Transcription of follicle-stimulating hormone subunit genes is modulated by porcine LIM homeobox transcription factors, LHX2 and LHX3
The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactio...
Saved in:
Published in | Journal of Reproduction and Development Vol. 62; no. 3; pp. 241 - 248 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
2016
The Society for Reproduction and Development |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ. However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression. |
---|---|
AbstractList | The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ. However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression. The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ . These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ . However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression. The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fsh beta . These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fsh beta between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fsh beta varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fsh beta promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage L beta T2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fsh beta . However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fsh beta expression. |
Author | NISHIHARA, Hiroto KATO, Yukio KATO, Takako NISHIMURA, Naoto KANNO, Naoko CHEN, Mo UEHARU, Hiroki YOSHIDA, Saishu |
Author_xml | – sequence: 1 fullname: YOSHIDA, Saishu organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan – sequence: 2 fullname: KATO, Takako organization: Institute of Reproduction and Endocrinology, Meiji University, Kanagawa 214-8571, Japan – sequence: 3 fullname: NISHIMURA, Naoto organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan – sequence: 4 fullname: KANNO, Naoko organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan – sequence: 5 fullname: CHEN, Mo organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan – sequence: 6 fullname: UEHARU, Hiroki organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan – sequence: 7 fullname: NISHIHARA, Hiroto organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan – sequence: 8 fullname: KATO, Yukio organization: Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26853788$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS1URB-wY428ZNEUv-I4GySogFYaxKZI7CzHuZnxKLEH20H0B_C_cZjOiCKxsS3f75xj-ZyjEx88IPSSkivKJHuzjf0VI7SuqORP0BnlQlVCEHKCzkhLZaUUVafoPKUtIZzVUjxDp0yqmjdKnaFfd9H4ZKPbZRc8DgMewjg6O0KVspvm0WTn13gT4lRicZq72buM1-AhYZfwFPqFgR5393gXonWFWt1-LooJQhd-4vwoYDA2h5gu8ermG8PG98uBP0dPBzMmePGwX6CvHz_cXd9Uqy-fbq_frSora5Ir0ShOWCcIH2TT9JQbSxQQLnrDhh6okNLUqm6lJaSWnYGurrtyA6pVEmjHL9Dbve9u7iboLfjyulHvoptMvNfBOP144t1Gr8MPLVraMtUUg9cPBjF8nyFlPblkYRyNhzAnTRVRDRWt4gV99XfWMeTw9wVge8DGkFKEQVuXzfJLJdqNmhK9FKxLwXopWJeCi-jyH9HB9z_4-z2-Tdms4QibmJeO_8BFw5flIDoO7cZEDZ7_BtUtwZw |
CitedBy_id | crossref_primary_10_1016_j_brainres_2018_02_046 crossref_primary_10_1016_j_fct_2023_114085 crossref_primary_10_1262_jrd_2015_138 crossref_primary_10_5194_aab_60_79_2017 crossref_primary_10_1262_jrd_2019_143 |
Cites_doi | 10.1016/S0925-4773(99)00314-7 10.1210/er.2003-0029 10.1016/S0303-7207(99)00078-7 10.1128/MCB.23.21.7585-7599.2003 10.1021/bi00202a001 10.1016/j.mce.2009.03.010 10.1210/en.2006-1390 10.1111/j.1365-2826.2012.02336.x 10.1016/S0303-7207(98)00213-5 10.1210/mend.13.12.0395 10.1242/dev.124.15.2935 10.1093/nar/22.15.3075 10.1210/me.2005-0184 10.1016/j.mce.2009.10.006 10.1262/jrd.2015-138 10.1016/j.ydbio.2009.11.002 10.1152/physrev.00006.2006 10.1073/pnas.92.7.2720 10.1042/BSR20090020 10.1016/j.bbaexp.2006.08.004 10.1038/sj.embor.7400030 10.1242/dev.122.10.3319 10.1210/endo.142.6.8185 10.1126/science.1151695 10.1128/MCB.13.4.2354 10.1002/jcb.22066 10.1007/s11033-007-9088-0 10.1128/MCB.14.5.2985 10.1016/j.bbrc.2004.09.124 10.1126/science.272.5264.1004 10.1262/jrd.11-099S 10.1677/jme.1.02010 10.1074/jbc.274.51.36159 10.1074/jbc.M103888200 10.1262/jrd.20232 10.1126/science.278.5344.1809 10.1093/emboj/16.11.3145 10.1093/nar/22.7.1202 10.1074/jbc.275.18.13336 10.1210/en.2004-0598 10.1016/0092-8674(95)90468-9 10.1074/jbc.273.6.3152 10.1262/jrd.20256 10.1128/MCB.24.4.1439-1452.2004 10.1262/jrd.50.557 10.1016/S0014-5793(98)00787-X |
