
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
8898243 - Development. 1996 Oct;122(10):3319-29
17234709 - Endocrinology. 2007 Apr;148(4):1518-23
17508267 - Mol Biol Rep. 2008 Sep;35(3):313-9
9247336 - Development. 1997 Aug;124(15):2935-44
11356674 - Endocrinology. 2001 Jun;142(6):2284-95
7909370 - Nucleic Acids Res. 1994 Apr 11;22(7):1202-7
22577874 - J Neuroendocrinol. 2012 Sep;24(9):1201-12
7915030 - Nucleic Acids Res. 1994 Aug 11;22(15):3075-83
19524124 - Mol Cell Endocrinol. 2009 Aug 13;307(1-2):36-42
15474519 - Biochem Biophys Res Commun. 2004 Nov 12;324(2):946-52
19879326 - Mol Cell Endocrinol. 2010 Feb 5;315(1-2):168-73
7513049 - Mol Cell Biol. 1994 May;14(5):2985-93
15294880 - Endocr Rev. 2004 Aug;25(4):521-42
10593900 - J Biol Chem. 1999 Dec 17;274(51):36159-67
17032749 - J Mol Endocrinol. 2006 Oct;37(2):341-52
15271874 - Endocrinology. 2004 Nov;145(11):4866-79
7916208 - Biochemistry. 1994 Sep 13;33(36):10851-8
9452425 - J Biol Chem. 1998 Feb 6;273(6):3152-7
19444006 - J Reprod Dev. 2009 Aug;55(4):425-32
19550106 - J Reprod Dev. 2009 Oct;55(5):502-11
7708713 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2720-4
8638120 - Science. 1996 May 17;272(5264):1004-7
11470784 - J Biol Chem. 2001 Sep 28;276(39):36311-9
9714537 - FEBS Lett. 1998 Jul 24;431(3):333-8
10704826 - Mech Dev. 2000 Mar 1;91(1-2):5-17
19900438 - Dev Biol. 2010 Jan 15;337(2):313-23
18202285 - Science. 2008 Jan 18;319(5861):304-9
14749362 - Mol Cell Biol. 2004 Feb;24(4):1439-52
7671301 - Cell. 1995 Sep 8;82(5):709-19
19199338 - J Cell Biochem. 2009 Apr 1;106(5):912-9
9388186 - Science. 1997 Dec 5;278(5344):1809-12
10195693 - Mol Cell Endocrinol. 1999 Jan 25;147(1-2):65-74
15514462 - J Reprod Dev. 2004 Oct;50(5):557-63
26853521 - J Reprod Dev. 2016 Apr 22;62(2):195-9
22134063 - J Reprod Dev. 2012;58(1):147-55
17615393 - Physiol Rev. 2007 Jul;87(3):933-63
16613990 - Mol Endocrinol. 2006 Sep;20(9):2093-108
19228115 - Biosci Rep. 2009 Oct 09;30(1):51-8
10788441 - J Biol Chem. 2000 May 5;275(18):13336-42
10509809 - Mol Cell Endocrinol. 1999 Aug 20;154(1-2):151-9
14647207 - EMBO Rep. 2003 Dec;4(12):1132-7
9214632 - EMBO J. 1997 Jun 2;16(11):3145-57
8096059 - Mol Cell Biol. 1993 Apr;13(4):2354-65
14560005 - Mol Cell Biol. 2003 Nov;23(21):7585-99
10598593 - Mol Endocrinol. 1999 Dec;13(12):2212-25
17005264 - Biochim Biophys Acta. 2006 Aug-Sep;1759(8-9):403-9
References_xml – reference: 26. Susa T, Ishikawa A, Kato T, Nakayama M, Kato Y. Molecular cloning of paired related homeobox 2 (prx2) as a novel pituitary transcription factor. J Reprod Dev 2009; 55: 502–511.
– reference: 43. Kato Y, Kato T, Ono T, Susa T, Kitahara K, Matsumoto K. Intracellular localization of porcine single-strand binding protein 2. J Cell Biochem 2009; 106: 912–919.
– reference: 28. Sato T, Kitahara K, Susa T, Kato T, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression. J Mol Endocrinol 2006; 37: 341–352.
– reference: 25. Susa T, Ishikawa A, Kato T, Nakayama M, Kitahara K, Kato Y. Regulation of porcine pituitary glycoprotein hormone alpha subunit gene with LIM-homeobox transcription factor Lhx3. J Reprod Dev 2009; 55: 425–432.
– reference: 44. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157.
– reference: 18. Jagla K, Stanceva I, Dretzen G, Bellard F, Bellard M. A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster. Nucleic Acids Res 1994; 22: 1202–1207.
– reference: 46. Lahlil R, Lécuyer E, Herblot S, Hoang T. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24: 1439–1452.
– reference: 2. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87: 933–963.
– reference: 45. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599.
– reference: 38. Matthews JM, Visvader JE. LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep 2003; 4: 1132–1137.
– reference: 42. Susa T, Ishikawa A, Cai LY, Kato T, Matsumoto K, Kitahara K, Kurokawa R, Ono T, Kato Y. The highly related LIM factors, LMO1, LMO3 and LMO4, play different roles in the regulation of the pituitary glycoprotein hormone α-subunit (α GSU) gene. Biosci Rep 2010; 30: 51–58.
– reference: 33. Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K. Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 2007; 148: 1518–1523.
– reference: 29. Alarid ET, Windle JJ, Whyte DB, Mellon PL. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 1996; 122: 3319–3329.
– reference: 12. Zhao Y, Mailloux CM, Hermesz E, Palkóvits M, Westphal H. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development. Dev Biol 2010; 337: 313–323.
– reference: 30. Pernasetti F, Vasilyev VV, Rosenberg SB, Bailey JS, Huang HJ, Miller WL, Mellon PL. Cell-specific transcriptional regulation of follicle-stimulating hormone-beta by activin and gonadotropin-releasing hormone in the LbetaT2 pituitary gonadotrope cell model. Endocrinology 2001; 142: 2284–2295.
– reference: 6. Bach I, Rhodes SJ, Pearse RV 2nd, Heinzel T, Gloss B, Scully KM, Sawchenko PE, Rosenfeld MG. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 1995; 92: 2720–2724.
– reference: 39. Jurata LW, Pfaff SL, Gill GN. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem 1998; 273: 3152–3157.
– reference: 11. Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, Huang SP, Lee E, Grinberg A, Massalas JS, Bodine D, Alt F, Westphal H. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 1997; 124: 2935–2944.
– reference: 34. Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L, Shetty AS, Martynoga B, Paul J, Mai MV, Li Y, Flanagan LA, Tole S, Monuki ES. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008; 319: 304–309.
– reference: 9. Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, Rhodes SJ. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 1999; 13: 2212–2225.
– reference: 14. Kato T, Ishikawa A, Yoshida S, Sano Y, Kitahara K, Nakayama M, Susa T, Kato Y. Molecular cloning of LIM homeodomain transcription factor Lhx2 as a transcription factor of porcine follicle-stimulating hormone beta subunit (FSHβ) gene. J Reprod Dev 2012; 58: 147–155.
– reference: 40. Granger A, Bleux C, Kottler ML, Rhodes SJ, Counis R, Laverrière JN. The LIM-homeodomain proteins Isl-1 and Lhx3 act with steroidogenic factor 1 to enhance gonadotrope-specific activity of the gonadotropin-releasing hormone receptor gene promoter. Mol Endocrinol 2006; 20: 2093–2108.
– reference: 1. Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25: 521–542.
– reference: 27. Kato Y, Koike Y, Tomizawa K, Ogawa S, Hosaka K, Tanaka S, Kato T. Presence of activating transcription factor 4 (ATF4) in the porcine anterior pituitary. Mol Cell Endocrinol 1999; 154: 151–159.
– reference: 24. Sloop KW, Dwyer CJ, Rhodes SJ. An isoform-specific inhibitory domain regulates the LHX3 LIM homeodomain factor holoprotein and the production of a functional alternate translation form. J Biol Chem 2001; 276: 36311–36319.
– reference: 10. West BE, Parker GE, Savage JJ, Kiratipranon P, Toomey KS, Beach LR, Colvin SC, Sloop KW, Rhodes SJ. Regulation of the follicle-stimulating hormone β gene by the LHX3 LIM-homeodomain transcription factor. Endocrinology 2004; 145: 4866–4879.
– reference: 15. Bach I. The LIM domain: regulation by association. Mech Dev 2000; 91: 5–17.
– reference: 41. Howard PW, Maurer RA. Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. J Biol Chem 2000; 275: 13336–13342.
– reference: 5. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997; 278: 1809–1812.
– reference: 16. Catron KM, Iler N, Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol 1993; 13: 2354–2365.
– reference: 7. Girardin SE, Benjannet S, Barale JC, Chrétien M, Seidah NG. The LIM homeobox protein mLIM3/Lhx3 induces expression of the prolactin gene by a Pit-1/GHF-1-independent pathway in corticotroph AtT20 cells. FEBS Lett 1998; 431: 333–338.
