structural-functional basis for dyslexia in the cortex of Chinese readers
Developmental dyslexia is a neurobiologically based disorder that affects [almost equal to]5-17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslex...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 14; pp. 5561 - 5566 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.04.2008
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0801750105 |
Cover
Abstract | Developmental dyslexia is a neurobiologically based disorder that affects [almost equal to]5-17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. |
---|---|
AbstractList | Developmental dyslexia is a neurobiologically based disorder that affects approximately 5-17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. Developmental dyslexia is a neurobiologically based disorder that affects ≈5–17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. Developmental dyslexia is a neurobiologically based disorder that affects [almost equal to]5-17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. Developmental dyslexia is a neurobiologically based disorder that affects ...5-17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. (ProQuest: ... denotes formulae/symbols omitted.) Developmental dyslexia is a neurobiologically based disorder that affects approximately 5-17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages.Developmental dyslexia is a neurobiologically based disorder that affects approximately 5-17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. Developmental dyslexia is a neurobiologically based disorder that affects ≈5–17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. brain function Chinese language culture reading disorder neuroimaging |
Author | Jin, Zhen Tan, Li Hai Niu, Zhendong Perfetti, Charles A Siok, Wai Ting |
Author_xml | – sequence: 1 fullname: Siok, Wai Ting – sequence: 2 fullname: Niu, Zhendong – sequence: 3 fullname: Jin, Zhen – sequence: 4 fullname: Perfetti, Charles A – sequence: 5 fullname: Tan, Li Hai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18391194$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstv1DAQxi1URB9w5gREHBCXtOP4fUFCKx6VKnGAni0nsbteZePFdqr2v8fRLrtQCXqaw_zm03wz3yk6GsNoEXqJ4RyDIBeb0aRzkIAFAwzsCTrBoHDNqYIjdALQiFrShh6j05RWAKCYhGfoGEuiMFb0BF2mHKcuT9EMtZvGLvswmqFqTfKpciFW_X0a7J03lR-rvLRVF2K2d1Vw1WLpR5tsFa3pbUzP0VNnhmRf7OoZuv786cfia3317cvl4uNV3ZWtcm1AiE4o0QrKRM9b0veEMNNiJqQSBojqe2FxL4po64QFp_qm4cZRcI4QSs7Qh63uZmrXtu_smMvyehP92sR7HYzXf3dGv9Q34VY3TfEMuAi82wnE8HOyKeu1T50dBjPaMCUtgCrOZfMoSAXHsmH0UbABzpXEqoBvH4CrMMVy8JnBRBHOZ7XXfxrcO_v9tAKwLdDFkFK0Tnc-m_lzxa8fNAY9h0PP4dCHcJS5iwdze-l_TrzfrTI3DjTTmGrGONZuGoaSh1zQN_9HC_FqS6xSDnGPlANyXGwfFJwJ2txEn_T19_ksAFISLgn5BVa450Q |