ContentType | Journal Article |
Copyright | 2016 Society for Reproduction and Development 2016 Society for Reproduction and Development 2016 |
Copyright_xml | – notice: 2016 Society for Reproduction and Development – notice: 2016 Society for Reproduction and Development 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM H94 5PM |
DOI | 10.1262/jrd.2015-163 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts Nucleic Acids Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1348-4400 |
EndPage | 248 |
ExternalDocumentID | PMC4919287 26853788 10_1262_jrd_2015_163 article_jrd_62_3_62_2015_163_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 29L 2WC 53G 5GY ACGFO ACPRK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RZJ TKC TR2 XSB AAYXX B.T CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7T5 7TM H94 5PM |
ID | FETCH-LOGICAL-c650t-478302b403f677d13ac08e034da2fde1466a58596c0056baeb55ba58e8986e1b3 |
IEDL.DBID | M48 |
ISSN | 0916-8818 |
IngestDate | Thu Aug 21 13:37:08 EDT 2025 Fri Jul 11 12:38:18 EDT 2025 Thu Jan 02 22:21:16 EST 2025 Thu Apr 24 22:54:13 EDT 2025 Tue Jul 01 02:55:17 EDT 2025 Wed Apr 05 03:22:41 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c650t-478302b403f677d13ac08e034da2fde1466a58596c0056baeb55ba58e8986e1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2015-163 |
PMID | 26853788 |
PQID | 1808714983 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4919287 proquest_miscellaneous_1808714983 pubmed_primary_26853788 crossref_citationtrail_10_1262_jrd_2015_163 crossref_primary_10_1262_jrd_2015_163 jstage_primary_article_jrd_62_3_62_2015_163_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Reproduction and Development |
PublicationTitleAlternate | J. Reprod. Dev. |
PublicationYear | 2016 |
Publisher | THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT The Society for Reproduction and Development |
Publisher_xml | – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT – name: The Society for Reproduction and Development |
References | 17. Damante G, Fabbro D, Pellizzari L, Civitareale D, Guazzi S, Polycarpou-Schwartz M, Cauci S, Quadrifoglio F, Formisano S, Di Lauro R. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res 1994; 22: 3075–3083. 43. Kato Y, Kato T, Ono T, Susa T, Kitahara K, Matsumoto K. Intracellular localization of porcine single-strand binding protein 2. J Cell Biochem 2009; 106: 912–919. 24. Sloop KW, Dwyer CJ, Rhodes SJ. An isoform-specific inhibitory domain regulates the LHX3 LIM homeodomain factor holoprotein and the production of a functional alternate translation form. J Biol Chem 2001; 276: 36311–36319. 2. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87: 933–963. 3. Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62: 195–199. 18. Jagla K, Stanceva I, Dretzen G, Bellard F, Bellard M. A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster. Nucleic Acids Res 1994; 22: 1202–1207. 7. Girardin SE, Benjannet S, Barale JC, Chrétien M, Seidah NG. The LIM homeobox protein mLIM3/Lhx3 induces expression of the prolactin gene by a Pit-1/GHF-1-independent pathway in corticotroph AtT20 cells. FEBS Lett 1998; 431: 333–338. 11. Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, Huang SP, Lee E, Grinberg A, Massalas JS, Bodine D, Alt F, Westphal H. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 1997; 124: 2935–2944. 41. Howard PW, Maurer RA. Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. J Biol Chem 2000; 275: 13336–13342. 30. Pernasetti F, Vasilyev VV, Rosenberg SB, Bailey JS, Huang HJ, Miller WL, Mellon PL. Cell-specific transcriptional regulation of follicle-stimulating hormone-beta by activin and gonadotropin-releasing hormone in the LbetaT2 pituitary gonadotrope cell model. Endocrinology 2001; 142: 2284–2295. 25. Susa T, Ishikawa A, Kato T, Nakayama M, Kitahara K, Kato Y. Regulation of porcine pituitary glycoprotein hormone alpha subunit gene with LIM-homeobox transcription factor Lhx3. J Reprod Dev 2009; 55: 425–432. 33. Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K. Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 2007; 148: 1518–1523. 9. Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, Rhodes SJ. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 1999; 13: 2212–2225. 10. West BE, Parker GE, Savage JJ, Kiratipranon P, Toomey KS, Beach LR, Colvin SC, Sloop KW, Rhodes SJ. Regulation of the follicle-stimulating hormone β gene by the LHX3 LIM-homeodomain transcription factor. Endocrinology 2004; 145: 4866–4879. 39. Jurata LW, Pfaff SL, Gill GN. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem 1998; 273: 3152–3157. 1. Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25: 521–542. 40. Granger A, Bleux C, Kottler ML, Rhodes SJ, Counis R, Laverrière JN. The LIM-homeodomain proteins Isl-1 and Lhx3 act with steroidogenic factor 1 to enhance gonadotrope-specific activity of the gonadotropin-releasing hormone receptor gene promoter. Mol Endocrinol 2006; 20: 2093–2108. 19. Pomerantz JL, Sharp PA. Homeodomain determinants of major groove recognition. Biochemistry 1994; 33: 10851–10858. 15. Bach I. The LIM domain: regulation by association. Mech Dev 2000; 91: 5–17. 34. Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L, Shetty AS, Martynoga B, Paul J, Mai MV, Li Y, Flanagan LA, Tole S, Monuki ES. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008; 319: 304–309. 46. Lahlil R, Lécuyer E, Herblot S, Hoang T. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24: 1439–1452. 35. Glenn DJ, Maurer RA. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone alpha-subunit gene expression. J Biol Chem 1999; 274: 36159–36167. 12. Zhao Y, Mailloux CM, Hermesz E, Palkóvits M, Westphal H. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development. Dev Biol 2010; 337: 313–323. 44. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157. 37. Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 2012; 24: 1201–1212. 20. Wilson DS, Guenther B, Desplan C, Kuriyan J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 1995; 82: 709–719. 23. Aikawa S, Kato T, Susa T, Tomizawa K, Ogawa S, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone β subunit gene expression. Biochem Biophys Res Commun 2004; 324: 946–952. 28. Sato T, Kitahara K, Susa T, Kato T, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression. J Mol Endocrinol 2006; 37: 341–352. 38. Matthews JM, Visvader JE. LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep 2003; 4: 1132–1137. 16. Catron KM, Iler N, Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol 1993; 13: 2354–2365. 27. Kato Y, Koike Y, Tomizawa K, Ogawa S, Hosaka K, Tanaka S, Kato T. Presence of activating transcription factor 4 (ATF4) in the porcine anterior pituitary. Mol Cell Endocrinol 1999; 154: 151–159. 29. Alarid ET, Windle JJ, Whyte DB, Mellon PL. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 1996; 122: 3319–3329. 32. Ogawa S, Aikawa S, Kato T, Tomizawa K, Tsukamura H, Maeda K, Petric N, Elsaesser F, Kato Y. Prominent expression of spinocerebellar ataxia type-1 (SCA1) gene encoding ataxin-1 in LH-producing cells, LbetaT2. J Reprod Dev 2004; 50: 557–563. 6. Bach I, Rhodes SJ, Pearse RV 2nd, Heinzel T, Gloss B, Scully KM, Sawchenko PE, Rosenfeld MG. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 1995; 92: 2720–2724. 5. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997; 278: 1809–1812. 42. Susa T, Ishikawa A, Cai LY, Kato T, Matsumoto K, Kitahara K, Kurokawa R, Ono T, Kato Y. The highly related LIM factors, LMO1, LMO3 and LMO4, play different roles in the regulation of the pituitary glycoprotein hormone α-subunit (α GSU) gene. Biosci Rep 2010; 30: 51–58. 26. Susa T, Ishikawa A, Kato T, Nakayama M, Kato Y. Molecular cloning of paired related homeobox 2 (prx2) as a novel pituitary transcription factor. J Reprod Dev 2009; 55: 502–511. 14. Kato T, Ishikawa A, Yoshida S, Sano Y, Kitahara K, Nakayama M, Susa T, Kato Y. Molecular cloning of LIM homeodomain transcription factor Lhx2 as a transcription factor of porcine follicle-stimulating hormone beta subunit (FSHβ) gene. J Reprod Dev 2012; 58: 147–155. 36. Susa T, Sato T, Ono T, Kato T, Kato Y. Cofactor CLIM2 promotes the repressive action of LIM homeodomain transcription factor Lhx2 in the expression of porcine pituitary glycoprotein hormone alpha subunit gene. Biochim Biophys Acta 2006; 1759: 403–409. 21. Nakayama M, Kato T, Susa T, Sano A, Kitahara K, Kato Y. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity. Mol Cell Endocrinol 2009; 307: 36–42. 4. Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang S-P, Mahon KA, Westphal H. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 1996; 272: 1004–1007. 22. Kato Y, Kimoto F, Susa T, Nakayama M, Ishikawa A, Kato T. Pituitary homeodomain transcription factors HESX1 and PROP1 form a heterodimer on the inverted TAAT motif. Mol Cell Endocrinol 2010; 315: 168–173. 45. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599. 8. Meier BC, Price JR, Parker GE, Bridwell JL, Rhodes SJ. Characterization of the porcine Lhx3/LIM-3/P-Lim LIM homeodomain transcription factor. Mol Cell Endocrinol 1999; 147: 65–74. 13. Roberson MS, Schoderbek WE, Tremml G, Maurer RA. Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 1994; 14: 2985–2993. 31. Susa T, Kato T, Kato Y. Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine2000. Mol Biol Rep 2008; 35: 313–319. 22 44 23 45 24 46 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 8898243 - Development. 1996 Oct;122(10):3319-29 17234709 - Endocrinology. 2007 Apr;148(4):1518-23 17508267 - Mol Biol Rep. 2008 Sep;35(3):313-9 9247336 - Development. 1997 Aug;124(15):2935-44 11356674 - Endocrinology. 2001 Jun;142(6):2284-95 7909370 - Nucleic Acids Res. 1994 Apr 11;22(7):1202-7 22577874 - J Neuroendocrinol. 2012 Sep;24(9):1201-12 7915030 - Nucleic Acids Res. 1994 Aug 11;22(15):3075-83 19524124 - Mol Cell Endocrinol. 2009 Aug 13;307(1-2):36-42 15474519 - Biochem Biophys Res Commun. 2004 Nov 12;324(2):946-52 19879326 - Mol Cell Endocrinol. 2010 Feb 5;315(1-2):168-73 7513049 - Mol Cell Biol. 1994 May;14(5):2985-93 15294880 - Endocr Rev. 2004 Aug;25(4):521-42 10593900 - J Biol Chem. 1999 Dec 17;274(51):36159-67 17032749 - J Mol Endocrinol. 2006 Oct;37(2):341-52 15271874 - Endocrinology. 2004 Nov;145(11):4866-79 7916208 - Biochemistry. 1994 Sep 13;33(36):10851-8 9452425 - J Biol Chem. 1998 Feb 6;273(6):3152-7 19444006 - J Reprod Dev. 2009 Aug;55(4):425-32 19550106 - J Reprod Dev. 2009 Oct;55(5):502-11 7708713 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2720-4 8638120 - Science. 1996 May 17;272(5264):1004-7 11470784 - J Biol Chem. 2001 Sep 28;276(39):36311-9 9714537 - FEBS Lett. 1998 Jul 24;431(3):333-8 10704826 - Mech Dev. 2000 Mar 1;91(1-2):5-17 19900438 - Dev Biol. 2010 Jan 15;337(2):313-23 18202285 - Science. 2008 Jan 18;319(5861):304-9 14749362 - Mol Cell Biol. 2004 Feb;24(4):1439-52 7671301 - Cell. 1995 Sep 8;82(5):709-19 19199338 - J Cell Biochem. 2009 Apr 1;106(5):912-9 9388186 - Science. 1997 Dec 5;278(5344):1809-12 10195693 - Mol Cell Endocrinol. 1999 Jan 25;147(1-2):65-74 15514462 - J Reprod Dev. 2004 Oct;50(5):557-63 26853521 - J Reprod Dev. 2016 Apr 22;62(2):195-9 22134063 - J Reprod Dev. 2012;58(1):147-55 17615393 - Physiol Rev. 2007 Jul;87(3):933-63 16613990 - Mol Endocrinol. 2006 Sep;20(9):2093-108 19228115 - Biosci Rep. 2009 Oct 09;30(1):51-8 10788441 - J Biol Chem. 2000 May 5;275(18):13336-42 10509809 - Mol Cell Endocrinol. 1999 Aug 20;154(1-2):151-9 14647207 - EMBO Rep. 2003 Dec;4(12):1132-7 9214632 - EMBO J. 1997 Jun 2;16(11):3145-57 8096059 - Mol Cell Biol. 1993 Apr;13(4):2354-65 14560005 - Mol Cell Biol. 2003 Nov;23(21):7585-99 10598593 - Mol Endocrinol. 1999 Dec;13(12):2212-25 17005264 - Biochim Biophys Acta. 2006 Aug-Sep;1759(8-9):403-9 |
References_xml | – reference: 26. Susa T, Ishikawa A, Kato T, Nakayama M, Kato Y. Molecular cloning of paired related homeobox 2 (prx2) as a novel pituitary transcription factor. J Reprod Dev 2009; 55: 502–511. – reference: 43. Kato Y, Kato T, Ono T, Susa T, Kitahara K, Matsumoto K. Intracellular localization of porcine single-strand binding protein 2. J Cell Biochem 2009; 106: 912–919. – reference: 28. Sato T, Kitahara K, Susa T, Kato T, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression. J Mol Endocrinol 2006; 37: 341–352. – reference: 25. Susa T, Ishikawa A, Kato T, Nakayama M, Kitahara K, Kato Y. Regulation of porcine pituitary glycoprotein hormone alpha subunit gene with LIM-homeobox transcription factor Lhx3. J Reprod Dev 2009; 55: 425–432. – reference: 44. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157. – reference: 18. Jagla K, Stanceva I, Dretzen G, Bellard F, Bellard M. A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster. Nucleic Acids Res 1994; 22: 1202–1207. – reference: 46. Lahlil R, Lécuyer E, Herblot S, Hoang T. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24: 1439–1452. – reference: 2. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87: 933–963. – reference: 45. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599. – reference: 38. Matthews JM, Visvader JE. LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep 2003; 4: 1132–1137. – reference: 42. Susa T, Ishikawa A, Cai LY, Kato T, Matsumoto K, Kitahara K, Kurokawa R, Ono T, Kato Y. The highly related LIM factors, LMO1, LMO3 and LMO4, play different roles in the regulation of the pituitary glycoprotein hormone α-subunit (α GSU) gene. Biosci Rep 2010; 30: 51–58. – reference: 33. Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K. Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 2007; 148: 1518–1523. – reference: 29. Alarid ET, Windle JJ, Whyte DB, Mellon PL. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 1996; 122: 3319–3329. – reference: 12. Zhao Y, Mailloux CM, Hermesz E, Palkóvits M, Westphal H. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development. Dev Biol 2010; 337: 313–323. – reference: 30. Pernasetti F, Vasilyev VV, Rosenberg SB, Bailey JS, Huang HJ, Miller WL, Mellon PL. Cell-specific transcriptional regulation of follicle-stimulating hormone-beta by activin and gonadotropin-releasing hormone in the LbetaT2 pituitary gonadotrope cell model. Endocrinology 2001; 142: 2284–2295. – reference: 6. Bach I, Rhodes SJ, Pearse RV 2nd, Heinzel T, Gloss B, Scully KM, Sawchenko PE, Rosenfeld MG. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 1995; 92: 2720–2724. – reference: 39. Jurata LW, Pfaff SL, Gill GN. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem 1998; 273: 3152–3157. – reference: 11. Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, Huang SP, Lee E, Grinberg A, Massalas JS, Bodine D, Alt F, Westphal H. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 1997; 124: 2935–2944. – reference: 34. Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L, Shetty AS, Martynoga B, Paul J, Mai MV, Li Y, Flanagan LA, Tole S, Monuki ES. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008; 319: 304–309. – reference: 9. Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, Rhodes SJ. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 1999; 13: 2212–2225. – reference: 14. Kato T, Ishikawa A, Yoshida S, Sano Y, Kitahara K, Nakayama M, Susa T, Kato Y. Molecular cloning of LIM homeodomain transcription factor Lhx2 as a transcription factor of porcine follicle-stimulating hormone beta subunit (FSHβ) gene. J Reprod Dev 2012; 58: 147–155. – reference: 40. Granger A, Bleux C, Kottler ML, Rhodes SJ, Counis R, Laverrière JN. The LIM-homeodomain proteins Isl-1 and Lhx3 act with steroidogenic factor 1 to enhance gonadotrope-specific activity of the gonadotropin-releasing hormone receptor gene promoter. Mol Endocrinol 2006; 20: 2093–2108. – reference: 1. Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25: 521–542. – reference: 27. Kato Y, Koike Y, Tomizawa K, Ogawa S, Hosaka K, Tanaka S, Kato T. Presence of activating transcription factor 4 (ATF4) in the porcine anterior pituitary. Mol Cell Endocrinol 1999; 154: 151–159. – reference: 24. Sloop KW, Dwyer CJ, Rhodes SJ. An isoform-specific inhibitory domain regulates the LHX3 LIM homeodomain factor holoprotein and the production of a functional alternate translation form. J Biol Chem 2001; 276: 36311–36319. – reference: 10. West BE, Parker GE, Savage JJ, Kiratipranon P, Toomey KS, Beach LR, Colvin SC, Sloop KW, Rhodes SJ. Regulation of the follicle-stimulating hormone β gene by the LHX3 LIM-homeodomain transcription factor. Endocrinology 2004; 145: 4866–4879. – reference: 15. Bach I. The LIM domain: regulation by association. Mech Dev 2000; 91: 5–17. – reference: 41. Howard PW, Maurer RA. Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. J Biol Chem 2000; 275: 13336–13342. – reference: 5. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997; 278: 1809–1812. – reference: 16. Catron KM, Iler N, Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol 1993; 13: 2354–2365. – reference: 7. Girardin SE, Benjannet S, Barale JC, Chrétien M, Seidah NG. The LIM homeobox protein mLIM3/Lhx3 induces expression of the prolactin gene by a Pit-1/GHF-1-independent pathway in corticotroph AtT20 cells. FEBS Lett 1998; 431: 333–338. – reference: 36. Susa T, Sato T, Ono T, Kato T, Kato Y. Cofactor CLIM2 promotes the repressive action of LIM homeodomain transcription factor Lhx2 in the expression of porcine pituitary glycoprotein hormone alpha subunit gene. Biochim Biophys Acta 2006; 1759: 403–409. – reference: 13. Roberson MS, Schoderbek WE, Tremml G, Maurer RA. Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 1994; 14: 2985–2993. – reference: 31. Susa T, Kato T, Kato Y. Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine2000. Mol Biol Rep 2008; 35: 313–319. – reference: 32. Ogawa S, Aikawa S, Kato T, Tomizawa K, Tsukamura H, Maeda K, Petric N, Elsaesser F, Kato Y. Prominent expression of spinocerebellar ataxia type-1 (SCA1) gene encoding ataxin-1 in LH-producing cells, LbetaT2. J Reprod Dev 2004; 50: 557–563. – reference: 23. Aikawa S, Kato T, Susa T, Tomizawa K, Ogawa S, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone β subunit gene expression. Biochem Biophys Res Commun 2004; 324: 946–952. – reference: 37. Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 2012; 24: 1201–1212. – reference: 19. Pomerantz JL, Sharp PA. Homeodomain determinants of major groove recognition. Biochemistry 1994; 33: 10851–10858. – reference: 17. Damante G, Fabbro D, Pellizzari L, Civitareale D, Guazzi S, Polycarpou-Schwartz M, Cauci S, Quadrifoglio F, Formisano S, Di Lauro R. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res 1994; 22: 3075–3083. – reference: 20. Wilson DS, Guenther B, Desplan C, Kuriyan J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 1995; 82: 709–719. – reference: 22. Kato Y, Kimoto F, Susa T, Nakayama M, Ishikawa A, Kato T. Pituitary homeodomain transcription factors HESX1 and PROP1 form a heterodimer on the inverted TAAT motif. Mol Cell Endocrinol 2010; 315: 168–173. – reference: 35. Glenn DJ, Maurer RA. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone alpha-subunit gene expression. J Biol Chem 1999; 274: 36159–36167. – reference: 4. Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang S-P, Mahon KA, Westphal H. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 1996; 272: 1004–1007. – reference: 3. Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62: 195–199. – reference: 8. Meier BC, Price JR, Parker GE, Bridwell JL, Rhodes SJ. Characterization of the porcine Lhx3/LIM-3/P-Lim LIM homeodomain transcription factor. Mol Cell Endocrinol 1999; 147: 65–74. – reference: 21. Nakayama M, Kato T, Susa T, Sano A, Kitahara K, Kato Y. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity. Mol Cell Endocrinol 2009; 307: 36–42. – ident: 15 doi: 10.1016/S0925-4773(99)00314-7 – ident: 1 doi: 10.1210/er.2003-0029 – ident: 27 doi: 10.1016/S0303-7207(99)00078-7 – ident: 45 doi: 10.1128/MCB.23.21.7585-7599.2003 – ident: 19 doi: 10.1021/bi00202a001 – ident: 21 doi: 10.1016/j.mce.2009.03.010 – ident: 33 doi: 10.1210/en.2006-1390 – ident: 37 doi: 10.1111/j.1365-2826.2012.02336.x – ident: 8 doi: 10.1016/S0303-7207(98)00213-5 – ident: 9 doi: 10.1210/mend.13.12.0395 – ident: 11 doi: 10.1242/dev.124.15.2935 – ident: 17 doi: 10.1093/nar/22.15.3075 – ident: 40 doi: 10.1210/me.2005-0184 – ident: 22 doi: 10.1016/j.mce.2009.10.006 – ident: 3 doi: 10.1262/jrd.2015-138 – ident: 12 doi: 10.1016/j.ydbio.2009.11.002 – ident: 2 doi: 10.1152/physrev.00006.2006 – ident: 6 doi: 10.1073/pnas.92.7.2720 – ident: 42 doi: 10.1042/BSR20090020 – ident: 36 doi: 10.1016/j.bbaexp.2006.08.004 – ident: 38 doi: 10.1038/sj.embor.7400030 – ident: 29 doi: 10.1242/dev.122.10.3319 – ident: 30 doi: 10.1210/endo.142.6.8185 – ident: 34 doi: 10.1126/science.1151695 – ident: 16 doi: 10.1128/MCB.13.4.2354 – ident: 43 doi: 10.1002/jcb.22066 – ident: 31 doi: 10.1007/s11033-007-9088-0 – ident: 13 doi: 10.1128/MCB.14.5.2985 – ident: 23 doi: 10.1016/j.bbrc.2004.09.124 – ident: 4 doi: 10.1126/science.272.5264.1004 – ident: 14 doi: 10.1262/jrd.11-099S – ident: 28 doi: 10.1677/jme.1.02010 – ident: 35 doi: 10.1074/jbc.274.51.36159 – ident: 24 doi: 10.1074/jbc.M103888200 – ident: 25 doi: 10.1262/jrd.20232 – ident: 5 doi: 10.1126/science.278.5344.1809 – ident: 44 doi: 10.1093/emboj/16.11.3145 – ident: 18 doi: 10.1093/nar/22.7.1202 – ident: 41 doi: 10.1074/jbc.275.18.13336 – ident: 10 doi: 10.1210/en.2004-0598 – ident: 20 doi: 10.1016/0092-8674(95)90468-9 – ident: 39 doi: 10.1074/jbc.273.6.3152 – ident: 26 doi: 10.1262/jrd.20256 – ident: 46 doi: 10.1128/MCB.24.4.1439-1452.2004 – ident: 32 doi: 10.1262/jrd.50.557 – ident: 7 doi: 10.1016/S0014-5793(98)00787-X – reference: 9714537 - FEBS Lett. 1998 Jul 24;431(3):333-8 – reference: 15294880 - Endocr Rev. 2004 Aug;25(4):521-42 – reference: 14749362 - Mol Cell Biol. 2004 Feb;24(4):1439-52 – reference: 7915030 - Nucleic Acids Res. 1994 Aug 11;22(15):3075-83 – reference: 19524124 - Mol Cell Endocrinol. 2009 Aug 13;307(1-2):36-42 – reference: 10593900 - J Biol Chem. 1999 Dec 17;274(51):36159-67 – reference: 19550106 - J Reprod Dev. 2009 Oct;55(5):502-11 – reference: 26853521 - J Reprod Dev. 2016 Apr 22;62(2):195-9 – reference: 10195693 - Mol Cell Endocrinol. 1999 Jan 25;147(1-2):65-74 – reference: 22134063 - J Reprod Dev. 2012;58(1):147-55 – reference: 9247336 - Development. 1997 Aug;124(15):2935-44 – reference: 14647207 - EMBO Rep. 2003 Dec;4(12):1132-7 – reference: 9388186 - Science. 1997 Dec 5;278(5344):1809-12 – reference: 7708713 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2720-4 – reference: 15514462 - J Reprod Dev. 2004 Oct;50(5):557-63 – reference: 19879326 - Mol Cell Endocrinol. 2010 Feb 5;315(1-2):168-73 – reference: 17032749 - J Mol Endocrinol. 2006 Oct;37(2):341-52 – reference: 16613990 - Mol Endocrinol. 2006 Sep;20(9):2093-108 – reference: 10788441 - J Biol Chem. 2000 May 5;275(18):13336-42 – reference: 19199338 - J Cell Biochem. 2009 Apr 1;106(5):912-9 – reference: 22577874 - J Neuroendocrinol. 2012 Sep;24(9):1201-12 – reference: 9452425 - J Biol Chem. 1998 Feb 6;273(6):3152-7 – reference: 8898243 - Development. 1996 Oct;122(10):3319-29 – reference: 17508267 - Mol Biol Rep. 2008 Sep;35(3):313-9 – reference: 10704826 - Mech Dev. 2000 Mar 1;91(1-2):5-17 – reference: 15474519 - Biochem Biophys Res Commun. 2004 Nov 12;324(2):946-52 – reference: 17615393 - Physiol Rev. 2007 Jul;87(3):933-63 – reference: 9214632 - EMBO J. 1997 Jun 2;16(11):3145-57 – reference: 7909370 - Nucleic Acids Res. 1994 Apr 11;22(7):1202-7 – reference: 11470784 - J Biol Chem. 2001 Sep 28;276(39):36311-9 – reference: 18202285 - Science. 2008 Jan 18;319(5861):304-9 – reference: 8096059 - Mol Cell Biol. 1993 Apr;13(4):2354-65 – reference: 7513049 - Mol Cell Biol. 1994 May;14(5):2985-93 – reference: 14560005 - Mol Cell Biol. 2003 Nov;23(21):7585-99 – reference: 19900438 - Dev Biol. 2010 Jan 15;337(2):313-23 – reference: 19444006 - J Reprod Dev. 2009 Aug;55(4):425-32 – reference: 17234709 - Endocrinology. 2007 Apr;148(4):1518-23 – reference: 15271874 - Endocrinology. 2004 Nov;145(11):4866-79 – reference: 10598593 - Mol Endocrinol. 1999 Dec;13(12):2212-25 – reference: 8638120 - Science. 1996 May 17;272(5264):1004-7 – reference: 11356674 - Endocrinology. 2001 Jun;142(6):2284-95 – reference: 19228115 - Biosci Rep. 2009 Oct 09;30(1):51-8 – reference: 7671301 - Cell. 1995 Sep 8;82(5):709-19 – reference: 10509809 - Mol Cell Endocrinol. 1999 Aug 20;154(1-2):151-9 – reference: 17005264 - Biochim Biophys Acta. 2006 Aug-Sep;1759(8-9):403-9 – reference: 7916208 - Biochemistry. 1994 Sep 13;33(36):10851-8 |
SSID | ssj0032564 |
Score | 2.0821655 |
Snippet | The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit... The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 241 |
SubjectTerms | Animals Binding Sites Cell Line CHO Cells Cricetinae Cricetulus Deoxyribonuclease I - metabolism Follicle Stimulating Hormone, beta Subunit - genetics Follicle Stimulating Hormone, beta Subunit - metabolism Gene regulation Glycoprotein hormone Glycoprotein Hormones, alpha Subunit - genetics Glycoprotein Hormones, alpha Subunit - metabolism Immunohistochemistry LHX2 LHX3 LIM-homeodomain LIM-Homeodomain Proteins - metabolism Mice Original Pituitary Pituitary Gland - metabolism Promoter Regions, Genetic Protein Domains Swine Transcription Factors - metabolism Transcription, Genetic |
Title | Transcription of follicle-stimulating hormone subunit genes is modulated by porcine LIM homeobox transcription factors, LHX2 and LHX3 |
URI | https://www.jstage.jst.go.jp/article/jrd/62/3/62_2015-163/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/26853788 https://www.proquest.com/docview/1808714983 https://pubmed.ncbi.nlm.nih.gov/PMC4919287 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Reproduction and Development, 2016, Vol.62(3), pp.241-248 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKOdSXCsq1LayMBE9gSOIjjhBCCFEtx1Y8sNK-RXbsbFt1E9hD6v4A_jcziROxVZF4iaJkHCeezMw3dvINIc8zZTLlpWMiMQkTSltmhDRMa25dJGJnPP47PD5Ro4n4MpXTHdJVGw0DuLw2tcN6UpPFxevLX5v3YPDvGm4Elbw5XyDlZywZYIsb5CbEpBRrGYxFv57AIbA3RFIAhuA2Yh0-gb_aeis43ToHfDbz10HPq19Q_hWSju-S_YAl6YdW-ffIjq8OyO22uuTmgNwZh3Xz--R3E5I6B0HrkpZIxg2tGJj4vCnhVc3oKQDYuvJ0ubZrMHU6Q0dIz5Z0XjuU8Y7aDYXBwqtS8HvQYu5rW1_S1VYHoYrPK_ptNE2oqRzu8Adkcvzpx8cRCwUYWAHAbcVEiuxgVkS8VGnqYm6KSPuIC2eS0nlwsspAupGpAhlFrfFWSgtHvM608rHlD8luBbf9mFCZ6Ug5Ce7DcyFLpb0sVIncPjFOxaoBedmNfF4EdnIsknGRY5YCespBTznqKQc9DciLXvpny8rxD7m3rRJ7qWCPjRQIc9x00v1J_OENvMaAPOs0n4PR4UqKqXy9XuaxjiDRFJmGHh61b0LfQ6IAAaVaD0i69Y70AkjovX2mOjttiL1FBnhbp4f_-XRHZA92w4TQE7K7Wqz9U4BIKzuE5ODz12EzwTBsLAG2J9_HfwC6gBQb |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcription+of+follicle-stimulating+hormone+subunit+genes+is+modulated+by+porcine+LIM+homeobox+transcription+factors%2C+LHX2+and+LHX3&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=YOSHIDA%2C+Saishu&rft.au=KATO%2C+Takako&rft.au=NISHIMURA%2C+Naoto&rft.au=KANNO%2C+Naoko&rft.date=2016&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=62&rft.issue=3&rft.spage=241&rft.epage=248&rft_id=info:doi/10.1262%2Fjrd.2015-163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1262_jrd_2015_163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon |