In Vivo Dynamics of Swi6 in Yeast: Evidence for a Stochastic Model of Heterochromatin
Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Molecular and Cellular Biology Vol. 24; no. 8; pp. 3157 - 3167 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.04.2004
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
MCB
About
MCB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
MCB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0270-7306
Online ISSN:
1098-5549
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
MCB
.asm.org, visit:
MCB
|
---|---|
AbstractList | The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6(-) and swi6(+) strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast. The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6 − and swi6 + strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast. Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: MCB The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6 super(-) and swi6 super(+) strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast. The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe , the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6 − and swi6 + strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast. |
Author | Stanislaw A. Gorski Thierry Cheutin Karen M. May Tom Misteli Prim B. Singh |
AuthorAffiliation | National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, 1 Nuclear Reprogramming Laboratory, The Roslin Institute, Midlothian EH25 9PS, Scotland, United Kingdom 2 |
AuthorAffiliation_xml | – name: National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, 1 Nuclear Reprogramming Laboratory, The Roslin Institute, Midlothian EH25 9PS, Scotland, United Kingdom 2 |
Author_xml | – sequence: 1 givenname: Thierry surname: Cheutin fullname: Cheutin, Thierry organization: National Cancer Institute, National Institutes of Health – sequence: 2 givenname: Stanislaw A. surname: Gorski fullname: Gorski, Stanislaw A. organization: National Cancer Institute, National Institutes of Health – sequence: 3 givenname: Karen M. surname: May fullname: May, Karen M. organization: Nuclear Reprogramming Laboratory, The Roslin Institute – sequence: 4 givenname: Prim B. surname: Singh fullname: Singh, Prim B. organization: Nuclear Reprogramming Laboratory, The Roslin Institute – sequence: 5 givenname: Tom surname: Misteli fullname: Misteli, Tom email: mistelit@mail.nih.gov organization: National Cancer Institute, National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15060140$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFVwBz4ZYwjhPbQeJAl5ZWasWhFImT5Th21yixi53d1b59He2KwqknS57vH8_4O0FHPniD0DsCJSGV-HizPCuruhQlJQ0vKGG8rADqF2hBoBVF09TtEVpAxaHgFNgxOknpNwCwFugrdEwaYEBqWKC7K49_uk3AX3dejU4nHCy-3TqGnce_jErTJ3y-cb3x2mAbIlb4dgp6lQtO45vQm2FOXJrJxHwdw6gm51-jl1YNybw5nKfo7uL8x_KyuP7-7Wr55brQrBZTwere5nWoUrZljGrNu453jJKK1FRUBJpKtwCG90BZZ5UF0dKm7XkFojHW0FP0ed_3Yd2NptfGT1EN8iG6UcWdDMrJ_yvereR92Egq8peJnP9wyMfwZ23SJEeXtBkG5U1YJ8kJbwVp2mfBzOWpgWSQ70EdQ0rR2L_DEJCzOpnVyaqWQs7q5KxOzupy8u2_uzzlDq4ycLYHnM8iRrUNcejlpHZDiDYqr13K7Z595f2-ycrdr7YuGqnSKEfdPdH0EX7ztrA |
CitedBy_id | crossref_primary_10_1016_j_ydbio_2006_06_039 crossref_primary_10_1016_j_gde_2007_08_004 crossref_primary_10_1146_annurev_cellbio_100617_062653 crossref_primary_10_1016_j_molcel_2023_04_020 crossref_primary_10_1038_srep04789 crossref_primary_10_1016_j_molcel_2012_05_009 crossref_primary_10_1371_journal_pone_0159292 crossref_primary_10_1007_s13258_021_01203_y crossref_primary_10_4161_cc_22234 crossref_primary_10_1016_j_tcb_2014_01_002 crossref_primary_10_1101_gr_086231_108 crossref_primary_10_1016_j_molcel_2013_06_013 crossref_primary_10_1016_j_molcel_2005_10_002 crossref_primary_10_1038_nrg2008 crossref_primary_10_1101_sqb_2004_69_419 crossref_primary_10_1088_0953_8984_27_6_064110 crossref_primary_10_1101_gad_226118_113 crossref_primary_10_1016_j_cell_2007_01_028 crossref_primary_10_1016_j_tig_2016_02_005 crossref_primary_10_1016_j_cell_2006_12_035 crossref_primary_10_1007_s00425_005_0129_4 crossref_primary_10_1007_s10577_010_9155_6 crossref_primary_10_1002_bies_201200076 crossref_primary_10_1016_j_biosystems_2005_09_007 crossref_primary_10_1016_j_jmb_2004_10_002 crossref_primary_10_1007_s00427_004_0448_7 crossref_primary_10_1128_MCB_24_14_6393_6402_2004 crossref_primary_10_1534_genetics_111_137083 crossref_primary_10_1088_0953_8984_27_6_064109 crossref_primary_10_1093_nar_gkaa145 crossref_primary_10_1038_s41586_019_1669_2 crossref_primary_10_1016_j_yexcr_2009_07_022 crossref_primary_10_1105_tpc_105_036855 crossref_primary_10_7554_eLife_53155 crossref_primary_10_1007_s10238_015_0364_3 crossref_primary_10_1515_BC_2005_030 crossref_primary_10_1126_sciadv_abk0793 crossref_primary_10_1371_journal_pone_0086451 crossref_primary_10_1016_j_jbc_2022_101623 crossref_primary_10_1016_j_bbagen_2020_129771 crossref_primary_10_1038_srep10243 crossref_primary_10_1080_15476286_2015_1022704 crossref_primary_10_1083_jcb_200804041 crossref_primary_10_1146_annurev_genet_38_072902_091907 crossref_primary_10_15252_embj_201591320 crossref_primary_10_1038_ncomms11310 crossref_primary_10_1016_j_molcel_2005_07_021 crossref_primary_10_1016_j_bpj_2009_08_057 crossref_primary_10_1002_yea_1095 crossref_primary_10_1073_pnas_0811161106 crossref_primary_10_1038_s42003_023_05154_w crossref_primary_10_1038_ncomms2259 crossref_primary_10_1021_acs_jctc_9b00434 crossref_primary_10_1534_genetics_104_032714 crossref_primary_10_1093_jb_mvu032 crossref_primary_10_1074_jbc_M600558200 crossref_primary_10_1038_nrg1920 crossref_primary_10_1042_BCJ20160123 crossref_primary_10_1101_sqb_2006_71_059 crossref_primary_10_1093_g3journal_jkad123 crossref_primary_10_2217_epi_10_46 crossref_primary_10_1534_genetics_106_068684 |
Cites_doi | 10.1126/science.1060118 10.1016/S0092-8674(01)00542-6 10.1016/S0092-8674(02)00798-5 10.1093/emboj/19.7.1587 10.1101/gad.14.4.452 10.1016/S0960-9822(99)00260-2 10.1016/S0959-437X(00)00058-7 10.1007/s00412-002-0182-8 10.1101/gad.8.10.1133 10.1242/jcs.109.11.2637 10.1016/0076-6879(91)94059-L 10.1093/genetics/131.2.287 10.1242/jcs.113.23.4177 10.1128/MCB.20.18.6970-6983.2000 10.1038/nature722 10.1016/0378-1119(93)90551-D 10.1073/pnas.162371699 10.1126/science.1064027 10.1007/BF00376796 10.1007/s004120050372 10.1002/1097-4652(200009)184:3<311::AID-JCP4>3.0.CO;2-D 10.1007/BF00265441 10.1016/S0092-8674(01)00281-1 10.1038/35007077 10.1093/genetics/136.1.53 10.1016/S0006-291X(02)03021-8 10.1128/MCB.19.6.4366 10.1038/70579 10.1126/science.1078694 10.1073/pnas.211303598 10.1038/566 10.1038/35065138 10.1126/science.1065366 10.1093/emboj/cdf560 10.1038/ncb739 10.1016/S1097-2765(00)80204-X 10.1126/science.1064150 10.1093/embo-reports/kvf156 10.1074/jbc.272.23.14983 10.1093/nar/20.22.6067 10.1016/S0092-8674(00)00177-X 10.1242/jcs.110.16.1851 10.1038/35020506 10.1016/S0092-8674(02)00644-X 10.1038/35048610 10.1038/35065132 10.1126/science.1069473 10.1101/gad.9.2.218 10.1242/dev.00405 10.1126/science.1078572 10.1016/S0092-8674(01)00329-4 10.1016/S0076-6879(03)75025-3 10.1093/nar/30.7.1465 10.1016/S0960-9822(00)00467-X 10.1016/S1097-2765(01)00218-0 10.1016/S1047-8477(02)00536-1 |
ContentType | Journal Article |
Copyright | Copyright © 2004, American Society for Microbiology 2004 |
Copyright_xml | – notice: Copyright © 2004, American Society for Microbiology 2004 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM M7N 7X8 5PM |
DOI | 10.1128/MCB.24.8.3157-3167.2004 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1098-5549 |
EndPage | 3167 |
ExternalDocumentID | 10_1128_MCB_24_8_3157_3167_2004 15060140 12268733 mcb_24_8_3157 |
Genre | DNA Dynamics and Chromosome Structure Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 18M 29M 2WC 39C 3O- 4.4 53G 5RE 5VS 9M8 AAPBV AAUGY ABPTK ACGFO ACKIV ACNCT ADBBV ADIYS AENEX AFFNX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE HZ~ IH2 KQ8 L7B MVM N9A O9- OK1 P2P RHF RHI RNS RPM RSF TFL TFW TR2 UCJ UDS VQA W8F WH7 WHG WOQ X7M Y6R ZA5 ZCA ZGI ABJNI ABRLO ABTAH AEOZL AGHSJ CGR CUY CVF ECM EIF EMOBN F20 M4Z NPM TDBHL YYP ZXP ZY4 AAYXX CITATION 7TM M7N 7X8 5PM |
ID | FETCH-LOGICAL-c648t-64df1123aaf9663cc7bb7b6312143821052c900e7d036bfaf089359d72085efe3 |
IEDL.DBID | RPM |
ISSN | 0270-7306 1098-5549 |
IngestDate | Tue Sep 17 21:24:52 EDT 2024 Thu Oct 24 22:10:59 EDT 2024 Sat Oct 05 06:36:01 EDT 2024 Thu Sep 12 19:36:17 EDT 2024 Sat Sep 28 08:36:12 EDT 2024 Tue Jun 13 19:24:48 EDT 2023 Wed May 18 15:25:59 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c648t-64df1123aaf9663cc7bb7b6312143821052c900e7d036bfaf089359d72085efe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Corresponding author. Mailing address: National Cancer Institute, NIH, Bethesda, MD 20892. Phone: (301) 402-3959. Fax: (301) 496-4951. E-mail: mistelit@mail.nih.gov. |
OpenAccessLink | https://europepmc.org/articles/pmc381678?pdf=render |
PMID | 15060140 |
PQID | 17931201 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_17931201 crossref_primary_10_1128_MCB_24_8_3157_3167_2004 informaworld_taylorfrancis_310_1128_MCB_24_8_3157_3167_2004 pubmed_primary_15060140 proquest_miscellaneous_71798159 pubmedcentral_primary_oai_pubmedcentral_nih_gov_381678 highwire_asm_mcb_24_8_3157 |
PublicationCentury | 2000 |
PublicationDate | 2004-04-01 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 2004-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular and Cellular Biology |
PublicationTitleAlternate | Mol Cell Biol |
PublicationYear | 2004 |
Publisher | American Society for Microbiology Taylor & Francis |
Publisher_xml | – name: American Society for Microbiology – name: Taylor & Francis |
References | Clark R. F. (R11) 1992; 20 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R55 R14 R13 R16 R15 R18 R17 R19 Hagan I. (R21) 1997; 110 Lorentz A. (R30) 1992; 233 |