– reference: 36. Susa T, Sato T, Ono T, Kato T, Kato Y. Cofactor CLIM2 promotes the repressive action of LIM homeodomain transcription factor Lhx2 in the expression of porcine pituitary glycoprotein hormone alpha subunit gene. Biochim Biophys Acta 2006; 1759: 403–409.
– reference: 13. Roberson MS, Schoderbek WE, Tremml G, Maurer RA. Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 1994; 14: 2985–2993.
– reference: 31. Susa T, Kato T, Kato Y. Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine2000. Mol Biol Rep 2008; 35: 313–319.
– reference: 32. Ogawa S, Aikawa S, Kato T, Tomizawa K, Tsukamura H, Maeda K, Petric N, Elsaesser F, Kato Y. Prominent expression of spinocerebellar ataxia type-1 (SCA1) gene encoding ataxin-1 in LH-producing cells, LbetaT2. J Reprod Dev 2004; 50: 557–563.
– reference: 23. Aikawa S, Kato T, Susa T, Tomizawa K, Ogawa S, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone β subunit gene expression. Biochem Biophys Res Commun 2004; 324: 946–952.
– reference: 37. Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 2012; 24: 1201–1212.
– reference: 19. Pomerantz JL, Sharp PA. Homeodomain determinants of major groove recognition. Biochemistry 1994; 33: 10851–10858.
– reference: 17. Damante G, Fabbro D, Pellizzari L, Civitareale D, Guazzi S, Polycarpou-Schwartz M, Cauci S, Quadrifoglio F, Formisano S, Di Lauro R. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res 1994; 22: 3075–3083.
– reference: 20. Wilson DS, Guenther B, Desplan C, Kuriyan J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 1995; 82: 709–719.
– reference: 22. Kato Y, Kimoto F, Susa T, Nakayama M, Ishikawa A, Kato T. Pituitary homeodomain transcription factors HESX1 and PROP1 form a heterodimer on the inverted TAAT motif. Mol Cell Endocrinol 2010; 315: 168–173.
– reference: 35. Glenn DJ, Maurer RA. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone alpha-subunit gene expression. J Biol Chem 1999; 274: 36159–36167.
– reference: 4. Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang S-P, Mahon KA, Westphal H. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 1996; 272: 1004–1007.
– reference: 3. Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62: 195–199.
– reference: 8. Meier BC, Price JR, Parker GE, Bridwell JL, Rhodes SJ. Characterization of the porcine Lhx3/LIM-3/P-Lim LIM homeodomain transcription factor. Mol Cell Endocrinol 1999; 147: 65–74.
– reference: 21. Nakayama M, Kato T, Susa T, Sano A, Kitahara K, Kato Y. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity. Mol Cell Endocrinol 2009; 307: 36–42.
– ident: 15
  doi: 10.1016/S0925-4773(99)00314-7
– ident: 1
  doi: 10.1210/er.2003-0029
– ident: 27
  doi: 10.1016/S0303-7207(99)00078-7
– ident: 45
  doi: 10.1128/MCB.23.21.7585-7599.2003
– ident: 19
  doi: 10.1021/bi00202a001
– ident: 21
  doi: 10.1016/j.mce.2009.03.010
– ident: 33
  doi: 10.1210/en.2006-1390
– ident: 37
  doi: 10.1111/j.1365-2826.2012.02336.x
– ident: 8
  doi: 10.1016/S0303-7207(98)00213-5
– ident: 9
  doi: 10.1210/mend.13.12.0395
– ident: 11
  doi: 10.1242/dev.124.15.2935
– ident: 17
  doi: 10.1093/nar/22.15.3075
– ident: 40
  doi: 10.1210/me.2005-0184
– ident: 22
  doi: 10.1016/j.mce.2009.10.006
– ident: 3
  doi: 10.1262/jrd.2015-138
– ident: 12
  doi: 10.1016/j.ydbio.2009.11.002
– ident: 2
  doi: 10.1152/physrev.00006.2006
– ident: 6
  doi: 10.1073/pnas.92.7.2720
– ident: 42
  doi: 10.1042/BSR20090020
– ident: 36
  doi: 10.1016/j.bbaexp.2006.08.004
– ident: 38
  doi: 10.1038/sj.embor.7400030
– ident: 29
  doi: 10.1242/dev.122.10.3319
– ident: 30
  doi: 10.1210/endo.142.6.8185
– ident: 34
  doi: 10.1126/science.1151695
– ident: 16
  doi: 10.1128/MCB.13.4.2354
– ident: 43
  doi: 10.1002/jcb.22066
– ident: 31
  doi: 10.1007/s11033-007-9088-0
– ident: 13
  doi: 10.1128/MCB.14.5.2985
