Oxidoreductases on their way to industrial biotransformations

Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology advances Vol. 35; no. 6; pp. 815 - 831
Main Authors Martínez, Angel T., Ruiz-Dueñas, Francisco J., Camarero, Susana, Serrano, Ana, Linde, Dolores, Lund, Henrik, Vind, Jesper, Tovborg, Morten, Herold-Majumdar, Owik M., Hofrichter, Martin, Liers, Christiane, Ullrich, René, Scheibner, Katrin, Sannia, Giovanni, Piscitelli, Alessandra, Pezzella, Cinzia, Sener, Mehmet E., Kılıç, Sibel, van Berkel, Willem J.H., Guallar, Victor, Lucas, Maria Fátima, Zuhse, Ralf, Ludwig, Roland, Hollmann, Frank, Fernández-Fueyo, Elena, Record, Eric, Faulds, Craig B., Tortajada, Marta, Winckelmann, Ib, Rasmussen, Jo-Anne, Gelo-Pujic, Mirjana, Gutiérrez, Ana, del Río, José C., Rencoret, Jorge, Alcalde, Miguel
Format Journal Article Publication
LanguageEnglish
Published England Elsevier Inc 01.11.2017
Elsevier Science Ltd
Elsevier
Subjects
CRO
DFF
HTP
VAO
CDH
GDH
LiP
UPO
GMC
HMF
AAD
P2O
MnP
AAO
GOX
NMR
MOX
MCO
DyP
VP
CPK
Online AccessGet full text

Cover

Loading…
Abstract Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. •Recent advances on fungal oxidoreductases for a bio-based economy are reviewed.•These include computer-aided rational design and directed evolution of biocatalysts.•Classical oxidoreductases consist of peroxidases/oxidases involved in lignin decay.•Peroxygenases and polysaccharide monooxygenases were more recently discovered.•Reviewed transformations consider both oxyfunctionalization and oxidation reactions.
AbstractList Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. This work has been funded by the INDOX European project (KBBE-2013-7-613549), together with the BIO2014-56388-R and AGL2014-53730-R projects of the Spanish Ministry of Economy and Competitiveness (MINECO) co-financed by FEDER funds, and the BBI JU project EnzOx2 (H2020-BBI-PPP-2015-2-720297). The work conducted by the US DOE JGI was supported by the Office of Science of the US DOE under contract number DE-AC02-05CH11231. The authors thank other members of their groups at CIB-CSIC, Novozymes, Technical University of Dresden, JenaBios, University of Naples Federico II, Setas Kimya Sanayy, Wageningen University & Research, Anaxomics, Chiracon, BOKU, Delft University of Technology, INRABBF, Biopolis, Cheminova, CLEA, Solvay, IRNAS-CSIC and ICP-CSIC for their significant contributions to the results presented. Peer Reviewed
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. •Recent advances on fungal oxidoreductases for a bio-based economy are reviewed.•These include computer-aided rational design and directed evolution of biocatalysts.•Classical oxidoreductases consist of peroxidases/oxidases involved in lignin decay.•Peroxygenases and polysaccharide monooxygenases were more recently discovered.•Reviewed transformations consider both oxyfunctionalization and oxidation reactions.
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes -- copper-radical oxidases -- together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. owever, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3 drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H O as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H O that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H O generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D , drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.
Author Tortajada, Marta
Hofrichter, Martin
Kılıç, Sibel
del Río, José C.
Hollmann, Frank
Gelo-Pujic, Mirjana
Liers, Christiane
Linde, Dolores
Herold-Majumdar, Owik M.
Guallar, Victor
Ludwig, Roland
Faulds, Craig B.
van Berkel, Willem J.H.
Piscitelli, Alessandra
Pezzella, Cinzia
Rencoret, Jorge
Camarero, Susana
Martínez, Angel T.
Lucas, Maria Fátima
Winckelmann, Ib
Fernández-Fueyo, Elena
Vind, Jesper
Sener, Mehmet E.
Gutiérrez, Ana
Record, Eric
Alcalde, Miguel
Rasmussen, Jo-Anne
Lund, Henrik
Serrano, Ana
Tovborg, Morten
Scheibner, Katrin
Ruiz-Dueñas, Francisco J.
Sannia, Giovanni
Ullrich, René
Zuhse, Ralf
Author_xml – sequence: 1
  givenname: Angel T.
  surname: Martínez
  fullname: Martínez, Angel T.
  email: ATMartinez@cib.csic.es
  organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
– sequence: 2
  givenname: Francisco J.
  surname: Ruiz-Dueñas
  fullname: Ruiz-Dueñas, Francisco J.
  organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
– sequence: 3
  givenname: Susana
  surname: Camarero
  fullname: Camarero, Susana
  organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
– sequence: 4
  givenname: Ana
  surname: Serrano
  fullname: Serrano, Ana
  organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
– sequence: 5
  givenname: Dolores
  surname: Linde
  fullname: Linde, Dolores
  organization: Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
– sequence: 6
  givenname: Henrik
  surname: Lund
  fullname: Lund, Henrik
  organization: Novozymes A/S, Bagsvaerd, Denmark
– sequence: 7
  givenname: Jesper
  surname: Vind
  fullname: Vind, Jesper
  organization: Novozymes A/S, Bagsvaerd, Denmark
– sequence: 8
  givenname: Morten
  surname: Tovborg
  fullname: Tovborg, Morten
  organization: Novozymes A/S, Bagsvaerd, Denmark
– sequence: 9
  givenname: Owik M.
  orcidid: 0000-0002-1052-4970
  surname: Herold-Majumdar
  fullname: Herold-Majumdar, Owik M.
  organization: Novozymes A/S, Bagsvaerd, Denmark
– sequence: 10
  givenname: Martin
  surname: Hofrichter
  fullname: Hofrichter, Martin
  organization: Technische Universität Dresden, Zittau, Germany
– sequence: 11
  givenname: Christiane
  surname: Liers
  fullname: Liers, Christiane
  organization: Technische Universität Dresden, Zittau, Germany
– sequence: 12
  givenname: René
  surname: Ullrich
  fullname: Ullrich, René
  organization: Technische Universität Dresden, Zittau, Germany
– sequence: 13
  givenname: Katrin
  surname: Scheibner
  fullname: Scheibner, Katrin
  organization: JenaBios GmBH, Jena, Germany
– sequence: 14
  givenname: Giovanni
  orcidid: 0000-0002-7986-6223
  surname: Sannia
  fullname: Sannia, Giovanni
  organization: Università degli Studi di Napoli Federico II, Naples, Italy
– sequence: 15
  givenname: Alessandra
  surname: Piscitelli
  fullname: Piscitelli, Alessandra
  organization: Università degli Studi di Napoli Federico II, Naples, Italy
– sequence: 16
  givenname: Cinzia
  surname: Pezzella
  fullname: Pezzella, Cinzia
  organization: Università degli Studi di Napoli Federico II, Naples, Italy
– sequence: 17
  givenname: Mehmet E.
  surname: Sener
  fullname: Sener, Mehmet E.
  organization: Setas Kimya Sanayi AS, Tekirdag, Turkey
– sequence: 18
  givenname: Sibel
  surname: Kılıç
  fullname: Kılıç, Sibel
  organization: Setas Kimya Sanayi AS, Tekirdag, Turkey
– sequence: 19
  givenname: Willem J.H.
  surname: van Berkel
  fullname: van Berkel, Willem J.H.
  organization: Wageningen University & Research, The Netherlands
– sequence: 20
  givenname: Victor
  surname: Guallar
  fullname: Guallar, Victor
  organization: Anaxomics, Barcelona, Spain
– sequence: 21
  givenname: Maria Fátima
  orcidid: 0000-0001-8672-9940
  surname: Lucas
  fullname: Lucas, Maria Fátima
  organization: Anaxomics, Barcelona, Spain
– sequence: 22
  givenname: Ralf
  surname: Zuhse
  fullname: Zuhse, Ralf
  organization: Chiracon GmBH, Luckenwalde, Germany
– sequence: 23
  givenname: Roland
  surname: Ludwig
  fullname: Ludwig, Roland
  organization: University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
– sequence: 24
  givenname: Frank
  surname: Hollmann
  fullname: Hollmann, Frank
  organization: Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
– sequence: 25
  givenname: Elena
  surname: Fernández-Fueyo
  fullname: Fernández-Fueyo, Elena
  organization: Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
– sequence: 26
  givenname: Eric
  surname: Record
  fullname: Record, Eric
  organization: Aix Marseille University, INRA, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
– sequence: 27
  givenname: Craig B.
  surname: Faulds
  fullname: Faulds, Craig B.
  organization: Aix Marseille University, INRA, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
– sequence: 28
  givenname: Marta
  surname: Tortajada
  fullname: Tortajada, Marta
  organization: Biopolis, Valencia, Spain
– sequence: 29
  givenname: Ib
  surname: Winckelmann
  fullname: Winckelmann, Ib
  organization: Cheminova A/S, Lemvig, Denmark
– sequence: 30
  givenname: Jo-Anne
  surname: Rasmussen
  fullname: Rasmussen, Jo-Anne
  organization: CLEA Technologies BV, Delft, The Netherlands
– sequence: 31
  givenname: Mirjana
  surname: Gelo-Pujic
  fullname: Gelo-Pujic, Mirjana
  organization: Solvay, Brussels, Belgium
– sequence: 32
  givenname: Ana
  surname: Gutiérrez
  fullname: Gutiérrez, Ana
  organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
– sequence: 33
  givenname: José C.
  orcidid: 0000-0002-3040-6787
  surname: del Río
  fullname: del Río, José C.
  organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
– sequence: 34
  givenname: Jorge
  surname: Rencoret
  fullname: Rencoret, Jorge
  organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
– sequence: 35
  givenname: Miguel
  surname: Alcalde
  fullname: Alcalde, Miguel
  organization: Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28624475$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01557216$$DView record in HAL
BookMark eNqNklFvFCEUhYmpsdvqXzCT-KIPu3KBGcDEJrVRa7JJX_SZMAzjspmFFZhd--9luuua9KU-AIF851y4nAt05oO3CFWAF4Cheb9etC5ka1a62y0IBr7AzQJj-gzNQHA6ByHlGZphTtlc8hqfo4uU1hhDjWv6Ap0T0RDGeD1DH-9-uy5E240m62RTFXyVV9bFaq_vqxwq57sx5ej0UE01o_apD3Gjsws-vUTPez0k--q4XqIfXz5_v7mdL---fru5Xs5Nw2Se97oG3gJhRlgpOTNMQGNxjQ0j0DbU1L3tDZOCAKNN3XWcCik63QMRwgKll-jDwXevf1rvfJmU19G4pIJ2anBt1PFe7ceo_DAt27FNqiaUc17E7w7ilR7UNrrNhE6y2-ulms5KW2pOoNlBYeHAmjQaFa2x0ej8QJ820yCYE0UkMImL5u1Bs43h12hTVhuXjB0G7W0YU2Fx6ToDLp9EQQKAFJJOt37zCF2HMfrS5WJIQJbCeLrv6yM1thvbnZ7394MLII4PiiGlaPsTAlhNWVJr9S9LasqSwo0qWSrSq0dS4_LDv5cUuOF_DD4dDGyJxs7ZqJJx1hvbudLMrLrgnjb5Azcz6nY
CitedBy_id crossref_primary_10_3390_ijms24076368
crossref_primary_10_3390_ijms24108963
crossref_primary_10_1007_s11356_021_15012_z
crossref_primary_10_29039_rusjbpc_2023_0591
crossref_primary_10_1021_acs_jafc_3c08187
crossref_primary_10_1016_j_electacta_2023_142954
crossref_primary_10_1021_acsomega_2c05604
crossref_primary_10_1016_j_enzmictec_2019_109429
crossref_primary_10_1016_j_enzmictec_2020_109555
crossref_primary_10_1016_j_scp_2022_100934
crossref_primary_10_1007_s00253_019_10292_5
crossref_primary_10_1016_j_isci_2022_104640
crossref_primary_10_1016_j_bcab_2018_06_023
crossref_primary_10_1186_s13068_019_1457_0
crossref_primary_10_1002_adsc_201800197
crossref_primary_10_1007_s40726_024_00310_0
crossref_primary_10_3390_jof7050325
crossref_primary_10_1007_s11157_023_09676_x
crossref_primary_10_1016_j_scitotenv_2021_145449
crossref_primary_10_1098_rsif_2023_0299
crossref_primary_10_3390_molecules27185922
crossref_primary_10_1016_j_cej_2022_138902
crossref_primary_10_1016_j_resmic_2023_104027
crossref_primary_10_1111_1751_7915_13647
crossref_primary_10_1016_j_cbpa_2020_01_012
crossref_primary_10_1016_j_ijbiomac_2020_12_068
crossref_primary_10_3390_app11136161
crossref_primary_10_1186_s13068_018_1091_2
crossref_primary_10_1186_s40246_022_00429_5
crossref_primary_10_1021_acssuschemeng_4c02042
crossref_primary_10_3390_sym12091454
crossref_primary_10_3389_fctls_2024_1470616
crossref_primary_10_1088_1742_6596_1351_1_012030
crossref_primary_10_1002_cctc_201900610
crossref_primary_10_1002_bab_1788
crossref_primary_10_1111_ijfs_16829
crossref_primary_10_1039_D3OB01447A
crossref_primary_10_1016_j_enzmictec_2019_03_001
crossref_primary_10_1016_j_ijbiomac_2024_132466
crossref_primary_10_1002_cbin_11316
crossref_primary_10_3390_jof11010034
crossref_primary_10_1016_j_bcab_2021_102162
crossref_primary_10_1002_cbic_202000326
crossref_primary_10_1016_j_rser_2019_01_054
crossref_primary_10_1021_acscatal_9b04727
crossref_primary_10_1016_j_bcab_2022_102318
crossref_primary_10_1002_jctb_7374
crossref_primary_10_1016_j_biotechadv_2021_107809
crossref_primary_10_3390_catal12040385
crossref_primary_10_1016_j_biotechadv_2021_107808
crossref_primary_10_1016_j_bcab_2019_101127
crossref_primary_10_1016_j_ijbiomac_2021_04_004
crossref_primary_10_1038_s41467_023_38227_9
crossref_primary_10_3390_nano10020282
crossref_primary_10_1039_D1CC04243B
crossref_primary_10_21307_PM_2020_59_1_007
crossref_primary_10_3390_ijms25031758
crossref_primary_10_1002_bkcs_12489
crossref_primary_10_1016_j_sbi_2020_05_003
crossref_primary_10_1021_acscatal_9b01341
crossref_primary_10_1016_j_funbio_2024_08_002
crossref_primary_10_3390_md21040242
crossref_primary_10_1002_cctc_202401021
crossref_primary_10_1038_s41589_019_0402_7
crossref_primary_10_3390_md16070227
crossref_primary_10_1002_btpr_2878
crossref_primary_10_1021_acssuschemeng_2c06676
crossref_primary_10_1007_s10529_022_03321_3
crossref_primary_10_1007_s10653_024_01903_w
crossref_primary_10_1038_s41467_024_45545_z
crossref_primary_10_1186_s40643_019_0255_7
crossref_primary_10_1007_s00217_022_04045_4
crossref_primary_10_1515_znc_2018_0137
crossref_primary_10_1016_j_cej_2024_154463
crossref_primary_10_3390_antiox11010163
crossref_primary_10_1002_cctc_202101408
crossref_primary_10_1111_1462_2920_15423
crossref_primary_10_3390_fib7090080
crossref_primary_10_1002_cssc_202201468
crossref_primary_10_1002_chem_201704773
crossref_primary_10_1007_s10930_021_10010_z
crossref_primary_10_1021_acsabm_1c00063
crossref_primary_10_3390_molecules24152743
crossref_primary_10_1021_acscatal_0c04360
crossref_primary_10_3390_catal13010083
crossref_primary_10_1002_bit_26585
crossref_primary_10_1016_j_jbc_2024_107885
crossref_primary_10_3390_ijms222413611
crossref_primary_10_1016_j_biortech_2019_121730
crossref_primary_10_3390_catal14010084
crossref_primary_10_3389_fmicb_2021_723524
crossref_primary_10_3389_fbioe_2021_710035
crossref_primary_10_1007_s11274_023_03871_2
crossref_primary_10_1016_j_foodchem_2022_132103
crossref_primary_10_1002_app_47417
crossref_primary_10_1038_s41557_019_0370_2
crossref_primary_10_1111_ina_12729
crossref_primary_10_1016_j_ccr_2021_213976
crossref_primary_10_1016_j_watres_2020_116446
crossref_primary_10_1002_jctb_5664
crossref_primary_10_1021_acssuschemeng_2c03811
crossref_primary_10_3390_biomedicines10050964
crossref_primary_10_3389_fchem_2021_653754
crossref_primary_10_3390_jof7100854
crossref_primary_10_1039_D1GC04414A
crossref_primary_10_3390_jof9121196
crossref_primary_10_1007_s00253_019_10147_z
crossref_primary_10_1021_acsenergylett_9b02596
crossref_primary_10_3389_fpls_2022_912293
crossref_primary_10_1016_j_ijbiomac_2022_07_240
crossref_primary_10_1002_cssc_201802580
crossref_primary_10_3390_antiox11050891
crossref_primary_10_1021_acssuschemeng_1c02188
crossref_primary_10_1016_j_biortech_2022_127476
crossref_primary_10_1038_s41598_018_26445_x
crossref_primary_10_1002_bit_26886
crossref_primary_10_3390_ijms221910862
crossref_primary_10_1016_j_clce_2022_100017
crossref_primary_10_3390_ijms252111392
crossref_primary_10_1039_D3NJ04875F
crossref_primary_10_1073_pnas_2403049121
crossref_primary_10_1134_S0026893322040021
crossref_primary_10_1007_s12649_024_02565_6
crossref_primary_10_1021_acscatal_9b00513
crossref_primary_10_1016_j_micres_2022_127183
crossref_primary_10_1016_j_ccr_2021_213774
crossref_primary_10_1002_adma_202305828
crossref_primary_10_1016_j_biortech_2017_12_068
crossref_primary_10_3390_catal10070810
crossref_primary_10_1016_j_biotechadv_2022_108016
crossref_primary_10_1016_j_indcrop_2024_118759
crossref_primary_10_1080_10242422_2017_1363190
crossref_primary_10_1016_j_enzmictec_2019_109370
crossref_primary_10_1016_j_trechm_2020_06_005
crossref_primary_10_2174_1389203720666181119120120
crossref_primary_10_1007_s12033_021_00396_7
crossref_primary_10_3390_polym15163492
crossref_primary_10_1016_j_enzmictec_2023_110326
crossref_primary_10_1021_acscatal_0c03029
crossref_primary_10_1039_D1RA08053A
crossref_primary_10_1016_j_dyepig_2020_108749
crossref_primary_10_1039_C8GC00091C
crossref_primary_10_1002_cctc_201902089
crossref_primary_10_1016_j_arabjc_2019_07_003
crossref_primary_10_1002_ejoc_201701390
crossref_primary_10_1016_j_abb_2021_108820
crossref_primary_10_1016_j_csbj_2020_06_037
crossref_primary_10_1002_cctc_201901245
crossref_primary_10_1134_S2070050419030115
crossref_primary_10_3390_antiox10121888
crossref_primary_10_1039_D2SE00454B
crossref_primary_10_1021_acs_biochem_8b00571
crossref_primary_10_1021_jacs_4c14580
crossref_primary_10_3390_jof6040362
crossref_primary_10_1016_j_ijbiomac_2020_06_047
crossref_primary_10_1039_D4RA04824E
crossref_primary_10_1016_j_bioorg_2021_104651
crossref_primary_10_18412_1816_0387_2019_1_59_72
crossref_primary_10_1016_j_marpolbul_2024_116157
crossref_primary_10_1021_acscatal_2c01956
crossref_primary_10_3390_catal10111232
crossref_primary_10_1016_j_jenvman_2020_110958
crossref_primary_10_1039_D4RA02939A
crossref_primary_10_1016_j_chemosphere_2021_133305
crossref_primary_10_1016_j_eti_2024_103543
crossref_primary_10_1002_cbic_201900624
crossref_primary_10_1016_j_gce_2023_02_001
crossref_primary_10_1039_C9GC00633H
crossref_primary_10_1002_anie_202001302
crossref_primary_10_2991_efood_k_200218_001
crossref_primary_10_1016_j_scitotenv_2021_150945
crossref_primary_10_1002_1873_3468_13854
crossref_primary_10_1002_bit_27156
crossref_primary_10_3389_fmicb_2017_02423
crossref_primary_10_1021_acscatal_4c01326
crossref_primary_10_3389_fbioe_2020_00356
crossref_primary_10_1016_S1872_2067_24_60206_8
crossref_primary_10_3390_fermentation10020093
crossref_primary_10_1002_ange_202001302
crossref_primary_10_1038_s41929_020_00507_8
crossref_primary_10_1111_ppl_12688
crossref_primary_10_1007_s00396_021_04867_w
crossref_primary_10_1021_acs_est_9b02219
crossref_primary_10_1002_cctc_202301474
crossref_primary_10_1002_cite_202200084
crossref_primary_10_1080_10643389_2021_1889283
crossref_primary_10_1002_cbic_202400737
crossref_primary_10_1021_acs_chemrev_1c00574
crossref_primary_10_1016_j_cjche_2020_06_041
crossref_primary_10_1073_pnas_1921073117
crossref_primary_10_7717_peerj_14670
crossref_primary_10_1002_bab_2144
crossref_primary_10_1016_j_ibiod_2021_105231
crossref_primary_10_1007_s00253_023_12510_7
crossref_primary_10_3390_antiox11020223
crossref_primary_10_1016_j_scitotenv_2022_153979
Cites_doi 10.1186/1754-6834-7-114
10.1039/C6CY00539J
10.1111/febs.13762
10.1039/C5CY01725D
10.1016/j.foodchem.2015.10.074
10.1002/anie.201605430
10.1021/acscatal.6b00028
10.1042/BJ20141211
10.1007/s00018-014-1823-9
10.1021/acs.jpcb.5b02961
10.1016/j.abb.2014.12.016
10.1016/j.molcatb.2016.10.004
10.1111/febs.13221
10.1021/acscatal.6b01460
10.1038/ncomms8542
10.1016/j.enzmictec.2015.03.004
10.1016/j.bmc.2015.06.035
10.1002/anie.201507881
10.2174/2211550104666150423202036
10.1016/j.pep.2014.08.007
10.1074/jbc.M115.665919
10.1007/s00253-015-7021-3
10.1002/cctc.201402795
10.1186/1754-6834-7-2
10.1007/s00253-014-5891-4
10.1371/journal.pone.0124750
10.1371/journal.pone.0090919
10.1371/journal.pgen.1004759
10.1016/j.fgb.2014.03.007
10.1111/febs.13177
10.1038/srep28276
10.1126/science.1192231
10.1186/s40104-016-0110-z
10.1021/acs.jpclett.5b00225
10.1016/j.molcatb.2016.10.014
10.1371/journal.pone.0140984
10.1186/s13068-016-0615-x
10.1021/acscatal.6b01636
10.1016/j.biotechadv.2016.03.008
10.1016/j.fgb.2014.02.003
10.1128/AEM.03761-15
10.1074/jbc.A115.665919
10.1039/C6CY01044J
10.1007/s12155-016-9745-z
10.1016/j.tibtech.2014.12.007
10.1016/j.cbpa.2014.01.015
10.1021/acs.jpcb.7b00835
10.1039/C5CY00427F
10.1016/j.abb.2015.03.003
10.1021/bi100009p
10.1107/S1399004714022755
10.1002/cbic.201500493
10.1073/pnas.1503340112
10.1021/cs501218v
10.1039/C6GC01531J
10.1016/j.molcatb.2016.11.016
10.1007/s00018-014-1824-8
10.1128/genomeA.00774-16
10.1016/j.bej.2015.02.037
10.1111/febs.13310
10.1128/AEM.00660-15
10.3390/molecules200915929
10.1002/cctc.201500862
10.3852/15-027
10.1128/AEM.01966-15
10.1039/C4CY01477D
10.1128/AEM.00304-16
10.1128/AEM.00490-14
10.1002/pro.3043
10.1515/boca-2017-0002
10.1007/978-3-319-16009-2_13
10.4161/bioe.29167
10.1016/j.abb.2015.01.018
10.1016/j.molcatb.2015.06.011
10.1371/journal.pone.0164958
10.1126/science.aaf8920
10.1039/C6CY02410F
10.1126/science.aaf3165
10.1016/j.biotechadv.2014.12.007
10.1073/pnas.1602566113
10.1074/jbc.M113.530196
10.1186/s13068-016-0462-9
10.1007/s12155-014-9505-x
10.1007/s00253-015-6665-3
ContentType Journal Article
Publication
Contributor Barcelona Supercomputing Center
Contributor_xml – sequence: 1
  fullname: Barcelona Supercomputing Center
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Science Ltd. Nov 1, 2017
Attribution-NonCommercial-NoDerivs 4.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/es
Distributed under a Creative Commons Attribution 4.0 International License
Wageningen University & Research
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Nov 1, 2017
– notice: Attribution-NonCommercial-NoDerivs 4.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/es/">http://creativecommons.org/licenses/by-nc-nd/4.0/es/</a>
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Wageningen University & Research
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QQ
7SE
7TA
7TB
8FD
FR3
H8G
JG9
7X8
7S9
L.6
XX2
1XC
QVL
DOI 10.1016/j.biotechadv.2017.06.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ceramic Abstracts
Corrosion Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Recercat
Hyper Article en Ligne (HAL)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Copper Technical Reference Library
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Ceramic Abstracts
Engineering Research Database
Corrosion Abstracts
Materials Business File
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA



Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1873-1899
EndPage 831
ExternalDocumentID oai_library_wur_nl_wurpubs_523777
oai_HAL_hal_01557216v1
oai_recercat_cat_2072_291490
28624475
10_1016_j_biotechadv_2017_06_003
S0734975017300629
Genre Journal Article
Review
Feature
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
AAAJQ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLW
HMG
HVGLF
HZ~
MVM
R2-
RIG
SBG
SEW
SIN
SSH
WUQ
XPP
Y6R
CGR
CUY
CVF
ECM
EIF
NPM
7QQ
7SE
7TA
7TB
8FD
EFKBS
FR3
H8G
JG9
7X8
7S9
L.6
XX2
1XC
-
0R
1
8P
AAPBV
ABPTK
ADALY
AFRUD
G-
G8K
HZ
K
KM
M
QVL
STF
UNR
X
XFK
ID FETCH-LOGICAL-c649t-fa517b124c8e9974c4816e050c421b63c5fefc498214365dd73898daf1288e133
IEDL.DBID .~1
ISSN 0734-9750
1873-1899
IngestDate Fri Feb 05 18:08:28 EST 2021
Sat Aug 30 06:23:47 EDT 2025
Fri Aug 29 12:36:58 EDT 2025
Fri Jul 11 10:31:07 EDT 2025
Thu Jul 10 22:36:30 EDT 2025
Fri Jul 25 08:28:35 EDT 2025
Wed Feb 19 02:43:47 EST 2025
Thu Apr 24 22:53:01 EDT 2025
Tue Jul 01 03:01:18 EDT 2025
Fri Feb 23 02:25:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CRO
Directed evolution
DFF
HTP
LPMO
VAO
CDH
GDH
Oxidases and dehydrogenases
PELE
Enzyme cascades
LiP
UPO
LRET
Lytic polysaccharide monooxygenases
GMC
Selective oxyfunctionalization
HMF
AAD
QM/MM
P2O
MnP
AAO
GOX
NMR
Heme peroxidases and peroxygenases
Laccases
Rational design
MOX
MCO
Lignocellulose biorefinery
DyP
VP
FDCA
HSQC
ABTS
FFCA
Biophysical and biochemical computational modeling
CPK
oxidase
peroxyde
oxidoréductase
péroxydase
peroxides
oxydase
production d'enzyme
biotransformation
dynamique computationnelle des fluides
monooxygénase
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c649t-fa517b124c8e9974c4816e050c421b63c5fefc498214365dd73898daf1288e133
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7986-6223
0000-0001-8672-9940
0000-0002-1052-4970
0000-0002-3040-6787
0000-0002-7545-9997
0000-0002-0359-0566
0000-0002-4580-1114
0000-0002-2812-895X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0734975017300629
PMID 28624475
PQID 2021990301
PQPubID 2047478
PageCount 17
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_523777
hal_primary_oai_HAL_hal_01557216v1
csuc_recercat_oai_recercat_cat_2072_291490
proquest_miscellaneous_2000534179
proquest_miscellaneous_1911198937
proquest_journals_2021990301
pubmed_primary_28624475
crossref_primary_10_1016_j_biotechadv_2017_06_003
crossref_citationtrail_10_1016_j_biotechadv_2017_06_003
elsevier_sciencedirect_doi_10_1016_j_biotechadv_2017_06_003
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biotechnology advances
PublicationTitleAlternate Biotechnol Adv
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Lettera, Pezzella, Cicatiello, Piscitelli, Giacobelli, Galano (bb0270) 2016; 196
de Salas, Pardo, Salavagione, Aza, Amougi, Vind (bb0480) 2016; 11
Hollmann, F., Ni, Y., 2016. Enzymatic conversion using hydrogen peroxide. Patent (NL) NL2013351A.
Kracher, Zahma, Schulz, Sygmund, Gorton, Ludwig (bb0245) 2015; 282
Courtade, Wimmer, Røhr, Preims, Felice, Dimarogona (bb0070) 2016; 113
Fernández-Fueyo, Ruiz-Dueñas, López-Lucendo, Pérez-Boada, Rencoret, Gutiérrez (bb0120) 2016; 9
Poraj-Kobielska, Gröbe, Kiebist, Grün, Ullrich, Scheibner (bb0435) 2015
Gygli, van Berkel (bb0180) 2015; 4
Maté, Alcalde (bb0335) 2016
Giacobelli, Monza, Lucas, Pezzella, Piscitelli, Guallar (bb0150) 2017; 7
González-Pérez (bb0155) 2016
Vicente, Viña-González, Santos-Moriano, Marquez-Alvarez, Ballesteros, Alcalde (bb0510) 2016; 134
Babot, del Río, Cañellas, Sancho, Lucas, Guallar (bb0025) 2015; 81
Gygli, van Berkel (bb0185) 2017; 3
Mathieu, Piumi, Valli, Aramburu, Ferreira, Faulds (bb0345) 2016; 82
Olmedo, Aranda, del Río, Kiebist, Scheibner, Martínez (bb0380) 2016; 55
Linde, Ruiz-Dueñas, Fernández-Fueyo, Guallar, Hammel, Pogni (bb0285) 2015; 574
Ferreira, Hernández-Ortega, Borrelli, Lucas, Herguedas, Guallar (bb0135) 2015; 282
Molina-Espeja, Garcia-Ruiz, Gonzalez-Perez, Ullrich, Hofrichter, Alcalde (bb0350) 2014; 80
Linde, Canellas, Coscolín, Davó-Siguero, Romero, Lucas (bb0290) 2016; 6
Karich, Scheibner, Ullrich, Hofrichter (bb0230) 2016; 134
Maté, González-Pérez, Mateljak, Gómez de Santos, Vicente, Alcalde (bb0340) 2016
Monza, Lucas, Camarero, Alejaldre, Martínez, Guallar (bb0370) 2015; 6
Babot, del Río, Kalum, Martínez, Gutiérrez (bb0030) 2015; 7
Pardo, Camarero (bb0390) 2015; 72
Carro, Serrano, Ferreira, Martínez (bb0065) 2016
Vind, J., Ostergaard, L. H., de Leonardo, M., Kalum, L., Amougi, E., 2015. Peroxygenase variants. Patent (International) WO2015079064A3.
Kiebist, Holla, Heidrich, Poraj-Kobielska, Sandvoss, Simonis (bb0240) 2015; 23
Kracher, Scheiblbrandner, Felice, Breslmays, Preims, Ludwicka (bb0250) 2016; 352
Wang, Ullrich, Hofrichter, Groves (bb0530) 2015; 112
Sáez-Jiménez, Fernández-Fueyo, Medrano, Romero, Martínez, Ruiz-Dueñas (bb0470) 2015; 10
Viña-González, González-Pérez, Ferreira, Martínez, Alcalde (bb0515) 2015; 81
Acebes, Ruiz-Dueñas, Toubes, Sáez-Jiménez, Pérez-Boada, Lucas (bb0010) 2017; 121
Büttner, Ullrich, Strittmatter, Piontek, Plattner, Hofrichter (bb0055) 2015; 574
González-Pérez, Mateljak, García-Ruiz, Ruiz-Dueñas, Martínez, Alcalde (bb0175) 2016; 6
Molina-Espeja, Viña-Gonzalez, Gomez-Fernandez, Martin-Diaz, Garcia-Ruiz, Alcalde (bb0365) 2016; 34
Sáez-Jiménez, Acebes, Guallar, Martínez, Ruiz-Dueñas (bb0455) 2015; 10
Ferreira, Carro, Serrano, Martínez (bb0130) 2015; 107
Pardo, Camarero (bb0385) 2015; 20
Kellner, Pecyna, Buchhaupt, Ullrich, Hofrichter (bb0235) 2016; 4
Landvick, S., Ostergaard, L. H., Kalum, L., 2016a. Polypeptides having peroxygenase activity. Patent (International) WO2014056916A3.
Poraj-Kobielska, Peter, Leonhardt, Ullrich, Scheibner, Hofrichter (bb0440) 2015; 98
Harris, Welner, McFarland, Re, Poulsen, Brown (bb0190) 2010; 49
Pezzella, Giacobbe, Giacobelli, Guarino, Kylic, Sener (bb0420) 2016; 134
Rencoret, Pereira, del Río, Martínez, Gutiérrez (bb0445) 2016; 9
Garajova, Mathieu, Beccia, Bennati-Granier, Biaso, Fanuel (bb0140) 2016; 6
González-Pérez, Alcalde (bb0160) 2014; 5
Ewing, Gygli, van Berkel (bb0085) 2016; 283
Barrasa, Ruiz-Dueñas, Fernández-Fueyo, Pacheco, Martínez (bb0045) 2016
Acebes, Fernández-Fueyo, Monza, Lucas, Almendral, Ruiz-Dueñas (bb0005) 2016; 6
Hofrichter, Ullrich (bb0195) 2014; 19
Fernández-Fueyo, Castanera, Ruiz-Dueñas, López-Lucendo, Ramírez, Pisabarro (bb0095) 2014; 72
Hori, Ishida, Igarashi, Samejima, Suzuki, Master (bb0210) 2014; 10
Lund, H., Brask, J., Kalum, L., Gutiérrez, A., Babot, E. D., Ullrich, R. et al., 2014. Enzymatic preparation of diols. Patent (USA) US20140234917A1.
Fernández-Fueyo, Linde, Almendral, López-Lucendo, Ruiz-Dueñas, Martínez (bb0110) 2015; 99
Lucas, Babot, del Río, Kalum, Ullrich, Hofrichter (bb0300) 2016; 6
Martínez, Camarero, Ruiz-Dueñas, Martínez (bb0320) 2017
Pezzella, Guarino, Piscitelli (bb0415) 2015; 72
van Kuijk, del Río, Rencoret, Gutiérrez, Sonnenberg, Baars (bb0255) 2016; 7
Rico, Rencoret, del Río, Martínez, Gutiérrez (bb0450) 2015; 8
Linde, Coscolín, Liers, Hofrichter, Martínez, Ruiz-Dueñas (bb0275) 2014; 103
Kalum, L., Lund, H., Hofrichter, M., Ullrich, R., 2014a. Enzymatic preparation of indigo dyes and intermediates. Patent (International) WO2014122109A1.
Molina-Espeja, Ma, Maté, Ludwig, Alcalde (bb0355) 2015; 73-74
González-Pérez, García-Ruiz, Ruiz-Dueñas, Martínez, Alcalde (bb0165) 2014; 4
Martínez (bb0315) 2016; 352
Bormann, Baraibar, Ni, Holtmann, Hollmann (bb0050) 2015; 5
Barrasa, Blanco, Esteve-Raventós, Altés, Checa, Martínez (bb0040) 2014; 72
Landvick, S., Ostergaard, L. H., Kalum, L., 2016b. Polypeptides having peroxygenase activity and polynucleotides encoding same. Patent (USA) US20160244731A1.
Loose, Forsberg, Kracher, Scheiblbrandner, Ludwig, Eijsink (bb0295) 2016; 25
Pardo, Santiago, Gentili, Lucas, Monza, Medrano (bb0400) 2016; 6
Baratto, Sinicropi, Linde, Sáez-Jiménez, Sorace, Ruiz-Dueñas (bb0035) 2015; 119
Sáez-Jiménez, Rencoret, Rodríguez-Carvajal, Gutiérrez, Ruiz-Dueñas, Martínez (bb0475) 2016; 9
Viña-González, González-Pérez, Alcalde (bb0520) 2016; 110
Salvachúa, Katahira, Cleveland, Khanna, Resch, Black (bb0485) 2016; 18
Molina-Espeja, Canellas, Plou, Hofrichter, Lucas, Guallar (bb0360) 2016; 17
Fernández-Fueyo, Ruiz-Dueñas, Martínez, Romero, Hammel, Medrano (bb0105) 2014; 7
Daou, Piumi, Cullen, Record, Faulds (bb0080) 2016; 82
Alcalde, M., Molina-Espeja, P., García-Ruiz, E., González-Pérez, D., Ullrich, R., Hofrichter, M., 2014. Unspecific peroxygenase with high monooxygenase activity. Patent (Spain) P201430595-1.
Pham, Hollmann, Kracher, Preims, Haltrich, Ludwig (bb0425) 2015; 120
Vaaje-Kolstad, Westereng, Horn, Liu, Zhai, Sorlie (bb0505) 2010; 330
Santiago, de Salas, Lucas, Monza, Acebes, Martínez (bb0490) 2016; 6
Carro, Ferreira, Rodríguez, Prieto, Serrano, Balcells (bb0060) 2015; 282
Tan, Kracher, Gandini, Sygmund, Kittl, Haltrich (bb0500) 2015; 6
García-Ruiz, Maté, González-Pérez, Molina-Espeja, Camarero, Martínez (bb0145) 2014
Maté, Alcalde (bb0330) 2016; vol 4
Fernández-Fueyo, Ruiz-Dueñas, Martínez (bb0100) 2014; 7
Sáez-Jiménez, Baratto, Pogni, Rencoret, Gutiérrez, Santos (bb0465) 2015; 290
Lund, H., Kalum, L., Hofrichter, M., Peter, S., 2016. Epoxidation using peroxygenase. Patent (USA) US 9458478 B2.
González-Pérez, Molina-Espeja, García-Ruiz, Alcalde (bb0170) 2014; 9
Hofrichter, Kellner, Pecyna, Ullrich (bb0200) 2015; 851
Fernández-Fueyo, van Wingerden, Renirie, Wever, Ni, Holtmann (bb0115) 2015; 7
Alcalde (bb0015) 2015; 33
Piumi, Levasseur, Navarro, Zhou, Mathieu, Ropartz (bb0430) 2014; 98
Isaksen, Westereng, Aachmann, Agger, Kracher, Kittl (bb0215) 2014; 289
Sáez-Jiménez, Baratto, Pogni, Rencoret, Gutiérrez, Santos (bb0460) 2015; 290
Kalum, L., Morant, M. D., Lund, H., Jensen, J., Lapainaite, I., Soerensen, N. H. et al., 2014b. Enzymatic oxidation of 5-hydroxymethylfurfural and derivatives thereof. Patent (International)WO2014-015256A2.
Fernández-Fueyo, Acebes, Ruiz-Dueñas, Martínez, Romero, Medrano (bb0090) 2014; 70
Patel, Kracher, Ma, Garajova, Haon, Faulds (bb0410) 2016; 9
Strittmatter, Serrer, Liers, Ullrich, Hofrichter, Piontek (bb0495) 2015; 574
Ni, Fernández-Fueyo, Baraibar, Ullrich, Hofrichter, Yanase (bb0375) 2016; 55
Couturier, Mathieu, Li, Navarro, Drula, Haon (bb0075) 2016; 100
Fernández-Fueyo, Younes, van Rootselaar, Aben, Renirie, Wever (bb0125) 2016; 6
Maté, Alcalde (bb0325) 2015; 33
Linde, Pogni, Cañellas, Lucas, Guallar, Baratto (bb0280) 2015; 466
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0125) 2016; 6
Hofrichter (10.1016/j.biotechadv.2017.06.003_bb0195) 2014; 19
Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0470) 2015; 10
Rico (10.1016/j.biotechadv.2017.06.003_bb0450) 2015; 8
Patel (10.1016/j.biotechadv.2017.06.003_bb0410) 2016; 9
Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0360) 2016; 17
Linde (10.1016/j.biotechadv.2017.06.003_bb0285) 2015; 574
Gygli (10.1016/j.biotechadv.2017.06.003_bb0180) 2015; 4
Alcalde (10.1016/j.biotechadv.2017.06.003_bb0015) 2015; 33
Bormann (10.1016/j.biotechadv.2017.06.003_bb0050) 2015; 5
Pezzella (10.1016/j.biotechadv.2017.06.003_bb0415) 2015; 72
Martínez (10.1016/j.biotechadv.2017.06.003_bb0315) 2016; 352
10.1016/j.biotechadv.2017.06.003_bb0525
Gygli (10.1016/j.biotechadv.2017.06.003_bb0185) 2017; 3
Carro (10.1016/j.biotechadv.2017.06.003_bb0065) 2016
Kellner (10.1016/j.biotechadv.2017.06.003_bb0235) 2016; 4
Ni (10.1016/j.biotechadv.2017.06.003_bb0375) 2016; 55
Strittmatter (10.1016/j.biotechadv.2017.06.003_bb0495) 2015; 574
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0095) 2014; 72
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0120) 2016; 9
Rencoret (10.1016/j.biotechadv.2017.06.003_bb0445) 2016; 9
Maté (10.1016/j.biotechadv.2017.06.003_bb0335) 2016
Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0460) 2015; 290
10.1016/j.biotechadv.2017.06.003_bb0260
Vaaje-Kolstad (10.1016/j.biotechadv.2017.06.003_bb0505) 2010; 330
Maté (10.1016/j.biotechadv.2017.06.003_bb0340) 2016
Tan (10.1016/j.biotechadv.2017.06.003_bb0500) 2015; 6
Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0350) 2014; 80
Martínez (10.1016/j.biotechadv.2017.06.003_bb0320) 2017
Pham (10.1016/j.biotechadv.2017.06.003_bb0425) 2015; 120
González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0165) 2014; 4
Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0455) 2015; 10
Courtade (10.1016/j.biotechadv.2017.06.003_bb0070) 2016; 113
Poraj-Kobielska (10.1016/j.biotechadv.2017.06.003_bb0440) 2015; 98
Lucas (10.1016/j.biotechadv.2017.06.003_bb0300) 2016; 6
Hofrichter (10.1016/j.biotechadv.2017.06.003_bb0200) 2015; 851
González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0160) 2014; 5
Ferreira (10.1016/j.biotechadv.2017.06.003_bb0135) 2015; 282
10.1016/j.biotechadv.2017.06.003_bb0220
Büttner (10.1016/j.biotechadv.2017.06.003_bb0055) 2015; 574
10.1016/j.biotechadv.2017.06.003_bb0225
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0090) 2014; 70
Garajova (10.1016/j.biotechadv.2017.06.003_bb0140) 2016; 6
Loose (10.1016/j.biotechadv.2017.06.003_bb0295) 2016; 25
Piumi (10.1016/j.biotechadv.2017.06.003_bb0430) 2014; 98
Poraj-Kobielska (10.1016/j.biotechadv.2017.06.003_bb0435) 2015
Linde (10.1016/j.biotechadv.2017.06.003_bb0275) 2014; 103
Viña-González (10.1016/j.biotechadv.2017.06.003_bb0520) 2016; 110
Maté (10.1016/j.biotechadv.2017.06.003_bb0330) 2016; vol 4
Harris (10.1016/j.biotechadv.2017.06.003_bb0190) 2010; 49
Kiebist (10.1016/j.biotechadv.2017.06.003_bb0240) 2015; 23
Linde (10.1016/j.biotechadv.2017.06.003_bb0280) 2015; 466
Pardo (10.1016/j.biotechadv.2017.06.003_bb0385) 2015; 20
Kracher (10.1016/j.biotechadv.2017.06.003_bb0250) 2016; 352
González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0155) 2016
Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0355) 2015; 73-74
González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0175) 2016; 6
Barrasa (10.1016/j.biotechadv.2017.06.003_bb0045) 2016
Ewing (10.1016/j.biotechadv.2017.06.003_bb0085) 2016; 283
Monza (10.1016/j.biotechadv.2017.06.003_bb0370) 2015; 6
10.1016/j.biotechadv.2017.06.003_bb0205
Molina-Espeja (10.1016/j.biotechadv.2017.06.003_bb0365) 2016; 34
González-Pérez (10.1016/j.biotechadv.2017.06.003_bb0170) 2014; 9
Hori (10.1016/j.biotechadv.2017.06.003_bb0210) 2014; 10
Carro (10.1016/j.biotechadv.2017.06.003_bb0060) 2015; 282
Acebes (10.1016/j.biotechadv.2017.06.003_bb0010) 2017; 121
Wang (10.1016/j.biotechadv.2017.06.003_bb0530) 2015; 112
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0100) 2014; 7
Giacobelli (10.1016/j.biotechadv.2017.06.003_bb0150) 2017; 7
García-Ruiz (10.1016/j.biotechadv.2017.06.003_bb0145) 2014
Ferreira (10.1016/j.biotechadv.2017.06.003_bb0130) 2015; 107
Pezzella (10.1016/j.biotechadv.2017.06.003_bb0420) 2016; 134
Mathieu (10.1016/j.biotechadv.2017.06.003_bb0345) 2016; 82
Acebes (10.1016/j.biotechadv.2017.06.003_bb0005) 2016; 6
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0105) 2014; 7
Couturier (10.1016/j.biotechadv.2017.06.003_bb0075) 2016; 100
Maté (10.1016/j.biotechadv.2017.06.003_bb0325) 2015; 33
Santiago (10.1016/j.biotechadv.2017.06.003_bb0490) 2016; 6
Viña-González (10.1016/j.biotechadv.2017.06.003_bb0515) 2015; 81
Babot (10.1016/j.biotechadv.2017.06.003_bb0025) 2015; 81
van Kuijk (10.1016/j.biotechadv.2017.06.003_bb0255) 2016; 7
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0115) 2015; 7
de Salas (10.1016/j.biotechadv.2017.06.003_bb0480) 2016; 11
10.1016/j.biotechadv.2017.06.003_bb0020
Karich (10.1016/j.biotechadv.2017.06.003_bb0230) 2016; 134
Pardo (10.1016/j.biotechadv.2017.06.003_bb0400) 2016; 6
Babot (10.1016/j.biotechadv.2017.06.003_bb0030) 2015; 7
Daou (10.1016/j.biotechadv.2017.06.003_bb0080) 2016; 82
10.1016/j.biotechadv.2017.06.003_bb0265
Barrasa (10.1016/j.biotechadv.2017.06.003_bb0040) 2014; 72
Linde (10.1016/j.biotechadv.2017.06.003_bb0290) 2016; 6
10.1016/j.biotechadv.2017.06.003_bb0305
Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0465) 2015; 290
Lettera (10.1016/j.biotechadv.2017.06.003_bb0270) 2016; 196
Sáez-Jiménez (10.1016/j.biotechadv.2017.06.003_bb0475) 2016; 9
Kracher (10.1016/j.biotechadv.2017.06.003_bb0245) 2015; 282
Olmedo (10.1016/j.biotechadv.2017.06.003_bb0380) 2016; 55
Vicente (10.1016/j.biotechadv.2017.06.003_bb0510) 2016; 134
Pardo (10.1016/j.biotechadv.2017.06.003_bb0390) 2015; 72
Fernández-Fueyo (10.1016/j.biotechadv.2017.06.003_bb0110) 2015; 99
Salvachúa (10.1016/j.biotechadv.2017.06.003_bb0485) 2016; 18
10.1016/j.biotechadv.2017.06.003_bb0310
Isaksen (10.1016/j.biotechadv.2017.06.003_bb0215) 2014; 289
Baratto (10.1016/j.biotechadv.2017.06.003_bb0035) 2015; 119
References_xml – volume: 574
  start-page: 66
  year: 2015
  end-page: 74
  ident: bb0285
  article-title: Basidiomycete DyPs: genomic diversity, structural-functional aspects, reaction mechanism and environmental significance
  publication-title: Arch. Biochem. Biophys.
– volume: 10
  year: 2015
  ident: bb0455
  article-title: Improving the oxidative stability of a high redox potential fungal peroxidase by rational design
  publication-title: PLoS One
– volume: 290
  start-page: 30268
  year: 2015
  ident: bb0460
  article-title: Demonstration of lignin-to-peroxidase direct electron transfer. A transient-state kinetics, directed mutagenesis, EPR and NMR study (vol 290, pag 23201, 2015)
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 254
  year: 2014
  end-page: 263
  ident: bb0160
  article-title: Assembly of evolved ligninolytic genes in
  publication-title: Bioengineered
– volume: 20
  start-page: 15929
  year: 2015
  end-page: 15943
  ident: bb0385
  article-title: Exploring the oxidation of lignin-derived phenols by a library of laccase mutants
  publication-title: Molecules
– volume: 574
  start-page: 75
  year: 2015
  end-page: 85
  ident: bb0495
  article-title: The toolbox of
  publication-title: Arch. Biochem. Biophys.
– volume: 352
  start-page: 1050
  year: 2016
  end-page: 1051
  ident: bb0315
  article-title: How to break down crystalline cellulose
  publication-title: Science
– volume: 7
  start-page: 55
  year: 2016
  ident: bb0255
  article-title: Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability
  publication-title: J. Anim. Sci. Biotechnol.
– volume: 9
  start-page: 49
  year: 2016
  ident: bb0120
  article-title: A secretomic view of woody and nonwoody lignocellulose degradation by
  publication-title: Biotechnol. Biofuels
– volume: 4
  year: 2016
  ident: bb0235
  article-title: Draft genome sequence of the chloroperoxidase-producing fungus
  publication-title: Genome Announc
– volume: 119
  start-page: 13583
  year: 2015
  end-page: 13592
  ident: bb0035
  article-title: Redox-active sites in
  publication-title: J. Phys. Chem. B
– volume: vol 4
  start-page: 91
  year: 2016
  end-page: 112
  ident: bb0330
  article-title: Directed evolution of fungal laccases: an update
  publication-title: Advances in Genome Science
– volume: 5
  start-page: 2038
  year: 2015
  end-page: 2052
  ident: bb0050
  article-title: Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions
  publication-title: Catal. Sci. Technol.
– volume: 72
  start-page: 150
  year: 2014
  end-page: 161
  ident: bb0095
  article-title: Ligninolytic peroxidase gene expression by
  publication-title: Fungal Genet. Biol.
– reference: Lund, H., Kalum, L., Hofrichter, M., Peter, S., 2016. Epoxidation using peroxygenase. Patent (USA) US 9458478 B2.
– volume: 72
  start-page: 106
  year: 2014
  end-page: 114
  ident: bb0040
  article-title: Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates
  publication-title: Fungal Genet. Biol.
– volume: 103
  start-page: 28
  year: 2014
  end-page: 37
  ident: bb0275
  article-title: Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from
  publication-title: Protein Express. Purif.
– volume: 82
  start-page: 4867
  year: 2016
  end-page: 4875
  ident: bb0080
  article-title: Heterologous production and characterization of two glyoxal oxidases from
  publication-title: Appl. Environ. Microbiol.
– reference: Lund, H., Brask, J., Kalum, L., Gutiérrez, A., Babot, E. D., Ullrich, R. et al., 2014. Enzymatic preparation of diols. Patent (USA) US20140234917A1.
– volume: 6
  start-page: 1624
  year: 2016
  end-page: 1629
  ident: bb0005
  article-title: Rational enzyme engineering through biophysical and biochemical modeling
  publication-title: ACS Catal.
– volume: 9
  start-page: e90919
  year: 2014
  ident: bb0170
  article-title: Mutagenic organized recombination process by homologous in vivo grouping (MORPHING) for directed enzyme evolution
  publication-title: PLoS One
– volume: 6
  start-page: 6277
  year: 2016
  end-page: 6285
  ident: bb0290
  article-title: Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase
  publication-title: Catal. Sci. Technol.
– volume: 112
  start-page: 3686
  year: 2015
  end-page: 3691
  ident: bb0530
  article-title: Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– reference: Kalum, L., Morant, M. D., Lund, H., Jensen, J., Lapainaite, I., Soerensen, N. H. et al., 2014b. Enzymatic oxidation of 5-hydroxymethylfurfural and derivatives thereof. Patent (International)WO2014-015256A2.
– volume: 110
  year: 2016
  ident: bb0520
  article-title: Directed evolution method in
  publication-title: J. Vis. Exp.
– volume: 11
  year: 2016
  ident: bb0480
  article-title: Advanced synthesis of conductive polyaniline using laccase as biocatalyst
  publication-title: PLoS One
– volume: 6
  start-page: 1447
  year: 2015
  end-page: 1453
  ident: bb0370
  article-title: Insights on laccase engineering from molecular simulations: towards a binding focused strategy
  publication-title: J. Phys. Chem. Lett.
– volume: 33
  start-page: 25
  year: 2015
  end-page: 40
  ident: bb0325
  article-title: Laccase engineering: from rational design to directed evolution
  publication-title: Biotechnol. Adv.
– volume: 6
  start-page: 28276
  year: 2016
  ident: bb0140
  article-title: Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose
  publication-title: Sci Rep
– volume: 7
  start-page: 4035
  year: 2015
  end-page: 4038
  ident: bb0115
  article-title: Chemoenzymatic halogenation of phenols by using the haloperoxidase from
  publication-title: ChemCatChem
– volume: 851
  start-page: 341
  year: 2015
  end-page: 368
  ident: bb0200
  article-title: Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome P450 properties
  publication-title: Adv. Exp. Med. Biol.
– volume: 134
  start-page: 238
  year: 2016
  end-page: 246
  ident: bb0230
  article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction
  publication-title: J. Mol. Catal. B-Enzym.
– volume: 34
  start-page: 754
  year: 2016
  end-page: 767
  ident: bb0365
  article-title: Beyond the outer limits of nature by directed evolution
  publication-title: Biotechnol. Adv.
– volume: 7
  start-page: 2
  year: 2014
  ident: bb0105
  article-title: Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties and lignin-degrading ability
  publication-title: Biotechnol. Biofuels
– volume: 80
  start-page: 3496
  year: 2014
  end-page: 3507
  ident: bb0350
  article-title: Directed evolution of unspecific peroxygenase from
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 3900
  year: 2016
  end-page: 3910
  ident: bb0400
  article-title: Re-designing the substrate binding pocket of laccase for enhanced oxidation of sinapic acid
  publication-title: Catal. Sci. Technol.
– volume: 4
  start-page: 100
  year: 2015
  end-page: 110
  ident: bb0180
  article-title: Oxizymes for biotechnology
  publication-title: Curr. Biotechnol.
– start-page: P11
  year: 2016
  ident: bb0045
  article-title: Lignin Biodegradation in the Genomic Era. Proc. LignoBiotech 4, Madrid, 19–22 June
– volume: 283
  start-page: 2546
  year: 2016
  end-page: 2559
  ident: bb0085
  article-title: A single loop is essential for the octamerisation of vanillyl alcohol oxidase
  publication-title: FEBS J.
– volume: 25
  start-page: 2175
  year: 2016
  end-page: 2186
  ident: bb0295
  article-title: Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase
  publication-title: Protein Sci.
– year: 2017
  ident: bb0320
  article-title: Biological lignin degradation
  publication-title: Lignin Valorization: Emerging Approaches
– volume: 330
  start-page: 219
  year: 2010
  end-page: 222
  ident: bb0505
  article-title: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides
  publication-title: Science
– volume: 121
  start-page: 3946
  year: 2017
  end-page: 3954
  ident: bb0010
  article-title: Mapping the long-range electron transfer route in ligninolytic peroxidases
  publication-title: J. Phys. Chem. B
– volume: 134
  start-page: 323
  year: 2016
  end-page: 330
  ident: bb0510
  article-title: Evolved alkaline fungal laccase secreted by
  publication-title: J. Mol. Catal. B-Enzym.
– volume: 289
  start-page: 2632
  year: 2014
  end-page: 2642
  ident: bb0215
  article-title: A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides
  publication-title: J. Biol. Chem.
– volume: 196
  start-page: 1272
  year: 2016
  end-page: 1278
  ident: bb0270
  article-title: Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification
  publication-title: Food Chem.
– volume: 9
  year: 2016
  ident: bb0410
  article-title: Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus
  publication-title: Biotechnol. Biofuels
– volume: 98
  start-page: 144
  year: 2015
  end-page: 150
  ident: bb0440
  article-title: Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules
  publication-title: Biochem. Eng. J.
– year: 2016
  ident: bb0155
  article-title: Directed Evolution of Versatile Peroxidase for the Design of a White-rot Yeast
– volume: 98
  start-page: 10105
  year: 2014
  end-page: 10118
  ident: bb0430
  article-title: A novel glucose dehydrogenase from the white-rot fungus
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 120
  start-page: 38
  year: 2015
  end-page: 46
  ident: bb0425
  article-title: Engineering an enzymatic regeneration system for NAD(P)H oxidation
  publication-title: J. Mol. Catal. B-Enzym.
– volume: 8
  start-page: 211
  year: 2015
  end-page: 230
  ident: bb0450
  article-title: In-depth 2D NMR study of lignin modification during pretreatment of
  publication-title: Bioenerg. Res.
– reference: Landvick, S., Ostergaard, L. H., Kalum, L., 2016a. Polypeptides having peroxygenase activity. Patent (International) WO2014056916A3.
– volume: 82
  start-page: 2411
  year: 2016
  end-page: 2423
  ident: bb0345
  article-title: Activities of secreted aryl alcohol quinone oxidoreductases from
  publication-title: Appl. Environ. Microbiol.
– volume: 3
  start-page: 17
  year: 2017
  end-page: 26
  ident: bb0185
  article-title: Vanillyl alcohol oxidases produced in
  publication-title: Biocatalysis
– volume: 6
  start-page: 288
  year: 2016
  end-page: 295
  ident: bb0300
  article-title: Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases
  publication-title: Catal. Sci. Technol.
– volume: 70
  start-page: 3253
  year: 2014
  end-page: 3265
  ident: bb0090
  article-title: Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi
  publication-title: Acta Crystallogr. D. Biol. Crystallogr.
– volume: 107
  start-page: 1105
  year: 2015
  end-page: 1119
  ident: bb0130
  article-title: A survey of genes encoding H
  publication-title: Mycologia
– volume: 9
  start-page: 198
  year: 2016
  ident: bb0475
  article-title: Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin
  publication-title: Biotechnol. Biofuels
– year: 2016
  ident: bb0335
  article-title: Laccase: a multi-purpose biocatalyst at the forefront of biotechnology
  publication-title: Microbial Biotechnol. online
– volume: 7
  start-page: 515
  year: 2017
  end-page: 523
  ident: bb0150
  article-title: Repurposing designed mutants: a valuable strategy for computer-aided laccases engineering. The case of POXA1b
  publication-title: Catal. Sci. Technol.
– volume: 72
  start-page: 897
  year: 2015
  end-page: 910
  ident: bb0390
  article-title: Laccase engineering by rational and evolutionary design
  publication-title: Cell. Mol. Life Sci.
– reference: Vind, J., Ostergaard, L. H., de Leonardo, M., Kalum, L., Amougi, E., 2015. Peroxygenase variants. Patent (International) WO2015079064A3.
– volume: 81
  start-page: 4130
  year: 2015
  end-page: 4142
  ident: bb0025
  article-title: Steroid hydroxylation by basidiomycete peroxygenases: a combined experimental and computational study
  publication-title: Appl. Environ. Microbiol.
– volume: 19
  start-page: 116
  year: 2014
  end-page: 125
  ident: bb0195
  article-title: Oxidations catalyzed by fungal peroxygenases
  publication-title: Curr. Opin. Chem. Biol.
– volume: 9
  start-page: 917
  year: 2016
  end-page: 930
  ident: bb0445
  article-title: Laccase-mediator pretreatment of wheat straw degrades lignin and improves saccharification
  publication-title: Bioenerg. Res.
– reference: Kalum, L., Lund, H., Hofrichter, M., Ullrich, R., 2014a. Enzymatic preparation of indigo dyes and intermediates. Patent (International) WO2014122109A1.
– volume: 73-74
  start-page: 29
  year: 2015
  end-page: 33
  ident: bb0355
  article-title: Tandem-yeast expression system for engineering and producing unspecific peroxygenase
  publication-title: Enzym. Microb. Technol.
– volume: 6
  start-page: 6625
  year: 2016
  end-page: 6636
  ident: bb0175
  article-title: Alkaline versatile peroxidase by directed evolution
  publication-title: Catal. Sci. Technol.
– volume: 6
  start-page: 7542
  year: 2015
  ident: bb0500
  article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation
  publication-title: Nat. Commun.
– volume: 49
  start-page: 3305
  year: 2010
  end-page: 3316
  ident: bb0190
  article-title: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family
  publication-title: Biochemistry
– volume: 290
  start-page: 23201
  year: 2015
  end-page: 23213
  ident: bb0465
  article-title: Demonstration of lignin-to-peroxidase direct electron transfer: a, transient-state kinetics, directed mutagenesis, EPR and NMR study
  publication-title: J. Biol. Chem.
– volume: 55
  start-page: 798
  year: 2016
  end-page: 801
  ident: bb0375
  article-title: Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol
  publication-title: Angew. Chem. Int. Ed.
– reference: Alcalde, M., Molina-Espeja, P., García-Ruiz, E., González-Pérez, D., Ullrich, R., Hofrichter, M., 2014. Unspecific peroxygenase with high monooxygenase activity. Patent (Spain) P201430595-1.
– reference: Landvick, S., Ostergaard, L. H., Kalum, L., 2016b. Polypeptides having peroxygenase activity and polynucleotides encoding same. Patent (USA) US20160244731A1.
– volume: 17
  start-page: 341
  year: 2016
  end-page: 349
  ident: bb0360
  article-title: Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution
  publication-title: Chembiochem
– volume: 7
  start-page: 283
  year: 2015
  end-page: 290
  ident: bb0030
  article-title: Regioselective hydroxylation in the production of 25-hydroxyvitamin D by
  publication-title: ChemCatChem
– volume: 282
  start-page: 3218
  year: 2015
  end-page: 3229
  ident: bb0060
  article-title: 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase
  publication-title: FEBS J.
– volume: 7
  start-page: 114
  year: 2014
  ident: bb0100
  article-title: Engineering a fungal peroxidase that degrades lignin at very acidic pH
  publication-title: Biotechnol. Biofuels
– volume: 10
  year: 2015
  ident: bb0470
  article-title: Improving the pH-stability of versatile peroxidase by comparative structural analysis with a naturally-stable manganese peroxidase
  publication-title: PLoS One
– volume: 18
  start-page: 6046
  year: 2016
  end-page: 6062
  ident: bb0485
  article-title: Lignin depolymerization by fungal secretomes and a microbial sink
  publication-title: Green Chem.
– volume: 352
  start-page: 1098
  year: 2016
  end-page: 1101
  ident: bb0250
  article-title: Extracellular electron transfer systems fuel oxidative cellulose degradation
  publication-title: Science
– volume: 466
  start-page: 253
  year: 2015
  end-page: 262
  ident: bb0280
  article-title: Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and directed mutagenesis study
  publication-title: Biochem. J.
– volume: 55
  start-page: 12248
  year: 2016
  end-page: 12251
  ident: bb0380
  article-title: From alkanes to carboxylic acids: terminal oxygenation by a fungal peroxygenase
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 5415
  year: 2016
  end-page: 5423
  ident: bb0490
  article-title: Computer-aided laccase engineering: toward biological oxidation of arylamines
  publication-title: ACS Catal.
– volume: 100
  start-page: 697
  year: 2016
  end-page: 706
  ident: bb0075
  article-title: Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus
  publication-title: Appl. Microbiol. Biotechnol.
– start-page: 301
  year: 2016
  end-page: 322
  ident: bb0065
  article-title: Fungal aryl-alcohol oxidase in lignocellulose degradation and bioconversion
  publication-title: Microbial Enzymes in Bioconversions of Biomass
– volume: 574
  start-page: 86
  year: 2015
  end-page: 92
  ident: bb0055
  article-title: Oxidation and nitration of mononitrophenols by a DyP-type peroxidase
  publication-title: Arch. Biochem. Biophys.
– volume: 4
  start-page: 3891
  year: 2014
  end-page: 3901
  ident: bb0165
  article-title: Structural determinants of oxidative stabilization in an evolved versatile peroxidase
  publication-title: ACS Catal.
– volume: 6
  start-page: 5904
  year: 2016
  end-page: 5907
  ident: bb0125
  article-title: A biocatalytic aza-Achmatowicz reaction
  publication-title: ACS Catal.
– reference: Hollmann, F., Ni, Y., 2016. Enzymatic conversion using hydrogen peroxide. Patent (NL) NL2013351A.
– volume: 99
  start-page: 8927
  year: 2015
  end-page: 8942
  ident: bb0110
  article-title: Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II)
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 81
  start-page: 6451
  year: 2015
  end-page: 6462
  ident: bb0515
  article-title: Focused directed evolution of aryl-alcohol oxidase in
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  year: 2014
  ident: bb0210
  article-title: Analysis of the
  publication-title: PLoS Genet.
– volume: 282
  start-page: 3091
  year: 2015
  end-page: 3106
  ident: bb0135
  article-title: Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase
  publication-title: FEBS J.
– volume: 134
  start-page: 271
  year: 2016
  end-page: 279
  ident: bb0420
  article-title: Green routes towards industrial textile dyeing: a laccase based approach
  publication-title: J. Mol. Catal. B-Enzym.
– start-page: 185
  year: 2016
  end-page: 214
  ident: bb0340
  article-title: The pocket manual of directed evolution: tips and tricks
  publication-title: Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications
– volume: 33
  start-page: 155
  year: 2015
  end-page: 162
  ident: bb0015
  article-title: Engineering the ligninolytic enzyme consortium
  publication-title: Trends Biotechnol.
– year: 2014
  ident: bb0145
  article-title: Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond
  publication-title: Cascade Biocatalysis: Integrating Stereoselective and Environmentally Friendly Reactions
– volume: 113
  start-page: 5922
  year: 2016
  end-page: 5927
  ident: bb0070
  article-title: Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 282
  start-page: 3136
  year: 2015
  end-page: 3148
  ident: bb0245
  article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations
  publication-title: FEBS J.
– year: 2015
  ident: bb0435
  publication-title: Verfahren zur Deacylierung von Corticoiden. Patent (Germany)
– volume: 72
  start-page: 923
  year: 2015
  end-page: 940
  ident: bb0415
  article-title: How to enjoy laccases
  publication-title: Cell. Mol. Life Sci.
– volume: 23
  start-page: 4324
  year: 2015
  end-page: 4332
  ident: bb0240
  article-title: One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases
  publication-title: Bioorg. Med. Chem.
– year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0155
– volume: 7
  start-page: 114
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0100
  article-title: Engineering a fungal peroxidase that degrades lignin at very acidic pH
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-114
– volume: 6
  start-page: 6277
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0290
  article-title: Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00539J
– volume: 283
  start-page: 2546
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0085
  article-title: A single loop is essential for the octamerisation of vanillyl alcohol oxidase
  publication-title: FEBS J.
  doi: 10.1111/febs.13762
– volume: 6
  start-page: 3900
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0400
  article-title: Re-designing the substrate binding pocket of laccase for enhanced oxidation of sinapic acid
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01725D
– volume: 196
  start-page: 1272
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0270
  article-title: Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.10.074
– volume: 55
  start-page: 12248
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0380
  article-title: From alkanes to carboxylic acids: terminal oxygenation by a fungal peroxygenase
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605430
– volume: 6
  start-page: 1624
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0005
  article-title: Rational enzyme engineering through biophysical and biochemical modeling
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00028
– volume: 466
  start-page: 253
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0280
  article-title: Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and directed mutagenesis study
  publication-title: Biochem. J.
  doi: 10.1042/BJ20141211
– start-page: 185
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0340
  article-title: The pocket manual of directed evolution: tips and tricks
– volume: 72
  start-page: 923
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0415
  article-title: How to enjoy laccases
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-014-1823-9
– volume: 119
  start-page: 13583
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0035
  article-title: Redox-active sites in Auricularia auricula-judae dye-decolorizing peroxidase and several directed variants: a multifrequency EPR study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b02961
– volume: 574
  start-page: 75
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0495
  article-title: The toolbox of Auricularia auricula-judae dye-decolorizing peroxidase. Identification of three new potential substrate-interaction sites
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2014.12.016
– volume: 134
  start-page: 323
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0510
  article-title: Evolved alkaline fungal laccase secreted by Saccharomyces cerevisiae as useful tool for the synthesis of C-N heteropolymeric dye
  publication-title: J. Mol. Catal. B-Enzym.
  doi: 10.1016/j.molcatb.2016.10.004
– volume: 282
  start-page: 3091
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0135
  article-title: Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase
  publication-title: FEBS J.
  doi: 10.1111/febs.13221
– volume: 6
  start-page: 5415
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0490
  article-title: Computer-aided laccase engineering: toward biological oxidation of arylamines
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01460
– start-page: 301
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0065
  article-title: Fungal aryl-alcohol oxidase in lignocellulose degradation and bioconversion
– volume: 6
  start-page: 7542
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0500
  article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8542
– ident: 10.1016/j.biotechadv.2017.06.003_bb0310
– volume: 73-74
  start-page: 29
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0355
  article-title: Tandem-yeast expression system for engineering and producing unspecific peroxygenase
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2015.03.004
– volume: 23
  start-page: 4324
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0240
  article-title: One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2015.06.035
– volume: 55
  start-page: 798
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0375
  article-title: Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507881
– year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0145
  article-title: Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond
– volume: 4
  start-page: 100
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0180
  article-title: Oxizymes for biotechnology
  publication-title: Curr. Biotechnol.
  doi: 10.2174/2211550104666150423202036
– volume: 103
  start-page: 28
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0275
  article-title: Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae
  publication-title: Protein Express. Purif.
  doi: 10.1016/j.pep.2014.08.007
– volume: 290
  start-page: 23201
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0465
  article-title: Demonstration of lignin-to-peroxidase direct electron transfer: a, transient-state kinetics, directed mutagenesis, EPR and NMR study
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.665919
– volume: 100
  start-page: 697
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0075
  article-title: Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-7021-3
– volume: 7
  start-page: 283
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0030
  article-title: Regioselective hydroxylation in the production of 25-hydroxyvitamin D by Coprinopsis cinerea peroxygenase
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402795
– volume: 7
  start-page: 2
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0105
  article-title: Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties and lignin-degrading ability
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-2
– volume: 98
  start-page: 10105
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0430
  article-title: A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-5891-4
– volume: 10
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0455
  article-title: Improving the oxidative stability of a high redox potential fungal peroxidase by rational design
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124750
– volume: 9
  start-page: e90919
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0170
  article-title: Mutagenic organized recombination process by homologous in vivo grouping (MORPHING) for directed enzyme evolution
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0090919
– volume: 10
  issue: 12
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0210
  article-title: Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome gives insight into its pioneer colonization strategies of wood
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004759
– volume: 72
  start-page: 106
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0040
  article-title: Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2014.03.007
– ident: 10.1016/j.biotechadv.2017.06.003_bb0525
– ident: 10.1016/j.biotechadv.2017.06.003_bb0265
– volume: 282
  start-page: 3218
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0060
  article-title: 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase
  publication-title: FEBS J.
  doi: 10.1111/febs.13177
– ident: 10.1016/j.biotechadv.2017.06.003_bb0220
– volume: 6
  start-page: 28276
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0140
  article-title: Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose
  publication-title: Sci Rep
  doi: 10.1038/srep28276
– volume: 330
  start-page: 219
  year: 2010
  ident: 10.1016/j.biotechadv.2017.06.003_bb0505
  article-title: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides
  publication-title: Science
  doi: 10.1126/science.1192231
– volume: 7
  start-page: 55
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0255
  article-title: Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability
  publication-title: J. Anim. Sci. Biotechnol.
  doi: 10.1186/s40104-016-0110-z
– volume: 6
  start-page: 1447
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0370
  article-title: Insights on laccase engineering from molecular simulations: towards a binding focused strategy
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00225
– volume: 134
  start-page: 238
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0230
  article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction
  publication-title: J. Mol. Catal. B-Enzym.
  doi: 10.1016/j.molcatb.2016.10.014
– volume: 10
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0470
  article-title: Improving the pH-stability of versatile peroxidase by comparative structural analysis with a naturally-stable manganese peroxidase
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140984
– volume: 9
  start-page: 198
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0475
  article-title: Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0615-x
– volume: 6
  start-page: 5904
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0125
  article-title: A biocatalytic aza-Achmatowicz reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01636
– year: 2017
  ident: 10.1016/j.biotechadv.2017.06.003_bb0320
  article-title: Biological lignin degradation
– volume: 34
  start-page: 754
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0365
  article-title: Beyond the outer limits of nature by directed evolution
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.03.008
– volume: 72
  start-page: 150
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0095
  article-title: Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2014.02.003
– volume: 82
  start-page: 2411
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0345
  article-title: Activities of secreted aryl alcohol quinone oxidoreductases from Pycnoporus cinnabarinus provide insights into fungal degradation of plant biomass
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03761-15
– volume: 290
  start-page: 30268
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0460
  article-title: Demonstration of lignin-to-peroxidase direct electron transfer. A transient-state kinetics, directed mutagenesis, EPR and NMR study (vol 290, pag 23201, 2015)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.A115.665919
– volume: 6
  start-page: 6625
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0175
  article-title: Alkaline versatile peroxidase by directed evolution
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY01044J
– ident: 10.1016/j.biotechadv.2017.06.003_bb0305
– volume: 9
  start-page: 917
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0445
  article-title: Laccase-mediator pretreatment of wheat straw degrades lignin and improves saccharification
  publication-title: Bioenerg. Res.
  doi: 10.1007/s12155-016-9745-z
– volume: 33
  start-page: 155
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0015
  article-title: Engineering the ligninolytic enzyme consortium
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.12.007
– volume: 19
  start-page: 116
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0195
  article-title: Oxidations catalyzed by fungal peroxygenases
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.01.015
– volume: 121
  start-page: 3946
  year: 2017
  ident: 10.1016/j.biotechadv.2017.06.003_bb0010
  article-title: Mapping the long-range electron transfer route in ligninolytic peroxidases
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b00835
– volume: 6
  start-page: 288
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0300
  article-title: Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00427F
– volume: 574
  start-page: 86
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0055
  article-title: Oxidation and nitration of mononitrophenols by a DyP-type peroxidase
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2015.03.003
– volume: 49
  start-page: 3305
  year: 2010
  ident: 10.1016/j.biotechadv.2017.06.003_bb0190
  article-title: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family
  publication-title: Biochemistry
  doi: 10.1021/bi100009p
– volume: 70
  start-page: 3253
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0090
  article-title: Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi
  publication-title: Acta Crystallogr. D. Biol. Crystallogr.
  doi: 10.1107/S1399004714022755
– ident: 10.1016/j.biotechadv.2017.06.003_bb0225
– volume: 17
  start-page: 341
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0360
  article-title: Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution
  publication-title: Chembiochem
  doi: 10.1002/cbic.201500493
– volume: 112
  start-page: 3686
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0530
  article-title: Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1503340112
– volume: 4
  start-page: 3891
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0165
  article-title: Structural determinants of oxidative stabilization in an evolved versatile peroxidase
  publication-title: ACS Catal.
  doi: 10.1021/cs501218v
– volume: 18
  start-page: 6046
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0485
  article-title: Lignin depolymerization by fungal secretomes and a microbial sink
  publication-title: Green Chem.
  doi: 10.1039/C6GC01531J
– volume: 134
  start-page: 271
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0420
  article-title: Green routes towards industrial textile dyeing: a laccase based approach
  publication-title: J. Mol. Catal. B-Enzym.
  doi: 10.1016/j.molcatb.2016.11.016
– volume: 72
  start-page: 897
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0390
  article-title: Laccase engineering by rational and evolutionary design
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-014-1824-8
– start-page: P11
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0045
– ident: 10.1016/j.biotechadv.2017.06.003_bb0205
– volume: 4
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0235
  article-title: Draft genome sequence of the chloroperoxidase-producing fungus Caldariomyces fumago Woronichin DSM1256
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00774-16
– volume: 98
  start-page: 144
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0440
  article-title: Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2015.02.037
– ident: 10.1016/j.biotechadv.2017.06.003_bb0260
– volume: 282
  start-page: 3136
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0245
  article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations
  publication-title: FEBS J.
  doi: 10.1111/febs.13310
– volume: 81
  start-page: 4130
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0025
  article-title: Steroid hydroxylation by basidiomycete peroxygenases: a combined experimental and computational study
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00660-15
– volume: 20
  start-page: 15929
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0385
  article-title: Exploring the oxidation of lignin-derived phenols by a library of laccase mutants
  publication-title: Molecules
  doi: 10.3390/molecules200915929
– volume: 7
  start-page: 4035
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0115
  article-title: Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500862
– volume: vol 4
  start-page: 91
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0330
  article-title: Directed evolution of fungal laccases: an update
– volume: 9
  issue: 108
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0410
  article-title: Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6
  publication-title: Biotechnol. Biofuels
– volume: 107
  start-page: 1105
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0130
  article-title: A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 polyporales genomes
  publication-title: Mycologia
  doi: 10.3852/15-027
– volume: 81
  start-page: 6451
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0515
  article-title: Focused directed evolution of aryl-alcohol oxidase in Saccharomyces cerevisiae by using chimeric signal peptides
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01966-15
– volume: 5
  start-page: 2038
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0050
  article-title: Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C4CY01477D
– volume: 82
  start-page: 4867
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0080
  article-title: Heterologous production and characterization of two glyoxal oxidases from Pycnoporus cinnabarinus
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00304-16
– volume: 80
  start-page: 3496
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0350
  article-title: Directed evolution of unspecific peroxygenase from Agrocybe aegerita
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00490-14
– volume: 25
  start-page: 2175
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0295
  article-title: Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase
  publication-title: Protein Sci.
  doi: 10.1002/pro.3043
– volume: 3
  start-page: 17
  year: 2017
  ident: 10.1016/j.biotechadv.2017.06.003_bb0185
  article-title: Vanillyl alcohol oxidases produced in Komagataella phaffii contain a highly stable non-covalently bound anionic FAD semiquinone
  publication-title: Biocatalysis
  doi: 10.1515/boca-2017-0002
– volume: 851
  start-page: 341
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0200
  article-title: Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome P450 properties
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-16009-2_13
– volume: 5
  start-page: 254
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0160
  article-title: Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae
  publication-title: Bioengineered
  doi: 10.4161/bioe.29167
– volume: 574
  start-page: 66
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0285
  article-title: Basidiomycete DyPs: genomic diversity, structural-functional aspects, reaction mechanism and environmental significance
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2015.01.018
– ident: 10.1016/j.biotechadv.2017.06.003_bb0020
– volume: 120
  start-page: 38
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0425
  article-title: Engineering an enzymatic regeneration system for NAD(P)H oxidation
  publication-title: J. Mol. Catal. B-Enzym.
  doi: 10.1016/j.molcatb.2015.06.011
– volume: 110
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0520
  article-title: Directed evolution method in Saccharomyces cerevisiae: mutant library creation and screening
  publication-title: J. Vis. Exp.
– volume: 11
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0480
  article-title: Advanced synthesis of conductive polyaniline using laccase as biocatalyst
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164958
– volume: 352
  start-page: 1050
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0315
  article-title: How to break down crystalline cellulose
  publication-title: Science
  doi: 10.1126/science.aaf8920
– volume: 7
  start-page: 515
  year: 2017
  ident: 10.1016/j.biotechadv.2017.06.003_bb0150
  article-title: Repurposing designed mutants: a valuable strategy for computer-aided laccases engineering. The case of POXA1b
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02410F
– volume: 352
  start-page: 1098
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0250
  article-title: Extracellular electron transfer systems fuel oxidative cellulose degradation
  publication-title: Science
  doi: 10.1126/science.aaf3165
– volume: 33
  start-page: 25
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0325
  article-title: Laccase engineering: from rational design to directed evolution
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.12.007
– volume: 113
  start-page: 5922
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0070
  article-title: Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1602566113
– volume: 289
  start-page: 2632
  year: 2014
  ident: 10.1016/j.biotechadv.2017.06.003_bb0215
  article-title: A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.530196
– year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0335
  article-title: Laccase: a multi-purpose biocatalyst at the forefront of biotechnology
  publication-title: Microbial Biotechnol. online
– year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0435
  publication-title: Verfahren zur Deacylierung von Corticoiden. Patent (Germany)
– volume: 9
  start-page: 49
  year: 2016
  ident: 10.1016/j.biotechadv.2017.06.003_bb0120
  article-title: A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0462-9
– volume: 8
  start-page: 211
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0450
  article-title: In-depth 2D NMR study of lignin modification during pretreatment of Eucalyptus wood with laccase and mediators
  publication-title: Bioenerg. Res.
  doi: 10.1007/s12155-014-9505-x
– volume: 99
  start-page: 8927
  year: 2015
  ident: 10.1016/j.biotechadv.2017.06.003_bb0110
  article-title: Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II)
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-6665-3
SSID ssj0015053
Score 2.6129012
SecondaryResourceType review_article
Snippet Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases...
SourceID wageningen
hal
csuc
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 815
SubjectTerms 1-naphthol
25-hydroxycholecalciferol
active sites
Alkanes
Analysis
Basidiomycota
Biochemical computers
Biodegradation
Biomass
Biophysical and biochemical computational modeling
biorefining
Biotransformation
Breaking down
catalytic activity
cellulose
Chemical reactions
Chemical synthesis
Computer simulation
computer software
Copper
Crystalline cellulose
Decoloring
delignification
Dinitrocresols - chemistry
Directed evolution
Disintegration
drugs
Dyes
Electron transfer
electrons
Engineering
Enginyeria biomèdica
Enzims
Enzyme activation
Enzyme cascades
Fungi
Fungi - chemistry
Fungi - enzymology
heme
Heme - chemistry
Heme - genetics
Heme peroxidases and peroxygenases
Hydrogen peroxide
Hydroxyl radicals
Indigo
laccase
Laccase - chemistry
Laccase - genetics
Laccases
Life Sciences
lignin
Lignin - chemistry
Lignin - genetics
Lignocellulose
Lignocellulose biorefinery
Lytic polysaccharide monooxygenases
Metabolites
Naphthol
Oxidases and dehydrogenases
Oxidation
Oxidation-Reduction
Oxidoreductases
Oxidoreductases - chemistry
Oxidoreductases - classification
Oxidoreductases - genetics
Oxigenases
oxygen
Oxygenation
peroxidases
Peroxidases - chemistry
Peroxidases - genetics
Polyanilines
Polysaccharides
proteins
Rational design
screening
Selective oxyfunctionalization
Selectivity
Studies
Substrates
Àrees temàtiques de la UPC
Title Oxidoreductases on their way to industrial biotransformations
URI https://dx.doi.org/10.1016/j.biotechadv.2017.06.003
https://www.ncbi.nlm.nih.gov/pubmed/28624475
https://www.proquest.com/docview/2021990301
https://www.proquest.com/docview/1911198937
https://www.proquest.com/docview/2000534179
https://recercat.cat/handle/2072/291490
https://hal.science/hal-01557216
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F523777
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7qCdI-iFat0Vqi-CTESzab7Abx4SiW80frgxb6tmw2GxopuXLJ9fTFv92ZZJNeEaHgQwjJbZLN7GTm29uZbwBeyyKPmWBJEOskDxD_y0BzGwd5EZbCoHEoBWUjH5-k81P-6Sw524LDIReGwiqd7e9temet3Zmpk-b0sqqm31A5eYYOLyLK9ZRREh_ngrT87e8xzAPxTs9EiY0Dau2iefoYr7wiLoRzXVxRkJfomDyH8lnORU1MszI3PNWdcwqZ_BuP7sD2Gm1A3SVFbTipowdw36FLf9a_wEPYsvUu7GxwDu7CvWO3mv4I3n_9WVGhEaJ8RWfW-Iva7xYO_LX-5bcLvxrrevj0DhsYF3X1MZweffh-OA9cOYXApDxrg1InkcjRnxtpM5xGGC6j1IZJaDiL8jSmuLPS8EwyxFBpUhQCwYwsdIkuTFqcyz6BSb2o7VPw46jMNSfxh5bHNpFMR9aWhZQml0VqPRCDBJVxXONU8uJCDUFlP9S17BXJXnXxdbEH0XjlZc-3cYtr3tAgKVQXuzS6VUSZPR7QxkLBFMtwNhh68G4YSnVD0RT6kFs86hWO_tgzetB89kXROQKfxIR0FXmwPyiHchahwZugb8hoAurBy_Fn_JZpgUbXdrFqVESeJyME-e82rEufprpxHuz1ijd2h1G2DxeJB_G1JqqailI1XV_dP4NqvVqq-oJ2eIdGJSwWQjz7L8k8h2066tM092HSLlf2BeK1Nj_oPsgDuDv7-Hl-8gc-ukBz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tRYLtAcH4FRgQEE9IWRPHiR0hHqaJqUA7HtikvVmJ42hBUzo16bq98LdzlzhZJ4Q0iYeqauIkzvl897m--w7gg8yzkAkWeWEaZR7if-ml3IRelvuF0GgcCkHZyLOjeHLCv51Gpxtw0OfCUFiltf2dTW-ttT0yttIcX5Tl-CcqJ0_Q4QVEuR6zZBPucZy-VMZg7_cQ54GAp6OixNYeNbfhPF2QV1YSGcJZml9SlJdoqTz7-lnWR410vdS3XNXmGcVM_g1It2FrhUagarOi1rzU4SN4aOGlu9-9wWPYMNUObK-RDu7A_ZndTn8Cn39clVRphDhf0ZvV7rxy250Dd5Veu83cLYfCHi69wxrIRWV9CieHX44PJp6tp-DpmCeNV6RRIDJ06FqaBNcRmssgNn7ka86CLA4p8KzQPJEMQVQc5blANCPztEAfJg0uZp_BqJpX5gW4YVBkKSf5-4aHJpIsDYwpcil1JvPYOCB6CSptycap5sW56qPKfqkb2SuSvWoD7EIHguHKi45w4w7XfKRBUqgvZqHTRhFn9vCDPswXTLEEl4O-A5_6oVS3NE2hE7nDo97j6A89owdN9qeKjhH6JCqky8CB3V45lDUJNd4EnUNCK1AH3g2ncTLTDk1amfmyVgG5noQg5L_bsDZ_mgrHOfC8U7yhO4zSfbiIHAhvNFFVVJWqbvtq_xpUq-VCVef0hXeoVcRCIcTL_5LMW3gwOZ5N1fTr0fdXsEVnupzNXRg1i6V5jeCtyd60k_MPMIxCAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidoreductases+on+their+way+to+industrial+biotransformations&rft.jtitle=Biotechnology+advances&rft.au=Mart%C3%ADnez%2C+Angel+T.&rft.au=Ruiz-Due%C3%B1as%2C+Francisco+J.&rft.au=Camarero%2C+Susana&rft.au=Serrano%2C+Ana&rft.date=2017-11-01&rft.pub=Elsevier+Inc&rft.issn=0734-9750&rft.eissn=1873-1899&rft.volume=35&rft.issue=6&rft.spage=815&rft.epage=831&rft_id=info:doi/10.1016%2Fj.biotechadv.2017.06.003&rft.externalDocID=S0734975017300629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-9750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-9750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-9750&client=summon