References_xml | – ident: R37 doi: 10.1126/science.1060118 – ident: R43 doi: 10.1016/S0092-8674(01)00542-6 – ident: R4 doi: 10.1016/S0092-8674(02)00798-5 – ident: R7 doi: 10.1093/emboj/19.7.1587 – ident: R9 doi: 10.1101/gad.14.4.452 – ident: R52 doi: 10.1016/S0960-9822(99)00260-2 – ident: R15 doi: 10.1016/S0959-437X(00)00058-7 – ident: R12 doi: 10.1007/s00412-002-0182-8 – ident: R3 doi: 10.1101/gad.8.10.1133 – ident: R16 doi: 10.1242/jcs.109.11.2637 – ident: R35 doi: 10.1016/0076-6879(91)94059-L – ident: R53 doi: 10.1093/genetics/131.2.287 – ident: R46 doi: 10.1242/jcs.113.23.4177 – ident: R54 doi: 10.1128/MCB.20.18.6970-6983.2000 – ident: R40 doi: 10.1038/nature722 – ident: R32 doi: 10.1016/0378-1119(93)90551-D – ident: R29 doi: 10.1073/pnas.162371699 – ident: R6 doi: 10.1126/science.1064027 – ident: R14 doi: 10.1007/BF00376796 – ident: R33 doi: 10.1007/s004120050372 – ident: R20 doi: 10.1002/1097-4652(200009)184:3<311::AID-JCP4>3.0.CO;2-D – volume: 233 start-page: 436 year: 1992 ident: R30 publication-title: Mol. Gen. Genet. doi: 10.1007/BF00265441 contributor: fullname: Lorentz A. – ident: R1 doi: 10.1016/S0092-8674(01)00281-1 – ident: R45 doi: 10.1038/35007077 – ident: R17 doi: 10.1093/genetics/136.1.53 – ident: R55 doi: 10.1016/S0006-291X(02)03021-8 – ident: R49 doi: 10.1128/MCB.19.6.4366 – ident: R19 doi: 10.1038/70579 – ident: R18 doi: 10.1126/science.1078694 – ident: R24 doi: 10.1073/pnas.211303598 – ident: R25 doi: 10.1038/566 – ident: R5 doi: 10.1038/35065138 – ident: R22 doi: 10.1126/science.1065366 – ident: R39 doi: 10.1093/emboj/cdf560 – ident: R42 doi: 10.1038/ncb739 – ident: R36 doi: 10.1016/S1097-2765(00)80204-X – ident: R41 doi: 10.1126/science.1064150 – ident: R8 doi: 10.1093/embo-reports/kvf156 – ident: R56 doi: 10.1074/jbc.272.23.14983 – volume: 20 start-page: 6067 year: 1992 ident: R11 publication-title: Nucleic Acids Res. doi: 10.1093/nar/20.22.6067 contributor: fullname: Clark R. F. – ident: R31 doi: 10.1016/S0092-8674(00)00177-X – volume: 110 start-page: 1851 issue: 16 year: 1997 ident: R21 publication-title: J. Cell Sci., doi: 10.1242/jcs.110.16.1851 contributor: fullname: Hagan I. – ident: R47 doi: 10.1038/35020506 – ident: R48 doi: 10.1016/S0092-8674(02)00644-X – ident: R34 doi: 10.1038/35048610 – ident: R27 doi: 10.1038/35065132 – ident: R26 doi: 10.1126/science.1069473 – ident: R2 doi: 10.1101/gad.9.2.218 – ident: R28 doi: 10.1242/dev.00405 – ident: R10 doi: 10.1126/science.1078572 – ident: R50 doi: 10.1016/S0092-8674(01)00329-4 – ident: R44 doi: 10.1016/S0076-6879(03)75025-3 – ident: R23 doi: 10.1093/nar/30.7.1465 – ident: R13 doi: 10.1016/S0960-9822(00)00467-X – ident: R38 doi: 10.1016/S1097-2765(01)00218-0 – ident: R51 doi: 10.1016/S1047-8477(02)00536-1 |
SSID | ssj0006903 |
Score | 2.094105 |
Snippet | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by... |
SourceID | pubmedcentral proquest crossref pubmed informaworld highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3157 |
SubjectTerms | Animals Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism DNA Dynamics and Chromosome Structure Evolution, Molecular Fluorescence Recovery After Photobleaching Gene Silencing Heterochromatin Models, Genetic Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleosomes - metabolism Protein Binding Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism |
Title | In Vivo Dynamics of Swi6 in Yeast: Evidence for a Stochastic Model of Heterochromatin |
URI | http://mcb.asm.org/content/24/8/3157.abstract https://www.tandfonline.com/doi/abs/10.1128/MCB.24.8.3157-3167.2004 https://www.ncbi.nlm.nih.gov/pubmed/15060140 https://search.proquest.com/docview/17931201 https://search.proquest.com/docview/71798159 https://pubmed.ncbi.nlm.nih.gov/PMC381678 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7RSQheEIwfy4DhB17TpoljZ_AE3aYCKgKNovFkOa6tRVqdac1A_PfcOQntpk1IvMY_lPgu9nf2-fsAXpsCIVvBs9g6TldyrIj1vtYxYZGkxBVGBoqN2WcxnfOPJ_lJdyls1aVVelNWQ3-2HPrqNORWni_NqM8TG32ZTeiwSxajAQzQP_sIvZt9MdoLp8qpTGIsFV1OF07Do9nk_TDlwwLj1Jw254QM8WFQ5iFaEtoA2VycesLgayymN2HR6ymVG2vU0UN40IFL9q79iEdwx_ptuNvKTf7ehnuTXt3tMcw_ePa9-lmzg1aSfsVqx45_VYJVnv0gQZ83rFccZfhWTLPjpjanmnidGSmonVGLKWXT4OOLmpCvfwLzo8Nvk2ncSSzERvCiiQVfOBybTGuHcU9mjCxLWYpsnJIsOoaDeWr2k8TKBa50pdMuKegq70KStKd1NnsKW772dgeY1rlEfMHNQhuec4ykEpvkemwddu64iyDpx1adt0waKkQgaaHQMirlqlBkGUWWIXlMHsFubwOlV0u1NOW6WgRvN62imrDD4Vo5Eqzxr65f9UZUOPJ0SqK9rS9XimasMcKi22tIInlDGBjBs9bo6-_p_CgCccUd_lYgMu-rJejjgdS79end_234HO6vc4pewFZzcWlfIlxqyj0YfPpa7IW_5A87txAZ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEWovBcqjKY_6wDXZbOLEKT3BQrWFboXULiony_HaatSuU3WzIPrrmcmD3a5ACK6Jbcmesf2NPf4-gNc6Q8iW8dg3ltOTHJP6ak8pn7BImOMOI2qKjdFxOhzzj2fJWfsobNamVTqdF4G7nAauOK9zK6-mutflifU-jwZ02SWy3l24h9M15F2M3q6_GO_V98qRCH3037TN6sKFuDcavAsiHmQYqSZ0PJeKOkKstXmImISOQJa3p44yeIXH9HdodDWpcmmXOngA465_TXLKRTCv8kDfrFA__usAPITNFrayt83fR3DHuC243whZ_tiC9UGnG_cYxoeOfSm-lex9I3Y_Y6VlJ9-LlBWOfSWpoDes0zJl2Fum2ElV6nNFjNGMtNkuqcaQ8nTw83VJmNo9gfHBh9PB0G_FG3yd8qzyUz6xOOaxUhYjqlhrkeciT-N-RILrGGgmkd4LQyMmuIfmVtkwo0fCE0Giocaa-CmsudKZbWBKJQKRC9cTpXnCMUYLTZiovrHYuOXWg7CzmbxqODpkHdtEmUSLy4jLTJLFJVmchDe5BzudbaWaTeVU54tiHuwvW1tW9dmJbYROsMTfmt7tnEPiyNP9i3KmnM8krYV9BFx_LiGIPg4BpgfPGmda9Kf1Tw_SW272qwDRhN_-g85T04U3zrLzvxV3YX14OjqSR4fHn57DxiJz6QWsVddz8xJBWZW_qufgT4chMOo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIo4XjnKlHPUDrzk2ceIUnmDLagtsVaksap8sx7HViG6y6mZB8OuZycFuVyCkvibjSPZM7G_s8fcBvNYpQraUR66xnK7kmMRV-0q5hEWCDFcY0VBsTI6S8ZR_PI1PtyDt78I0Rfs6K7zyYuaVxXlTWzmfab-vE_OPJ0M67BKpP8-tfwNu4i8bJH2e3s3BmPM1Z8uhCFyM4aSr7MLJ2J8M33sh91LMVmPaoktEkyU2-jxETkLbIOtLVE8bvMFl-jdEullYubZSje7DWd_HtkDlm7esM0__2qB_vM4gPIB7HXxl71qLh7Blyh241Qpa_tyBO8NeP-4RTA9L9rX4XrGDVvR-wSrLTn4UCStKdkaSQW9Yr2nKsMdMsZO60ueKmKMZabRdUIsx1evg48uKsHX5GKajD1-GY7cTcXB1wtPaTXhucdwjpSxmVpHWIstElkSDkITXMeGMQ70fBEbkuJZmVtkgpcvCuSDxUGNN9AS2y6o0z4ApFQtEMFznSvOYY64WmCBWA2Px45ZbB4Leb3LecnXIJscJU4lelyGXqSSvS_I6CXByB3Z7_0q1mMmZzlZmDrxd97ismz0U2wqeoMX_Pr3XB4jEkadzGFWaarmQNCcOEHj920IQjRwCTQeetgG16k8Xow4kV0LtjwHRhV99gwHU0Ia3AbN73YZ7cPv4YCQ_Hx59eg53VwVML2C7vlyal4jN6uxV8xv-BinuM2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Dynamics+of+Swi6+in+Yeast%3A+Evidence+for+a+Stochastic+Model+of+Heterochromatin&rft.jtitle=Molecular+and+Cellular+Biology&rft.au=Thierry+Cheutin&rft.au=Stanislaw+A.+Gorski&rft.au=Karen+M.+May&rft.au=Prim+B.+Singh&rft.date=2004-04-01&rft.pub=American+Society+for+Microbiology&rft.issn=0270-7306&rft.eissn=1098-5549&rft.volume=24&rft.issue=8&rft.spage=3157&rft_id=info:doi/10.1128%2FMCB.24.8.3157-3167.2004&rft_id=info%3Apmid%2F15060140&rft.externalDBID=n%2Fa&rft.externalDocID=mcb_24_8_3157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-7306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-7306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-7306&client=summon |