– ident: 23
  doi: 10.1016/j.bbrc.2004.09.124
– ident: 4
  doi: 10.1126/science.272.5264.1004
– ident: 14
  doi: 10.1262/jrd.11-099S
– ident: 28
  doi: 10.1677/jme.1.02010
– ident: 35
  doi: 10.1074/jbc.274.51.36159
– ident: 24
  doi: 10.1074/jbc.M103888200
– ident: 25
  doi: 10.1262/jrd.20232
– ident: 5
  doi: 10.1126/science.278.5344.1809
– ident: 44
  doi: 10.1093/emboj/16.11.3145
– ident: 18
  doi: 10.1093/nar/22.7.1202
– ident: 41
  doi: 10.1074/jbc.275.18.13336
– ident: 10
  doi: 10.1210/en.2004-0598
– ident: 20
  doi: 10.1016/0092-8674(95)90468-9
– ident: 39
  doi: 10.1074/jbc.273.6.3152
– ident: 26
  doi: 10.1262/jrd.20256
– ident: 46
  doi: 10.1128/MCB.24.4.1439-1452.2004
– ident: 32
  doi: 10.1262/jrd.50.557
– ident: 7
  doi: 10.1016/S0014-5793(98)00787-X
– reference: 9714537 - FEBS Lett. 1998 Jul 24;431(3):333-8
– reference: 15294880 - Endocr Rev. 2004 Aug;25(4):521-42
– reference: 14749362 - Mol Cell Biol. 2004 Feb;24(4):1439-52
– reference: 7915030 - Nucleic Acids Res. 1994 Aug 11;22(15):3075-83
– reference: 19524124 - Mol Cell Endocrinol. 2009 Aug 13;307(1-2):36-42
– reference: 10593900 - J Biol Chem. 1999 Dec 17;274(51):36159-67
– reference: 19550106 - J Reprod Dev. 2009 Oct;55(5):502-11
– reference: 26853521 - J Reprod Dev. 2016 Apr 22;62(2):195-9
– reference: 10195693 - Mol Cell Endocrinol. 1999 Jan 25;147(1-2):65-74
– reference: 22134063 - J Reprod Dev. 2012;58(1):147-55
– reference: 9247336 - Development. 1997 Aug;124(15):2935-44
– reference: 14647207 - EMBO Rep. 2003 Dec;4(12):1132-7
– reference: 9388186 - Science. 1997 Dec 5;278(5344):1809-12
– reference: 7708713 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2720-4
– reference: 15514462 - J Reprod Dev. 2004 Oct;50(5):557-63
– reference: 19879326 - Mol Cell Endocrinol. 2010 Feb 5;315(1-2):168-73
– reference: 17032749 - J Mol Endocrinol. 2006 Oct;37(2):341-52
– reference: 16613990 - Mol Endocrinol. 2006 Sep;20(9):2093-108
– reference: 10788441 - J Biol Chem. 2000 May 5;275(18):13336-42
– reference: 19199338 - J Cell Biochem. 2009 Apr 1;106(5):912-9
– reference: 22577874 - J Neuroendocrinol. 2012 Sep;24(9):1201-12
– reference: 9452425 - J Biol Chem. 1998 Feb 6;273(6):3152-7
– reference: 8898243 - Development. 1996 Oct;122(10):3319-29
– reference: 17508267 - Mol Biol Rep. 2008 Sep;35(3):313-9
– reference: 10704826 - Mech Dev. 2000 Mar 1;91(1-2):5-17
– reference: 15474519 - Biochem Biophys Res Commun. 2004 Nov 12;324(2):946-52
– reference: 17615393 - Physiol Rev. 2007 Jul;87(3):933-63
– reference: 9214632 - EMBO J. 1997 Jun 2;16(11):3145-57
– reference: 7909370 - Nucleic Acids Res. 1994 Apr 11;22(7):1202-7
– reference: 11470784 - J Biol Chem. 2001 Sep 28;276(39):36311-9
– reference: 18202285 - Science. 2008 Jan 18;319(5861):304-9
– reference: 8096059 - Mol Cell Biol. 1993 Apr;13(4):2354-65
– reference: 7513049 - Mol Cell Biol. 1994 May;14(5):2985-93
– reference: 14560005 - Mol Cell Biol. 2003 Nov;23(21):7585-99
– reference: 19900438 - Dev Biol. 2010 Jan 15;337(2):313-23
– reference: 19444006 - J Reprod Dev. 2009 Aug;55(4):425-32
– reference: 17234709 - Endocrinology. 2007 Apr;148(4):1518-23
– reference: 15271874 - Endocrinology. 2004 Nov;145(11):4866-79
– reference: 10598593 - Mol Endocrinol. 1999 Dec;13(12):2212-25
– reference: 8638120 - Science. 1996 May 17;272(5264):1004-7
– reference: 11356674 - Endocrinology. 2001 Jun;142(6):2284-95
– reference: 19228115 - Biosci Rep. 2009 Oct 09;30(1):51-8
– reference: 7671301 - Cell. 1995 Sep 8;82(5):709-19
– reference: 10509809 - Mol Cell Endocrinol. 1999 Aug 20;154(1-2):151-9
– reference: 17005264 - Biochim Biophys Acta. 2006 Aug-Sep;1759(8-9):403-9
– reference: 7916208 - Biochemistry. 1994 Sep 13;33(36):10851-8
SSID ssj0032564
Score 2.0821655
Snippet The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit...
