Mechanical Downsizing of a Gadolinium(III)-based Metal-Organic Framework for Anticancer Drug Delivery
A GdIII‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene)), resulting in a three‐dimensional interpenetrated structure with a one‐dimensional open channel (1.9×1.2 nm) filled with hydrogen‐b...
Saved in:
Published in | Chemistry : a European journal Vol. 20; no. 33; pp. 10514 - 10518 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
11.08.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A GdIII‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene)), resulting in a three‐dimensional interpenetrated structure with a one‐dimensional open channel (1.9×1.2 nm) filled with hydrogen‐bonded water assemblies. Gd‐pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic‐solvent and mild acid and base stability with retention of crystallinity. Gd‐pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG‐Gd‐pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG‐Gd‐pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH‐responsive cancer‐cell‐specific drug release.
MOF nanocarrier: A new GdIII‐based porous metal–organic framework, Gd‐pDBI, with an elongated rotatable linker (DBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene) was synthesized. Gd‐pDBI is biocompatible, water‐stable, and acid/base‐tolerant. Mechanical grinding yielded nanocrystals with excellent water dispersibility, and they feature the highest loading of the anticancer drug doxorubicin (DOX) and cancer‐cell‐specific drug release. |
---|---|
AbstractList | A GdIII-based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9×1.2nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12wt%) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release. [PUBLICATION ABSTRACT] A Gd super(III)-based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.91.2nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12wt%) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release. MOF nanocarrier: A new Gd super(III)-based porous metal-organic framework, Gd-pDBI, with an elongated rotatable linker (DBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene) was synthesized. Gd-pDBI is biocompatible, water-stable, and acid/base-tolerant. Mechanical grinding yielded nanocrystals with excellent water dispersibility, and they feature the highest loading of the anticancer drug doxorubicin (DOX) and cancer-cell-specific drug release. A GdIII‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene)), resulting in a three‐dimensional interpenetrated structure with a one‐dimensional open channel (1.9×1.2 nm) filled with hydrogen‐bonded water assemblies. Gd‐pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic‐solvent and mild acid and base stability with retention of crystallinity. Gd‐pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG‐Gd‐pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG‐Gd‐pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH‐responsive cancer‐cell‐specific drug release. MOF nanocarrier: A new GdIII‐based porous metal–organic framework, Gd‐pDBI, with an elongated rotatable linker (DBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene) was synthesized. Gd‐pDBI is biocompatible, water‐stable, and acid/base‐tolerant. Mechanical grinding yielded nanocrystals with excellent water dispersibility, and they feature the highest loading of the anticancer drug doxorubicin (DOX) and cancer‐cell‐specific drug release. A Gd(III) -based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9×1.2 nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release. A Gd(III) -based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9×1.2 nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release.A Gd(III) -based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9×1.2 nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release. A Gd III ‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene)), resulting in a three‐dimensional interpenetrated structure with a one‐dimensional open channel (1.9×1.2 nm) filled with hydrogen‐bonded water assemblies. Gd‐pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic‐solvent and mild acid and base stability with retention of crystallinity. Gd‐pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG‐Gd‐pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG‐Gd‐pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH‐responsive cancer‐cell‐specific drug release. |
Author | Díaz Díaz, David Patra, Prasun Mitra, Shouvik Banerjee, Rahul Goswami, Arunava Kundu, Tanay |
Author_xml | – sequence: 1 givenname: Tanay surname: Kundu fullname: Kundu, Tanay organization: Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008 (India), Fax: (+91) 20-25902636 – sequence: 2 givenname: Shouvik surname: Mitra fullname: Mitra, Shouvik organization: AERU, Biological Sciences Division, Indian Statistical Institute, Kolkata, 700108 (India) – sequence: 3 givenname: Prasun surname: Patra fullname: Patra, Prasun organization: AERU, Biological Sciences Division, Indian Statistical Institute, Kolkata, 700108 (India) – sequence: 4 givenname: Arunava surname: Goswami fullname: Goswami, Arunava organization: AERU, Biological Sciences Division, Indian Statistical Institute, Kolkata, 700108 (India) – sequence: 5 givenname: David surname: Díaz Díaz fullname: Díaz Díaz, David organization: Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany) – sequence: 6 givenname: Rahul surname: Banerjee fullname: Banerjee, Rahul email: r.banerjee@ncl.res.in organization: Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008 (India), Fax: (+91) 20-25902636 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25044210$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9v0zAUxy00xLrBlSOKxGUcUuzYjp3j1K5dpXXjAOJoOc5L5y2xNzuhlL-eRB0VmoTG4eldPp_3Q98TdOS8A4TeEzwlGGefzS200wwThrOMsVdoQnhGUipyfoQmuGAizTktjtFJjHcY4yKn9A06zjhmLCN4gmAN5lY7a3STzP3WRfvLuk3i60QnS135xjrbt2er1epTWuoIVbKGTjfpTdiMVrIIuoWtD_dJ7UNy7rphkjMQknnoN8kcGvsDwu4tel3rJsK7p36Kvi0uvs4u06ub5Wp2fpWafLgo1TWUpiZFJSsKUAhBqTZZWZWy5oRUGLjMKsillKWoCM-JLIdWS0ZJUQvD6Ck62899CP6xh9ip1kYDTaMd-D4qIoQcPudY_AeKi6EYK15GOSc0E5jyAf34DL3zfXDDzyM1ElzigfrwRPVlC5V6CLbVYaf-xDIA0z1ggo8xQH1ACFZj7mrMXR1yHwT2TDC20531rgvaNv_Wir22tQ3sXliiZpcX67_ddO_a2MHPg6vDvcoFFVx9v16qL9d0OV8QqQT9DX-3zoY |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1039_C8TB03192D crossref_primary_10_1007_s10876_018_1482_3 crossref_primary_10_1016_j_jcou_2020_101300 crossref_primary_10_1039_D0NJ01448F crossref_primary_10_1021_acs_cgd_5b01772 crossref_primary_10_1016_j_cplett_2019_02_009 crossref_primary_10_1002_slct_202400247 crossref_primary_10_3390_ijms23084458 crossref_primary_10_1016_j_dyepig_2016_09_011 crossref_primary_10_1002_aoc_3430 crossref_primary_10_1016_j_btre_2024_e00837 crossref_primary_10_1039_C6TA09805C crossref_primary_10_1088_1402_4896_ad74a4 crossref_primary_10_1039_C4CE02551B crossref_primary_10_1016_j_molstruc_2019_127038 crossref_primary_10_1016_j_jconrel_2017_04_003 crossref_primary_10_1002_chem_201604604 crossref_primary_10_1016_j_apsb_2021_03_019 crossref_primary_10_1039_D1EN00719J crossref_primary_10_1021_acsomega_4c09945 crossref_primary_10_1039_C8DT00464A crossref_primary_10_1016_j_jconrel_2022_11_002 crossref_primary_10_1002_chem_201502615 crossref_primary_10_1007_s11356_016_7053_y crossref_primary_10_1002_adma_201606134 crossref_primary_10_1021_cg501430x crossref_primary_10_1080_17435390_2020_1851420 crossref_primary_10_1016_j_pmatsci_2020_100743 crossref_primary_10_1002_chem_201503706 crossref_primary_10_1016_j_ccr_2020_213660 crossref_primary_10_1080_09593330_2019_1643410 crossref_primary_10_26599_NBE_2024_9290078 crossref_primary_10_1016_j_ccr_2015_08_002 crossref_primary_10_1016_j_scitotenv_2023_165944 crossref_primary_10_1039_C5CE01456E crossref_primary_10_1016_j_ica_2023_121488 crossref_primary_10_1039_D0NJ00567C crossref_primary_10_1002_adfm_201804634 crossref_primary_10_1002_smll_202301933 crossref_primary_10_1016_j_ica_2025_122654 crossref_primary_10_1039_D1CS00918D crossref_primary_10_1016_j_ccr_2015_08_008 crossref_primary_10_1016_j_jpowsour_2018_10_086 crossref_primary_10_1039_C6NR07593B crossref_primary_10_1039_C8NJ03350A crossref_primary_10_1016_j_jssc_2020_121544 crossref_primary_10_1021_acsami_2c05338 crossref_primary_10_1016_j_cej_2020_125706 crossref_primary_10_1107_S2053229617007653 crossref_primary_10_1016_j_cej_2021_129126 crossref_primary_10_1016_j_jece_2023_110192 crossref_primary_10_1039_D0DT03868G crossref_primary_10_1016_j_heliyon_2024_e25521 crossref_primary_10_1021_acsami_6b10160 crossref_primary_10_1016_j_talanta_2018_10_101 crossref_primary_10_1515_mgmc_2018_0030 crossref_primary_10_1021_acs_cgd_6b01266 crossref_primary_10_1002_adtp_201900102 crossref_primary_10_7209_carbon_040104 crossref_primary_10_1002_asia_202000815 crossref_primary_10_1016_j_jpba_2022_115026 crossref_primary_10_1016_j_poly_2016_10_016 crossref_primary_10_1039_C7NJ01557G crossref_primary_10_1039_C7TA00101K crossref_primary_10_1039_C7RA00165G crossref_primary_10_2174_0929867325666180214123500 crossref_primary_10_1021_acs_chemrev_5b00125 crossref_primary_10_1039_D0BM01328E crossref_primary_10_1002_cplu_201600142 crossref_primary_10_1039_C7CP04831A crossref_primary_10_1021_acsami_0c09086 crossref_primary_10_1016_j_micromeso_2015_08_037 crossref_primary_10_1039_D1TB02176A crossref_primary_10_1021_acs_cgd_2c01041 crossref_primary_10_1016_j_eurpolymj_2023_112480 crossref_primary_10_1016_j_molstruc_2016_08_051 crossref_primary_10_1002_cplu_201600233 crossref_primary_10_1016_j_inoche_2018_07_016 crossref_primary_10_1021_acs_cgd_5b00741 crossref_primary_10_1016_j_matlet_2018_05_006 crossref_primary_10_1039_C5DT03705K crossref_primary_10_1002_chem_201501976 crossref_primary_10_1002_adma_201707365 crossref_primary_10_1080_24701556_2019_1661460 crossref_primary_10_1039_D2TB01884E crossref_primary_10_1007_s00216_019_02217_y crossref_primary_10_1021_acsami_8b19048 crossref_primary_10_1080_02652048_2018_1462417 crossref_primary_10_1016_j_actbio_2019_01_060 crossref_primary_10_1039_C8DT02051E crossref_primary_10_1039_D4MH00702F crossref_primary_10_1021_acs_cgd_7b00274 crossref_primary_10_1080_10584587_2020_1728627 crossref_primary_10_1016_j_inoche_2023_111739 crossref_primary_10_1039_C6RA17898G crossref_primary_10_1016_j_ijhydene_2024_02_190 crossref_primary_10_1002_chem_201605674 crossref_primary_10_1039_C5CE00143A crossref_primary_10_1016_j_cej_2020_126745 crossref_primary_10_1016_j_ensm_2021_09_023 crossref_primary_10_1021_acsbiomaterials_3c00507 crossref_primary_10_1021_acs_inorgchem_0c03550 crossref_primary_10_1016_j_micromeso_2017_04_042 crossref_primary_10_1002_ejic_201900876 crossref_primary_10_1021_acs_inorgchem_5b00335 crossref_primary_10_1007_s11095_016_2059_1 crossref_primary_10_1039_C5CC00366K crossref_primary_10_1007_s10904_019_01081_8 crossref_primary_10_1016_j_talanta_2019_120596 crossref_primary_10_1039_C8DT03202E crossref_primary_10_1021_acs_cgd_0c01090 crossref_primary_10_1016_j_jallcom_2018_04_014 crossref_primary_10_1016_j_poly_2017_03_040 crossref_primary_10_1016_j_molstruc_2021_131315 crossref_primary_10_1016_j_jssc_2016_02_040 crossref_primary_10_1002_cplu_201500564 crossref_primary_10_1016_j_ijpharm_2016_08_010 crossref_primary_10_1002_advs_201801526 crossref_primary_10_1016_j_inoche_2017_04_015 crossref_primary_10_1021_acsami_1c01089 crossref_primary_10_1039_D0TB01272F crossref_primary_10_1002_chem_201701904 crossref_primary_10_1016_j_ccr_2018_04_018 crossref_primary_10_3390_app12020935 crossref_primary_10_1039_D4TA03251A crossref_primary_10_1039_C5CC00018A crossref_primary_10_1039_D3TB00027C crossref_primary_10_1016_j_aca_2017_10_028 crossref_primary_10_1039_D0CS00883D crossref_primary_10_1002_zaac_201800248 crossref_primary_10_3390_ma10020216 crossref_primary_10_1002_slct_201802067 crossref_primary_10_1016_j_jssc_2017_04_039 crossref_primary_10_1039_C6CE01995A crossref_primary_10_3390_nano12020277 crossref_primary_10_1016_j_micromeso_2023_112795 crossref_primary_10_1038_s41467_017_02103_0 crossref_primary_10_1016_j_ica_2018_06_027 crossref_primary_10_1039_C8NJ04947E crossref_primary_10_1039_D2TB02094G crossref_primary_10_1021_acsami_7b09608 crossref_primary_10_1039_D3TA05219B crossref_primary_10_1039_C8NJ02504E crossref_primary_10_1002_asia_201601382 crossref_primary_10_3390_sym15030619 crossref_primary_10_1002_aoc_6571 crossref_primary_10_1039_C5RA01283J crossref_primary_10_1039_D0NJ05711H crossref_primary_10_1007_s12274_021_3421_0 crossref_primary_10_1016_j_drudis_2016_04_009 crossref_primary_10_1016_j_semcancer_2019_12_015 crossref_primary_10_1021_acsami_6b05948 crossref_primary_10_1021_acs_chemrestox_1c00048 crossref_primary_10_1016_j_cclet_2019_11_036 crossref_primary_10_1016_j_jddst_2024_106378 crossref_primary_10_1016_j_matchemphys_2023_127512 crossref_primary_10_1039_C6CY02355J crossref_primary_10_2174_1381612826666200406153949 crossref_primary_10_1016_j_jcis_2022_01_188 crossref_primary_10_1002_asia_201801462 crossref_primary_10_1039_C5TC01287B crossref_primary_10_1039_C6CE01173J crossref_primary_10_1039_C5DT03736K crossref_primary_10_1021_acsami_8b09872 crossref_primary_10_1016_j_jhazmat_2014_11_039 crossref_primary_10_1039_C6DT02693A crossref_primary_10_1039_C6SC01359G crossref_primary_10_1002_jccs_201900226 crossref_primary_10_1002_adfm_202110784 crossref_primary_10_1016_j_jcat_2020_05_010 crossref_primary_10_1021_jacs_4c05879 crossref_primary_10_1021_acs_inorgchem_1c00581 crossref_primary_10_1016_j_cej_2023_145840 crossref_primary_10_1016_j_jddst_2023_104690 crossref_primary_10_1039_D0FD00103A crossref_primary_10_1080_17425247_2016_1229298 crossref_primary_10_1016_j_ccr_2015_09_002 crossref_primary_10_1039_D0DT04276E crossref_primary_10_1002_adma_201707634 crossref_primary_10_1186_s11671_022_03668_6 crossref_primary_10_1360_nso_20230016 crossref_primary_10_1002_slct_202103519 crossref_primary_10_1039_C7RA13494K crossref_primary_10_1038_s41427_020_00240_5 crossref_primary_10_1021_jacs_5b01613 crossref_primary_10_1039_C7TB00392G crossref_primary_10_1016_j_jinorgbio_2017_08_036 crossref_primary_10_3390_pharmaceutics14020254 crossref_primary_10_1038_s41598_024_66432_z crossref_primary_10_1016_j_polymer_2020_122815 crossref_primary_10_1021_acssuschemeng_0c06044 crossref_primary_10_1016_j_jtice_2021_08_017 crossref_primary_10_1021_acsomega_8b02025 crossref_primary_10_1007_s00775_021_01887_3 crossref_primary_10_1021_acs_jctc_6b00664 crossref_primary_10_1039_C6TB00952B crossref_primary_10_1039_C6DT03812C crossref_primary_10_1002_aoc_6659 crossref_primary_10_1039_D0CS00292E crossref_primary_10_1021_acs_chemmater_6b02239 crossref_primary_10_1002_admi_202001941 crossref_primary_10_1016_j_jssc_2018_04_007 crossref_primary_10_1016_j_apcatb_2015_03_037 crossref_primary_10_1070_RCR4797 |
Cites_doi | 10.1002/ange.200300610 10.1021/ie101312k 10.1039/b600363j 10.1021/ja2078637 10.1039/b200393g 10.1039/B511962F 10.1002/anie.200300610 10.1038/nmat2608 10.1016/S0168-3659(01)00341-8 10.1021/ja805920t 10.1021/ja054068w 10.1002/ange.200802911 10.1021/ja803777x 10.1039/c2cc31135f 10.1039/b305705b 10.1016/j.jconrel.2004.12.018 10.1126/science.1095833 10.4172/1948-5956.1000024 10.1039/c2tb00366j 10.1158/1078-0432.CCR-08-0159 10.1021/ja400754p 10.1039/b807080f 10.1021/cr200256v 10.1002/ejic.201000496 10.1002/anie.201107960 10.1021/ja043953w 10.1021/ic034976z 10.1021/ja906198y 10.1038/nnano.2007.387 10.1007/s11095-006-0282-x 10.1677/erc.1.01045 10.1002/ange.201107960 10.1021/ar200028a 10.1021/ja0627444 10.1039/c3ce41083h 10.1126/science.1113247 10.1021/cm402592t 10.1021/ja907023c 10.1038/nmat2526 10.1021/am200075q 10.1039/c2ra21087h 10.1039/c003084h 10.1021/ja710973k 10.1002/ange.201000048 10.1002/anie.201000048 10.1126/science.1230444 10.1016/j.jconrel.2010.07.123 10.1039/c3sc22116d 10.1039/b802426j 10.1016/j.addr.2012.09.013 10.1021/cm400798p 10.1002/pola.23049 10.1002/anie.201203993 10.1002/ange.201203993 10.1016/j.cbpa.2009.12.012 10.1039/C3TB20832J |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 7QO FR3 P64 7QF |
DOI | 10.1002/chem.201402244 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Aluminium Industry Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts Aluminium Industry Abstracts |
DatabaseTitleList | Materials Research Database Materials Research Database MEDLINE MEDLINE - Academic CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 10518 |
ExternalDocumentID | 3390118651 25044210 10_1002_chem_201402244 CHEM201402244 ark_67375_WNG_PN3GDF18_7 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CSIR funderid: CSS0102; CSS0122 – fundername: National Fund (ICAR) – fundername: DFG – fundername: UR – fundername: DBT – fundername: NAIP – fundername: ISI – fundername: BRNS |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 7QO FR3 P64 7QF |
ID | FETCH-LOGICAL-c6504-afebcf19d8d3ee97733ac2bdb8f511d0e582de6888b7d15618bd15f84319f7c43 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 16:47:57 EDT 2025 Thu Jul 10 17:28:39 EDT 2025 Fri Jul 11 11:09:14 EDT 2025 Fri Jul 25 10:41:16 EDT 2025 Thu Apr 03 07:10:50 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 Tue Jul 01 03:34:50 EDT 2025 Wed Jan 22 17:05:44 EST 2025 Wed Oct 30 10:04:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | ball-milling doxorubicin drug delivery nanocarriers metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6504-afebcf19d8d3ee97733ac2bdb8f511d0e582de6888b7d15618bd15f84319f7c43 |
Notes | istex:C29270D8F0B834603636DC4F6E57773192B1E163 DFG ark:/67375/WNG-PN3GDF18-7 DBT National Fund (ICAR) BRNS CSIR - No. CSS0102; No. CSS0122 UR ArticleID:CHEM201402244 NAIP ISI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25044210 |
PQID | 1550353580 |
PQPubID | 986340 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1778044507 proquest_miscellaneous_1709170449 proquest_miscellaneous_1551327035 proquest_journals_1550353580 pubmed_primary_25044210 crossref_primary_10_1002_chem_201402244 crossref_citationtrail_10_1002_chem_201402244 wiley_primary_10_1002_chem_201402244_CHEM201402244 istex_primary_ark_67375_WNG_PN3GDF18_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 11, 2014 |
PublicationDateYYYYMMDD | 2014-08-11 |
PublicationDate_xml | – month: 08 year: 2014 text: August 11, 2014 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | J. J. Ferreiro, J. G. de La Campa, A. E. Lozano, J. de Abajo, J. Preston, J. Polym. Sci. Part A 2008, 46, 7566-7577. W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, W. Lin, J. Am. Chem. Soc. 2006, 128, 9024-9025 I. B. Vasconcelos, T. G. da Silva, G. C. G. Militão, T. A. Soares, N. M. Rodrigues, M. O. Rodrigues, N. B. da Costa Jr., R. O. Freire, S. A. Junior, RSC Adv. 2012, 2, 9437-9442. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 2010, 9, 172-178 Angew. Chem. Int. Ed. 2012, 51, 5460-5465 A. L. Garay, A. Pichon, S. L. James, Chem. Soc. Rev. 2007, 36, 846-855. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndta, J. Pastré, J. Mater. Chem. 2006, 16, 626-636. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, J. Controlled Release 2001, 74, 295-302 Angew. Chem. Int. Ed. 2012, 51, 8373-8377. S. C. Sahoo, T. Kundu, R. Banerjee, J. Am. Chem. Soc. 2011, 133, 17950-17958 J.-R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477-1504 C. Argyo, V. Weiss, C. Bräuchle, T. Bein, Chem. Mater. 2014, 26, 435-451 G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, 1999. S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 2009, 8, 831-836. S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. 2004, 116, 2388-2430 J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459 T. Kundu, S. C. Sahoo, R. Banerjee, CrystEngComm 2013, 15, 9634-9640 T. Kundu, S. C. Sahoo, R. Banerjee, Chem. Commun. 2012, 48, 4998-5000 D. R. Khan, J. Cancer Sci. Ther. 2010, 2, 58-62 S. L. James, Chem. Soc. Rev. 2003, 32, 276-288 D. Cunha, C. Gaudin, I. Colinet, P. Horcajada, G. Maurin, C. Serre, J. Mater. Chem. B 2013, 1, 1101-1108 Angew. Chem. Int. Ed. 2004, 43, 2334-2375. K. M. L. Taylor, W. J. Rieter, W. Lin, J. Am. Chem. Soc. 2008, 130, 14358-14359 I. Imaz, M. Rubio-Martınez, L. Garcıa-Fernandez, F. Garcıa, D. Ruiz-Molina, J. Hernando, V. Puntes, D. Maspoch, Chem. Commun. 2010, 46, 4737-4739. K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Delivery Rev. 2012, 64, 37-48 T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi, R. Gref, M. F. Najjar, A. Zakhama, P. Couvreur, C. Serre, P. Horcajada, Chem. Sci. 2013, 4, 1597-1607 P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Férey, J. Am. Chem. Soc. 2008, 130, 6774-6780 A. Yamada, Y. Taniguchi, K. Kawano, Clin. Cancer Res. 2008, 14, 8161-8168 H. L. Wong, A. M. Rauth, R. Bendayan, J. L. Manias, M. Ramaswamy, Z. Liu, S. Z. Erhan, X. Y. Wu, Pharm. Res. 2006, 23, 1574-1585 C. Wang, Z. Li, D. Cao, Y.-L. Zhao, J. W. Gaines, O. A. Bozdemir, M. W. Ambrogio, M. Frasconi, Y. Y. Botros, J. I. Zink, J. F. Stoddart, Angew. Chem. 2012, 124, 5556-5561 D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751-760 C. Sanson, C. Schatz, J. F. L. Meins, A. Soum, J. Thévenot, E. Garanger, S. Lecommandoux, J. Controlled Release 2010, 147, 428-435 H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 6149 T. FriŠčić, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier, M. J. Duer, Angew. Chem. Int. Ed. 2009, 48, 712-715 E. S. Lee, K. Na, Y. H. Bae, J. Controlled Release 2005, 103, 405-418 N. Nijem, P. Canepa, U. Kaipa, K. Tan, K. Roodenko, S. Tekarli, J. Halbert, I. W. H. Oswald, R. K. Arvapally, C. Yang, T. Thonhauser, M. A. Omary, Y. J. Chabal, J. Am. Chem. Soc. 2013, 135, 12615-12626. P. S. Lakshminarayanan, E. Suresh, P. Ghosh, J. Am. Chem. Soc. 2005, 127, 13132-13133 J. L. C. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard, O. M. Yaghi, Science 2005, 309, 1350-1354. S. K. Ghosh, P. K. Bharadwaj, Inorg. Chem. 2003, 42, 8250-8254 D. Cunha, M. B. Yahia, S. Hall, S. R. Miller, H. Chevreau, E. Elkaïm, G. Maurin, P. Horcajada, C. Serre, Chem. Mater. 2013, 25, 2767-2776 C. Tamames-Tabar, D. Cunha, E. Imbuluzqueta, F. Ragon, C. Serre, M. J. Blanco-Prieto, P. Horcajada, J. Mater. Chem. B, 2014, 2, 262-271. R. Duncan, M. J. Vicent, F. Greco, R. I. Nicholson, Endocr.-Relat. Cancer 2005, 12, S189-S199 K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, W. Lin, J. Am. Chem. Soc. 2009, 131, 14261-14263 S. Keskin, S. Kızılel, Ind. Eng. Chem. Res. 2011, 50, 1799-1812. J. Della Rocca, W. Lin, Eur. J. Inorg. Chem. 2010, 24, 3725-3734. A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, Angew. Chem. 2010, 122, 6400-6406 R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262-268 C. Duan, M. Wei, D. Guo, C. He, Q. Meng, J. Am. Chem. Soc. 2010, 132, 3321-3330 J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 2011, 44, 957-968 Angew. Chem. Int. Ed. 2010, 49, 6260-6266 C. Janiak, Dalton trans. 2003, 2781-2804 W. Hatakeyama, T. J. Sanchez, M. D. Rowe, N. J. Serkova, M. W. Liberatore, S. G. Boyes, ACS Appl. Mater. Interfaces 2011, 3, 1502-1510. P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232-1268 H. Yan, C. Teh, S. Sreejith, L. Zhu, A. Kwok, W. Fang, X. Ma, K. T. Nguyen, V. Korzh, Y. Zhao, Angew. Chem. 2012, 124, 8498-8502 F. Dai, H. He, D. Sun, J. Am. Chem. Soc. 2008, 130, 14064-14065 K. M. L. Taylor, A. Jin, W. Lin, Angew. Chem. 2008, 120, 7836-7839 T. M. Allen, P. R. Cullis, Science 2004, 303, 1818-1822. M. Yoshizawa, T. Kusukawa, M. Kawano, T. Ohhara, I. Tanaka, K. Kurihara, N. Niimura, M. Fujita, J. Am. Chem. Soc. 2005, 127, 2798-2799 2013; 25 2013; 4 2013; 1 2010; 14 2010; 147 2010 2010; 122 49 2014; 26 2009; 48 2007; 36 2013; 15 2010; 24 2014; 2 2006; 23 2005; 103 2005; 309 2007; 2 2010; 2 2006; 128 2003; 42 2012; 64 2010; 9 2004 2004; 116 43 2004; 303 2006; 16 2008; 14 2003 2013; 341 2009; 131 2011; 3 2008; 120 2003; 32 2011; 133 1999 2012; 2 2012; 112 2010; 46 2005; 127 2011; 50 2010; 132 2011; 44 2009; 8 2008; 46 2013; 135 2012 2012; 124 51 2012; 48 2009; 38 2008; 130 2001; 74 2005; 12 e_1_2_5_27_2 e_1_2_5_48_2 e_1_2_5_25_2 e_1_2_5_46_2 e_1_2_5_23_2 e_1_2_5_44_2 e_1_2_5_21_2 e_1_2_5_42_2 e_1_2_5_65_2 e_1_2_5_67_2 e_1_2_5_29_2 e_1_2_5_61_2 e_1_2_5_63_2 e_1_2_5_40_2 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_59_2 e_1_2_5_9_2 e_1_2_5_34_3 Desiraju G. R. (e_1_2_5_52_2) 1999 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_57_2 e_1_2_5_7_2 e_1_2_5_34_2 e_1_2_5_55_2 e_1_2_5_5_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_53_2 e_1_2_5_3_2 e_1_2_5_1_2 e_1_2_5_17_2 e_1_2_5_19_2 e_1_2_5_30_2 e_1_2_5_51_2 e_1_2_5_26_2 e_1_2_5_49_2 e_1_2_5_24_2 e_1_2_5_47_2 e_1_2_5_22_2 e_1_2_5_45_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_20_3 e_1_2_5_64_2 e_1_2_5_66_2 e_1_2_5_68_2 e_1_2_5_28_2 e_1_2_5_60_2 e_1_2_5_62_2 e_1_2_5_41_2 FriŠčić T. (e_1_2_5_50_2) 2009; 48 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_58_2 e_1_2_5_8_2 e_1_2_5_35_3 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_56_2 e_1_2_5_6_2 e_1_2_5_4_3 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_54_2 e_1_2_5_4_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_39_2 |
References_xml | – reference: C. Wang, Z. Li, D. Cao, Y.-L. Zhao, J. W. Gaines, O. A. Bozdemir, M. W. Ambrogio, M. Frasconi, Y. Y. Botros, J. I. Zink, J. F. Stoddart, Angew. Chem. 2012, 124, 5556-5561; – reference: T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi, R. Gref, M. F. Najjar, A. Zakhama, P. Couvreur, C. Serre, P. Horcajada, Chem. Sci. 2013, 4, 1597-1607; – reference: R. Duncan, M. J. Vicent, F. Greco, R. I. Nicholson, Endocr.-Relat. Cancer 2005, 12, S189-S199; – reference: Angew. Chem. Int. Ed. 2012, 51, 8373-8377. – reference: Angew. Chem. Int. Ed. 2004, 43, 2334-2375. – reference: P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232-1268; – reference: F. Dai, H. He, D. Sun, J. Am. Chem. Soc. 2008, 130, 14064-14065; – reference: D. Cunha, M. B. Yahia, S. Hall, S. R. Miller, H. Chevreau, E. Elkaïm, G. Maurin, P. Horcajada, C. Serre, Chem. Mater. 2013, 25, 2767-2776; – reference: J. J. Ferreiro, J. G. de La Campa, A. E. Lozano, J. de Abajo, J. Preston, J. Polym. Sci. Part A 2008, 46, 7566-7577. – reference: H. Yan, C. Teh, S. Sreejith, L. Zhu, A. Kwok, W. Fang, X. Ma, K. T. Nguyen, V. Korzh, Y. Zhao, Angew. Chem. 2012, 124, 8498-8502; – reference: T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, J. Controlled Release 2001, 74, 295-302; – reference: C. Sanson, C. Schatz, J. F. L. Meins, A. Soum, J. Thévenot, E. Garanger, S. Lecommandoux, J. Controlled Release 2010, 147, 428-435; – reference: D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751-760; – reference: G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, 1999. – reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 6149; – reference: T. Kundu, S. C. Sahoo, R. Banerjee, CrystEngComm 2013, 15, 9634-9640; – reference: Angew. Chem. Int. Ed. 2012, 51, 5460-5465; – reference: P. S. Lakshminarayanan, E. Suresh, P. Ghosh, J. Am. Chem. Soc. 2005, 127, 13132-13133; – reference: T. Kundu, S. C. Sahoo, R. Banerjee, Chem. Commun. 2012, 48, 4998-5000; – reference: Angew. Chem. Int. Ed. 2010, 49, 6260-6266; – reference: C. Janiak, Dalton trans. 2003, 2781-2804; – reference: K. M. L. Taylor, W. J. Rieter, W. Lin, J. Am. Chem. Soc. 2008, 130, 14358-14359; – reference: S. C. Sahoo, T. Kundu, R. Banerjee, J. Am. Chem. Soc. 2011, 133, 17950-17958; – reference: P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 2010, 9, 172-178; – reference: J. L. C. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard, O. M. Yaghi, Science 2005, 309, 1350-1354. – reference: T. FriŠčić, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier, M. J. Duer, Angew. Chem. Int. Ed. 2009, 48, 712-715; – reference: J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459; – reference: A. L. Garay, A. Pichon, S. L. James, Chem. Soc. Rev. 2007, 36, 846-855. – reference: A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, Angew. Chem. 2010, 122, 6400-6406; – reference: T. M. Allen, P. R. Cullis, Science 2004, 303, 1818-1822. – reference: J.-R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477-1504; – reference: D. Cunha, C. Gaudin, I. Colinet, P. Horcajada, G. Maurin, C. Serre, J. Mater. Chem. B 2013, 1, 1101-1108; – reference: C. Argyo, V. Weiss, C. Bräuchle, T. Bein, Chem. Mater. 2014, 26, 435-451; – reference: S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 2009, 8, 831-836. – reference: J. Della Rocca, W. Lin, Eur. J. Inorg. Chem. 2010, 24, 3725-3734. – reference: R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262-268; – reference: C. Duan, M. Wei, D. Guo, C. He, Q. Meng, J. Am. Chem. Soc. 2010, 132, 3321-3330; – reference: U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndta, J. Pastré, J. Mater. Chem. 2006, 16, 626-636. – reference: A. Yamada, Y. Taniguchi, K. Kawano, Clin. Cancer Res. 2008, 14, 8161-8168; – reference: J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 2011, 44, 957-968; – reference: E. S. Lee, K. Na, Y. H. Bae, J. Controlled Release 2005, 103, 405-418; – reference: H. L. Wong, A. M. Rauth, R. Bendayan, J. L. Manias, M. Ramaswamy, Z. Liu, S. Z. Erhan, X. Y. Wu, Pharm. Res. 2006, 23, 1574-1585; – reference: I. Imaz, M. Rubio-Martınez, L. Garcıa-Fernandez, F. Garcıa, D. Ruiz-Molina, J. Hernando, V. Puntes, D. Maspoch, Chem. Commun. 2010, 46, 4737-4739. – reference: K. M. L. Taylor, A. Jin, W. Lin, Angew. Chem. 2008, 120, 7836-7839; – reference: D. R. Khan, J. Cancer Sci. Ther. 2010, 2, 58-62; – reference: S. Keskin, S. Kızılel, Ind. Eng. Chem. Res. 2011, 50, 1799-1812. – reference: K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Delivery Rev. 2012, 64, 37-48; – reference: S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. 2004, 116, 2388-2430; – reference: S. L. James, Chem. Soc. Rev. 2003, 32, 276-288; – reference: C. Tamames-Tabar, D. Cunha, E. Imbuluzqueta, F. Ragon, C. Serre, M. J. Blanco-Prieto, P. Horcajada, J. Mater. Chem. B, 2014, 2, 262-271. – reference: K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, W. Lin, J. Am. Chem. Soc. 2009, 131, 14261-14263; – reference: N. Nijem, P. Canepa, U. Kaipa, K. Tan, K. Roodenko, S. Tekarli, J. Halbert, I. W. H. Oswald, R. K. Arvapally, C. Yang, T. Thonhauser, M. A. Omary, Y. J. Chabal, J. Am. Chem. Soc. 2013, 135, 12615-12626. – reference: W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, W. Lin, J. Am. Chem. Soc. 2006, 128, 9024-9025; – reference: S. K. Ghosh, P. K. Bharadwaj, Inorg. Chem. 2003, 42, 8250-8254; – reference: W. Hatakeyama, T. J. Sanchez, M. D. Rowe, N. J. Serkova, M. W. Liberatore, S. G. Boyes, ACS Appl. Mater. Interfaces 2011, 3, 1502-1510. – reference: P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Férey, J. Am. Chem. Soc. 2008, 130, 6774-6780; – reference: M. Yoshizawa, T. Kusukawa, M. Kawano, T. Ohhara, I. Tanaka, K. Kurihara, N. Niimura, M. Fujita, J. Am. Chem. Soc. 2005, 127, 2798-2799; – reference: I. B. Vasconcelos, T. G. da Silva, G. C. G. Militão, T. A. Soares, N. M. Rodrigues, M. O. Rodrigues, N. B. da Costa Jr., R. O. Freire, S. A. Junior, RSC Adv. 2012, 2, 9437-9442. – volume: 48 start-page: 4998 year: 2012 end-page: 5000 publication-title: Chem. Commun. – volume: 64 start-page: 37 year: 2012 end-page: 48 publication-title: Adv. Drug Delivery Rev. – volume: 23 start-page: 1574 year: 2006 end-page: 1585 publication-title: Pharm. Res. – volume: 15 start-page: 9634 year: 2013 end-page: 9640 publication-title: CrystEngComm – volume: 2 start-page: 751 year: 2007 end-page: 760 publication-title: Nat. Nanotechnol. – volume: 309 start-page: 1350 year: 2005 end-page: 1354 publication-title: Science – volume: 26 start-page: 435 year: 2014 end-page: 451 publication-title: Chem. Mater. – volume: 131 start-page: 14261 year: 2009 end-page: 14263 publication-title: J. Am. Chem. Soc. – start-page: 2781 year: 2003 end-page: 2804 publication-title: Dalton trans. – volume: 42 start-page: 8250 year: 2003 end-page: 8254 publication-title: Inorg. Chem. – volume: 46 start-page: 4737 year: 2010 end-page: 4739 publication-title: Chem. Commun. – volume: 130 start-page: 6774 year: 2008 end-page: 6780 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 7566 year: 2008 end-page: 7577 publication-title: J. Polym. Sci. Part A – volume: 341 start-page: 6149 year: 2013 publication-title: Science – volume: 303 start-page: 1818 year: 2004 end-page: 1822 publication-title: Science – volume: 32 start-page: 276 year: 2003 end-page: 288 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 172 year: 2010 end-page: 178 publication-title: Nat. Mater. – volume: 116 43 start-page: 2388 2334 year: 2004 2004 end-page: 2430 2375 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 127 start-page: 13132 year: 2005 end-page: 13133 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 405 year: 2005 end-page: 418 publication-title: J. Controlled Release – volume: 2 start-page: 262 year: 2014 end-page: 271 publication-title: J. Mater. Chem. B – volume: 24 start-page: 3725 year: 2010 end-page: 3734 publication-title: Eur. J. Inorg. Chem. – volume: 14 start-page: 262 year: 2010 end-page: 268 publication-title: Curr. Opin. Chem. Biol. – volume: 127 start-page: 2798 year: 2005 end-page: 2799 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1502 year: 2011 end-page: 1510 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 831 year: 2009 end-page: 836 publication-title: Nat. Mater. – volume: 124 51 start-page: 8498 8373 year: 2012 2012 end-page: 8502 8377 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 120 start-page: 7836 year: 2008 end-page: 7839 publication-title: Angew. Chem. – volume: 2 start-page: 58 year: 2010 end-page: 62 publication-title: J. Cancer Sci. Ther. – volume: 74 start-page: 295 year: 2001 end-page: 302 publication-title: J. Controlled Release – volume: 4 start-page: 1597 year: 2013 end-page: 1607 publication-title: Chem. Sci. – volume: 122 49 start-page: 6400 6260 year: 2010 2010 end-page: 6406 6266 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 1 start-page: 1101 year: 2013 end-page: 1108 publication-title: J. Mater. Chem. B – volume: 38 start-page: 1477 year: 2009 end-page: 1504 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 1232 year: 2012 end-page: 1268 publication-title: Chem. Rev. – volume: 133 start-page: 17950 year: 2011 end-page: 17958 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 8161 year: 2008 end-page: 8168 publication-title: Clin. Cancer Res. – volume: 130 start-page: 14358 year: 2008 end-page: 14359 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 3321 year: 2010 end-page: 3330 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 14064 year: 2008 end-page: 14065 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 1799 year: 2011 end-page: 1812 publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 957 year: 2011 end-page: 968 publication-title: Acc. Chem. Res. – volume: 135 start-page: 12615 year: 2013 end-page: 12626 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 626 year: 2006 end-page: 636 publication-title: J. Mater. Chem. – volume: 124 51 start-page: 5556 5460 year: 2012 2012 end-page: 5561 5465 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 publication-title: Chem. Soc. Rev. – volume: 128 start-page: 9024 year: 2006 end-page: 9025 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 2767 year: 2013 end-page: 2776 publication-title: Chem. Mater. – volume: 12 start-page: 189 year: 2005 end-page: 199 publication-title: Endocr.‐Relat. Cancer – volume: 36 start-page: 846 year: 2007 end-page: 855 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 712 year: 2009 end-page: 715 publication-title: Angew. Chem. Int. Ed. – volume: 147 start-page: 428 year: 2010 end-page: 435 publication-title: J. Controlled Release – volume: 2 start-page: 9437 year: 2012 end-page: 9442 publication-title: RSC Adv. – year: 1999 – ident: e_1_2_5_4_2 doi: 10.1002/ange.200300610 – ident: e_1_2_5_16_2 – ident: e_1_2_5_42_2 doi: 10.1021/ie101312k – ident: e_1_2_5_51_2 doi: 10.1039/b600363j – ident: e_1_2_5_39_2 – ident: e_1_2_5_13_2 doi: 10.1021/ja2078637 – ident: e_1_2_5_3_2 doi: 10.1039/b200393g – ident: e_1_2_5_11_2 doi: 10.1039/B511962F – ident: e_1_2_5_4_3 doi: 10.1002/anie.200300610 – ident: e_1_2_5_17_2 doi: 10.1038/nmat2608 – ident: e_1_2_5_27_2 doi: 10.1016/S0168-3659(01)00341-8 – ident: e_1_2_5_58_2 doi: 10.1021/ja805920t – ident: e_1_2_5_9_2 – ident: e_1_2_5_24_2 – ident: e_1_2_5_55_2 doi: 10.1021/ja054068w – ident: e_1_2_5_46_2 – ident: e_1_2_5_62_2 doi: 10.1002/ange.200802911 – volume-title: The Weak Hydrogen Bond in Structural Chemistry and Biology year: 1999 ident: e_1_2_5_52_2 – ident: e_1_2_5_64_2 doi: 10.1021/ja803777x – ident: e_1_2_5_14_2 doi: 10.1039/c2cc31135f – ident: e_1_2_5_1_2 – ident: e_1_2_5_12_2 – ident: e_1_2_5_2_2 doi: 10.1039/b305705b – ident: e_1_2_5_29_2 doi: 10.1016/j.jconrel.2004.12.018 – ident: e_1_2_5_53_2 – volume: 48 start-page: 712 year: 2009 ident: e_1_2_5_50_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_5_38_2 doi: 10.1126/science.1095833 – ident: e_1_2_5_25_2 doi: 10.4172/1948-5956.1000024 – ident: e_1_2_5_18_2 doi: 10.1039/c2tb00366j – ident: e_1_2_5_26_2 doi: 10.1158/1078-0432.CCR-08-0159 – ident: e_1_2_5_60_2 doi: 10.1021/ja400754p – ident: e_1_2_5_10_2 doi: 10.1039/b807080f – ident: e_1_2_5_40_2 doi: 10.1021/cr200256v – ident: e_1_2_5_48_2 doi: 10.1002/ejic.201000496 – ident: e_1_2_5_34_3 doi: 10.1002/anie.201107960 – ident: e_1_2_5_54_2 doi: 10.1021/ja043953w – ident: e_1_2_5_56_2 doi: 10.1021/ic034976z – ident: e_1_2_5_5_2 – ident: e_1_2_5_21_2 doi: 10.1021/ja906198y – ident: e_1_2_5_36_2 – ident: e_1_2_5_37_2 doi: 10.1038/nnano.2007.387 – ident: e_1_2_5_30_2 doi: 10.1007/s11095-006-0282-x – ident: e_1_2_5_61_2 – ident: e_1_2_5_31_2 doi: 10.1677/erc.1.01045 – ident: e_1_2_5_34_2 doi: 10.1002/ange.201107960 – ident: e_1_2_5_47_2 doi: 10.1021/ar200028a – ident: e_1_2_5_63_2 doi: 10.1021/ja0627444 – ident: e_1_2_5_57_2 doi: 10.1039/c3ce41083h – ident: e_1_2_5_66_2 – ident: e_1_2_5_8_2 doi: 10.1126/science.1113247 – ident: e_1_2_5_28_2 doi: 10.1021/cm402592t – ident: e_1_2_5_59_2 doi: 10.1021/ja907023c – ident: e_1_2_5_49_2 – ident: e_1_2_5_15_2 doi: 10.1038/nmat2526 – ident: e_1_2_5_43_2 – ident: e_1_2_5_65_2 doi: 10.1021/am200075q – ident: e_1_2_5_44_2 doi: 10.1039/c2ra21087h – ident: e_1_2_5_23_2 doi: 10.1039/c003084h – ident: e_1_2_5_19_2 doi: 10.1021/ja710973k – ident: e_1_2_5_20_2 doi: 10.1002/ange.201000048 – ident: e_1_2_5_20_3 doi: 10.1002/anie.201000048 – ident: e_1_2_5_6_2 doi: 10.1126/science.1230444 – ident: e_1_2_5_32_2 doi: 10.1016/j.jconrel.2010.07.123 – ident: e_1_2_5_67_2 doi: 10.1039/c3sc22116d – ident: e_1_2_5_7_2 doi: 10.1039/b802426j – ident: e_1_2_5_33_2 doi: 10.1016/j.addr.2012.09.013 – ident: e_1_2_5_22_2 doi: 10.1021/cm400798p – ident: e_1_2_5_45_2 doi: 10.1002/pola.23049 – ident: e_1_2_5_35_3 doi: 10.1002/anie.201203993 – ident: e_1_2_5_35_2 doi: 10.1002/ange.201203993 – ident: e_1_2_5_41_2 doi: 10.1016/j.cbpa.2009.12.012 – ident: e_1_2_5_68_2 doi: 10.1039/C3TB20832J |
SSID | ssj0009633 |
Score | 2.554827 |
Snippet | A GdIII‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI... A Gd III ‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI... A Gd(III) -based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI... A GdIII-based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI... A Gd super(III)-based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10514 |
SubjectTerms | Animals Antineoplastic Agents - administration & dosage ball-milling Benzene Benzene Derivatives - chemistry Benzene Derivatives - pharmacokinetics Biocompatibility Chemistry Crystallinity Delayed-Action Preparations - chemistry Delayed-Action Preparations - pharmacokinetics Doxorubicin Doxorubicin - administration & dosage drug delivery Drug Delivery Systems Drugs Fluorescent Dyes - chemistry Fluorescent Dyes - pharmacokinetics Gadolinium Gadolinium - chemistry Gadolinium - pharmacokinetics Humans Magnesium Metal-organic frameworks Metalorganic compounds Mice Models, Molecular nanocarriers Nanostructure Neoplasms - drug therapy Open channels Organometallic Compounds - chemistry Organometallic Compounds - pharmacokinetics Porosity |
Title | Mechanical Downsizing of a Gadolinium(III)-based Metal-Organic Framework for Anticancer Drug Delivery |
URI | https://api.istex.fr/ark:/67375/WNG-PN3GDF18-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201402244 https://www.ncbi.nlm.nih.gov/pubmed/25044210 https://www.proquest.com/docview/1550353580 https://www.proquest.com/docview/1551327035 https://www.proquest.com/docview/1709170449 https://www.proquest.com/docview/1778044507 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF8iZQkJEQj0Pa-JE4OVZddrtIu0KIit4s27HRqpCtthsJeupPQOIf9pcwk2xSFkGR4JREGUt-zHi-sT2fCXnmDC9YapI4D6mJJWMhzrkKsQ8FuA-XSSMxOXkyzfYP5JvD9PCnLP6WH6JfcEPLaOZrNHBjT3YuSEOhTZhJDgECeCEkBMUDW4iK3l3wR4F2tXfJSxUjB2vH2pjwnfXia17pKnbwl99BznUE27ig4SYxXeXbkydH2_XSbrvTX3gd_6d1N8mNFT6lu61C3SJXfHWbXNvrroW7Q2YTj8nCOLZ0gEvTs1PwfnQeqKEj5IeaVbP688vxePzq_OwbOsmSTjxA_POz723ip6PD7kQYBchMdytcTwflW9DBov5IB1B1MLCvd8nB8PX7vf14dV9D7ADnydgEb11gRZmXwnsAlkIYx21pQQ8YKxOf5rz0GcTcVpUQN7LcwiPkgGGKoJwU98hGNa_8A0ITwQtnsyx3AOhKEYxJLLeJsoVIDMxCEYm78dJuRWaOd2p80i0NM9fYgbrvwIi86OWPWxqPP0o-b4a_FzOLIzz8plL9YTrSb6diNBiyXKuIbHX6oVd2f6Ix4BMpbi1H5Gn_G0YIt2FM5ed1I8MEh5k2vURGAY5TiZTFZTJIHiUB0EfkfquffaWRmE5CNB8R3mjZXxqtkX-j_3r4L4Uekev4jsvtjG2RjeWi9o8Bry3tk8YmfwB5WTZt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9lAu_P8ECiwSvwe33vU6tg8cqpqkoU2EUCt6W3bXaxQVHJQmgvbUR0DiSXgVHqFPwowduwqCIiH1wClKMrZ2d_53d74BeGS1SHiofS_OQ-1JznMvFlHuuTxB92HbUksqTu4P2pu78tVeuLcA3-tamAofotlwI80o7TUpOG1Ir52ihuKkqJQcMwR0Q3J2r3LLHX7GrO3gRS9FFj8WovNyZ2PTmzUW8CwGJNLTuTM250kWZ4FzGAEFgbbCZAYHzHnmuzAWmWtjcmiiDBMcHhv8yGN0tkkeWRngey_AErURJ7j-9M0pYhXKc9W9XkYeob7WOJG-WJsf75wfXCKWfvldkDsfM5dOr3MZftTLVd112V-dTsyqPfoFSfK_Ws8rcGkWgrP1SmeuwoIrrsHyRt357joM-47qoUl8WUq778MjdPBslDPNugSBNSyG04_Per3e85PjrxQHZKzvMIs5Of5W1bZa1qkvvTHMCth6QUcGqF9jlo6n71mKa4U25PAG7J7LTG_CYjEq3G1gfiASa9rt2KIUZUGutW-E8SOTBL5GQ9sCrxYQZWd47dQ25IOqkKaFIoaphmEteNrQf6qQSv5I-aSUt4ZMj_fpfl8UqreDrno9CLpph8cqasFKLZBqZtoOFOW0QUin5y142PyNHKKTJl240bSk4YFAZxKeQRNhqBr5UiZn0RA-lsScpQW3KoVoBk3Ye1JwHIUoxfovk1YEMdJ8u_MvDz2A5c2d_rba7g227sJF-p1OFzhfgcXJeOruYXg6MfdLg8Dg3XlrzE8HGZWi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKKwEb3o9AASPxXKSNHee1YFE1zHQoM6oQFd0Z27HRqJCppjOCdtVPQOJH-BV-oV_Cvckk1SAoElIXrEaZ3ES27zv2PZeQR0bxjEUq8FMXKV8w5vyUJ863LgP3YWKhBBYn9wfxxrZ4tRPtLJDvTS1MjQ_RfnBDzajsNSr4XuFWT0BDYU5YSQ4JAnghMTtWuWkPPkPStv-ilwOHH3Peefl2fcOf9RXwDcQjwlfOauNYVqRFaC0EQGGoDNeFhvEyVgQ2SnlhY8gNdVJAfsNSDT8uBV-bucSIEN57jiyJOMiwWUT-5gSwCsS5bl4vEh9BXxuYyICvzo93zg0uIUe__C7GnQ-ZK5_XuUx-NKtVH3XZXZlO9Io5_AVI8n9azivk0iwAp2u1xlwlC7a8Ri6sN33vrpNh32I1NAovzfHb-_AQ3DsdOapoFwGwhuVw-ulZr9d7fnz0FaOAgvYt5DDHR9_qylZDO82RNwo5AV0rccMAtGtM8_H0A81hqcCCHNwg22cy05tksRyV9jahQcgzo-M4NRCxFqFTKtBcB4nOwkCBmfWI38iHNDO0dmwa8lHWONNcIsNkyzCPPG3p92qckj9SPqnErSVT41083ZdE8t2gK7cGYTfvsFQmHllu5FHODNu-xIw2jHDv3CMP29vAIdxnUqUdTSsaFnJwJdEpNAkEqkkgRHYaDaJjCchYPHKr1od20Ii8JziDUfBKqv8yaYkAI-3VnX956AE5v5V35OveYPMuuYh_49YCY8tkcTKe2nsQm070_cocUPL-rBXmJ5qElFE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Downsizing+of+a+Gadolinium%28III%29%E2%80%90based+Metal%E2%80%93Organic+Framework+for+Anticancer+Drug+Delivery&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Kundu%2C+Tanay&rft.au=Mitra%2C+Shouvik&rft.au=Patra%2C+Prasun&rft.au=Goswami%2C+Arunava&rft.date=2014-08-11&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=33&rft.spage=10514&rft.epage=10518&rft_id=info:doi/10.1002%2Fchem.201402244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201402244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |