Oxidoreductases on their way to industrial biotransformations
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and...
Saved in:
Published in | Biotechnology advances Vol. 35; no. 6; pp. 815 - 831 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article Publication |
Language | English |
Published |
England
Elsevier Inc
01.11.2017
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.
•Recent advances on fungal oxidoreductases for a bio-based economy are reviewed.•These include computer-aided rational design and directed evolution of biocatalysts.•Classical oxidoreductases consist of peroxidases/oxidases involved in lignin decay.•Peroxygenases and polysaccharide monooxygenases were more recently discovered.•Reviewed transformations consider both oxyfunctionalization and oxidation reactions. |
---|---|
AbstractList | Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. This work has been funded by the INDOX European project (KBBE-2013-7-613549), together with the BIO2014-56388-R and AGL2014-53730-R projects of the Spanish Ministry of Economy and Competitiveness (MINECO) co-financed by FEDER funds, and the BBI JU project EnzOx2 (H2020-BBI-PPP-2015-2-720297). The work conducted by the US DOE JGI was supported by the Office of Science of the US DOE under contract number DE-AC02-05CH11231. The authors thank other members of their groups at CIB-CSIC, Novozymes, Technical University of Dresden, JenaBios, University of Naples Federico II, Setas Kimya Sanayy, Wageningen University & Research, Anaxomics, Chiracon, BOKU, Delft University of Technology, INRABBF, Biopolis, Cheminova, CLEA, Solvay, IRNAS-CSIC and ICP-CSIC for their significant contributions to the results presented. Peer Reviewed Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. •Recent advances on fungal oxidoreductases for a bio-based economy are reviewed.•These include computer-aided rational design and directed evolution of biocatalysts.•Classical oxidoreductases consist of peroxidases/oxidases involved in lignin decay.•Peroxygenases and polysaccharide monooxygenases were more recently discovered.•Reviewed transformations consider both oxyfunctionalization and oxidation reactions. Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes -- copper-radical oxidases -- together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. owever, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3 drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H O as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H O that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H O generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D , drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. |
Author | Tortajada, Marta Hofrichter, Martin Kılıç, Sibel del Río, José C. Hollmann, Frank Gelo-Pujic, Mirjana Liers, Christiane Linde, Dolores Herold-Majumdar, Owik M. Guallar, Victor Ludwig, Roland Faulds, Craig B. van Berkel, Willem J.H. Piscitelli, Alessandra Pezzella, Cinzia Rencoret, Jorge Camarero, Susana Martínez, Angel T. Lucas, Maria Fátima Winckelmann, Ib Fernández-Fueyo, Elena Vind, Jesper Sener, Mehmet E. Gutiérrez, Ana Record, Eric Alcalde, Miguel Rasmussen, Jo-Anne Lund, Henrik Serrano, Ana Tovborg, Morten Scheibner, Katrin Ruiz-Dueñas, Francisco J. Sannia, Giovanni Ullrich, René Zuhse, Ralf |
Author_xml | – sequence: 1 givenname: Angel T. surname: Martínez fullname: Martínez, Angel T. email: ATMartinez@cib.csic.es organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain – sequence: 2 givenname: Francisco J. surname: Ruiz-Dueñas fullname: Ruiz-Dueñas, Francisco J. organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain – sequence: 3 givenname: Susana surname: Camarero fullname: Camarero, Susana organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain – sequence: 4 givenname: Ana surname: Serrano fullname: Serrano, Ana organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain – sequence: 5 givenname: Dolores surname: Linde fullname: Linde, Dolores organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain – sequence: 6 givenname: Henrik surname: Lund fullname: Lund, Henrik organization: Novozymes A/S, Bagsvaerd, Denmark – sequence: 7 givenname: Jesper surname: Vind fullname: Vind, Jesper organization: Novozymes A/S, Bagsvaerd, Denmark – sequence: 8 givenname: Morten surname: Tovborg fullname: Tovborg, Morten organization: Novozymes A/S, Bagsvaerd, Denmark – sequence: 9 givenname: Owik M. orcidid: 0000-0002-1052-4970 surname: Herold-Majumdar fullname: Herold-Majumdar, Owik M. organization: Novozymes A/S, Bagsvaerd, Denmark – sequence: 10 givenname: Martin surname: Hofrichter fullname: Hofrichter, Martin organization: Technische Universität Dresden, Zittau, Germany – sequence: 11 givenname: Christiane surname: Liers fullname: Liers, Christiane organization: Technische Universität Dresden, Zittau, Germany – sequence: 12 givenname: René surname: Ullrich fullname: Ullrich, René organization: Technische Universität Dresden, Zittau, Germany – sequence: 13 givenname: Katrin surname: Scheibner fullname: Scheibner, Katrin organization: JenaBios GmBH, Jena, Germany – sequence: 14 givenname: Giovanni orcidid: 0000-0002-7986-6223 surname: Sannia fullname: Sannia, Giovanni organization: Università degli Studi di Napoli Federico II, Naples, Italy – sequence: 15 givenname: Alessandra surname: Piscitelli fullname: Piscitelli, Alessandra organization: Università degli Studi di Napoli Federico II, Naples, Italy – sequence: 16 givenname: Cinzia surname: Pezzella fullname: Pezzella, Cinzia organization: Università degli Studi di Napoli Federico II, Naples, Italy – sequence: 17 givenname: Mehmet E. surname: Sener fullname: Sener, Mehmet E. organization: Setas Kimya Sanayi AS, Tekirdag, Turkey – sequence: 18 givenname: Sibel surname: Kılıç fullname: Kılıç, Sibel organization: Setas Kimya Sanayi AS, Tekirdag, Turkey – sequence: 19 givenname: Willem J.H. surname: van Berkel fullname: van Berkel, Willem J.H. organization: Wageningen University & Research, The Netherlands – sequence: 20 givenname: Victor surname: Guallar fullname: Guallar, Victor organization: Anaxomics, Barcelona, Spain – sequence: 21 givenname: Maria Fátima orcidid: 0000-0001-8672-9940 surname: Lucas fullname: Lucas, Maria Fátima organization: Anaxomics, Barcelona, Spain – sequence: 22 givenname: Ralf surname: Zuhse fullname: Zuhse, Ralf organization: Chiracon GmBH, Luckenwalde, Germany – sequence: 23 givenname: Roland surname: Ludwig fullname: Ludwig, Roland organization: University of Natural Resources and Life Sciences (BOKU), Vienna, Austria – sequence: 24 givenname: Frank surname: Hollmann fullname: Hollmann, Frank organization: Department of Biotechnology, Delft University of Technology, Delft, The Netherlands – sequence: 25 givenname: Elena surname: Fernández-Fueyo fullname: Fernández-Fueyo, Elena organization: Department of Biotechnology, Delft University of Technology, Delft, The Netherlands – sequence: 26 givenname: Eric surname: Record fullname: Record, Eric organization: Aix Marseille University, INRA, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France – sequence: 27 givenname: Craig B. surname: Faulds fullname: Faulds, Craig B. organization: Aix Marseille University, INRA, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France – sequence: 28 givenname: Marta surname: Tortajada fullname: Tortajada, Marta organization: Biopolis, Valencia, Spain – sequence: 29 givenname: Ib surname: Winckelmann fullname: Winckelmann, Ib organization: Cheminova A/S, Lemvig, Denmark – sequence: 30 givenname: Jo-Anne surname: Rasmussen fullname: Rasmussen, Jo-Anne organization: CLEA Technologies BV, Delft, The Netherlands – sequence: 31 givenname: Mirjana surname: Gelo-Pujic fullname: Gelo-Pujic, Mirjana organization: Solvay, Brussels, Belgium – sequence: 32 givenname: Ana surname: Gutiérrez fullname: Gutiérrez, Ana organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain – sequence: 33 givenname: José C. orcidid: 0000-0002-3040-6787 surname: del Río fullname: del Río, José C. organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain – sequence: 34 givenname: Jorge surname: Rencoret fullname: Rencoret, Jorge organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain – sequence: 35 givenname: Miguel surname: Alcalde fullname: Alcalde, Miguel organization: Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28624475$$D View this record in MEDLINE/PubMed https://hal.science/hal-01557216$$DView record in HAL |
BookMark | eNqNklFvFCEUhYmpsdvqXzCT-KIPu3KBGcDEJrVRa7JJX_SZMAzjspmFFZhd--9luuua9KU-AIF851y4nAt05oO3CFWAF4Cheb9etC5ka1a62y0IBr7AzQJj-gzNQHA6ByHlGZphTtlc8hqfo4uU1hhDjWv6Ap0T0RDGeD1DH-9-uy5E240m62RTFXyVV9bFaq_vqxwq57sx5ej0UE01o_apD3Gjsws-vUTPez0k--q4XqIfXz5_v7mdL---fru5Xs5Nw2Se97oG3gJhRlgpOTNMQGNxjQ0j0DbU1L3tDZOCAKNN3XWcCik63QMRwgKll-jDwXevf1rvfJmU19G4pIJ2anBt1PFe7ceo_DAt27FNqiaUc17E7w7ilR7UNrrNhE6y2-ulms5KW2pOoNlBYeHAmjQaFa2x0ej8QJ820yCYE0UkMImL5u1Bs43h12hTVhuXjB0G7W0YU2Fx6ToDLp9EQQKAFJJOt37zCF2HMfrS5WJIQJbCeLrv6yM1thvbnZ7394MLII4PiiGlaPsTAlhNWVJr9S9LasqSwo0qWSrSq0dS4_LDv5cUuOF_DD4dDGyJxs7ZqJJx1hvbudLMrLrgnjb5Azcz6nY |
CitedBy_id | crossref_primary_10_3390_ijms24076368 crossref_primary_10_3390_ijms24108963 crossref_primary_10_1007_s11356_021_15012_z crossref_primary_10_29039_rusjbpc_2023_0591 crossref_primary_10_1021_acs_jafc_3c08187 crossref_primary_10_1016_j_electacta_2023_142954 crossref_primary_10_1021_acsomega_2c05604 crossref_primary_10_1016_j_enzmictec_2019_109429 crossref_primary_10_1016_j_enzmictec_2020_109555 crossref_primary_10_1016_j_scp_2022_100934 crossref_primary_10_1007_s00253_019_10292_5 crossref_primary_10_1016_j_isci_2022_104640 crossref_primary_10_1016_j_bcab_2018_06_023 crossref_primary_10_1186_s13068_019_1457_0 crossref_primary_10_1002_adsc_201800197 crossref_primary_10_1007_s40726_024_00310_0 crossref_primary_10_3390_jof7050325 crossref_primary_10_1007_s11157_023_09676_x crossref_primary_10_1016_j_scitotenv_2021_145449 crossref_primary_10_1098_rsif_2023_0299 crossref_primary_10_3390_molecules27185922 crossref_primary_10_1016_j_cej_2022_138902 crossref_primary_10_1016_j_resmic_2023_104027 crossref_primary_10_1111_1751_7915_13647 crossref_primary_10_1016_j_cbpa_2020_01_012 crossref_primary_10_1016_j_ijbiomac_2020_12_068 crossref_primary_10_3390_app11136161 crossref_primary_10_1186_s13068_018_1091_2 crossref_primary_10_1186_s40246_022_00429_5 crossref_primary_10_1021_acssuschemeng_4c02042 crossref_primary_10_3390_sym12091454 crossref_primary_10_3389_fctls_2024_1470616 crossref_primary_10_1088_1742_6596_1351_1_012030 crossref_primary_10_1002_cctc_201900610 crossref_primary_10_1002_bab_1788 crossref_primary_10_1111_ijfs_16829 crossref_primary_10_1039_D3OB01447A crossref_primary_10_1016_j_enzmictec_2019_03_001 crossref_primary_10_1016_j_ijbiomac_2024_132466 crossref_primary_10_1002_cbin_11316 crossref_primary_10_3390_jof11010034 crossref_primary_10_1016_j_bcab_2021_102162 crossref_primary_10_1002_cbic_202000326 crossref_primary_10_1016_j_rser_2019_01_054 crossref_primary_10_1021_acscatal_9b04727 crossref_primary_10_1016_j_bcab_2022_102318 crossref_primary_10_1002_jctb_7374 crossref_primary_10_1016_j_biotechadv_2021_107809 crossref_primary_10_3390_catal12040385 crossref_primary_10_1016_j_biotechadv_2021_107808 crossref_primary_10_1016_j_bcab_2019_101127 crossref_primary_10_1016_j_ijbiomac_2021_04_004 crossref_primary_10_1038_s41467_023_38227_9 crossref_primary_10_3390_nano10020282 crossref_primary_10_1039_D1CC04243B crossref_primary_10_21307_PM_2020_59_1_007 crossref_primary_10_3390_ijms25031758 crossref_primary_10_1002_bkcs_12489 crossref_primary_10_1016_j_sbi_2020_05_003 crossref_primary_10_1021_acscatal_9b01341 crossref_primary_10_1016_j_funbio_2024_08_002 crossref_primary_10_3390_md21040242 crossref_primary_10_1002_cctc_202401021 crossref_primary_10_1038_s41589_019_0402_7 crossref_primary_10_3390_md16070227 crossref_primary_10_1002_btpr_2878 crossref_primary_10_1021_acssuschemeng_2c06676 crossref_primary_10_1007_s10529_022_03321_3 crossref_primary_10_1007_s10653_024_01903_w crossref_primary_10_1038_s41467_024_45545_z crossref_primary_10_1186_s40643_019_0255_7 crossref_primary_10_1007_s00217_022_04045_4 crossref_primary_10_1515_znc_2018_0137 crossref_primary_10_1016_j_cej_2024_154463 crossref_primary_10_3390_antiox11010163 crossref_primary_10_1002_cctc_202101408 crossref_primary_10_1111_1462_2920_15423 crossref_primary_10_3390_fib7090080 crossref_primary_10_1002_cssc_202201468 crossref_primary_10_1002_chem_201704773 crossref_primary_10_1007_s10930_021_10010_z crossref_primary_10_1021_acsabm_1c00063 crossref_primary_10_3390_molecules24152743 crossref_primary_10_1021_acscatal_0c04360 crossref_primary_10_3390_catal13010083 crossref_primary_10_1002_bit_26585 crossref_primary_10_1016_j_jbc_2024_107885 crossref_primary_10_3390_ijms222413611 crossref_primary_10_1016_j_biortech_2019_121730 crossref_primary_10_3390_catal14010084 crossref_primary_10_3389_fmicb_2021_723524 crossref_primary_10_3389_fbioe_2021_710035 crossref_primary_10_1007_s11274_023_03871_2 crossref_primary_10_1016_j_foodchem_2022_132103 crossref_primary_10_1002_app_47417 crossref_primary_10_1038_s41557_019_0370_2 crossref_primary_10_1111_ina_12729 crossref_primary_10_1016_j_ccr_2021_213976 crossref_primary_10_1016_j_watres_2020_116446 crossref_primary_10_1002_jctb_5664 crossref_primary_10_1021_acssuschemeng_2c03811 crossref_primary_10_3390_biomedicines10050964 crossref_primary_10_3389_fchem_2021_653754 crossref_primary_10_3390_jof7100854 crossref_primary_10_1039_D1GC04414A crossref_primary_10_3390_jof9121196 crossref_primary_10_1007_s00253_019_10147_z crossref_primary_10_1021_acsenergylett_9b02596 crossref_primary_10_3389_fpls_2022_912293 crossref_primary_10_1016_j_ijbiomac_2022_07_240 crossref_primary_10_1002_cssc_201802580 crossref_primary_10_3390_antiox11050891 crossref_primary_10_1021_acssuschemeng_1c02188 crossref_primary_10_1016_j_biortech_2022_127476 crossref_primary_10_1038_s41598_018_26445_x crossref_primary_10_1002_bit_26886 crossref_primary_10_3390_ijms221910862 crossref_primary_10_1016_j_clce_2022_100017 crossref_primary_10_3390_ijms252111392 crossref_primary_10_1039_D3NJ04875F crossref_primary_10_1073_pnas_2403049121 crossref_primary_10_1134_S0026893322040021 crossref_primary_10_1007_s12649_024_02565_6 crossref_primary_10_1021_acscatal_9b00513 crossref_primary_10_1016_j_micres_2022_127183 crossref_primary_10_1016_j_ccr_2021_213774 crossref_primary_10_1002_adma_202305828 crossref_primary_10_1016_j_biortech_2017_12_068 crossref_primary_10_3390_catal10070810 crossref_primary_10_1016_j_biotechadv_2022_108016 crossref_primary_10_1016_j_indcrop_2024_118759 crossref_primary_10_1080_10242422_2017_1363190 crossref_primary_10_1016_j_enzmictec_2019_109370 crossref_primary_10_1016_j_trechm_2020_06_005 crossref_primary_10_2174_1389203720666181119120120 crossref_primary_10_1007_s12033_021_00396_7 crossref_primary_10_3390_polym15163492 crossref_primary_10_1016_j_enzmictec_2023_110326 crossref_primary_10_1021_acscatal_0c03029 crossref_primary_10_1039_D1RA08053A crossref_primary_10_1016_j_dyepig_2020_108749 crossref_primary_10_1039_C8GC00091C crossref_primary_10_1002_cctc_201902089 crossref_primary_10_1016_j_arabjc_2019_07_003 crossref_primary_10_1002_ejoc_201701390 crossref_primary_10_1016_j_abb_2021_108820 crossref_primary_10_1016_j_csbj_2020_06_037 crossref_primary_10_1002_cctc_201901245 crossref_primary_10_1134_S2070050419030115 crossref_primary_10_3390_antiox10121888 crossref_primary_10_1039_D2SE00454B crossref_primary_10_1021_acs_biochem_8b00571 crossref_primary_10_1021_jacs_4c14580 crossref_primary_10_3390_jof6040362 crossref_primary_10_1016_j_ijbiomac_2020_06_047 crossref_primary_10_1039_D4RA04824E crossref_primary_10_1016_j_bioorg_2021_104651 crossref_primary_10_18412_1816_0387_2019_1_59_72 crossref_primary_10_1016_j_marpolbul_2024_116157 crossref_primary_10_1021_acscatal_2c01956 crossref_primary_10_3390_catal10111232 crossref_primary_10_1016_j_jenvman_2020_110958 crossref_primary_10_1039_D4RA02939A crossref_primary_10_1016_j_chemosphere_2021_133305 crossref_primary_10_1016_j_eti_2024_103543 crossref_primary_10_1002_cbic_201900624 crossref_primary_10_1016_j_gce_2023_02_001 crossref_primary_10_1039_C9GC00633H crossref_primary_10_1002_anie_202001302 crossref_primary_10_2991_efood_k_200218_001 crossref_primary_10_1016_j_scitotenv_2021_150945 crossref_primary_10_1002_1873_3468_13854 crossref_primary_10_1002_bit_27156 crossref_primary_10_3389_fmicb_2017_02423 crossref_primary_10_1021_acscatal_4c01326 crossref_primary_10_3389_fbioe_2020_00356 crossref_primary_10_1016_S1872_2067_24_60206_8 crossref_primary_10_3390_fermentation10020093 crossref_primary_10_1002_ange_202001302 crossref_primary_10_1038_s41929_020_00507_8 crossref_primary_10_1111_ppl_12688 crossref_primary_10_1007_s00396_021_04867_w crossref_primary_10_1021_acs_est_9b02219 crossref_primary_10_1002_cctc_202301474 crossref_primary_10_1002_cite_202200084 crossref_primary_10_1080_10643389_2021_1889283 crossref_primary_10_1002_cbic_202400737 crossref_primary_10_1021_acs_chemrev_1c00574 crossref_primary_10_1016_j_cjche_2020_06_041 crossref_primary_10_1073_pnas_1921073117 crossref_primary_10_7717_peerj_14670 crossref_primary_10_1002_bab_2144 crossref_primary_10_1016_j_ibiod_2021_105231 crossref_primary_10_1007_s00253_023_12510_7 crossref_primary_10_3390_antiox11020223 crossref_primary_10_1016_j_scitotenv_2022_153979 |
Cites_doi | 10.1186/1754-6834-7-114 10.1039/C6CY00539J 10.1111/febs.13762 10.1039/C5CY01725D 10.1016/j.foodchem.2015.10.074 10.1002/anie.201605430 10.1021/acscatal.6b00028 10.1042/BJ20141211 10.1007/s00018-014-1823-9 10.1021/acs.jpcb.5b02961 10.1016/j.abb.2014.12.016 10.1016/j.molcatb.2016.10.004 10.1111/febs.13221 10.1021/acscatal.6b01460 10.1038/ncomms8542 10.1016/j.enzmictec.2015.03.004 10.1016/j.bmc.2015.06.035 10.1002/anie.201507881 10.2174/2211550104666150423202036 10.1016/j.pep.2014.08.007 10.1074/jbc.M115.665919 10.1007/s00253-015-7021-3 10.1002/cctc.201402795 10.1186/1754-6834-7-2 10.1007/s00253-014-5891-4 10.1371/journal.pone.0124750 10.1371/journal.pone.0090919 10.1371/journal.pgen.1004759 10.1016/j.fgb.2014.03.007 10.1111/febs.13177 10.1038/srep28276 10.1126/science.1192231 10.1186/s40104-016-0110-z 10.1021/acs.jpclett.5b00225 10.1016/j.molcatb.2016.10.014 10.1371/journal.pone.0140984 10.1186/s13068-016-0615-x 10.1021/acscatal.6b01636 10.1016/j.biotechadv.2016.03.008 10.1016/j.fgb.2014.02.003 10.1128/AEM.03761-15 10.1074/jbc.A115.665919 10.1039/C6CY01044J 10.1007/s12155-016-9745-z 10.1016/j.tibtech.2014.12.007 10.1016/j.cbpa.2014.01.015 10.1021/acs.jpcb.7b00835 10.1039/C5CY00427F 10.1016/j.abb.2015.03.003 10.1021/bi100009p 10.1107/S1399004714022755 10.1002/cbic.201500493 10.1073/pnas.1503340112 10.1021/cs501218v 10.1039/C6GC01531J 10.1016/j.molcatb.2016.11.016 10.1007/s00018-014-1824-8 10.1128/genomeA.00774-16 10.1016/j.bej.2015.02.037 10.1111/febs.13310 10.1128/AEM.00660-15 10.3390/molecules200915929 10.1002/cctc.201500862 10.3852/15-027 10.1128/AEM.01966-15 10.1039/C4CY01477D 10.1128/AEM.00304-16 10.1128/AEM.00490-14 10.1002/pro.3043 10.1515/boca-2017-0002 10.1007/978-3-319-16009-2_13 10.4161/bioe.29167 10.1016/j.abb.2015.01.018 10.1016/j.molcatb.2015.06.011 10.1371/journal.pone.0164958 10.1126/science.aaf8920 10.1039/C6CY02410F 10.1126/science.aaf3165 10.1016/j.biotechadv.2014.12.007 10.1073/pnas.1602566113 10.1074/jbc.M113.530196 10.1186/s13068-016-0462-9 10.1007/s12155-014-9505-x 10.1007/s00253-015-6665-3 |
ContentType | Journal Article Publication |
Contributor | Barcelona Supercomputing Center |
Contributor_xml | – sequence: 1 fullname: Barcelona Supercomputing Center |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Science Ltd. Nov 1, 2017 Attribution-NonCommercial-NoDerivs 4.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/es Distributed under a Creative Commons Attribution 4.0 International License Wageningen University & Research |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Science Ltd. Nov 1, 2017 – notice: Attribution-NonCommercial-NoDerivs 4.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/es/">http://creativecommons.org/licenses/by-nc-nd/4.0/es/</a> – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Wageningen University & Research |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QQ 7SE 7TA 7TB 8FD FR3 H8G JG9 7X8 7S9 L.6 XX2 1XC QVL |
DOI | 10.1016/j.biotechadv.2017.06.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ceramic Abstracts Corrosion Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic Recercat Hyper Article en Ligne (HAL) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Copper Technical Reference Library Technology Research Database Mechanical & Transportation Engineering Abstracts Ceramic Abstracts Engineering Research Database Corrosion Abstracts Materials Business File MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1873-1899 |
EndPage | 831 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_523777 oai_HAL_hal_01557216v1 oai_recercat_cat_2072_291490 28624475 10_1016_j_biotechadv_2017_06_003 S0734975017300629 |
Genre | Journal Article Review Feature |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSI SSU SSZ T5K ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HMG HVGLF HZ~ MVM R2- RIG SBG SEW SIN SSH WUQ XPP Y6R CGR CUY CVF ECM EIF NPM 7QQ 7SE 7TA 7TB 8FD EFKBS FR3 H8G JG9 7X8 7S9 L.6 XX2 1XC - 0R 1 8P AAPBV ABPTK ADALY AFRUD G- G8K HZ K KM M QVL STF UNR X XFK |
ID | FETCH-LOGICAL-c649t-fa517b124c8e9974c4816e050c421b63c5fefc498214365dd73898daf1288e133 |
IEDL.DBID | .~1 |
ISSN | 0734-9750 1873-1899 |
IngestDate | Fri Feb 05 18:08:28 EST 2021 Sat Aug 30 06:23:47 EDT 2025 Fri Aug 29 12:36:58 EDT 2025 Fri Jul 11 10:31:07 EDT 2025 Thu Jul 10 22:36:30 EDT 2025 Fri Jul 25 08:28:35 EDT 2025 Wed Feb 19 02:43:47 EST 2025 Thu Apr 24 22:53:01 EDT 2025 Tue Jul 01 03:01:18 EDT 2025 Fri Feb 23 02:25:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | CRO Directed evolution DFF HTP LPMO VAO CDH GDH Oxidases and dehydrogenases PELE Enzyme cascades LiP UPO LRET Lytic polysaccharide monooxygenases GMC Selective oxyfunctionalization HMF AAD QM/MM P2O MnP AAO GOX NMR Heme peroxidases and peroxygenases Laccases Rational design MOX MCO Lignocellulose biorefinery DyP VP FDCA HSQC ABTS FFCA Biophysical and biochemical computational modeling CPK oxidase peroxyde oxidoréductase péroxydase peroxides oxydase production d'enzyme biotransformation dynamique computationnelle des fluides monooxygénase |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c649t-fa517b124c8e9974c4816e050c421b63c5fefc498214365dd73898daf1288e133 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7986-6223 0000-0001-8672-9940 0000-0002-1052-4970 0000-0002-3040-6787 0000-0002-7545-9997 0000-0002-0359-0566 0000-0002-4580-1114 0000-0002-2812-895X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0734975017300629 |
PMID | 28624475 |
PQID | 2021990301 |
PQPubID | 2047478 |
PageCount | 17 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_523777 hal_primary_oai_HAL_hal_01557216v1 csuc_recercat_oai_recercat_cat_2072_291490 proquest_miscellaneous_2000534179 proquest_miscellaneous_1911198937 proquest_journals_2021990301 pubmed_primary_28624475 crossref_primary_10_1016_j_biotechadv_2017_06_003 crossref_citationtrail_10_1016_j_biotechadv_2017_06_003 elsevier_sciencedirect_doi_10_1016_j_biotechadv_2017_06_003 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biotechnology advances |
PublicationTitleAlternate | Biotechnol Adv |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
References | Lettera, Pezzella, Cicatiello, Piscitelli, Giacobelli, Galano (bb0270) 2016; 196 de Salas, Pardo, Salavagione, Aza, Amougi, Vind (bb0480) 2016; 11 Hollmann, F., Ni, Y., 2016. Enzymatic conversion using hydrogen peroxide. Patent (NL) NL2013351A. Kracher, Zahma, Schulz, Sygmund, Gorton, Ludwig (bb0245) 2015; 282 Courtade, Wimmer, Røhr, Preims, Felice, Dimarogona (bb0070) 2016; 113 Fernández-Fueyo, Ruiz-Dueñas, López-Lucendo, Pérez-Boada, Rencoret, Gutiérrez (bb0120) 2016; 9 Poraj-Kobielska, Gröbe, Kiebist, Grün, Ullrich, Scheibner (bb0435) 2015 Gygli, van Berkel (bb0180) 2015; 4 Maté, Alcalde (bb0335) 2016 Giacobelli, Monza, Lucas, Pezzella, Piscitelli, Guallar (bb0150) 2017; 7 González-Pérez (bb0155) 2016 Vicente, Viña-González, Santos-Moriano, Marquez-Alvarez, Ballesteros, Alcalde (bb0510) 2016; 134 Babot, del Río, Cañellas, Sancho, Lucas, Guallar (bb0025) 2015; 81 Gygli, van Berkel (bb0185) 2017; 3 Mathieu, Piumi, Valli, Aramburu, Ferreira, Faulds (bb0345) 2016; 82 Olmedo, Aranda, del Río, Kiebist, Scheibner, Martínez (bb0380) 2016; 55 Linde, Ruiz-Dueñas, Fernández-Fueyo, Guallar, Hammel, Pogni (bb0285) 2015; 574 Ferreira, Hernández-Ortega, Borrelli, Lucas, Herguedas, Guallar (bb0135) 2015; 282 Molina-Espeja, Garcia-Ruiz, Gonzalez-Perez, Ullrich, Hofrichter, Alcalde (bb0350) 2014; 80 Linde, Canellas, Coscolín, Davó-Siguero, Romero, Lucas (bb0290) 2016; 6 Karich, Scheibner, Ullrich, Hofrichter (bb0230) 2016; 134 Maté, González-Pérez, Mateljak, Gómez de Santos, Vicente, Alcalde (bb0340) 2016 Monza, Lucas, Camarero, Alejaldre, Martínez, Guallar (bb0370) 2015; 6 Babot, del Río, Kalum, Martínez, Gutiérrez (bb0030) 2015; 7 Pardo, Camarero (bb0390) 2015; 72 Carro, Serrano, Ferreira, Martínez (bb0065) 2016 Vind, J., Ostergaard, L. H., de Leonardo, M., Kalum, L., Amougi, E., 2015. Peroxygenase variants. Patent (International) WO2015079064A3. Kiebist, Holla, Heidrich, Poraj-Kobielska, Sandvoss, Simonis (bb0240) 2015; 23 Kracher, Scheiblbrandner, Felice, Breslmays, Preims, Ludwicka (bb0250) 2016; 352 Wang, Ullrich, Hofrichter, Groves (bb0530) 2015; 112 Sáez-Jiménez, Fernández-Fueyo, Medrano, Romero, Martínez, Ruiz-Dueñas (bb0470) 2015; 10 Viña-González, González-Pérez, Ferreira, Martínez, Alcalde (bb0515) 2015; 81 Acebes, Ruiz-Dueñas, Toubes, Sáez-Jiménez, Pérez-Boada, Lucas (bb0010) 2017; 121 Büttner, Ullrich, Strittmatter, Piontek, Plattner, Hofrichter (bb0055) 2015; 574 González-Pérez, Mateljak, García-Ruiz, Ruiz-Dueñas, Martínez, Alcalde (bb0175) 2016; 6 Molina-Espeja, Viña-Gonzalez, Gomez-Fernandez, Martin-Diaz, Garcia-Ruiz, Alcalde (bb0365) 2016; 34 Sáez-Jiménez, Acebes, Guallar, Martínez, Ruiz-Dueñas (bb0455) 2015; 10 Ferreira, Carro, Serrano, Martínez (bb0130) 2015; 107 Pardo, Camarero (bb0385) 2015; 20 Kellner, Pecyna, Buchhaupt, Ullrich, Hofrichter (bb0235) 2016; 4 Landvick, S., Ostergaard, L. H., Kalum, L., 2016a. Polypeptides having peroxygenase activity. Patent (International) WO2014056916A3. Poraj-Kobielska, Peter, Leonhardt, Ullrich, Scheibner, Hofrichter (bb0440) 2015; 98 Harris, Welner, McFarland, Re, Poulsen, Brown (bb0190) 2010; 49 Pezzella, Giacobbe, Giacobelli, Guarino, Kylic, Sener (bb0420) 2016; 134 Rencoret, Pereira, del Río, Martínez, Gutiérrez (bb0445) 2016; 9 Garajova, Mathieu, Beccia, Bennati-Granier, Biaso, Fanuel (bb0140) 2016; 6 González-Pérez, Alcalde (bb0160) 2014; 5 Ewing, Gygli, van Berkel (bb0085) 2016; 283 Barrasa, Ruiz-Dueñas, Fernández-Fueyo, Pacheco, Martínez (bb0045) 2016 Acebes, Fernández-Fueyo, Monza, Lucas, Almendral, Ruiz-Dueñas (bb0005) 2016; 6 Hofrichter, Ullrich (bb0195) 2014; 19 Fernández-Fueyo, Castanera, Ruiz-Dueñas, López-Lucendo, Ramírez, Pisabarro (bb0095) 2014; 72 Hori, Ishida, Igarashi, Samejima, Suzuki, Master (bb0210) 2014; 10 Lund, H., Brask, J., Kalum, L., Gutiérrez, A., Babot, E. D., Ullrich, R. et al., 2014. Enzymatic preparation of diols. Patent (USA) US20140234917A1. Fernández-Fueyo, Linde, Almendral, López-Lucendo, Ruiz-Dueñas, Martínez (bb0110) 2015; 99 Lucas, Babot, del Río, Kalum, Ullrich, Hofrichter (bb0300) 2016; 6 Martínez, Camarero, Ruiz-Dueñas, Martínez (bb0320) 2017 Pezzella, Guarino, Piscitelli (bb0415) 2015; 72 van Kuijk, del Río, Rencoret, Gutiérrez, Sonnenberg, Baars (bb0255) 2016; 7 Rico, Rencoret, del Río, Martínez, Gutiérrez (bb0450) 2015; 8 Linde, Coscolín, Liers, Hofrichter, Martínez, Ruiz-Dueñas (bb0275) 2014; 103 Kalum, L., Lund, H., Hofrichter, M., Ullrich, R., 2014a. Enzymatic preparation of indigo dyes and intermediates. Patent (International) WO2014122109A1. Molina-Espeja, Ma, Maté, Ludwig, Alcalde (bb0355) 2015; 73-74 González-Pérez, García-Ruiz, Ruiz-Dueñas, Martínez, Alcalde (bb0165) 2014; 4 Martínez (bb0315) 2016; 352 Bormann, Baraibar, Ni, Holtmann, Hollmann (bb0050) 2015; 5 Barrasa, Blanco, Esteve-Raventós, Altés, Checa, Martínez (bb0040) 2014; 72 Landvick, S., Ostergaard, L. H., Kalum, L., 2016b. Polypeptides having peroxygenase activity and polynucleotides encoding same. Patent (USA) US20160244731A1. Loose, Forsberg, Kracher, Scheiblbrandner, Ludwig, Eijsink (bb0295) 2016; 25 Pardo, Santiago, Gentili, Lucas, Monza, Medrano (bb0400) 2016; 6 Baratto, Sinicropi, Linde, Sáez-Jiménez, Sorace, Ruiz-Dueñas (bb0035) 2015; 119 Sáez-Jiménez, Rencoret, Rodríguez-Carvajal, Gutiérrez, Ruiz-Dueñas, Martínez (bb0475) 2016; 9 Viña-González, González-Pérez, Alcalde (bb0520) 2016; 110 Salvachúa, Katahira, Cleveland, Khanna, Resch, Black (bb0485) 2016; 18 Molina-Espeja, Canellas, Plou, Hofrichter, Lucas, Guallar (bb0360) 2016; 17 Fernández-Fueyo, Ruiz-Dueñas, Martínez, Romero, Hammel, Medrano (bb0105) 2014; 7 Daou, Piumi, Cullen, Record, Faulds (bb0080) 2016; 82 Alcalde, M., Molina-Espeja, P., García-Ruiz, E., González-Pérez, D., Ullrich, R., Hofrichter, M., 2014. Unspecific peroxygenase with high monooxygenase activity. Patent (Spain) P201430595-1. Pham, Hollmann, Kracher, Preims, Haltrich, Ludwig (bb0425) 2015; 120 Vaaje-Kolstad, Westereng, Horn, Liu, Zhai, Sorlie (bb0505) 2010; 330 Santiago, de Salas, Lucas, Monza, Acebes, Martínez (bb0490) 2016; 6 Carro, Ferreira, Rodríguez, Prieto, Serrano, Balcells (bb0060) 2015; 282 Tan, Kracher, Gandini, Sygmund, Kittl, Haltrich (bb0500) 2015; 6 García-Ruiz, Maté, González-Pérez, Molina-Espeja, Camarero, Martínez (bb0145) 2014 Maté, Alcalde (bb0330) 2016; vol 4 Fernández-Fueyo, Ruiz-Dueñas, Martínez (bb0100) 2014; 7 Sáez-Jiménez, Baratto, Pogni, Rencoret, Gutiérrez, Santos (bb0465) 2015; 290 Lund, H., Kalum, L., Hofrichter, M., Peter, S., 2016. Epoxidation using peroxygenase. Patent (USA) US 9458478 B2. González-Pérez, Molina-Espeja, García-Ruiz, Alcalde (bb0170) 2014; 9 Hofrichter, Kellner, Pecyna, Ullrich (bb0200) 2015; 851 Fernández-Fueyo, van Wingerden, Renirie, Wever, Ni, Holtmann (bb0115) 2015; 7 Alcalde (bb0015) 2015; 33 Piumi, Levasseur, Navarro, Zhou, Mathieu, Ropartz (bb0430) 2014; 98 Isaksen, Westereng, Aachmann, Agger, Kracher, Kittl (bb0215) 2014; 289 Sáez-Jiménez, Baratto, Pogni, Rencoret, Gutiérrez, Santos (bb0460) 2015; 290 Kalum, L., Morant, M. D., Lund, H., Jensen, J., Lapainaite, I., Soerensen, N. H. et al., 2014b. Enzymatic oxidation of 5-hydroxymethylfurfural and derivatives thereof. Patent (International)WO2014-015256A2. Fernández-Fueyo, Acebes, Ruiz-Dueñas, Martínez, Romero, Medrano (bb0090) 2014; 70 Patel, Kracher, Ma, Garajova, Haon, Faulds (bb0410) 2016; 9 Strittmatter, Serrer, Liers, Ullrich, Hofrichter, Piontek (bb0495) 2015; 574 Ni, Fernández-Fueyo, Baraibar, Ullrich, Hofrichter, Yanase (bb0375) 2016; 55 Couturier, Mathieu, Li, Navarro, Drula, Haon (bb0075) 2016; 100 Fernández-Fueyo, Younes, van Rootselaar, Aben, Renirie, Wever (bb0125) 2016; 6 Maté, Alcalde (bb0325) 2015; 33 Linde, Pogni, Cañellas, Lucas, Guallar, Baratto (bb0280) 2015; 466 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0125) 2016; 6 Hofrichter (10.1016/j.biotechadv.2017.06.003_bb0195) 2014; 19 Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0470) 2015; 10 Rico (10.1016/j.biotechadv.2017.06.003_bb0450) 2015; 8 Patel (10.1016/j.biotechadv.2017.06.003_bb0410) 2016; 9 Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0360) 2016; 17 Linde (10.1016/j.biotechadv.2017.06.003_bb0285) 2015; 574 Gygli (10.1016/j.biotechadv.2017.06.003_bb0180) 2015; 4 Alcalde (10.1016/j.biotechadv.2017.06.003_bb0015) 2015; 33 Bormann (10.1016/j.biotechadv.2017.06.003_bb0050) 2015; 5 Pezzella (10.1016/j.biotechadv.2017.06.003_bb0415) 2015; 72 Martínez (10.1016/j.biotechadv.2017.06.003_bb0315) 2016; 352 10.1016/j.biotechadv.2017.06.003_bb0525 Gygli (10.1016/j.biotechadv.2017.06.003_bb0185) 2017; 3 Carro (10.1016/j.biotechadv.2017.06.003_bb0065) 2016 Kellner (10.1016/j.biotechadv.2017.06.003_bb0235) 2016; 4 Ni (10.1016/j.biotechadv.2017.06.003_bb0375) 2016; 55 Strittmatter (10.1016/j.biotechadv.2017.06.003_bb0495) 2015; 574 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0095) 2014; 72 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0120) 2016; 9 Rencoret (10.1016/j.biotechadv.2017.06.003_bb0445) 2016; 9 Maté (10.1016/j.biotechadv.2017.06.003_bb0335) 2016 Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0460) 2015; 290 10.1016/j.biotechadv.2017.06.003_bb0260 Vaaje-Kolstad (10.1016/j.biotechadv.2017.06.003_bb0505) 2010; 330 Maté (10.1016/j.biotechadv.2017.06.003_bb0340) 2016 Tan (10.1016/j.biotechadv.2017.06.003_bb0500) 2015; 6 Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0350) 2014; 80 Martínez (10.1016/j.biotechadv.2017.06.003_bb0320) 2017 Pham (10.1016/j.biotechadv.2017.06.003_bb0425) 2015; 120 González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0165) 2014; 4 Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0455) 2015; 10 Courtade (10.1016/j.biotechadv.2017.06.003_bb0070) 2016; 113 Poraj-Kobielska (10.1016/j.biotechadv.2017.06.003_bb0440) 2015; 98 Lucas (10.1016/j.biotechadv.2017.06.003_bb0300) 2016; 6 Hofrichter (10.1016/j.biotechadv.2017.06.003_bb0200) 2015; 851 González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0160) 2014; 5 Ferreira (10.1016/j.biotechadv.2017.06.003_bb0135) 2015; 282 10.1016/j.biotechadv.2017.06.003_bb0220 Büttner (10.1016/j.biotechadv.2017.06.003_bb0055) 2015; 574 10.1016/j.biotechadv.2017.06.003_bb0225 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0090) 2014; 70 Garajova (10.1016/j.biotechadv.2017.06.003_bb0140) 2016; 6 Loose (10.1016/j.biotechadv.2017.06.003_bb0295) 2016; 25 Piumi (10.1016/j.biotechadv.2017.06.003_bb0430) 2014; 98 Poraj-Kobielska (10.1016/j.biotechadv.2017.06.003_bb0435) 2015 Linde (10.1016/j.biotechadv.2017.06.003_bb0275) 2014; 103 Viña-González (10.1016/j.biotechadv.2017.06.003_bb0520) 2016; 110 Maté (10.1016/j.biotechadv.2017.06.003_bb0330) 2016; vol 4 Harris (10.1016/j.biotechadv.2017.06.003_bb0190) 2010; 49 Kiebist (10.1016/j.biotechadv.2017.06.003_bb0240) 2015; 23 Linde (10.1016/j.biotechadv.2017.06.003_bb0280) 2015; 466 Pardo (10.1016/j.biotechadv.2017.06.003_bb0385) 2015; 20 Kracher (10.1016/j.biotechadv.2017.06.003_bb0250) 2016; 352 González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0155) 2016 Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0355) 2015; 73-74 González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0175) 2016; 6 Barrasa (10.1016/j.biotechadv.2017.06.003_bb0045) 2016 Ewing (10.1016/j.biotechadv.2017.06.003_bb0085) 2016; 283 Monza (10.1016/j.biotechadv.2017.06.003_bb0370) 2015; 6 10.1016/j.biotechadv.2017.06.003_bb0205 Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0365) 2016; 34 González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0170) 2014; 9 Hori (10.1016/j.biotechadv.2017.06.003_bb0210) 2014; 10 Carro (10.1016/j.biotechadv.2017.06.003_bb0060) 2015; 282 Acebes (10.1016/j.biotechadv.2017.06.003_bb0010) 2017; 121 Wang (10.1016/j.biotechadv.2017.06.003_bb0530) 2015; 112 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0100) 2014; 7 Giacobelli (10.1016/j.biotechadv.2017.06.003_bb0150) 2017; 7 García-Ruiz (10.1016/j.biotechadv.2017.06.003_bb0145) 2014 Ferreira (10.1016/j.biotechadv.2017.06.003_bb0130) 2015; 107 Pezzella (10.1016/j.biotechadv.2017.06.003_bb0420) 2016; 134 Mathieu (10.1016/j.biotechadv.2017.06.003_bb0345) 2016; 82 Acebes (10.1016/j.biotechadv.2017.06.003_bb0005) 2016; 6 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0105) 2014; 7 Couturier (10.1016/j.biotechadv.2017.06.003_bb0075) 2016; 100 Maté (10.1016/j.biotechadv.2017.06.003_bb0325) 2015; 33 Santiago (10.1016/j.biotechadv.2017.06.003_bb0490) 2016; 6 Viña-González (10.1016/j.biotechadv.2017.06.003_bb0515) 2015; 81 Babot (10.1016/j.biotechadv.2017.06.003_bb0025) 2015; 81 van Kuijk (10.1016/j.biotechadv.2017.06.003_bb0255) 2016; 7 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0115) 2015; 7 de Salas (10.1016/j.biotechadv.2017.06.003_bb0480) 2016; 11 10.1016/j.biotechadv.2017.06.003_bb0020 Karich (10.1016/j.biotechadv.2017.06.003_bb0230) 2016; 134 Pardo (10.1016/j.biotechadv.2017.06.003_bb0400) 2016; 6 Babot (10.1016/j.biotechadv.2017.06.003_bb0030) 2015; 7 Daou (10.1016/j.biotechadv.2017.06.003_bb0080) 2016; 82 10.1016/j.biotechadv.2017.06.003_bb0265 Barrasa (10.1016/j.biotechadv.2017.06.003_bb0040) 2014; 72 Linde (10.1016/j.biotechadv.2017.06.003_bb0290) 2016; 6 10.1016/j.biotechadv.2017.06.003_bb0305 Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0465) 2015; 290 Lettera (10.1016/j.biotechadv.2017.06.003_bb0270) 2016; 196 Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0475) 2016; 9 Kracher (10.1016/j.biotechadv.2017.06.003_bb0245) 2015; 282 Olmedo (10.1016/j.biotechadv.2017.06.003_bb0380) 2016; 55 Vicente (10.1016/j.biotechadv.2017.06.003_bb0510) 2016; 134 Pardo (10.1016/j.biotechadv.2017.06.003_bb0390) 2015; 72 Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0110) 2015; 99 Salvachúa (10.1016/j.biotechadv.2017.06.003_bb0485) 2016; 18 10.1016/j.biotechadv.2017.06.003_bb0310 Isaksen (10.1016/j.biotechadv.2017.06.003_bb0215) 2014; 289 Baratto (10.1016/j.biotechadv.2017.06.003_bb0035) 2015; 119 |
References_xml | – volume: 574 start-page: 66 year: 2015 end-page: 74 ident: bb0285 article-title: Basidiomycete DyPs: genomic diversity, structural-functional aspects, reaction mechanism and environmental significance publication-title: Arch. Biochem. Biophys. – volume: 10 year: 2015 ident: bb0455 article-title: Improving the oxidative stability of a high redox potential fungal peroxidase by rational design publication-title: PLoS One – volume: 290 start-page: 30268 year: 2015 ident: bb0460 article-title: Demonstration of lignin-to-peroxidase direct electron transfer. A transient-state kinetics, directed mutagenesis, EPR and NMR study (vol 290, pag 23201, 2015) publication-title: J. Biol. Chem. – volume: 5 start-page: 254 year: 2014 end-page: 263 ident: bb0160 article-title: Assembly of evolved ligninolytic genes in publication-title: Bioengineered – volume: 20 start-page: 15929 year: 2015 end-page: 15943 ident: bb0385 article-title: Exploring the oxidation of lignin-derived phenols by a library of laccase mutants publication-title: Molecules – volume: 574 start-page: 75 year: 2015 end-page: 85 ident: bb0495 article-title: The toolbox of publication-title: Arch. Biochem. Biophys. – volume: 352 start-page: 1050 year: 2016 end-page: 1051 ident: bb0315 article-title: How to break down crystalline cellulose publication-title: Science – volume: 7 start-page: 55 year: 2016 ident: bb0255 article-title: Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability publication-title: J. Anim. Sci. Biotechnol. – volume: 9 start-page: 49 year: 2016 ident: bb0120 article-title: A secretomic view of woody and nonwoody lignocellulose degradation by publication-title: Biotechnol. Biofuels – volume: 4 year: 2016 ident: bb0235 article-title: Draft genome sequence of the chloroperoxidase-producing fungus publication-title: Genome Announc – volume: 119 start-page: 13583 year: 2015 end-page: 13592 ident: bb0035 article-title: Redox-active sites in publication-title: J. Phys. Chem. B – volume: vol 4 start-page: 91 year: 2016 end-page: 112 ident: bb0330 article-title: Directed evolution of fungal laccases: an update publication-title: Advances in Genome Science – volume: 5 start-page: 2038 year: 2015 end-page: 2052 ident: bb0050 article-title: Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions publication-title: Catal. Sci. Technol. – volume: 72 start-page: 150 year: 2014 end-page: 161 ident: bb0095 article-title: Ligninolytic peroxidase gene expression by publication-title: Fungal Genet. Biol. – reference: Lund, H., Kalum, L., Hofrichter, M., Peter, S., 2016. Epoxidation using peroxygenase. Patent (USA) US 9458478 B2. – volume: 72 start-page: 106 year: 2014 end-page: 114 ident: bb0040 article-title: Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates publication-title: Fungal Genet. Biol. – volume: 103 start-page: 28 year: 2014 end-page: 37 ident: bb0275 article-title: Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from publication-title: Protein Express. Purif. – volume: 82 start-page: 4867 year: 2016 end-page: 4875 ident: bb0080 article-title: Heterologous production and characterization of two glyoxal oxidases from publication-title: Appl. Environ. Microbiol. – reference: Lund, H., Brask, J., Kalum, L., Gutiérrez, A., Babot, E. D., Ullrich, R. et al., 2014. Enzymatic preparation of diols. Patent (USA) US20140234917A1. – volume: 6 start-page: 1624 year: 2016 end-page: 1629 ident: bb0005 article-title: Rational enzyme engineering through biophysical and biochemical modeling publication-title: ACS Catal. – volume: 9 start-page: e90919 year: 2014 ident: bb0170 article-title: Mutagenic organized recombination process by homologous in vivo grouping (MORPHING) for directed enzyme evolution publication-title: PLoS One – volume: 6 start-page: 6277 year: 2016 end-page: 6285 ident: bb0290 article-title: Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase publication-title: Catal. Sci. Technol. – volume: 112 start-page: 3686 year: 2015 end-page: 3691 ident: bb0530 article-title: Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive publication-title: Proc. Natl. Acad. Sci. U. S. A. – reference: Kalum, L., Morant, M. D., Lund, H., Jensen, J., Lapainaite, I., Soerensen, N. H. et al., 2014b. Enzymatic oxidation of 5-hydroxymethylfurfural and derivatives thereof. Patent (International)WO2014-015256A2. – volume: 110 year: 2016 ident: bb0520 article-title: Directed evolution method in publication-title: J. Vis. Exp. – volume: 11 year: 2016 ident: bb0480 article-title: Advanced synthesis of conductive polyaniline using laccase as biocatalyst publication-title: PLoS One – volume: 6 start-page: 1447 year: 2015 end-page: 1453 ident: bb0370 article-title: Insights on laccase engineering from molecular simulations: towards a binding focused strategy publication-title: J. Phys. Chem. Lett. – volume: 33 start-page: 25 year: 2015 end-page: 40 ident: bb0325 article-title: Laccase engineering: from rational design to directed evolution publication-title: Biotechnol. Adv. – volume: 6 start-page: 28276 year: 2016 ident: bb0140 article-title: Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose publication-title: Sci Rep – volume: 7 start-page: 4035 year: 2015 end-page: 4038 ident: bb0115 article-title: Chemoenzymatic halogenation of phenols by using the haloperoxidase from publication-title: ChemCatChem – volume: 851 start-page: 341 year: 2015 end-page: 368 ident: bb0200 article-title: Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome P450 properties publication-title: Adv. Exp. Med. Biol. – volume: 134 start-page: 238 year: 2016 end-page: 246 ident: bb0230 article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction publication-title: J. Mol. Catal. B-Enzym. – volume: 34 start-page: 754 year: 2016 end-page: 767 ident: bb0365 article-title: Beyond the outer limits of nature by directed evolution publication-title: Biotechnol. Adv. – volume: 7 start-page: 2 year: 2014 ident: bb0105 article-title: Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties and lignin-degrading ability publication-title: Biotechnol. Biofuels – volume: 80 start-page: 3496 year: 2014 end-page: 3507 ident: bb0350 article-title: Directed evolution of unspecific peroxygenase from publication-title: Appl. Environ. Microbiol. – volume: 6 start-page: 3900 year: 2016 end-page: 3910 ident: bb0400 article-title: Re-designing the substrate binding pocket of laccase for enhanced oxidation of sinapic acid publication-title: Catal. Sci. Technol. – volume: 4 start-page: 100 year: 2015 end-page: 110 ident: bb0180 article-title: Oxizymes for biotechnology publication-title: Curr. Biotechnol. – start-page: P11 year: 2016 ident: bb0045 article-title: Lignin Biodegradation in the Genomic Era. Proc. LignoBiotech 4, Madrid, 19–22 June – volume: 283 start-page: 2546 year: 2016 end-page: 2559 ident: bb0085 article-title: A single loop is essential for the octamerisation of vanillyl alcohol oxidase publication-title: FEBS J. – volume: 25 start-page: 2175 year: 2016 end-page: 2186 ident: bb0295 article-title: Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase publication-title: Protein Sci. – year: 2017 ident: bb0320 article-title: Biological lignin degradation publication-title: Lignin Valorization: Emerging Approaches – volume: 330 start-page: 219 year: 2010 end-page: 222 ident: bb0505 article-title: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides publication-title: Science – volume: 121 start-page: 3946 year: 2017 end-page: 3954 ident: bb0010 article-title: Mapping the long-range electron transfer route in ligninolytic peroxidases publication-title: J. Phys. Chem. B – volume: 134 start-page: 323 year: 2016 end-page: 330 ident: bb0510 article-title: Evolved alkaline fungal laccase secreted by publication-title: J. Mol. Catal. B-Enzym. – volume: 289 start-page: 2632 year: 2014 end-page: 2642 ident: bb0215 article-title: A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides publication-title: J. Biol. Chem. – volume: 196 start-page: 1272 year: 2016 end-page: 1278 ident: bb0270 article-title: Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification publication-title: Food Chem. – volume: 9 year: 2016 ident: bb0410 article-title: Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus publication-title: Biotechnol. Biofuels – volume: 98 start-page: 144 year: 2015 end-page: 150 ident: bb0440 article-title: Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules publication-title: Biochem. Eng. J. – year: 2016 ident: bb0155 article-title: Directed Evolution of Versatile Peroxidase for the Design of a White-rot Yeast – volume: 98 start-page: 10105 year: 2014 end-page: 10118 ident: bb0430 article-title: A novel glucose dehydrogenase from the white-rot fungus publication-title: Appl. Microbiol. Biotechnol. – volume: 120 start-page: 38 year: 2015 end-page: 46 ident: bb0425 article-title: Engineering an enzymatic regeneration system for NAD(P)H oxidation publication-title: J. Mol. Catal. B-Enzym. – volume: 8 start-page: 211 year: 2015 end-page: 230 ident: bb0450 article-title: In-depth 2D NMR study of lignin modification during pretreatment of publication-title: Bioenerg. Res. – reference: Landvick, S., Ostergaard, L. H., Kalum, L., 2016a. Polypeptides having peroxygenase activity. Patent (International) WO2014056916A3. – volume: 82 start-page: 2411 year: 2016 end-page: 2423 ident: bb0345 article-title: Activities of secreted aryl alcohol quinone oxidoreductases from publication-title: Appl. Environ. Microbiol. – volume: 3 start-page: 17 year: 2017 end-page: 26 ident: bb0185 article-title: Vanillyl alcohol oxidases produced in publication-title: Biocatalysis – volume: 6 start-page: 288 year: 2016 end-page: 295 ident: bb0300 article-title: Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases publication-title: Catal. Sci. Technol. – volume: 70 start-page: 3253 year: 2014 end-page: 3265 ident: bb0090 article-title: Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi publication-title: Acta Crystallogr. D. Biol. Crystallogr. – volume: 107 start-page: 1105 year: 2015 end-page: 1119 ident: bb0130 article-title: A survey of genes encoding H publication-title: Mycologia – volume: 9 start-page: 198 year: 2016 ident: bb0475 article-title: Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin publication-title: Biotechnol. Biofuels – year: 2016 ident: bb0335 article-title: Laccase: a multi-purpose biocatalyst at the forefront of biotechnology publication-title: Microbial Biotechnol. online – volume: 7 start-page: 515 year: 2017 end-page: 523 ident: bb0150 article-title: Repurposing designed mutants: a valuable strategy for computer-aided laccases engineering. The case of POXA1b publication-title: Catal. Sci. Technol. – volume: 72 start-page: 897 year: 2015 end-page: 910 ident: bb0390 article-title: Laccase engineering by rational and evolutionary design publication-title: Cell. Mol. Life Sci. – reference: Vind, J., Ostergaard, L. H., de Leonardo, M., Kalum, L., Amougi, E., 2015. Peroxygenase variants. Patent (International) WO2015079064A3. – volume: 81 start-page: 4130 year: 2015 end-page: 4142 ident: bb0025 article-title: Steroid hydroxylation by basidiomycete peroxygenases: a combined experimental and computational study publication-title: Appl. Environ. Microbiol. – volume: 19 start-page: 116 year: 2014 end-page: 125 ident: bb0195 article-title: Oxidations catalyzed by fungal peroxygenases publication-title: Curr. Opin. Chem. Biol. – volume: 9 start-page: 917 year: 2016 end-page: 930 ident: bb0445 article-title: Laccase-mediator pretreatment of wheat straw degrades lignin and improves saccharification publication-title: Bioenerg. Res. – reference: Kalum, L., Lund, H., Hofrichter, M., Ullrich, R., 2014a. Enzymatic preparation of indigo dyes and intermediates. Patent (International) WO2014122109A1. – volume: 73-74 start-page: 29 year: 2015 end-page: 33 ident: bb0355 article-title: Tandem-yeast expression system for engineering and producing unspecific peroxygenase publication-title: Enzym. Microb. Technol. – volume: 6 start-page: 6625 year: 2016 end-page: 6636 ident: bb0175 article-title: Alkaline versatile peroxidase by directed evolution publication-title: Catal. Sci. Technol. – volume: 6 start-page: 7542 year: 2015 ident: bb0500 article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation publication-title: Nat. Commun. – volume: 49 start-page: 3305 year: 2010 end-page: 3316 ident: bb0190 article-title: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family publication-title: Biochemistry – volume: 290 start-page: 23201 year: 2015 end-page: 23213 ident: bb0465 article-title: Demonstration of lignin-to-peroxidase direct electron transfer: a, transient-state kinetics, directed mutagenesis, EPR and NMR study publication-title: J. Biol. Chem. – volume: 55 start-page: 798 year: 2016 end-page: 801 ident: bb0375 article-title: Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol publication-title: Angew. Chem. Int. Ed. – reference: Alcalde, M., Molina-Espeja, P., García-Ruiz, E., González-Pérez, D., Ullrich, R., Hofrichter, M., 2014. Unspecific peroxygenase with high monooxygenase activity. Patent (Spain) P201430595-1. – reference: Landvick, S., Ostergaard, L. H., Kalum, L., 2016b. Polypeptides having peroxygenase activity and polynucleotides encoding same. Patent (USA) US20160244731A1. – volume: 17 start-page: 341 year: 2016 end-page: 349 ident: bb0360 article-title: Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution publication-title: Chembiochem – volume: 7 start-page: 283 year: 2015 end-page: 290 ident: bb0030 article-title: Regioselective hydroxylation in the production of 25-hydroxyvitamin D by publication-title: ChemCatChem – volume: 282 start-page: 3218 year: 2015 end-page: 3229 ident: bb0060 article-title: 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase publication-title: FEBS J. – volume: 7 start-page: 114 year: 2014 ident: bb0100 article-title: Engineering a fungal peroxidase that degrades lignin at very acidic pH publication-title: Biotechnol. Biofuels – volume: 10 year: 2015 ident: bb0470 article-title: Improving the pH-stability of versatile peroxidase by comparative structural analysis with a naturally-stable manganese peroxidase publication-title: PLoS One – volume: 18 start-page: 6046 year: 2016 end-page: 6062 ident: bb0485 article-title: Lignin depolymerization by fungal secretomes and a microbial sink publication-title: Green Chem. – volume: 352 start-page: 1098 year: 2016 end-page: 1101 ident: bb0250 article-title: Extracellular electron transfer systems fuel oxidative cellulose degradation publication-title: Science – volume: 466 start-page: 253 year: 2015 end-page: 262 ident: bb0280 article-title: Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and directed mutagenesis study publication-title: Biochem. J. – volume: 55 start-page: 12248 year: 2016 end-page: 12251 ident: bb0380 article-title: From alkanes to carboxylic acids: terminal oxygenation by a fungal peroxygenase publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 5415 year: 2016 end-page: 5423 ident: bb0490 article-title: Computer-aided laccase engineering: toward biological oxidation of arylamines publication-title: ACS Catal. – volume: 100 start-page: 697 year: 2016 end-page: 706 ident: bb0075 article-title: Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus publication-title: Appl. Microbiol. Biotechnol. – start-page: 301 year: 2016 end-page: 322 ident: bb0065 article-title: Fungal aryl-alcohol oxidase in lignocellulose degradation and bioconversion publication-title: Microbial Enzymes in Bioconversions of Biomass – volume: 574 start-page: 86 year: 2015 end-page: 92 ident: bb0055 article-title: Oxidation and nitration of mononitrophenols by a DyP-type peroxidase publication-title: Arch. Biochem. Biophys. – volume: 4 start-page: 3891 year: 2014 end-page: 3901 ident: bb0165 article-title: Structural determinants of oxidative stabilization in an evolved versatile peroxidase publication-title: ACS Catal. – volume: 6 start-page: 5904 year: 2016 end-page: 5907 ident: bb0125 article-title: A biocatalytic aza-Achmatowicz reaction publication-title: ACS Catal. – reference: Hollmann, F., Ni, Y., 2016. Enzymatic conversion using hydrogen peroxide. Patent (NL) NL2013351A. – volume: 99 start-page: 8927 year: 2015 end-page: 8942 ident: bb0110 article-title: Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II) publication-title: Appl. Microbiol. Biotechnol. – volume: 81 start-page: 6451 year: 2015 end-page: 6462 ident: bb0515 article-title: Focused directed evolution of aryl-alcohol oxidase in publication-title: Appl. Environ. Microbiol. – volume: 10 year: 2014 ident: bb0210 article-title: Analysis of the publication-title: PLoS Genet. – volume: 282 start-page: 3091 year: 2015 end-page: 3106 ident: bb0135 article-title: Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase publication-title: FEBS J. – volume: 134 start-page: 271 year: 2016 end-page: 279 ident: bb0420 article-title: Green routes towards industrial textile dyeing: a laccase based approach publication-title: J. Mol. Catal. B-Enzym. – start-page: 185 year: 2016 end-page: 214 ident: bb0340 article-title: The pocket manual of directed evolution: tips and tricks publication-title: Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications – volume: 33 start-page: 155 year: 2015 end-page: 162 ident: bb0015 article-title: Engineering the ligninolytic enzyme consortium publication-title: Trends Biotechnol. – year: 2014 ident: bb0145 article-title: Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond publication-title: Cascade Biocatalysis: Integrating Stereoselective and Environmentally Friendly Reactions – volume: 113 start-page: 5922 year: 2016 end-page: 5927 ident: bb0070 article-title: Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 282 start-page: 3136 year: 2015 end-page: 3148 ident: bb0245 article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations publication-title: FEBS J. – year: 2015 ident: bb0435 publication-title: Verfahren zur Deacylierung von Corticoiden. Patent (Germany) – volume: 72 start-page: 923 year: 2015 end-page: 940 ident: bb0415 article-title: How to enjoy laccases publication-title: Cell. Mol. Life Sci. – volume: 23 start-page: 4324 year: 2015 end-page: 4332 ident: bb0240 article-title: One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases publication-title: Bioorg. Med. Chem. – year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0155 – volume: 7 start-page: 114 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0100 article-title: Engineering a fungal peroxidase that degrades lignin at very acidic pH publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-114 – volume: 6 start-page: 6277 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0290 article-title: Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00539J – volume: 283 start-page: 2546 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0085 article-title: A single loop is essential for the octamerisation of vanillyl alcohol oxidase publication-title: FEBS J. doi: 10.1111/febs.13762 – volume: 6 start-page: 3900 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0400 article-title: Re-designing the substrate binding pocket of laccase for enhanced oxidation of sinapic acid publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01725D – volume: 196 start-page: 1272 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0270 article-title: Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.10.074 – volume: 55 start-page: 12248 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0380 article-title: From alkanes to carboxylic acids: terminal oxygenation by a fungal peroxygenase publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605430 – volume: 6 start-page: 1624 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0005 article-title: Rational enzyme engineering through biophysical and biochemical modeling publication-title: ACS Catal. doi: 10.1021/acscatal.6b00028 – volume: 466 start-page: 253 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0280 article-title: Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and directed mutagenesis study publication-title: Biochem. J. doi: 10.1042/BJ20141211 – start-page: 185 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0340 article-title: The pocket manual of directed evolution: tips and tricks – volume: 72 start-page: 923 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0415 article-title: How to enjoy laccases publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-014-1823-9 – volume: 119 start-page: 13583 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0035 article-title: Redox-active sites in Auricularia auricula-judae dye-decolorizing peroxidase and several directed variants: a multifrequency EPR study publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b02961 – volume: 574 start-page: 75 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0495 article-title: The toolbox of Auricularia auricula-judae dye-decolorizing peroxidase. Identification of three new potential substrate-interaction sites publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2014.12.016 – volume: 134 start-page: 323 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0510 article-title: Evolved alkaline fungal laccase secreted by Saccharomyces cerevisiae as useful tool for the synthesis of C-N heteropolymeric dye publication-title: J. Mol. Catal. B-Enzym. doi: 10.1016/j.molcatb.2016.10.004 – volume: 282 start-page: 3091 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0135 article-title: Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase publication-title: FEBS J. doi: 10.1111/febs.13221 – volume: 6 start-page: 5415 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0490 article-title: Computer-aided laccase engineering: toward biological oxidation of arylamines publication-title: ACS Catal. doi: 10.1021/acscatal.6b01460 – start-page: 301 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0065 article-title: Fungal aryl-alcohol oxidase in lignocellulose degradation and bioconversion – volume: 6 start-page: 7542 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0500 article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation publication-title: Nat. Commun. doi: 10.1038/ncomms8542 – ident: 10.1016/j.biotechadv.2017.06.003_bb0310 – volume: 73-74 start-page: 29 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0355 article-title: Tandem-yeast expression system for engineering and producing unspecific peroxygenase publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2015.03.004 – volume: 23 start-page: 4324 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0240 article-title: One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2015.06.035 – volume: 55 start-page: 798 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0375 article-title: Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507881 – year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0145 article-title: Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond – volume: 4 start-page: 100 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0180 article-title: Oxizymes for biotechnology publication-title: Curr. Biotechnol. doi: 10.2174/2211550104666150423202036 – volume: 103 start-page: 28 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0275 article-title: Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae publication-title: Protein Express. Purif. doi: 10.1016/j.pep.2014.08.007 – volume: 290 start-page: 23201 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0465 article-title: Demonstration of lignin-to-peroxidase direct electron transfer: a, transient-state kinetics, directed mutagenesis, EPR and NMR study publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.665919 – volume: 100 start-page: 697 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0075 article-title: Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-7021-3 – volume: 7 start-page: 283 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0030 article-title: Regioselective hydroxylation in the production of 25-hydroxyvitamin D by Coprinopsis cinerea peroxygenase publication-title: ChemCatChem doi: 10.1002/cctc.201402795 – volume: 7 start-page: 2 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0105 article-title: Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties and lignin-degrading ability publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-2 – volume: 98 start-page: 10105 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0430 article-title: A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5891-4 – volume: 10 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0455 article-title: Improving the oxidative stability of a high redox potential fungal peroxidase by rational design publication-title: PLoS One doi: 10.1371/journal.pone.0124750 – volume: 9 start-page: e90919 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0170 article-title: Mutagenic organized recombination process by homologous in vivo grouping (MORPHING) for directed enzyme evolution publication-title: PLoS One doi: 10.1371/journal.pone.0090919 – volume: 10 issue: 12 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0210 article-title: Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome gives insight into its pioneer colonization strategies of wood publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004759 – volume: 72 start-page: 106 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0040 article-title: Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2014.03.007 – ident: 10.1016/j.biotechadv.2017.06.003_bb0525 – ident: 10.1016/j.biotechadv.2017.06.003_bb0265 – volume: 282 start-page: 3218 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0060 article-title: 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase publication-title: FEBS J. doi: 10.1111/febs.13177 – ident: 10.1016/j.biotechadv.2017.06.003_bb0220 – volume: 6 start-page: 28276 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0140 article-title: Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose publication-title: Sci Rep doi: 10.1038/srep28276 – volume: 330 start-page: 219 year: 2010 ident: 10.1016/j.biotechadv.2017.06.003_bb0505 article-title: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides publication-title: Science doi: 10.1126/science.1192231 – volume: 7 start-page: 55 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0255 article-title: Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability publication-title: J. Anim. Sci. Biotechnol. doi: 10.1186/s40104-016-0110-z – volume: 6 start-page: 1447 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0370 article-title: Insights on laccase engineering from molecular simulations: towards a binding focused strategy publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00225 – volume: 134 start-page: 238 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0230 article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction publication-title: J. Mol. Catal. B-Enzym. doi: 10.1016/j.molcatb.2016.10.014 – volume: 10 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0470 article-title: Improving the pH-stability of versatile peroxidase by comparative structural analysis with a naturally-stable manganese peroxidase publication-title: PLoS One doi: 10.1371/journal.pone.0140984 – volume: 9 start-page: 198 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0475 article-title: Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0615-x – volume: 6 start-page: 5904 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0125 article-title: A biocatalytic aza-Achmatowicz reaction publication-title: ACS Catal. doi: 10.1021/acscatal.6b01636 – year: 2017 ident: 10.1016/j.biotechadv.2017.06.003_bb0320 article-title: Biological lignin degradation – volume: 34 start-page: 754 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0365 article-title: Beyond the outer limits of nature by directed evolution publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.03.008 – volume: 72 start-page: 150 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0095 article-title: Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2014.02.003 – volume: 82 start-page: 2411 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0345 article-title: Activities of secreted aryl alcohol quinone oxidoreductases from Pycnoporus cinnabarinus provide insights into fungal degradation of plant biomass publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03761-15 – volume: 290 start-page: 30268 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0460 article-title: Demonstration of lignin-to-peroxidase direct electron transfer. A transient-state kinetics, directed mutagenesis, EPR and NMR study (vol 290, pag 23201, 2015) publication-title: J. Biol. Chem. doi: 10.1074/jbc.A115.665919 – volume: 6 start-page: 6625 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0175 article-title: Alkaline versatile peroxidase by directed evolution publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY01044J – ident: 10.1016/j.biotechadv.2017.06.003_bb0305 – volume: 9 start-page: 917 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0445 article-title: Laccase-mediator pretreatment of wheat straw degrades lignin and improves saccharification publication-title: Bioenerg. Res. doi: 10.1007/s12155-016-9745-z – volume: 33 start-page: 155 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0015 article-title: Engineering the ligninolytic enzyme consortium publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.12.007 – volume: 19 start-page: 116 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0195 article-title: Oxidations catalyzed by fungal peroxygenases publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2014.01.015 – volume: 121 start-page: 3946 year: 2017 ident: 10.1016/j.biotechadv.2017.06.003_bb0010 article-title: Mapping the long-range electron transfer route in ligninolytic peroxidases publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b00835 – volume: 6 start-page: 288 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0300 article-title: Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00427F – volume: 574 start-page: 86 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0055 article-title: Oxidation and nitration of mononitrophenols by a DyP-type peroxidase publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2015.03.003 – volume: 49 start-page: 3305 year: 2010 ident: 10.1016/j.biotechadv.2017.06.003_bb0190 article-title: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family publication-title: Biochemistry doi: 10.1021/bi100009p – volume: 70 start-page: 3253 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0090 article-title: Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S1399004714022755 – ident: 10.1016/j.biotechadv.2017.06.003_bb0225 – volume: 17 start-page: 341 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0360 article-title: Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution publication-title: Chembiochem doi: 10.1002/cbic.201500493 – volume: 112 start-page: 3686 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0530 article-title: Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1503340112 – volume: 4 start-page: 3891 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0165 article-title: Structural determinants of oxidative stabilization in an evolved versatile peroxidase publication-title: ACS Catal. doi: 10.1021/cs501218v – volume: 18 start-page: 6046 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0485 article-title: Lignin depolymerization by fungal secretomes and a microbial sink publication-title: Green Chem. doi: 10.1039/C6GC01531J – volume: 134 start-page: 271 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0420 article-title: Green routes towards industrial textile dyeing: a laccase based approach publication-title: J. Mol. Catal. B-Enzym. doi: 10.1016/j.molcatb.2016.11.016 – volume: 72 start-page: 897 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0390 article-title: Laccase engineering by rational and evolutionary design publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-014-1824-8 – start-page: P11 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0045 – ident: 10.1016/j.biotechadv.2017.06.003_bb0205 – volume: 4 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0235 article-title: Draft genome sequence of the chloroperoxidase-producing fungus Caldariomyces fumago Woronichin DSM1256 publication-title: Genome Announc doi: 10.1128/genomeA.00774-16 – volume: 98 start-page: 144 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0440 article-title: Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2015.02.037 – ident: 10.1016/j.biotechadv.2017.06.003_bb0260 – volume: 282 start-page: 3136 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0245 article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations publication-title: FEBS J. doi: 10.1111/febs.13310 – volume: 81 start-page: 4130 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0025 article-title: Steroid hydroxylation by basidiomycete peroxygenases: a combined experimental and computational study publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00660-15 – volume: 20 start-page: 15929 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0385 article-title: Exploring the oxidation of lignin-derived phenols by a library of laccase mutants publication-title: Molecules doi: 10.3390/molecules200915929 – volume: 7 start-page: 4035 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0115 article-title: Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis publication-title: ChemCatChem doi: 10.1002/cctc.201500862 – volume: vol 4 start-page: 91 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0330 article-title: Directed evolution of fungal laccases: an update – volume: 9 issue: 108 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0410 article-title: Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6 publication-title: Biotechnol. Biofuels – volume: 107 start-page: 1105 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0130 article-title: A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 polyporales genomes publication-title: Mycologia doi: 10.3852/15-027 – volume: 81 start-page: 6451 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0515 article-title: Focused directed evolution of aryl-alcohol oxidase in Saccharomyces cerevisiae by using chimeric signal peptides publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01966-15 – volume: 5 start-page: 2038 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0050 article-title: Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY01477D – volume: 82 start-page: 4867 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0080 article-title: Heterologous production and characterization of two glyoxal oxidases from Pycnoporus cinnabarinus publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00304-16 – volume: 80 start-page: 3496 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0350 article-title: Directed evolution of unspecific peroxygenase from Agrocybe aegerita publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00490-14 – volume: 25 start-page: 2175 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0295 article-title: Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase publication-title: Protein Sci. doi: 10.1002/pro.3043 – volume: 3 start-page: 17 year: 2017 ident: 10.1016/j.biotechadv.2017.06.003_bb0185 article-title: Vanillyl alcohol oxidases produced in Komagataella phaffii contain a highly stable non-covalently bound anionic FAD semiquinone publication-title: Biocatalysis doi: 10.1515/boca-2017-0002 – volume: 851 start-page: 341 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0200 article-title: Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome P450 properties publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-16009-2_13 – volume: 5 start-page: 254 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0160 article-title: Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae publication-title: Bioengineered doi: 10.4161/bioe.29167 – volume: 574 start-page: 66 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0285 article-title: Basidiomycete DyPs: genomic diversity, structural-functional aspects, reaction mechanism and environmental significance publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2015.01.018 – ident: 10.1016/j.biotechadv.2017.06.003_bb0020 – volume: 120 start-page: 38 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0425 article-title: Engineering an enzymatic regeneration system for NAD(P)H oxidation publication-title: J. Mol. Catal. B-Enzym. doi: 10.1016/j.molcatb.2015.06.011 – volume: 110 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0520 article-title: Directed evolution method in Saccharomyces cerevisiae: mutant library creation and screening publication-title: J. Vis. Exp. – volume: 11 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0480 article-title: Advanced synthesis of conductive polyaniline using laccase as biocatalyst publication-title: PLoS One doi: 10.1371/journal.pone.0164958 – volume: 352 start-page: 1050 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0315 article-title: How to break down crystalline cellulose publication-title: Science doi: 10.1126/science.aaf8920 – volume: 7 start-page: 515 year: 2017 ident: 10.1016/j.biotechadv.2017.06.003_bb0150 article-title: Repurposing designed mutants: a valuable strategy for computer-aided laccases engineering. The case of POXA1b publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02410F – volume: 352 start-page: 1098 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0250 article-title: Extracellular electron transfer systems fuel oxidative cellulose degradation publication-title: Science doi: 10.1126/science.aaf3165 – volume: 33 start-page: 25 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0325 article-title: Laccase engineering: from rational design to directed evolution publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.12.007 – volume: 113 start-page: 5922 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0070 article-title: Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1602566113 – volume: 289 start-page: 2632 year: 2014 ident: 10.1016/j.biotechadv.2017.06.003_bb0215 article-title: A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.530196 – year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0335 article-title: Laccase: a multi-purpose biocatalyst at the forefront of biotechnology publication-title: Microbial Biotechnol. online – year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0435 publication-title: Verfahren zur Deacylierung von Corticoiden. Patent (Germany) – volume: 9 start-page: 49 year: 2016 ident: 10.1016/j.biotechadv.2017.06.003_bb0120 article-title: A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0462-9 – volume: 8 start-page: 211 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0450 article-title: In-depth 2D NMR study of lignin modification during pretreatment of Eucalyptus wood with laccase and mediators publication-title: Bioenerg. Res. doi: 10.1007/s12155-014-9505-x – volume: 99 start-page: 8927 year: 2015 ident: 10.1016/j.biotechadv.2017.06.003_bb0110 article-title: Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II) publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6665-3 |
SSID | ssj0015053 |
Score | 2.6129012 |
SecondaryResourceType | review_article |
Snippet | Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases... |
SourceID | wageningen hal csuc proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 815 |
SubjectTerms | 1-naphthol 25-hydroxycholecalciferol active sites Alkanes Analysis Basidiomycota Biochemical computers Biodegradation Biomass Biophysical and biochemical computational modeling biorefining Biotransformation Breaking down catalytic activity cellulose Chemical reactions Chemical synthesis Computer simulation computer software Copper Crystalline cellulose Decoloring delignification Dinitrocresols - chemistry Directed evolution Disintegration drugs Dyes Electron transfer electrons Engineering Enginyeria biomèdica Enzims Enzyme activation Enzyme cascades Fungi Fungi - chemistry Fungi - enzymology heme Heme - chemistry Heme - genetics Heme peroxidases and peroxygenases Hydrogen peroxide Hydroxyl radicals Indigo laccase Laccase - chemistry Laccase - genetics Laccases Life Sciences lignin Lignin - chemistry Lignin - genetics Lignocellulose Lignocellulose biorefinery Lytic polysaccharide monooxygenases Metabolites Naphthol Oxidases and dehydrogenases Oxidation Oxidation-Reduction Oxidoreductases Oxidoreductases - chemistry Oxidoreductases - classification Oxidoreductases - genetics Oxigenases oxygen Oxygenation peroxidases Peroxidases - chemistry Peroxidases - genetics Polyanilines Polysaccharides proteins Rational design screening Selective oxyfunctionalization Selectivity Studies Substrates Àrees temàtiques de la UPC |
Title | Oxidoreductases on their way to industrial biotransformations |
URI | https://dx.doi.org/10.1016/j.biotechadv.2017.06.003 https://www.ncbi.nlm.nih.gov/pubmed/28624475 https://www.proquest.com/docview/2021990301 https://www.proquest.com/docview/1911198937 https://www.proquest.com/docview/2000534179 https://recercat.cat/handle/2072/291490 https://hal.science/hal-01557216 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F523777 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7qCdI-iFat0Vqi-CTESzab7Abx4SiW80frgxb6tmw2GxopuXLJ9fTFv92ZZJNeEaHgQwjJbZLN7GTm29uZbwBeyyKPmWBJEOskDxD_y0BzGwd5EZbCoHEoBWUjH5-k81P-6Sw524LDIReGwiqd7e9temet3Zmpk-b0sqqm31A5eYYOLyLK9ZRREh_ngrT87e8xzAPxTs9EiY0Dau2iefoYr7wiLoRzXVxRkJfomDyH8lnORU1MszI3PNWdcwqZ_BuP7sD2Gm1A3SVFbTipowdw36FLf9a_wEPYsvUu7GxwDu7CvWO3mv4I3n_9WVGhEaJ8RWfW-Iva7xYO_LX-5bcLvxrrevj0DhsYF3X1MZweffh-OA9cOYXApDxrg1InkcjRnxtpM5xGGC6j1IZJaDiL8jSmuLPS8EwyxFBpUhQCwYwsdIkuTFqcyz6BSb2o7VPw46jMNSfxh5bHNpFMR9aWhZQml0VqPRCDBJVxXONU8uJCDUFlP9S17BXJXnXxdbEH0XjlZc-3cYtr3tAgKVQXuzS6VUSZPR7QxkLBFMtwNhh68G4YSnVD0RT6kFs86hWO_tgzetB89kXROQKfxIR0FXmwPyiHchahwZugb8hoAurBy_Fn_JZpgUbXdrFqVESeJyME-e82rEufprpxHuz1ijd2h1G2DxeJB_G1JqqailI1XV_dP4NqvVqq-oJ2eIdGJSwWQjz7L8k8h2066tM092HSLlf2BeK1Nj_oPsgDuDv7-Hl-8gc-ukBz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tRYLtAcH4FRgQEE9IWRPHiR0hHqaJqUA7HtikvVmJ42hBUzo16bq98LdzlzhZJ4Q0iYeqauIkzvl897m--w7gg8yzkAkWeWEaZR7if-ml3IRelvuF0GgcCkHZyLOjeHLCv51Gpxtw0OfCUFiltf2dTW-ttT0yttIcX5Tl-CcqJ0_Q4QVEuR6zZBPucZy-VMZg7_cQ54GAp6OixNYeNbfhPF2QV1YSGcJZml9SlJdoqTz7-lnWR410vdS3XNXmGcVM_g1It2FrhUagarOi1rzU4SN4aOGlu9-9wWPYMNUObK-RDu7A_ZndTn8Cn39clVRphDhf0ZvV7rxy250Dd5Veu83cLYfCHi69wxrIRWV9CieHX44PJp6tp-DpmCeNV6RRIDJ06FqaBNcRmssgNn7ka86CLA4p8KzQPJEMQVQc5blANCPztEAfJg0uZp_BqJpX5gW4YVBkKSf5-4aHJpIsDYwpcil1JvPYOCB6CSptycap5sW56qPKfqkb2SuSvWoD7EIHguHKi45w4w7XfKRBUqgvZqHTRhFn9vCDPswXTLEEl4O-A5_6oVS3NE2hE7nDo97j6A89owdN9qeKjhH6JCqky8CB3V45lDUJNd4EnUNCK1AH3g2ncTLTDk1amfmyVgG5noQg5L_bsDZ_mgrHOfC8U7yhO4zSfbiIHAhvNFFVVJWqbvtq_xpUq-VCVef0hXeoVcRCIcTL_5LMW3gwOZ5N1fTr0fdXsEVnupzNXRg1i6V5jeCtyd60k_MPMIxCAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidoreductases+on+their+way+to+industrial+biotransformations&rft.jtitle=Biotechnology+advances&rft.au=Mart%C3%ADnez%2C+Angel+T.&rft.au=Ruiz-Due%C3%B1as%2C+Francisco+J.&rft.au=Camarero%2C+Susana&rft.au=Serrano%2C+Ana&rft.date=2017-11-01&rft.pub=Elsevier+Inc&rft.issn=0734-9750&rft.eissn=1873-1899&rft.volume=35&rft.issue=6&rft.spage=815&rft.epage=831&rft_id=info:doi/10.1016%2Fj.biotechadv.2017.06.003&rft.externalDocID=S0734975017300629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-9750&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-9750&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-9750&client=summon |