CitedBy_id | crossref_primary_10_1080_87565641_2017_1374960 crossref_primary_10_1007_s11682_020_00406_3 crossref_primary_10_1097_WNN_0b013e318222a4c2 crossref_primary_10_1016_j_neuropsychologia_2019_02_002 crossref_primary_10_1186_s12883_021_02445_9 crossref_primary_10_2496_hbfr_36_170 crossref_primary_10_1017_S136672892000070X crossref_primary_10_1007_s11145_015_9549_0 crossref_primary_10_1179_174327908X392889 crossref_primary_10_1002_ajmg_b_32267 crossref_primary_10_1080_10888438_2014_892489 crossref_primary_10_1007_s00429_012_0391_8 crossref_primary_10_1002_ajmg_b_32392 crossref_primary_10_3389_fpsyg_2020_00155 crossref_primary_10_3389_fpsyg_2021_748644 crossref_primary_10_3389_fnhum_2020_611008 crossref_primary_10_1016_j_neuroimage_2018_06_037 crossref_primary_10_3390_genes11060658 crossref_primary_10_1093_scan_nsp024 crossref_primary_10_1016_j_neuropsychologia_2010_08_015 crossref_primary_10_1186_1744_9081_10_29 crossref_primary_10_1186_1744_9081_7_16 crossref_primary_10_1016_j_ijdevneu_2012_11_008 crossref_primary_10_1016_j_jneuroling_2014_07_004 crossref_primary_10_1016_j_neuroimage_2015_03_075 crossref_primary_10_1038_nchina_2009_213 crossref_primary_10_1371_journal_pone_0033424 crossref_primary_10_3389_fnhum_2014_00347 crossref_primary_10_1002_hbm_22792 crossref_primary_10_1016_j_nrl_2009_12_010 crossref_primary_10_1016_j_heliyon_2023_e22100 crossref_primary_10_1016_j_bbr_2017_03_048 crossref_primary_10_1002_hbm_26075 crossref_primary_10_3109_00207454_2012_756484 crossref_primary_10_1016_j_neuroimage_2015_09_011 crossref_primary_10_1016_j_neuroimage_2021_117911 crossref_primary_10_1097_YPG_0000000000000187 crossref_primary_10_1016_j_neuropsychologia_2015_12_003 crossref_primary_10_1002_hbm_23994 crossref_primary_10_1002_hbm_24324 crossref_primary_10_1111_j_1460_9568_2010_07534_x crossref_primary_10_1007_s00429_013_0552_4 crossref_primary_10_1186_s11689_019_9287_8 crossref_primary_10_1016_j_brainres_2012_06_010 crossref_primary_10_3724_SP_J_1260_2011_00461 crossref_primary_10_1016_j_cognition_2011_05_009 crossref_primary_10_1088_1742_6596_277_1_012034 crossref_primary_10_3389_fped_2022_864175 crossref_primary_10_1080_13554794_2012_690422 crossref_primary_10_1177_0165025417727872 crossref_primary_10_1016_j_neuroimage_2010_12_003 crossref_primary_10_1146_annurev_linguistics_030421_065648 crossref_primary_10_1093_brain_awq106 crossref_primary_10_1002_hbm_22734 crossref_primary_10_1002_hbm_26419 crossref_primary_10_1038_s41598_021_04163_1 crossref_primary_10_1038_nrn2456 crossref_primary_10_3724_SP_J_1042_2020_00075 crossref_primary_10_1016_j_neuropsychologia_2013_03_010 crossref_primary_10_1016_S2173_5808_20_70105_7 crossref_primary_10_1038_s41598_022_14914_3 crossref_primary_10_1111_cdev_13452 crossref_primary_10_3389_fpsyg_2016_00324 crossref_primary_10_7554_eLife_54591 crossref_primary_10_1007_s11682_008_9038_z crossref_primary_10_1002_dys_1677 crossref_primary_10_1016_j_neuroimage_2009_11_018 crossref_primary_10_1016_j_ridd_2021_104036 crossref_primary_10_1097_00029330_200809010_00027 crossref_primary_10_1038_jhg_2016_40 crossref_primary_10_1007_s11596_021_2468_1 crossref_primary_10_1080_17549507_2017_1287218 crossref_primary_10_3389_fpsyg_2019_02945 crossref_primary_10_2174_1745017901713010104 crossref_primary_10_1097_YCO_0000000000000670 crossref_primary_10_5112_jjlp_50_190 crossref_primary_10_1007_s12264_022_00864_3 crossref_primary_10_3389_fendo_2024_1343759 crossref_primary_10_1016_j_neubiorev_2017_08_001 crossref_primary_10_3724_SP_J_1206_2009_00189 crossref_primary_10_1016_j_neubiorev_2022_104650 crossref_primary_10_1002_dev_20561 crossref_primary_10_1007_s11596_012_0025_7 crossref_primary_10_1016_j_jneuroling_2019_100884 crossref_primary_10_1016_j_ridd_2011_06_017 crossref_primary_10_1007_s11881_015_0097_8 crossref_primary_10_1080_23273798_2022_2129084 crossref_primary_10_1016_j_neulet_2011_02_002 crossref_primary_10_1097_DBP_0000000000000751 crossref_primary_10_1016_j_neulet_2015_01_037 crossref_primary_10_1186_s41065_021_00211_y crossref_primary_10_1016_j_bandl_2019_104696 crossref_primary_10_3390_children8050412 crossref_primary_10_1002_hbm_25900 crossref_primary_10_1016_j_neuroimage_2021_118476 crossref_primary_10_29117_tis_2023_0138 crossref_primary_10_1016_j_neuroscience_2025_01_023 crossref_primary_10_1073_pnas_1103217108 crossref_primary_10_1038_news_2008_739 crossref_primary_10_1371_journal_pone_0056688 crossref_primary_10_1002_hbm_22991 crossref_primary_10_1111_desc_12449 crossref_primary_10_1002_brb3_153 crossref_primary_10_1002_hbm_22354 crossref_primary_10_4103_1673_5374_200809 crossref_primary_10_1038_nchina_2008_95 crossref_primary_10_1162_jocn_2009_21124 crossref_primary_10_1016_j_cortex_2021_11_021 crossref_primary_10_1007_s40474_018_0135_4 crossref_primary_10_1016_j_jneuroling_2014_06_005 crossref_primary_10_1016_j_neuroimage_2017_02_042 crossref_primary_10_1016_j_neuroscience_2015_03_009 crossref_primary_10_1016_j_neuroimage_2019_01_006 crossref_primary_10_1111_desc_13379 crossref_primary_10_1007_s11145_010_9284_5 crossref_primary_10_1016_j_neuropsychologia_2024_108935 crossref_primary_10_1016_j_bandl_2021_104983 crossref_primary_10_1111_desc_12440 crossref_primary_10_2147_PRBM_S251935 crossref_primary_10_1016_j_neuroimage_2012_03_080 crossref_primary_10_1002_hbm_23112 crossref_primary_10_1016_j_neuropsychologia_2008_11_006 crossref_primary_10_1016_j_jneuroling_2017_04_001 crossref_primary_10_1186_s40359_024_02065_1 crossref_primary_10_3390_ijerph17197140 crossref_primary_10_3724_SP_J_1042_2024_02091 crossref_primary_10_1016_j_neuroimage_2023_119989 crossref_primary_10_1016_j_ridd_2022_104389 crossref_primary_10_1111_psyp_13696 crossref_primary_10_1016_j_bandl_2017_04_003 crossref_primary_10_3390_ijerph20043315 crossref_primary_10_1016_j_neuroimage_2014_04_080 crossref_primary_10_1177_0022219411400748 crossref_primary_10_1016_j_neuropsychologia_2012_05_026 crossref_primary_10_1002_hbm_22815 crossref_primary_10_1080_00207594_2010_509800 crossref_primary_10_1159_000348431 crossref_primary_10_1002_hbm_21168 crossref_primary_10_1111_j_1467_8721_2009_01599_x crossref_primary_10_1016_j_jneuroling_2019_03_002 crossref_primary_10_2466_04_22_24_28_PMS_113_5_365_376 crossref_primary_10_1016_j_neuropsychologia_2021_107777 crossref_primary_10_1016_j_bandl_2011_03_004 crossref_primary_10_3390_brainsci12101367 crossref_primary_10_1016_j_jpsychires_2024_05_027 crossref_primary_10_1016_j_mehy_2009_05_034 crossref_primary_10_1038_s41539_020_0062_0 crossref_primary_10_1073_pnas_1509321112 crossref_primary_10_2496_hbfr_38_277 crossref_primary_10_1016_j_bandl_2021_105069 crossref_primary_10_1007_s12311_012_0407_1 crossref_primary_10_1093_cercor_bhad013 crossref_primary_10_1016_j_pscychresns_2019_08_008 crossref_primary_10_1016_j_dcn_2013_06_004 crossref_primary_10_1007_s11145_022_10263_9 crossref_primary_10_1515_ijdhd_2013_0005 crossref_primary_10_3389_fnhum_2018_00490 crossref_primary_10_1016_j_cub_2009_08_014 crossref_primary_10_1080_03054985_2020_1793545 crossref_primary_10_1371_journal_pone_0159042 crossref_primary_10_1002_dys_1475 crossref_primary_10_1007_s00221_018_5351_y crossref_primary_10_1016_j_actpsy_2012_11_011 crossref_primary_10_1016_j_neuropsychologia_2020_107462 crossref_primary_10_1016_j_pedneo_2018_07_016 crossref_primary_10_7554_eLife_69523 crossref_primary_10_1016_j_neuropsychologia_2020_107343 crossref_primary_10_1016_j_neuropsychologia_2021_107886 crossref_primary_10_1016_j_brainres_2018_01_014 crossref_primary_10_1007_s00429_022_02482_1 crossref_primary_10_3389_fnins_2022_983084 crossref_primary_10_1111_lnc3_12239 crossref_primary_10_1002_hbm_22127 crossref_primary_10_1093_cercor_bhac206 crossref_primary_10_3389_fnbeh_2018_00288 |
Cites_doi | 10.1111/j.1540-5826.2005.00117.x 10.1212/WNL.56.6.781 10.1016/S0093-934X(03)00349-3 10.1212/01.WNL.0000068363.05974.64 10.1016/j.neuron.2004.10.019 10.1073/pnas.97.6.2402 10.1073/pnas.95.15.8939 10.1007/s11881-002-0010-0 10.1002/hbm.20425 10.1073/pnas.0030098100 10.1037/0012-1649.37.6.886 10.1016/j.conb.2005.03.003 10.1002/hbm.20356 10.1016/S0896-6273(00)80911-3 10.1126/science.1057179 10.1016/j.brainres.2005.11.097 10.1037/0033-295X.112.1.43 10.1002/hbm.20134 10.1007/s11881-007-0004-z 10.1002/ana.410060203 10.1212/WNL.58.8.1203 10.1073/pnas.0604416103 10.1016/S0010-9452(13)80216-X 10.1177/1073858404263596 10.1038/nn946 10.1007/s00221-007-1200-0 10.1073/pnas.0503523102 10.1056/NEJM199201163260301 10.1212/01.WNL.0000134673.95020.EE 10.1038/nrn1907 10.1007/s11881-006-0002-6 10.1002/ana.410180210 10.1006/nimg.2001.0786 10.1162/089892904323057380 10.1073/pnas.0609399104 10.1523/JNEUROSCI.4931-05.2006 10.1006/nimg.2000.0582 10.1038/nature02865 10.1097/01.wnr.0000233090.00463.35 10.1093/brain/awh579 10.1146/annurev.neuro.28.061604.135645 10.1073/pnas.90.3.878 10.1001/archneur.1991.00530180095023 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 8, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 8, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0801750105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef Virology and AIDS Abstracts AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5566 |
ExternalDocumentID | PMC2291101 1460964551 18391194 10_1073_pnas_0801750105 105_14_5561 25461643 US201300883683 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c649t-a077c797b7457d6b3dd335ab157897a039dd7e1d7adebf7e0f9d226af40ff3343 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:26:35 EDT 2025 Fri Sep 05 04:30:12 EDT 2025 Fri Sep 05 13:31:36 EDT 2025 Fri Sep 05 10:06:04 EDT 2025 Mon Jun 30 10:16:27 EDT 2025 Thu Apr 03 07:04:24 EDT 2025 Thu Apr 24 23:00:30 EDT 2025 Tue Jul 01 02:38:55 EDT 2025 Wed Nov 11 00:29:26 EST 2020 Thu May 30 08:52:19 EDT 2019 Thu May 29 08:42:56 EDT 2025 Thu Apr 03 09:45:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c649t-a077c797b7457d6b3dd335ab157897a039dd7e1d7adebf7e0f9d226af40ff3343 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Communicated by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, February 25, 2008 Author contributions: W.T.S., C.A.P., and L.H.T. designed research; W.T.S., Z.J., and L.H.T. performed research; W.T.S., N.Z., and L.H.T. analyzed data; and W.T.S., C.A.P., and L.H.T. wrote the paper. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2291101 |
PMID | 18391194 |
PQID | 201393664 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_105_14_5561 proquest_miscellaneous_47618254 crossref_citationtrail_10_1073_pnas_0801750105 proquest_miscellaneous_70496682 proquest_journals_201393664 crossref_primary_10_1073_pnas_0801750105 jstor_primary_25461643 fao_agris_US201300883683 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2291101 proquest_miscellaneous_20669819 pnas_primary_105_14_5561_fulltext pubmed_primary_18391194 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-04-08 |
PublicationDateYYYYMMDD | 2008-04-08 |
PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Shaywitz BA (e_1_3_3_23_2) 2002; 52 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Talairach J (e_1_3_3_45_2) 1988 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 15165356 - J Cogn Neurosci. 2004 May;16(4):683-701 15504323 - Neuron. 2004 Oct 28;44(3):411-22 17636558 - Hum Brain Mapp. 2008 May;29(5):613-25 16607400 - Nat Rev Neurosci. 2006 May;7(5):406-11 15326259 - Neurology. 2004 Aug 24;63(4):742-5 12114001 - Biol Psychiatry. 2002 Jul 15;52(2):101-10 8430101 - Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):878-82 17360506 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4234-9 17849207 - Ann Dyslexia. 2006 Jun;56(1):13-50 15068921 - Brain Lang. 2004 May;89(2):377-84 496415 - Ann Neurol. 1979 Aug;6(2):94-100 17274024 - Hum Brain Mapp. 2007 Nov;28(11):1223-34 15939871 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8781-5 12604786 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2860-5 2039387 - Arch Neurol. 1991 Jun;48(6):637-43 15846817 - Hum Brain Mapp. 2005 May;25(1):83-91 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 17600524 - Annu Rev Neurosci. 2007;30:475-503 10716977 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2402-4 15631587 - Psychol Rev. 2005 Jan;112(1):43-59 17849217 - Ann Dyslexia. 2007 Jun;57(1):75-97 11251124 - Science. 2001 Mar 16;291(5511):2165-7 15975942 - Brain. 2005 Oct;128(Pt 10):2453-61 12874401 - Neurology. 2003 Jul 22;61(2):212-9 1727544 - N Engl J Med. 1992 Jan 16;326(3):145-50 17050709 - J Neurosci. 2006 Oct 18;26(42):10700-8 9671783 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8939-44 16427033 - Brain Res. 2006 Feb 3;1071(1):197-207 11274316 - Neurology. 2001 Mar 27;56(6):781-3 15831408 - Curr Opin Neurobiol. 2005 Apr;15(2):231-8 16815966 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10775-80 16932146 - Neuroreport. 2006 Sep 18;17(13):1397-401 11525331 - Neuroimage. 2001 Jul;14(1 Pt 1):21-36 15271263 - Neuroscientist. 2004 Aug;10(4):362-71 11699761 - Dev Psychol. 2001 Nov;37(6):886-99 4037763 - Ann Neurol. 1985 Aug;18(2):222-33 8472549 - Cortex. 1993 Mar;29(1):115-34 10719902 - Neuron. 2000 Feb;25(2):493-500 11971088 - Neurology. 2002 Apr 23;58(8):1203-13 12403991 - Nat Neurosci. 2002 Nov;5 Suppl:1080-4 15343334 - Nature. 2004 Sep 2;431(7004):71-6 17999056 - Exp Brain Res. 2008 Jan;184(3):427-33 |
References_xml | – ident: e_1_3_3_24_2 doi: 10.1111/j.1540-5826.2005.00117.x – ident: e_1_3_3_18_2 doi: 10.1212/WNL.56.6.781 – ident: e_1_3_3_22_2 doi: 10.1016/S0093-934X(03)00349-3 – ident: e_1_3_3_17_2 doi: 10.1212/01.WNL.0000068363.05974.64 – ident: e_1_3_3_6_2 doi: 10.1016/j.neuron.2004.10.019 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.97.6.2402 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.95.15.8939 – ident: e_1_3_3_29_2 doi: 10.1007/s11881-002-0010-0 – ident: e_1_3_3_25_2 doi: 10.1002/hbm.20425 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0030098100 – ident: e_1_3_3_41_2 doi: 10.1037/0012-1649.37.6.886 – ident: e_1_3_3_7_2 doi: 10.1016/j.conb.2005.03.003 – ident: e_1_3_3_35_2 doi: 10.1002/hbm.20356 – ident: e_1_3_3_16_2 doi: 10.1016/S0896-6273(00)80911-3 – ident: e_1_3_3_19_2 doi: 10.1126/science.1057179 – ident: e_1_3_3_32_2 doi: 10.1016/j.brainres.2005.11.097 – ident: e_1_3_3_30_2 doi: 10.1037/0033-295X.112.1.43 – ident: e_1_3_3_31_2 doi: 10.1002/hbm.20134 – ident: e_1_3_3_38_2 doi: 10.1007/s11881-007-0004-z – ident: e_1_3_3_11_2 doi: 10.1002/ana.410060203 – ident: e_1_3_3_27_2 doi: 10.1212/WNL.58.8.1203 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.0604416103 – ident: e_1_3_3_42_2 doi: 10.1016/S0010-9452(13)80216-X – ident: e_1_3_3_21_2 doi: 10.1177/1073858404263596 – ident: e_1_3_3_3_2 doi: 10.1038/nn946 – ident: e_1_3_3_34_2 doi: 10.1007/s00221-007-1200-0 – ident: e_1_3_3_39_2 doi: 10.1073/pnas.0503523102 – ident: e_1_3_3_9_2 doi: 10.1056/NEJM199201163260301 – volume: 52 start-page: 101 year: 2002 ident: e_1_3_3_23_2 publication-title: Disruption of posterior brain systems for reading in children with developmental dyslexia Biol Psychiatry – ident: e_1_3_3_20_2 doi: 10.1212/01.WNL.0000134673.95020.EE – ident: e_1_3_3_4_2 doi: 10.1038/nrn1907 – ident: e_1_3_3_8_2 doi: 10.1007/s11881-006-0002-6 – ident: e_1_3_3_12_2 doi: 10.1002/ana.410180210 – ident: e_1_3_3_43_2 doi: 10.1006/nimg.2001.0786 – ident: e_1_3_3_37_2 doi: 10.1162/089892904323057380 – ident: e_1_3_3_1_2 doi: 10.1073/pnas.0609399104 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.4931-05.2006 – ident: e_1_3_3_44_2 doi: 10.1006/nimg.2000.0582 – ident: e_1_3_3_28_2 doi: 10.1038/nature02865 – ident: e_1_3_3_33_2 doi: 10.1097/01.wnr.0000233090.00463.35 – ident: e_1_3_3_26_2 doi: 10.1093/brain/awh579 – ident: e_1_3_3_5_2 doi: 10.1146/annurev.neuro.28.061604.135645 – ident: e_1_3_3_36_2 doi: 10.1073/pnas.90.3.878 – volume-title: Coplanar Stereotactic Atlas of the Human Brain year: 1988 ident: e_1_3_3_45_2 – ident: e_1_3_3_13_2 doi: 10.1001/archneur.1991.00530180095023 – reference: 17849217 - Ann Dyslexia. 2007 Jun;57(1):75-97 – reference: 11251124 - Science. 2001 Mar 16;291(5511):2165-7 – reference: 9671783 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8939-44 – reference: 15271263 - Neuroscientist. 2004 Aug;10(4):362-71 – reference: 17274024 - Hum Brain Mapp. 2007 Nov;28(11):1223-34 – reference: 11699761 - Dev Psychol. 2001 Nov;37(6):886-99 – reference: 496415 - Ann Neurol. 1979 Aug;6(2):94-100 – reference: 11274316 - Neurology. 2001 Mar 27;56(6):781-3 – reference: 4037763 - Ann Neurol. 1985 Aug;18(2):222-33 – reference: 17360506 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4234-9 – reference: 1727544 - N Engl J Med. 1992 Jan 16;326(3):145-50 – reference: 17050709 - J Neurosci. 2006 Oct 18;26(42):10700-8 – reference: 16932146 - Neuroreport. 2006 Sep 18;17(13):1397-401 – reference: 11525331 - Neuroimage. 2001 Jul;14(1 Pt 1):21-36 – reference: 17600524 - Annu Rev Neurosci. 2007;30:475-503 – reference: 12604786 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2860-5 – reference: 15975942 - Brain. 2005 Oct;128(Pt 10):2453-61 – reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 – reference: 12874401 - Neurology. 2003 Jul 22;61(2):212-9 – reference: 15165356 - J Cogn Neurosci. 2004 May;16(4):683-701 – reference: 8430101 - Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):878-82 – reference: 15939871 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8781-5 – reference: 17849207 - Ann Dyslexia. 2006 Jun;56(1):13-50 – reference: 15631587 - Psychol Rev. 2005 Jan;112(1):43-59 – reference: 16815966 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10775-80 – reference: 17999056 - Exp Brain Res. 2008 Jan;184(3):427-33 – reference: 12403991 - Nat Neurosci. 2002 Nov;5 Suppl:1080-4 – reference: 15846817 - Hum Brain Mapp. 2005 May;25(1):83-91 – reference: 16427033 - Brain Res. 2006 Feb 3;1071(1):197-207 – reference: 11971088 - Neurology. 2002 Apr 23;58(8):1203-13 – reference: 15831408 - Curr Opin Neurobiol. 2005 Apr;15(2):231-8 – reference: 16607400 - Nat Rev Neurosci. 2006 May;7(5):406-11 – reference: 10719902 - Neuron. 2000 Feb;25(2):493-500 – reference: 12114001 - Biol Psychiatry. 2002 Jul 15;52(2):101-10 – reference: 10716977 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2402-4 – reference: 17636558 - Hum Brain Mapp. 2008 May;29(5):613-25 – reference: 15343334 - Nature. 2004 Sep 2;431(7004):71-6 – reference: 2039387 - Arch Neurol. 1991 Jun;48(6):637-43 – reference: 15326259 - Neurology. 2004 Aug 24;63(4):742-5 – reference: 15504323 - Neuron. 2004 Oct 28;44(3):411-22 – reference: 8472549 - Cortex. 1993 Mar;29(1):115-34 – reference: 15068921 - Brain Lang. 2004 May;89(2):377-84 |
SSID | ssj0009580 |
Score | 2.3934462 |
Snippet | Developmental dyslexia is a neurobiologically based disorder that affects [almost equal to]5-17% of school children and is characterized by a severe impairment... Developmental dyslexia is a neurobiologically based disorder that affects ≈5-17% of school children and is characterized by a severe impairment in reading... Developmental dyslexia is a neurobiologically based disorder that affects ≈5–17% of school children and is characterized by a severe impairment in reading... Developmental dyslexia is a neurobiologically based disorder that affects approximately 5-17% of school children and is characterized by a severe impairment in... Developmental dyslexia is a neurobiologically based disorder that affects ...5-17% of school children and is characterized by a severe impairment in reading... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5561 |
SubjectTerms | Behavioral neuroscience Biological Sciences Brain Brain Mapping Case-Control Studies Cerebellum Cerebral Cortex - abnormalities Child Children China Chinese languages Correlation analysis cortex Dyslexia Dyslexia - etiology Dyslexia - pathology Female Gray matter Humans Judgment Language languages learning Magnetic Resonance Imaging Male Medical imaging Neurosciences Reading Reading ability Rhyme school children Social Sciences Studies Typographic fonts |
Title | structural-functional basis for dyslexia in the cortex of Chinese readers |
URI | https://www.jstor.org/stable/25461643 http://www.pnas.org/content/105/14/5561.abstract https://www.ncbi.nlm.nih.gov/pubmed/18391194 https://www.proquest.com/docview/201393664 https://www.proquest.com/docview/20669819 https://www.proquest.com/docview/47618254 https://www.proquest.com/docview/70496682 https://pubmed.ncbi.nlm.nih.gov/PMC2291101 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFMWAsjA8j8TBUpSRxYjuPFQJVQ6ombRV7i5zEZpVGOq2dBPz13NnOR6dWAl6iyh-XKvfz-Wyff0fI-0qWgCKZwkiLZJjiHeBc1yaUeY3eRma0sQGyMz6dp6eX2WW_mWNvl6zLcfV7672S_9EqlIFe8ZbsP2i2EwoF8Bv0C0_QMDz_SseTkaN_ReqMEGcov7EHU9PC8iyM6l8rZLxUbThjhbG1P30MBiafHN26WOahk3rWTWqrNoRg1u4ZTvobKN4srEbh6GzW5zM-Xyythf2mFoAEPzHak487exJypTGBSFd86kgMsLg307dGr12cgQ8H8Fuu7faEtFEtzqJqZ1LBIwl56pKCdjY3yobgSgcmFPN1brXtYIwwIXGjVmNwc8HtibyUgaZvflhVo9sXxy578j067bZqjzxMhLAn-9PpkKdZRi0DlGAf770NKWZ9_w0_Zs-oZRvQiiy50GvbiuV-4O3Ak7l4Qh77JQidODwdkAe6eUoOWm3SE89E_uEZ-TqhWwFGLcAoAIy2AKOLhgJQqAMYXRrqAUY9wJ6T-ZfPF5-moc--EVagrXWoIiEqkYsSRqyoecnqmrFMlTHY-FyoiOV1LXRcCxBSGqEjk9fgyyuTRsYwlrJDst8sG31EaJQpLcHxrFRUp0ZLqWWqwHmsNBesTKqAjNtvWVSemh4zpFwXNkRCsAK_aNHrISAnXYcbx8qyu-kRKKdQ32HOLObnCZ7Uw8zKuGQBObQa60RgbogYXHToY6X0ojNYIheIzIC821VVGB-uFZDjVvWFtxarAl-cM87TgLztasGU4_mcavTyDptwnoOHvrtFKniMWzq7WwhY8XMuk4C8cFDr_6kHbkDEBgi7Bkg0v1nTLK4s4XySQM8ofrlT5jF51I_9V2QfoKlfg7O-Lt_Y4fUHys_myA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+structural-functional+basis+for+dyslexia+in+the+cortex+of+Chinese+readers&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Siok%2C+Wai+Ting&rft.au=Niu%2C+Zhendong&rft.au=Jin%2C+Zhen&rft.au=Perfetti%2C+Charles+A&rft.date=2008-04-08&rft.eissn=1091-6490&rft.volume=105&rft.issue=14&rft.spage=5561&rft_id=info:doi/10.1073%2Fpnas.0801750105&rft_id=info%3Apmid%2F18391194&rft.externalDocID=18391194 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F14.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F14.cover.gif |