The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241
SubjectTerms Animals
Binding Sites
Cell Line
CHO Cells
Cricetinae
Cricetulus
Deoxyribonuclease I - metabolism
Follicle Stimulating Hormone, beta Subunit - genetics
Follicle Stimulating Hormone, beta Subunit - metabolism
Gene regulation
Glycoprotein hormone
Glycoprotein Hormones, alpha Subunit - genetics
Glycoprotein Hormones, alpha Subunit - metabolism
Immunohistochemistry
LHX2
LHX3
LIM-homeodomain
LIM-Homeodomain Proteins - metabolism
Mice
Original
Pituitary
Pituitary Gland - metabolism
Promoter Regions, Genetic
Protein Domains
Swine
Transcription Factors - metabolism
Transcription, Genetic
Title Transcription of follicle-stimulating hormone subunit genes is modulated by porcine LIM homeobox transcription factors, LHX2 and LHX3
URI https://www.jstage.jst.go.jp/article/jrd/62/3/62_2015-163/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/26853788
https://www.proquest.com/docview/1808714983
https://pubmed.ncbi.nlm.nih.gov/PMC4919287
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Reproduction and Development, 2016, Vol.62(3), pp.241-248
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKOdSXCsq1LayMBE9gSOIjjhBCCFEtx1Y8sNK-RXbsbFt1E9hD6v4A_jcziROxVZF4iaJkHCeezMw3dvINIc8zZTLlpWMiMQkTSltmhDRMa25dJGJnPP47PD5Ro4n4MpXTHdJVGw0DuLw2tcN6UpPFxevLX5v3YPDvGm4Elbw5XyDlZywZYIsb5CbEpBRrGYxFv57AIbA3RFIAhuA2Yh0-gb_aeis43ToHfDbz10HPq19Q_hWSju-S_YAl6YdW-ffIjq8OyO22uuTmgNwZh3Xz--R3E5I6B0HrkpZIxg2tGJj4vCnhVc3oKQDYuvJ0ubZrMHU6Q0dIz5Z0XjuU8Y7aDYXBwqtS8HvQYu5rW1_S1VYHoYrPK_ptNE2oqRzu8Adkcvzpx8cRCwUYWAHAbcVEiuxgVkS8VGnqYm6KSPuIC2eS0nlwsspAupGpAhlFrfFWSgtHvM608rHlD8luBbf9mFCZ6Ug5Ce7DcyFLpb0sVIncPjFOxaoBedmNfF4EdnIsknGRY5YCespBTznqKQc9DciLXvpny8rxD7m3rRJ7qWCPjRQIc9x00v1J_OENvMaAPOs0n4PR4UqKqXy9XuaxjiDRFJmGHh61b0LfQ6IAAaVaD0i69Y70AkjovX2mOjttiL1FBnhbp4f_-XRHZA92w4TQE7K7Wqz9U4BIKzuE5ODz12EzwTBsLAG2J9_HfwC6gBQb
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcription+of+follicle-stimulating+hormone+subunit+genes+is+modulated+by+porcine+LIM+homeobox+transcription+factors%2C+LHX2+and+LHX3&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=YOSHIDA%2C+Saishu&rft.au=KATO%2C+Takako&rft.au=NISHIMURA%2C+Naoto&rft.au=KANNO%2C+Naoko&rft.date=2016&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=62&rft.issue=3&rft.spage=241&rft.epage=248&rft_id=info:doi/10.1262%2Fjrd.2015-163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1262_jrd_2015_163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon