Adiabatic state preparation of correlated wave functions with nonlinear scheduling functions and broken-symmetry wave functions

Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent Hamiltonian that interpolates the Fock operator and the full electronic Hamiltonian. However, ASP is inherently unsuitable for studying strongly corr...

Full description

Saved in:
Bibliographic Details
Published inCommunications chemistry Vol. 5; no. 1; p. 84
Main Authors Sugisaki, Kenji, Toyota, Kazuo, Sato, Kazunobu, Shiomi, Daisuke, Takui, Takeji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent Hamiltonian that interpolates the Fock operator and the full electronic Hamiltonian. However, ASP is inherently unsuitable for studying strongly correlated systems, and furthermore practical computational conditions for ASP are unknown. In quest for the suitable computational conditions for practical applications of ASP, we performed numerical simulations of ASP in the potential energy curves of N 2 , BeH 2 , and in the C 2 v quasi-reaction pathway of the Be atom insertion to the H 2 molecule, examining the effect of nonlinear scheduling functions and the ASP with broken-symmetry wave functions with the S 2 operator as the penalty term, contributing to practical applications of quantum computing to quantum chemistry. Eventually, computational guidelines to generate the correlated wave functions having the square overlap with the complete-active space self-consistent field wave function close to unity are discussed. Adiabatic state preparation (ASP) can generate correlated wave functions for quantum chemical calculations, but is inherently unsuitable for studying strongly correlated systems. Here, the authors perform numerical simulations of ASP for the ground state wave functions of molecules with strongly correlated electrons and propose practical conditions for preparation of close-to-exact correlated wave functions.
AbstractList Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent Hamiltonian that interpolates the Fock operator and the full electronic Hamiltonian. However, ASP is inherently unsuitable for studying strongly correlated systems, and furthermore practical computational conditions for ASP are unknown. In quest for the suitable computational conditions for practical applications of ASP, we performed numerical simulations of ASP in the potential energy curves of N 2 , BeH 2 , and in the C 2 v quasi-reaction pathway of the Be atom insertion to the H 2 molecule, examining the effect of nonlinear scheduling functions and the ASP with broken-symmetry wave functions with the S 2 operator as the penalty term, contributing to practical applications of quantum computing to quantum chemistry. Eventually, computational guidelines to generate the correlated wave functions having the square overlap with the complete-active space self-consistent field wave function close to unity are discussed. Adiabatic state preparation (ASP) can generate correlated wave functions for quantum chemical calculations, but is inherently unsuitable for studying strongly correlated systems. Here, the authors perform numerical simulations of ASP for the ground state wave functions of molecules with strongly correlated electrons and propose practical conditions for preparation of close-to-exact correlated wave functions.
Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent Hamiltonian that interpolates the Fock operator and the full electronic Hamiltonian. However, ASP is inherently unsuitable for studying strongly correlated systems, and furthermore practical computational conditions for ASP are unknown. In quest for the suitable computational conditions for practical applications of ASP, we performed numerical simulations of ASP in the potential energy curves of N , BeH , and in the C quasi-reaction pathway of the Be atom insertion to the H molecule, examining the effect of nonlinear scheduling functions and the ASP with broken-symmetry wave functions with the S operator as the penalty term, contributing to practical applications of quantum computing to quantum chemistry. Eventually, computational guidelines to generate the correlated wave functions having the square overlap with the complete-active space self-consistent field wave function close to unity are discussed.
Abstract Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent Hamiltonian that interpolates the Fock operator and the full electronic Hamiltonian. However, ASP is inherently unsuitable for studying strongly correlated systems, and furthermore practical computational conditions for ASP are unknown. In quest for the suitable computational conditions for practical applications of ASP, we performed numerical simulations of ASP in the potential energy curves of N 2 , BeH 2 , and in the C 2 v quasi-reaction pathway of the Be atom insertion to the H 2 molecule, examining the effect of nonlinear scheduling functions and the ASP with broken-symmetry wave functions with the S 2 operator as the penalty term, contributing to practical applications of quantum computing to quantum chemistry. Eventually, computational guidelines to generate the correlated wave functions having the square overlap with the complete-active space self-consistent field wave function close to unity are discussed.
Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent Hamiltonian that interpolates the Fock operator and the full electronic Hamiltonian. However, ASP is inherently unsuitable for studying strongly correlated systems, and furthermore practical computational conditions for ASP are unknown. In quest for the suitable computational conditions for practical applications of ASP, we performed numerical simulations of ASP in the potential energy curves of N2, BeH2, and in the C2v quasi-reaction pathway of the Be atom insertion to the H2 molecule, examining the effect of nonlinear scheduling functions and the ASP with broken-symmetry wave functions with the S2 operator as the penalty term, contributing to practical applications of quantum computing to quantum chemistry. Eventually, computational guidelines to generate the correlated wave functions having the square overlap with the complete-active space self-consistent field wave function close to unity are discussed.Adiabatic state preparation (ASP) can generate correlated wave functions for quantum chemical calculations, but is inherently unsuitable for studying strongly correlated systems. Here, the authors perform numerical simulations of ASP for the ground state wave functions of molecules with strongly correlated electrons and propose practical conditions for preparation of close-to-exact correlated wave functions.
Adiabatic state preparation (ASP) can generate correlated wave functions for quantum chemical calculations, but is inherently unsuitable for studying strongly correlated systems. Here, the authors perform numerical simulations of ASP for the ground state wave functions of molecules with strongly correlated electrons and propose practical conditions for preparation of close-to-exact correlated wave functions.
ArticleNumber 84
Author Shiomi, Daisuke
Toyota, Kazuo
Sato, Kazunobu
Takui, Takeji
Sugisaki, Kenji
Author_xml – sequence: 1
  givenname: Kenji
  orcidid: 0000-0002-1950-5725
  surname: Sugisaki
  fullname: Sugisaki, Kenji
  email: sugisaki@osaka-cu.ac.jp
  organization: Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, JST PRESTO, 4-1-8 Honcho, Centre for Quantum Engineering, Research and Education (CQuERE), TCG Centres for Research and Education in Science and Technology (TCG CREST)
– sequence: 2
  givenname: Kazuo
  surname: Toyota
  fullname: Toyota, Kazuo
  organization: Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
– sequence: 3
  givenname: Kazunobu
  orcidid: 0000-0003-1274-7470
  surname: Sato
  fullname: Sato, Kazunobu
  email: sato@osaka-cu.ac.jp
  organization: Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
– sequence: 4
  givenname: Daisuke
  orcidid: 0000-0002-7135-547X
  surname: Shiomi
  fullname: Shiomi, Daisuke
  organization: Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
– sequence: 5
  givenname: Takeji
  orcidid: 0000-0001-6238-5215
  surname: Takui
  fullname: Takui, Takeji
  email: takui@sci.osaka-cu.ac.jp
  organization: Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Research Support Department/University Research Administrator Center, University Administration Division, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36698020$$D View this record in MEDLINE/PubMed
BookMark eNp9krtuFDEUhi0URC7kBSjQSDQ0A76P3SBFEZBIkWigtnzdnWXGXuyZRFvx6ngzIWxSUNnnnP98Prb_U3AUU_QAvEHwA4JEfCwUQ0hbiHELYQdRK16AE0ykbAnn8uhgfwzOS9lACDFEpOvEK3C8T4san4DfF67XRk-9bcqkJ99ss9_qXBMpNik0NuXsh1pwzZ2-9U2Yo93XSnPXT-umDjX00evcFLv2bq7B6kCjo2tMTj99bMtuHP2Ud88wr8HLoIfizx_WM_Djy-fvl1ftzbev15cXN63lDE4tEYIEZjC2iOnOYM-gJARyyigXtLPSGM2pZA4HLnjAkDLBLHVEE4wQNeQMXC9cl_RGbXM_6rxTSffqPpHySulcX2HwimGumbUOG-so0sEEioO0REvKAmW-sj4trO1sRu-sj1PWwxPo00rs12qVbpUUiDKJKuD9AyCnX7Mvkxr7Yv0w6OjTXBTuuJSSU8Sr9N0z6SbNOdanUphLWj9UUFZVeFHZnErJPjwOg6Da20UtdlHVLureLkrUpreH13hs-WuOKiCLoNRSXPn87-z_YP8AT-vPQw
CitedBy_id crossref_primary_10_1103_PhysRevA_109_022423
crossref_primary_10_1103_PhysRevA_108_062603
crossref_primary_10_1103_PhysRevB_109_155111
crossref_primary_10_1088_2516_1075_acf909
crossref_primary_10_1021_acs_jctc_3c00784
crossref_primary_10_1021_acs_jpclett_2c02737
crossref_primary_10_1007_s00723_022_01520_9
crossref_primary_10_1021_acs_jctc_3c01177
crossref_primary_10_1038_s42004_022_00727_y
crossref_primary_10_1039_D2SC05371C
Cites_doi 10.1007/BF01331938
10.1007/BF01343193
10.1016/j.cplett.2006.10.023
10.1103/PhysRevLett.104.030502
10.1038/s41534-020-00290-1
10.1021/acs.jctc.8b00450
10.1002/adts.201800182
10.1063/1.4880755
10.1021/jp9832995
10.1039/D1CP03156B
10.1080/00268976.2011.552441
10.1063/1.4768229
10.1103/RevModPhys.94.015004
10.1021/acs.chemrev.0c00620
10.1038/ncomms5213
10.1103/RevModPhys.92.015003
10.1002/qute.202100114
10.1103/PhysRevA.93.012345
10.1103/RevModPhys.90.015002
10.1063/1.1539850
10.1103/PhysRevA.103.052435
10.1088/1742-5468/2005/09/P09012
10.1103/PhysRevLett.95.110407
10.1126/sciadv.aax3800
10.1002/qua.560230307
10.1038/s42254-021-00348-9
10.1007/11526216_2
10.1063/1.5019371
10.1063/1.3598471
10.1039/C9CP02546D
10.1021/jz501649m
10.1090/S0002-9939-1959-0108732-6
10.1063/5.0060124
10.1126/science.1113479
10.1088/2058-9565/ab8ebc
10.1002/9780470125908.ch1
10.1016/S0065-3276(08)60317-2
10.1063/1.478523
10.5281/zenodo.4586899
10.1021/ja00737a064
10.1103/PhysRevLett.93.160408
10.1063/5.0005188
10.1143/PTP.56.1454
10.1103/PhysRevLett.102.220401
10.3390/e21121218
10.1039/D1CP04318H
10.1021/acscentsci.8b00788
10.1063/1.2335446
10.1016/j.cpletx.2018.100002
10.1021/acs.jpca.6b04932
10.1016/0009-2614(75)80169-2
10.1038/s41534-019-0187-2
10.1063/1.465674
10.1038/s41567-019-0704-4
10.1007/978-1-4615-4291-9
10.1021/ja00526a005
10.1021/acs.chemrev.8b00803
10.1016/S0009-2614(99)00791-5
10.1103/PhysRevResearch.3.013104
10.1103/RevModPhys.91.045001
10.1021/acs.jpclett.1c03214
10.1103/PhysRevA.93.052107
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1038/s42004-022-00701-8
DatabaseName SpringerOpen website
PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
https://resources.nclive.org/materials
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
Engineering Collection
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen website
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2399-3669
EndPage 84
ExternalDocumentID oai_doaj_org_article_526a5ccd2bcd41afbf42f9c3a945f45e
10_1038_s42004_022_00701_8
36698020
Genre Journal Article
GrantInformation_xml – fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJPR1914
  funderid: https://doi.org/10.13039/501100002241
– fundername: Asian Office of Aerospace Research and Development (AOARD), Grant number FA2386-17-1-4040, FA2386-17-1-4041.
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 18K03465; 21K03407
  funderid: https://doi.org/10.13039/501100001691
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 21K03407
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 18K03465
– fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJPR1914
– fundername: ;
  grantid: 18K03465; 21K03407
– fundername: ;
– fundername: ;
  grantid: JPMJPR1914
GroupedDBID 0R~
AAFWJ
AAJSJ
ABDBF
ABJCF
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
M7S
M~E
NAO
O9-
OK1
PDBOC
PGMZT
PIMPY
PTHSS
RNT
RPM
SNYQT
AFPKN
NPM
AAYXX
CITATION
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PQEST
PQQKQ
PQUKI
PRINS
7X8
AFGXO
5PM
ID FETCH-LOGICAL-c650t-3883f5b22c15a7b2e50933064546847c9bba6495d2f686f204585c4d3a32114b3
IEDL.DBID RPM
ISSN 2399-3669
IngestDate Fri Oct 04 13:07:16 EDT 2024
Tue Sep 17 21:30:37 EDT 2024
Fri Aug 16 14:23:55 EDT 2024
Thu Oct 10 17:27:01 EDT 2024
Fri Aug 23 02:06:59 EDT 2024
Sat Sep 28 08:17:33 EDT 2024
Fri Oct 11 20:45:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c650t-3883f5b22c15a7b2e50933064546847c9bba6495d2f686f204585c4d3a32114b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1950-5725
0000-0001-6238-5215
0000-0002-7135-547X
0000-0003-1274-7470
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814591/
PMID 36698020
PQID 2694137845
PQPubID 4669725
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_526a5ccd2bcd41afbf42f9c3a945f45e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9814591
proquest_miscellaneous_2769996416
proquest_journals_2694137845
crossref_primary_10_1038_s42004_022_00701_8
pubmed_primary_36698020
springer_journals_10_1038_s42004_022_00701_8
PublicationCentury 2000
PublicationDate 2022-07-25
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications chemistry
PublicationTitleAbbrev Commun Chem
PublicationTitleAlternate Commun Chem
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SeeleyJTRichardMJLovePJThe Bravyi–Kitaev transformation for quantum computation of electronic structureJ. Chem. Phys.20121372241092324898910.1063/1.47682291:CAS:528:DC%2BC38XhvVaht7bP
SetiaKWhitfieldJDBravyi–Kitaev superfast simulation of electronic structure on a quantum computerJ. Chem. Phys.20181481641042971621110.1063/1.50193711:CAS:528:DC%2BC1cXosFyht78%3D
SugisakiKKatoTMinatoYOkuwakiKMochizukiYVariational quantum eigensolver simulations with the multireference unitary coupled cluster ansatz: a case study of the C2v quasi-reaction pathway of beryllium insertion into a H2 moleculePhys. Chem. Chem. Phys.202224843984521:CAS:528:DC%2BB38XotV2js78%3D3534352710.1039/D1CP04318H
HuHWuBOptimizing the quantum adiabatic algorithmPhys. Rev. A20169301234510.1103/PhysRevA.93.0123451:CAS:528:DC%2BC28XhtF2lu7zL
NakanoHQuasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functionsJ. Chem. Phys.199399798379921:CAS:528:DyaK2cXos1yqtw%3D%3D10.1063/1.465674
YuHWeiT-CQuantum Zeno approach for molecular energies with maximum commuting initial HamiltoniansPhys. Rev. Res.202130131041:CAS:528:DC%2BB3MXovVajsrc%3D10.1103/PhysRevResearch.3.013104
GanZGrantDJHarrisonRJDixonDAThe lowest energy states of the group-IIIA–group-VA heteronuclear diatomics: BN, BP, AlN, and AlP from full configuration interaction calculationsJ. Chem. Phys.20061251243111701417810.1063/1.23354461:CAS:528:DC%2BD28XhtVGksrjI
McArdleSVariational ansatz-based quantum simulation of imaginary time evolutionnpj Quantum Info201957510.1038/s41534-019-0187-2
TranterALovePJMintertFWiebeNCoveneyPVOrdering of Trotterization: impact on errors in quantum simulation of electronic structureEntropy20192112181:CAS:528:DC%2BB3cXhs1yisrvO10.3390/e211212187514563
Hatano, N. & Suzuki, M. Finding exponential product formulas of higher orders in Quantum Annealing and Other Optimization Methods, Lecture Notes in Physics, vol. 679, (eds. Das, A. & Chakrabarti, B. K.) 37–68 (Springer, 2005).
ShayestehATereszchukKBernathPFColinRInfrared emission spectra of BeH2 and BeD2J. Chem. Phys.2003118362236271:CAS:528:DC%2BD3sXhtVKisr0%3D10.1063/1.1539850
Aspuru-GuzikADutoiADLovePJHead-GordonMSimulated quantum computation of molecular energiesScience2005309170417071:CAS:528:DC%2BD2MXpvFCisrg%3D1615100610.1126/science.1113479
BhartiKNoisy intermediate-scale quantum (NISQ) algorithmsRev. Mod. Phys.2022940150041:CAS:528:DC%2BB38XhtVOnsLrE10.1103/RevModPhys.94.015004
VeisLPittnerJAdiabatic state preparation study of methyleneJ. Chem. Phys.20141402141112490799410.1063/1.48807551:CAS:528:DC%2BC2cXpsVShu7o%3D
MatsuuraSBuckSSenicourtVZaribafiyanAVariationally scheduled quantum simulationPhys. Rev. A20211030524351:CAS:528:DC%2BB3MXht1ymtrjK10.1103/PhysRevA.103.052435
Mayer, I. The spin-projected extended Hartree–Fock method in Advances in Quantum Chemistry, vol. 12, (ed. Löwdin, P. O.) 189–262 (Elsevier, 1980).
CerezoMVariational quantum algorithmsNat. Rev. Phys.2021362564410.1038/s42254-021-00348-9
SugisakiKQuantum chemistry on quantum computers: quantum simulations of the time evolution of wave functions under the S2 operator and determination of the spin quantum numberS. Phys. Chem. Chem. Phys.20192115356153611:CAS:528:DC%2BC1MXhtlSmur7N3127051510.1039/C9CP02546D
SugisakiKQuantum chemistry on quantum computers: a polynomial-time quantum algorithm for constructing the wave functions of open-shell moleculesJ. Phys. Chem. A2016120645964661:CAS:528:DC%2BC28Xht1yqurbN2749902610.1021/acs.jpca.6b04932
WangZ-YPlenioMBNecessary and sufficient condition for quantum adiabatic evolution by unitary control fieldsPhys. Rev. A20169305210710.1103/PhysRevA.93.0521071:CAS:528:DC%2BC28XhvVyku7jN
EvangelistaFAAlternative single-reference coupled cluster approaches for multireference problems: The simpler, the betterJ. Chem. Phys.20111342241022168250210.1063/1.35984711:CAS:528:DC%2BC3MXntlWhs7o%3D
TrotterHFOn the product of semi-groups of operatorsProc. Am. Math. Soc.19591054555110.1090/S0002-9939-1959-0108732-6
AminMHSConsistency of the adiabatic theoremPhys. Rev. Lett.20091022204011:STN:280:DC%2BD1MrjvFelsQ%3D%3D1965884510.1103/PhysRevLett.102.220401
TranterALovePJMintertFCoveneyPVA comparison of the Bravyi–Kitaev and Jordan–Wigner transformations for the quantum simulation of quantum chemistryJ. Chem. Theory Comput.201814561756301:CAS:528:DC%2BC1cXhs1KhtbzL3018914410.1021/acs.jctc.8b004506236472
SuzukiMRelationship between d-dimensional quantal spin systems and (d + 1)-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlationsProg. Theor. Phys.1976561454146910.1143/PTP.56.1454
MahapatraUSDattaBMukherjeeDMolecular applications of a size-consistent state-specific multireference perturbation theory with relaxed model-space coefficientsJ. Phys. Chem. A1999103182218301:CAS:528:DyaK1MXhsFarurw%3D10.1021/jp9832995
BohnMFockVBeweis des adiabatensatzesZ. Phys.19285116518010.1007/BF01343193
AlbashTLidarDAAdiabatic quantum computationRev. Mod. Phys.20189001500210.1103/RevModPhys.90.015002
LiYHuJZhangX-MSongZYungM-HVariational quantum simulation for quantum chemistryAdv. Theory Simul.2019218001821:CAS:528:DC%2BC1MXnt1Sgtb4%3D10.1002/adts.201800182
Bally, T. & Borden, W. T. Calculations on open-shell molecules: a beginner’s guide in Reviews in Computational Chemistry, vol. 13, (eds. Lipkowitz, K. B. & Boyd, D. B.) 1–97 (Wiley-VCH, 1999).
MottaMDetermining eigenstates and thermal states on a quantum computer using quantum imaginary time evolutionNat. Phys.2020162052101:CAS:528:DC%2BC1MXitFelsrjM10.1038/s41567-019-0704-4
Tilly, J. et al. The variational quantum eigensolver: a review of methods and best practices. arXiv:2111:05176, https://arxiv.org/abs/2111.05176.
MarzlinK-PSandersBCInconsistency in the application of the adiabatic theoremPhys. Rev. Lett.2004931604081552496410.1103/PhysRevLett.93.1604081:CAS:528:DC%2BD2cXos1Crur4%3D
Head-MarsdenKFlickJCiccarinoCJNarangPQuantum information and algorithms for correlated quantum matterChem. Rev.2021121306131201:CAS:528:DC%2BB3cXisF2ju7zF3332621810.1021/acs.chemrev.0c00620
WhitfieldJDBiamonteJAspuru-GuzikASimulation of electronic structure Hamiltonians using quantum computersMol. Phys.20111097357501:CAS:528:DC%2BC3MXjtFSnt74%3D10.1080/00268976.2011.552441
SugisakiKQuantum chemistry on quantum computers: a method for preparation of multiconfigurational wave functions on quantum computers without performing post-Hartree–Fock calculationsACS Cent. Sci.201951671751:CAS:528:DC%2BC1MXktg%3D%3D3069333510.1021/acscentsci.8b00788
PurvisGDIIIShepardRBrownFBBartlettRJC2v insertion pathway for BeH2: a test problem for the coupled-cluster single and double excitation modelInt. J. Quantum Chem.1983238358451:CAS:528:DyaL3sXhtlanu7o%3D10.1002/qua.560230307
MahapatraUSDattaBMukherjeeDA size-consistent state-specific multireference coupled-cluster theory: formal developments and molecular applicationsJ. Chem. Phys.1999110617161881:CAS:528:DyaK1MXitVCmt7c%3D10.1063/1.478523
TongDMSinghKKwekLCOhCHQuantitative conditions do not guarantee the validity of the adiabatic approximationPhys. Rev. Lett.2005951104071:STN:280:DC%2BD2MrisFOgtQ%3D%3D1619698710.1103/PhysRevLett.95.110407
JordanPWignerEÜber das Paulische äquivalenzverbotZ. Phys.1928476316511:CAS:528:DyaB1cXjs1KnsA%3D%3D10.1007/BF01331938
XuKBreaking the quantum adiabatic speed limit by jumping along geodesicsSci. Adv.20195eaax38001:CAS:528:DC%2BB3cXhtlaktbbM3124554210.1126/sciadv.aax38006588358
McCleanJRBabbushRLovePJAspuru-GuzikAExploiting locality in quantum computation for quantum chemistryJ. Phys. Chem. Lett.20145436843801:CAS:528:DC%2BC2cXhvFOhsbfE2627398910.1021/jz501649m
BarcaGMJRecent developments in the general atomic and molecular electronic structure systemJ. Chem. Phys.20201521541021:CAS:528:DC%2BB3cXnsVWju7g%3D3232125910.1063/5.0005188
HayesEFSiuAKQElectronic structure of the open forms of three-membered ringsJ. Am. Chem. Soc.197193209020911:CAS:528:DyaE3MXhtlSnuro%3D10.1021/ja00737a064
Yater-AydenizKPooserRCSiopsisGPractical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithmsnpj Quantum Info202066310.1038/s41534-020-00290-1
CaoYQuantum chemistry in the age of quantum computingChem. Rev.201911910856109151:CAS:528:DC%2BC1MXhs1Krtb7K3146927710.1021/acs.chemrev.8b00803
SugisakiKQuantum algorithm for full configuration interaction calculations without controlled time evolutionsJ. Phys. Chem. Lett.20211211085110891:CAS:528:DC%2BB3MXisVagsrvI3474949810.1021/acs.jpclett.1c03214
KremenetskiVMejuto-ZaeraCCottonSJTubmanNMSimulation of adiabatic quantum computing for molecular ground statesJ. Chem. Phys.20211552341061:CAS:528:DC%2BB3MXislyitrvE3493734910.1063/5.0060124
DöhnertDKouteckyJOccupation numbers of natural orbitals as a criterion for biradical character. Different kinds of biradicalsJ. Am. Chem. Soc.19801021789179610.1021/ja00526a005
SugisakiKOpen shell electronic state calculations on quantum computers: a quantum circuit for the preparation of configuration state functions based on Serber constructionChem. Phys. Lett.2019737S10000210.1016/j.cpletx.2018.1000021:CAS:528:DC%2BB3cXitFOhsb3E
DuJNMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparationPhys. Rev. Lett.20101040305022036663610.1103/PhysRevLett.104.0305021:CAS:528:DC%2BC3cXhtlaksbg%3D
SugisakiKBayesian phase difference estimation: a general quantum algorithm for the direct calculation of energy gapsPhys. Chem. Chem. Phys.20212320152201621:CAS:528:DC%2BB3MXhvFelsLrN3455104510.1039/D1CP03156B
McCleanJROpenFermion: the electronic structure package for quantum computersQuantum Sci. Technol.2020503401410.1088/2058-9565/ab8ebc
YamaguchiKThe electronic structures of biradicals in the unrestricted Hartree–Fock approximationChem. Phys. Lett.1975333303351:CAS:528:DyaE2MXls1yktbo%3D10.1016/0009-2614(75)80169-2
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information, 10th Anniversary ed. (Cambridge University Press,
Z-Y Wang (701_CR35) 2016; 93
K Bharti (701_CR10) 2022; 94
US Mahapatra (701_CR51) 1999; 110
HF Trotter (701_CR59) 1959; 10
K Yamaguchi (701_CR38) 1975; 33
JD Whitfield (701_CR54) 2011; 109
V Kremenetski (701_CR26) 2021; 155
A Aspuru-Guzik (701_CR4) 2005; 309
701_CR41
S McArdle (701_CR27) 2019; 5
701_CR40
MHS Amin (701_CR32) 2009; 102
701_CR42
JT Seeley (701_CR57) 2012; 137
JR McClean (701_CR44) 2014; 5
M Motta (701_CR28) 2020; 16
A Peruzzo (701_CR6) 2014; 5
DM Tong (701_CR34) 2005; 95
JR McClean (701_CR65) 2020; 5
GD Purvis III (701_CR48) 1983; 23
T Albash (701_CR21) 2018; 90
A Tranter (701_CR63) 2019; 21
K Sugisaki (701_CR5) 2021; 12
701_CR56
P Jordan (701_CR55) 1928; 47
M Cerezo (701_CR8) 2021; 3
701_CR17
K Sugisaki (701_CR43) 2019; 21
K Sugisaki (701_CR53) 2021; 23
D Guéry-Odelin (701_CR37) 2019; 91
H Nakano (701_CR49) 1993; 99
US Mahapatra (701_CR50) 1999; 103
FA Evangelista (701_CR52) 2011; 134
K Xu (701_CR36) 2019; 5
701_CR61
K Sugisaki (701_CR15) 2019; 737S
Y Li (701_CR7) 2019; 2
701_CR20
701_CR64
K Head-Marsden (701_CR13) 2021; 121
M Suzuki (701_CR60) 1976; 56
H Yu (701_CR22) 2021; 3
701_CR9
K Yater-Aydeniz (701_CR29) 2020; 6
K Sugisaki (701_CR16) 2019; 5
GMJ Barca (701_CR66) 2020; 152
J Du (701_CR23) 2010; 104
701_CR1
M Shoji (701_CR39) 2006; 432
L Veis (701_CR24) 2014; 140
K-P Marzlin (701_CR33) 2004; 93
EF Hayes (701_CR45) 1971; 93
D Döhnert (701_CR46) 1980; 102
K Setia (701_CR58) 2018; 148
K Sugisaki (701_CR14) 2016; 120
Z Gan (701_CR3) 2006; 125
E Rossi (701_CR2) 1999; 310
S McArdle (701_CR12) 2020; 92
Y Cao (701_CR11) 2019; 119
M Bohn (701_CR19) 1928; 51
S Matsuura (701_CR25) 2021; 103
A Tranter (701_CR62) 2018; 14
N Gomes (701_CR30) 2021; 4
H Hu (701_CR31) 2016; 93
A Shayesteh (701_CR47) 2003; 118
K Sugisaki (701_CR18) 2022; 24
References_xml – volume: 47
  start-page: 631
  year: 1928
  ident: 701_CR55
  publication-title: Z. Phys.
  doi: 10.1007/BF01331938
  contributor:
    fullname: P Jordan
– volume: 51
  start-page: 165
  year: 1928
  ident: 701_CR19
  publication-title: Z. Phys.
  doi: 10.1007/BF01343193
  contributor:
    fullname: M Bohn
– volume: 432
  start-page: 343
  year: 2006
  ident: 701_CR39
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.10.023
  contributor:
    fullname: M Shoji
– volume: 104
  start-page: 030502
  year: 2010
  ident: 701_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.030502
  contributor:
    fullname: J Du
– volume: 6
  start-page: 63
  year: 2020
  ident: 701_CR29
  publication-title: npj Quantum Info
  doi: 10.1038/s41534-020-00290-1
  contributor:
    fullname: K Yater-Aydeniz
– volume: 14
  start-page: 5617
  year: 2018
  ident: 701_CR62
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00450
  contributor:
    fullname: A Tranter
– volume: 2
  start-page: 1800182
  year: 2019
  ident: 701_CR7
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201800182
  contributor:
    fullname: Y Li
– ident: 701_CR17
– volume: 140
  start-page: 214111
  year: 2014
  ident: 701_CR24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4880755
  contributor:
    fullname: L Veis
– volume: 103
  start-page: 1822
  year: 1999
  ident: 701_CR50
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9832995
  contributor:
    fullname: US Mahapatra
– volume: 23
  start-page: 20152
  year: 2021
  ident: 701_CR53
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP03156B
  contributor:
    fullname: K Sugisaki
– volume: 109
  start-page: 735
  year: 2011
  ident: 701_CR54
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2011.552441
  contributor:
    fullname: JD Whitfield
– volume: 137
  start-page: 224109
  year: 2012
  ident: 701_CR57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4768229
  contributor:
    fullname: JT Seeley
– volume: 94
  start-page: 015004
  year: 2022
  ident: 701_CR10
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.94.015004
  contributor:
    fullname: K Bharti
– volume: 121
  start-page: 3061
  year: 2021
  ident: 701_CR13
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00620
  contributor:
    fullname: K Head-Marsden
– volume: 5
  year: 2014
  ident: 701_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
  contributor:
    fullname: A Peruzzo
– volume: 92
  start-page: 015003
  year: 2020
  ident: 701_CR12
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015003
  contributor:
    fullname: S McArdle
– volume: 4
  start-page: 2100114
  year: 2021
  ident: 701_CR30
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.202100114
  contributor:
    fullname: N Gomes
– volume: 93
  start-page: 012345
  year: 2016
  ident: 701_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.012345
  contributor:
    fullname: H Hu
– volume: 90
  start-page: 015002
  year: 2018
  ident: 701_CR21
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015002
  contributor:
    fullname: T Albash
– volume: 118
  start-page: 3622
  year: 2003
  ident: 701_CR47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1539850
  contributor:
    fullname: A Shayesteh
– volume: 103
  start-page: 052435
  year: 2021
  ident: 701_CR25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.052435
  contributor:
    fullname: S Matsuura
– ident: 701_CR56
  doi: 10.1088/1742-5468/2005/09/P09012
– volume: 95
  start-page: 110407
  year: 2005
  ident: 701_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.110407
  contributor:
    fullname: DM Tong
– volume: 5
  start-page: eaax3800
  year: 2019
  ident: 701_CR36
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax3800
  contributor:
    fullname: K Xu
– volume: 23
  start-page: 835
  year: 1983
  ident: 701_CR48
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560230307
  contributor:
    fullname: GD Purvis III
– volume: 3
  start-page: 625
  year: 2021
  ident: 701_CR8
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
  contributor:
    fullname: M Cerezo
– ident: 701_CR20
– ident: 701_CR61
  doi: 10.1007/11526216_2
– volume: 148
  start-page: 164104
  year: 2018
  ident: 701_CR58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019371
  contributor:
    fullname: K Setia
– volume: 134
  start-page: 224102
  year: 2011
  ident: 701_CR52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3598471
  contributor:
    fullname: FA Evangelista
– ident: 701_CR1
– volume: 21
  start-page: 15356
  year: 2019
  ident: 701_CR43
  publication-title: S. Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP02546D
  contributor:
    fullname: K Sugisaki
– volume: 5
  start-page: 4368
  year: 2014
  ident: 701_CR44
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501649m
  contributor:
    fullname: JR McClean
– volume: 10
  start-page: 545
  year: 1959
  ident: 701_CR59
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1959-0108732-6
  contributor:
    fullname: HF Trotter
– volume: 155
  start-page: 234106
  year: 2021
  ident: 701_CR26
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0060124
  contributor:
    fullname: V Kremenetski
– volume: 309
  start-page: 1704
  year: 2005
  ident: 701_CR4
  publication-title: Science
  doi: 10.1126/science.1113479
  contributor:
    fullname: A Aspuru-Guzik
– volume: 5
  start-page: 034014
  year: 2020
  ident: 701_CR65
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab8ebc
  contributor:
    fullname: JR McClean
– ident: 701_CR9
– ident: 701_CR40
  doi: 10.1002/9780470125908.ch1
– ident: 701_CR42
  doi: 10.1016/S0065-3276(08)60317-2
– volume: 110
  start-page: 6171
  year: 1999
  ident: 701_CR51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478523
  contributor:
    fullname: US Mahapatra
– ident: 701_CR64
  doi: 10.5281/zenodo.4586899
– volume: 93
  start-page: 2090
  year: 1971
  ident: 701_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00737a064
  contributor:
    fullname: EF Hayes
– volume: 93
  start-page: 160408
  year: 2004
  ident: 701_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.160408
  contributor:
    fullname: K-P Marzlin
– volume: 152
  start-page: 154102
  year: 2020
  ident: 701_CR66
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005188
  contributor:
    fullname: GMJ Barca
– volume: 56
  start-page: 1454
  year: 1976
  ident: 701_CR60
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.56.1454
  contributor:
    fullname: M Suzuki
– volume: 102
  start-page: 220401
  year: 2009
  ident: 701_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.220401
  contributor:
    fullname: MHS Amin
– volume: 21
  start-page: 1218
  year: 2019
  ident: 701_CR63
  publication-title: Entropy
  doi: 10.3390/e21121218
  contributor:
    fullname: A Tranter
– volume: 24
  start-page: 8439
  year: 2022
  ident: 701_CR18
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP04318H
  contributor:
    fullname: K Sugisaki
– volume: 5
  start-page: 167
  year: 2019
  ident: 701_CR16
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00788
  contributor:
    fullname: K Sugisaki
– volume: 125
  start-page: 124311
  year: 2006
  ident: 701_CR3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2335446
  contributor:
    fullname: Z Gan
– volume: 737S
  start-page: 100002
  year: 2019
  ident: 701_CR15
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cpletx.2018.100002
  contributor:
    fullname: K Sugisaki
– volume: 120
  start-page: 6459
  year: 2016
  ident: 701_CR14
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b04932
  contributor:
    fullname: K Sugisaki
– volume: 33
  start-page: 330
  year: 1975
  ident: 701_CR38
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(75)80169-2
  contributor:
    fullname: K Yamaguchi
– volume: 5
  start-page: 75
  year: 2019
  ident: 701_CR27
  publication-title: npj Quantum Info
  doi: 10.1038/s41534-019-0187-2
  contributor:
    fullname: S McArdle
– volume: 99
  start-page: 7983
  year: 1993
  ident: 701_CR49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465674
  contributor:
    fullname: H Nakano
– volume: 16
  start-page: 205
  year: 2020
  ident: 701_CR28
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0704-4
  contributor:
    fullname: M Motta
– ident: 701_CR41
  doi: 10.1007/978-1-4615-4291-9
– volume: 102
  start-page: 1789
  year: 1980
  ident: 701_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00526a005
  contributor:
    fullname: D Döhnert
– volume: 119
  start-page: 10856
  year: 2019
  ident: 701_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00803
  contributor:
    fullname: Y Cao
– volume: 310
  start-page: 530
  year: 1999
  ident: 701_CR2
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00791-5
  contributor:
    fullname: E Rossi
– volume: 3
  start-page: 013104
  year: 2021
  ident: 701_CR22
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.013104
  contributor:
    fullname: H Yu
– volume: 91
  start-page: 045001
  year: 2019
  ident: 701_CR37
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045001
  contributor:
    fullname: D Guéry-Odelin
– volume: 12
  start-page: 11085
  year: 2021
  ident: 701_CR5
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03214
  contributor:
    fullname: K Sugisaki
– volume: 93
  start-page: 052107
  year: 2016
  ident: 701_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.052107
  contributor:
    fullname: Z-Y Wang
SSID ssj0002013778
Score 2.367162
Snippet Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent...
Abstract Adiabatic state preparation (ASP) can generate the correlated wave function by simulating the time evolution of wave function under the time-dependent...
Adiabatic state preparation (ASP) can generate correlated wave functions for quantum chemical calculations, but is inherently unsuitable for studying strongly...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 84
SubjectTerms 639/638/563/758
639/638/563/980
Adiabatic flow
Beryllium hydrides
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Circuits
Computers
Correlation
Mathematical analysis
Operators (mathematics)
Potential energy
Quantum chemistry
Quantum computing
Scheduling
Self consistent fields
Simulation
Symmetry
Time dependence
Wave functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VvbQXBKVAaEGu1FuJmsSPOMdSUVVI5USl3izbscWr2Wp3S8WJv86Mnd3uFhAXrrGVjOaRmfF4vgE4rJzTUnlXth2NMLMVmlTwbWk7HiU6cF6lMZ0XH9T5pXh_Ja9WRn3RnbAMD5wZdywbZaX3feN8L2obXRRN7Dy3nZBRyJD-vrVcSaa-pPIaIenpsUum4vp4JvKdC8y9COKmLvWaJ0qA_X-KMn-_LPmgYpoc0dljeDRGkOwkU_4ENsKwA1uni8FtT-HnCR2oEhIrS-1C7GYaMsL3ZGCTyDwN5PiGCz27s98DI9eWtI_RoSwbMniGnTJMfNERUb_6yh479MxNJ1_DUM5-XF8H_OSD1-zC5dm7j6fn5ThnofQYn81LrjUKxjWNr6VtXRNkOuYgrC-Fzst3zlmFiVTfRKVVJAB7Lb3oueXIeuH4M9hE2sILYHXtdBCtDpSGhRh0ZfssdeV4VL6AowXPzU2G0zCpDM61yRIyKCGTJGR0AW9JLMudBIWdHqCCmFFBzL8UpID9hVDNaJ8zk_p3eauFLOBguYxyonKJHcLkFve0irJBjFgLeJ51YEkJV6rTqGUFtGvasUbq-srw-VNC7-50LWRXF_BmoUf3ZP2dFS__Byv2YLtJBkDgHPuwOZ_ehlcYU83d62Q-vwBqGCCc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcAF8SalICNxg6hJ_IhzQqViqZDgRKXeLNuxAUGTJbul4sRfZ8ZJtmx5XGMrcfyNPQ97vgF4VjinpfIurxsqYWYLXFLB17lteJSowHmRynS-e6-OjsXbE3kyBdxW07XKeU9MG3Xbe4qR76eMS15rIV8uv-VUNYpOV6cSGlfhWklMeJQpvnizibFUiU9PT7kyBdf7KzHevEAPjIhuylxv6aNE2_83W_PPK5OXzk2TOlrcgpuTHckORuBvw5XQ3YHrh3P5trvw84DCqsTHylLSEFsOYeT57jvWR-apLMdXbGjZuf0eGCm4JIOMQrOsGyk07MDQ_UV1RFnrv_WxXcvc0H8JXb76cXoa8JOXXnMPjhevPxwe5VO1hdyjlbbOudYIj6sqX0pbuyrIFOwgxi-FKsw3zlmF7lRbRaVVJBp7Lb1oueXoRArH78MOji08BFaWTgdR60DOWIhBF7YdsVeOR-UzeD7PuVmOpBomHYZzbUaEDCJkEkJGZ_CKYNn0JELs9KAfPpppfRlZKSu9byvnW1Ha6KKoYuO5bYSMQoYM9mZQzbRKV-ZCpjJ4umlGnOjQxHahP8M-tSKfEO3WDB6MMrAZCVeq0ShlGdRb0rE11O2W7vOnxOHd6FLIpszgxSxHF8P691Ts_v8vHsGNKok2kW_swc56OAuP0WZauydpYfwCfwsWmw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen website
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAXBC3QQEFG6q2NSPyKcywrqgqJnqjUm2U7tkDQbLW7BXHirzPjZBdSyoFrPEksf2PNw55vAA4r743SwZdNSy3MXIVbKoamdK1ICg24qHKbzg_n-uxCvr9UlyNNDtXCTM7vhXmzlMNVCQyZiJmmLs092FG1rkiDZ3q2yafwzJ1nxrqYu1-d2J5M0X-XX_n39chbZ6TZ9Jw-goejz8hOBpAfw1bsd-H-bN2qbQ9-nlAKlbhXWS4QYteLOHB6z3s2TyxQC46vONCx7-5bZGTMsr4xSsOyfqDLcAuGoS6aHqpQ_0PG9R3zi_mX2JfLH1dXEX956zNP4OL03cfZWTl2VigDemSrUhiDUHjOQ61c43lUObFB7F4azVVovXcaQ6eOJ210Isp6o4LshBMYMEovnsI2zi3uA6trb6JsTKTAK6ZoKtcNOGsvkg4FHK3X3F4PBBo2H3wLYweELCJkM0LWFPCWYNlIEvl1foA6Yce9ZBXXToXQcR86Wbvkk-SpDcK1UiWpYgEHa1DtuCOXNlfsisZIVcDrzTDiRAckro_zG5RpNMV_6KMW8GzQgc1MhNatQS0roJlox2Sq05H-86fM192aWqq2LuB4rUe_p_XvpXj-f-Iv4AHPqk7EGwewvVrcxJfoL638q7xRfgHL1A9F
  priority: 102
  providerName: Springer Nature
Title Adiabatic state preparation of correlated wave functions with nonlinear scheduling functions and broken-symmetry wave functions
URI https://link.springer.com/article/10.1038/s42004-022-00701-8
https://www.ncbi.nlm.nih.gov/pubmed/36698020
https://www.proquest.com/docview/2694137845
https://search.proquest.com/docview/2769996416
https://pubmed.ncbi.nlm.nih.gov/PMC9814591
https://doaj.org/article/526a5ccd2bcd41afbf42f9c3a945f45e
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51ywEuiDcpZWUkbpDuJn7EObZRlwqpVYWo1FtkOzYtdJNVdlvEib_O2EmWboELx8RWMvJ81szYM98AvJ1qLbkwOs5y38JMTXFLWZPFKqeOowGn09Cm8_hEHJ2xj-f8fAv4UAsTkvaNvtyrr-Z79eVFyK1czM1kyBObnB4XuUwYz5PJCEYZpbdC9K_hZs2T6Mm-QGZK5WTJunQLDLs8u00Syw0jFLj6_-Zg_pkneeeyNNig2SN42DuPZL8T8jFs2foJ3C-Gnm1P4ee-P0v1JKwkVAqRRWs7cu-mJo0jxvfiuMKBinxXN5Z4qxaAR_x5LKk73gzVEox50Qb5UvVbc1RdEd0232wdL3_M5xZ_eeczz-Bsdvi5OIr7FguxQddsFVMpUSc6TU3CVaZTy8MJh6f5Emi3TK61EhhDVakTUjjPXS-5YRVVFCNHpulz2EbZ7EsgSaKlZZm0PgKzzsqpqjqFC02dMBG8G9a8XHRMGmW4Aaey7DRUoobKoKFSRnDg1bKe6Vmww4um_VL2WCh5KhQ3pkq1qViinHYsdbmhKmfcMW4j2B2UWvZbc1mG0l2aScYjeLMeRj35mxJV2-Ya52TCB4LorEbwosPAWhIqRC4RZRFkG-jYEHVzBHEciLt73EbwfsDRb7H-vRQ7__2jV_AgDaj3ZBy7sL1qr-1r9KFWegwjOfswhnsHhyenn_CpEMU4nEeMw276BZSXIi0
link.rule.ids 230,315,733,786,790,870,891,2115,12792,21416,27955,27956,33406,33777,33778,41153,42222,43633,43838,51609,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9lAuiDeBAkbiBlGT-BHnhNqq1QLtCqFW6s2yHbsgaLJktyBO_HU8TrJly-MaW4njb-x52d8AvMiMkVxYk5YVljDTWVhSzpaprqjnQYHTLJbpPJqJ6Ql7e8pPh4DbYjhWOe6JcaOuW4sx8u1445KWkvHX868pVo3C7OpQQuM6bCDlppzAxu7-7P2HVZSliIx6crgtk1G5vWD92YvggyHVTZ7KNY0Uifv_Zm3-eWjySuY0KqSDW3BzsCTJTg_9bbjmmjuwuTcWcLsLP3cwsIqMrCReGyLzzvVM321DWk8sFub4Ehpq8l1_cwRVXJRCgsFZ0vQkGrojwQEOCgnvrf_WRzc1MV372TXp4sf5uQufvPKae3BysH-8N02HegupDXbaMqVSBoBMUdic69IUjsdwB3J-iaDEbGWMFsGhqgsvpPBIZC-5ZTXVNLiRzND7MAljcw-B5LmRjpXSoTvmvJOZrnv0haFe2ARejnOu5j2thorpcCpVj5AKCKmIkJIJ7CIsq55IiR0ftN2ZGlaY4oXQ3Nq6MLZmufbGs8JXluqKcc-4S2BrBFUN63ShLqUqgeer5oATpk1049qL0KcU6BUGyzWBB70MrEZChahkkLIEyjXpWBvqekvz6WNk8a5kzniVJ_BqlKPLYf17Kh79_y-eweb0-OhQHb6ZvXsMN4oo5kjFsQWTZXfhngQLammeDsvkF3W0GvI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaAXVF5toICRuEHUTfyIc2wXVuVVcaBSb5bt2FBBk1V2C-LEX2dsJ0u3lAPX2EksfzOaGY_nG4DnE2MkF9bkVR1amOkJqpSzVa5r6jkacDqJbTo_HInDY_b2hJ9cqOKPt93HlGSqaQgsTe1yb974oUhc7i1YukCBgVTgqylyeR1uMHRuYrpWTFenLGVk1JNDtczVr65ZpEjcf5W3-felyUuZ02iQZltwe_AkyX6C_g5cc-1duDUdG7jdg1_74WA1MLKSWDZE5r1LTN9dSzpPbGjM8Q0HGvJDf3ckmLgohSQczpI2kWjonmAAjAYp1K1fmKPbhpi---rafPHz7MzhLy995j4cz15_mh7mQ7-F3KKftsyplAiQKUtbcF2Z0vF43BE4vwQaMVsbowUGVE3phRQ-ENlLbllDNcUwkhn6ADZwbW4HSFEY6VglXQjHnHdyopuEvjDUC5vBi3HP1TzRaqiYDqdSJYQUIqQiQkpmcBBgWc0MlNjxQdd_VoOGKV4Kza1tSmMbVmhvPCt9bamuGfeMuwx2R1DVoKcLFet4aSUZz-DZahhxCmkT3bruHOdUIkSF6LlmsJ1kYLUSKkQtUcoyqNakY22p6yPt6ZfI4l3LgvG6yODlKEd_lvXvrXj4f9Ofws2Pr2bq_Zujd49gs4xSH5g5dmFj2Z-7x-hQLc2TqDO_AYaNGnY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adiabatic+state+preparation+of+correlated+wave+functions+with+nonlinear+scheduling+functions+and+broken-symmetry+wave+functions&rft.jtitle=Communications+chemistry&rft.au=Sugisaki%2C+Kenji&rft.au=Toyota%2C+Kazuo&rft.au=Sato%2C+Kazunobu&rft.au=Shiomi%2C+Daisuke&rft.date=2022-07-25&rft.eissn=2399-3669&rft.volume=5&rft.issue=1&rft.spage=84&rft_id=info:doi/10.1038%2Fs42004-022-00701-8&rft_id=info%3Apmid%2F36698020&rft.externalDocID=36698020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3669&client=summon