In Vivo Dynamics of Swi6 in Yeast: Evidence for a Stochastic Model of Heterochromatin

Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inMolecular and Cellular Biology Vol. 24; no. 8; pp. 3157 - 3167
Main Authors Cheutin, Thierry, Gorski, Stanislaw A., May, Karen M., Singh, Prim B., Misteli, Tom
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.04.2004
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MCB .asm.org, visit: MCB       
AbstractList The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6(-) and swi6(+) strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast.
The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6 − and swi6 + strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast.
Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MCB .asm.org, visit: MCB       
The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6 super(-) and swi6 super(+) strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast.
The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe , the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6 − and swi6 + strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast.
Author Stanislaw A. Gorski
Thierry Cheutin
Karen M. May
Tom Misteli
Prim B. Singh
AuthorAffiliation National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, 1 Nuclear Reprogramming Laboratory, The Roslin Institute, Midlothian EH25 9PS, Scotland, United Kingdom 2
AuthorAffiliation_xml – name: National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, 1 Nuclear Reprogramming Laboratory, The Roslin Institute, Midlothian EH25 9PS, Scotland, United Kingdom 2
Author_xml – sequence: 1
  givenname: Thierry
  surname: Cheutin
  fullname: Cheutin, Thierry
  organization: National Cancer Institute, National Institutes of Health
– sequence: 2
  givenname: Stanislaw A.
  surname: Gorski
  fullname: Gorski, Stanislaw A.
  organization: National Cancer Institute, National Institutes of Health
– sequence: 3
  givenname: Karen M.
  surname: May
  fullname: May, Karen M.
  organization: Nuclear Reprogramming Laboratory, The Roslin Institute
– sequence: 4
  givenname: Prim B.
  surname: Singh
  fullname: Singh, Prim B.
  organization: Nuclear Reprogramming Laboratory, The Roslin Institute
– sequence: 5
  givenname: Tom
  surname: Misteli
  fullname: Misteli, Tom
  email: mistelit@mail.nih.gov
  organization: National Cancer Institute, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15060140$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFVwBz4ZYwjhPbQeJAl5ZWasWhFImT5Th21yixi53d1b59He2KwqknS57vH8_4O0FHPniD0DsCJSGV-HizPCuruhQlJQ0vKGG8rADqF2hBoBVF09TtEVpAxaHgFNgxOknpNwCwFugrdEwaYEBqWKC7K49_uk3AX3dejU4nHCy-3TqGnce_jErTJ3y-cb3x2mAbIlb4dgp6lQtO45vQm2FOXJrJxHwdw6gm51-jl1YNybw5nKfo7uL8x_KyuP7-7Wr55brQrBZTwere5nWoUrZljGrNu453jJKK1FRUBJpKtwCG90BZZ5UF0dKm7XkFojHW0FP0ed_3Yd2NptfGT1EN8iG6UcWdDMrJ_yvereR92Egq8peJnP9wyMfwZ23SJEeXtBkG5U1YJ8kJbwVp2mfBzOWpgWSQ70EdQ0rR2L_DEJCzOpnVyaqWQs7q5KxOzupy8u2_uzzlDq4ycLYHnM8iRrUNcejlpHZDiDYqr13K7Z595f2-ycrdr7YuGqnSKEfdPdH0EX7ztrA
CitedBy_id crossref_primary_10_1016_j_ydbio_2006_06_039
crossref_primary_10_1016_j_gde_2007_08_004
crossref_primary_10_1146_annurev_cellbio_100617_062653
crossref_primary_10_1016_j_molcel_2023_04_020
crossref_primary_10_1038_srep04789
crossref_primary_10_1016_j_molcel_2012_05_009
crossref_primary_10_1371_journal_pone_0159292
crossref_primary_10_1007_s13258_021_01203_y
crossref_primary_10_4161_cc_22234
crossref_primary_10_1016_j_tcb_2014_01_002
crossref_primary_10_1101_gr_086231_108
crossref_primary_10_1016_j_molcel_2013_06_013
crossref_primary_10_1016_j_molcel_2005_10_002
crossref_primary_10_1038_nrg2008
crossref_primary_10_1101_sqb_2004_69_419
crossref_primary_10_1088_0953_8984_27_6_064110
crossref_primary_10_1101_gad_226118_113
crossref_primary_10_1016_j_cell_2007_01_028
crossref_primary_10_1016_j_tig_2016_02_005
crossref_primary_10_1016_j_cell_2006_12_035
crossref_primary_10_1007_s00425_005_0129_4
crossref_primary_10_1007_s10577_010_9155_6
crossref_primary_10_1002_bies_201200076
crossref_primary_10_1016_j_biosystems_2005_09_007
crossref_primary_10_1016_j_jmb_2004_10_002
crossref_primary_10_1007_s00427_004_0448_7
crossref_primary_10_1128_MCB_24_14_6393_6402_2004
crossref_primary_10_1534_genetics_111_137083
crossref_primary_10_1088_0953_8984_27_6_064109
crossref_primary_10_1093_nar_gkaa145
crossref_primary_10_1038_s41586_019_1669_2
crossref_primary_10_1016_j_yexcr_2009_07_022
crossref_primary_10_1105_tpc_105_036855
crossref_primary_10_7554_eLife_53155
crossref_primary_10_1007_s10238_015_0364_3
crossref_primary_10_1515_BC_2005_030
crossref_primary_10_1126_sciadv_abk0793
crossref_primary_10_1371_journal_pone_0086451
crossref_primary_10_1016_j_jbc_2022_101623
crossref_primary_10_1016_j_bbagen_2020_129771
crossref_primary_10_1038_srep10243
crossref_primary_10_1080_15476286_2015_1022704
crossref_primary_10_1083_jcb_200804041
crossref_primary_10_1146_annurev_genet_38_072902_091907
crossref_primary_10_15252_embj_201591320
crossref_primary_10_1038_ncomms11310
crossref_primary_10_1016_j_molcel_2005_07_021
crossref_primary_10_1016_j_bpj_2009_08_057
crossref_primary_10_1002_yea_1095
crossref_primary_10_1073_pnas_0811161106
crossref_primary_10_1038_s42003_023_05154_w
crossref_primary_10_1038_ncomms2259
crossref_primary_10_1021_acs_jctc_9b00434
crossref_primary_10_1534_genetics_104_032714
crossref_primary_10_1093_jb_mvu032
crossref_primary_10_1074_jbc_M600558200
crossref_primary_10_1038_nrg1920
crossref_primary_10_1042_BCJ20160123
crossref_primary_10_1101_sqb_2006_71_059
crossref_primary_10_1093_g3journal_jkad123
crossref_primary_10_2217_epi_10_46
crossref_primary_10_1534_genetics_106_068684
Cites_doi 10.1126/science.1060118
10.1016/S0092-8674(01)00542-6
10.1016/S0092-8674(02)00798-5
10.1093/emboj/19.7.1587
10.1101/gad.14.4.452
10.1016/S0960-9822(99)00260-2
10.1016/S0959-437X(00)00058-7
10.1007/s00412-002-0182-8
10.1101/gad.8.10.1133
10.1242/jcs.109.11.2637
10.1016/0076-6879(91)94059-L
10.1093/genetics/131.2.287
10.1242/jcs.113.23.4177
10.1128/MCB.20.18.6970-6983.2000
10.1038/nature722
10.1016/0378-1119(93)90551-D
10.1073/pnas.162371699
10.1126/science.1064027
10.1007/BF00376796
10.1007/s004120050372
10.1002/1097-4652(200009)184:3<311::AID-JCP4>3.0.CO;2-D
10.1007/BF00265441
10.1016/S0092-8674(01)00281-1
10.1038/35007077
10.1093/genetics/136.1.53
10.1016/S0006-291X(02)03021-8
10.1128/MCB.19.6.4366
10.1038/70579
10.1126/science.1078694
10.1073/pnas.211303598
10.1038/566
10.1038/35065138
10.1126/science.1065366
10.1093/emboj/cdf560
10.1038/ncb739
10.1016/S1097-2765(00)80204-X
10.1126/science.1064150
10.1093/embo-reports/kvf156
10.1074/jbc.272.23.14983
10.1093/nar/20.22.6067
10.1016/S0092-8674(00)00177-X
10.1242/jcs.110.16.1851
10.1038/35020506
10.1016/S0092-8674(02)00644-X
10.1038/35048610
10.1038/35065132
10.1126/science.1069473
10.1101/gad.9.2.218
10.1242/dev.00405
10.1126/science.1078572
10.1016/S0092-8674(01)00329-4
10.1016/S0076-6879(03)75025-3
10.1093/nar/30.7.1465
10.1016/S0960-9822(00)00467-X
10.1016/S1097-2765(01)00218-0
10.1016/S1047-8477(02)00536-1
ContentType Journal Article
Copyright Copyright © 2004, American Society for Microbiology 2004
Copyright_xml – notice: Copyright © 2004, American Society for Microbiology 2004
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
M7N
7X8
5PM
DOI 10.1128/MCB.24.8.3157-3167.2004
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


Algology Mycology and Protozoology Abstracts (Microbiology C)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1098-5549
EndPage 3167
ExternalDocumentID 10_1128_MCB_24_8_3157_3167_2004
15060140
12268733
mcb_24_8_3157
Genre DNA Dynamics and Chromosome Structure
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
18M
29M
2WC
39C
3O-
4.4
53G
5RE
5VS
9M8
AAPBV
AAUGY
ABPTK
ACGFO
ACKIV
ACNCT
ADBBV
ADIYS
AENEX
AFFNX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
HZ~
IH2
KQ8
L7B
MVM
N9A
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TFL
TFW
TR2
UCJ
UDS
VQA
W8F
WH7
WHG
WOQ
X7M
Y6R
ZA5
ZCA
ZGI
ABJNI
ABRLO
ABTAH
AEOZL
AGHSJ
CGR
CUY
CVF
ECM
EIF
EMOBN
F20
M4Z
NPM
TDBHL
YYP
ZXP
ZY4
AAYXX
CITATION
7TM
M7N
7X8
5PM
ID FETCH-LOGICAL-c648t-64df1123aaf9663cc7bb7b6312143821052c900e7d036bfaf089359d72085efe3
IEDL.DBID RPM
ISSN 0270-7306
1098-5549
IngestDate Tue Sep 17 21:24:52 EDT 2024
Thu Oct 24 22:10:59 EDT 2024
Sat Oct 05 06:36:01 EDT 2024
Thu Sep 12 19:36:17 EDT 2024
Sat Sep 28 08:36:12 EDT 2024
Tue Jun 13 19:24:48 EDT 2023
Wed May 18 15:25:59 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c648t-64df1123aaf9663cc7bb7b6312143821052c900e7d036bfaf089359d72085efe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: National Cancer Institute, NIH, Bethesda, MD 20892. Phone: (301) 402-3959. Fax: (301) 496-4951. E-mail: mistelit@mail.nih.gov.
OpenAccessLink https://europepmc.org/articles/pmc381678?pdf=render
PMID 15060140
PQID 17931201
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_17931201
crossref_primary_10_1128_MCB_24_8_3157_3167_2004
informaworld_taylorfrancis_310_1128_MCB_24_8_3157_3167_2004
pubmed_primary_15060140
proquest_miscellaneous_71798159
pubmedcentral_primary_oai_pubmedcentral_nih_gov_381678
highwire_asm_mcb_24_8_3157
PublicationCentury 2000
PublicationDate 2004-04-01
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular and Cellular Biology
PublicationTitleAlternate Mol Cell Biol
PublicationYear 2004
Publisher American Society for Microbiology
Taylor & Francis
Publisher_xml – name: American Society for Microbiology
– name: Taylor & Francis
References Clark R. F. (R11) 1992; 20
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R55
R14
R13
R16
R15
R18
R17
R19
Hagan I. (R21) 1997; 110
Lorentz A. (R30) 1992; 233
References_xml – ident: R37
  doi: 10.1126/science.1060118
– ident: R43
  doi: 10.1016/S0092-8674(01)00542-6
– ident: R4
  doi: 10.1016/S0092-8674(02)00798-5
– ident: R7
  doi: 10.1093/emboj/19.7.1587
– ident: R9
  doi: 10.1101/gad.14.4.452
– ident: R52
  doi: 10.1016/S0960-9822(99)00260-2
– ident: R15
  doi: 10.1016/S0959-437X(00)00058-7
– ident: R12
  doi: 10.1007/s00412-002-0182-8
– ident: R3
  doi: 10.1101/gad.8.10.1133
– ident: R16
  doi: 10.1242/jcs.109.11.2637
– ident: R35
  doi: 10.1016/0076-6879(91)94059-L
– ident: R53
  doi: 10.1093/genetics/131.2.287
– ident: R46
  doi: 10.1242/jcs.113.23.4177
– ident: R54
  doi: 10.1128/MCB.20.18.6970-6983.2000
– ident: R40
  doi: 10.1038/nature722
– ident: R32
  doi: 10.1016/0378-1119(93)90551-D
– ident: R29
  doi: 10.1073/pnas.162371699
– ident: R6
  doi: 10.1126/science.1064027
– ident: R14
  doi: 10.1007/BF00376796
– ident: R33
  doi: 10.1007/s004120050372
– ident: R20
  doi: 10.1002/1097-4652(200009)184:3<311::AID-JCP4>3.0.CO;2-D
– volume: 233
  start-page: 436
  year: 1992
  ident: R30
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00265441
  contributor:
    fullname: Lorentz A.
– ident: R1
  doi: 10.1016/S0092-8674(01)00281-1
– ident: R45
  doi: 10.1038/35007077
– ident: R17
  doi: 10.1093/genetics/136.1.53
– ident: R55
  doi: 10.1016/S0006-291X(02)03021-8
– ident: R49
  doi: 10.1128/MCB.19.6.4366
– ident: R19
  doi: 10.1038/70579
– ident: R18
  doi: 10.1126/science.1078694
– ident: R24
  doi: 10.1073/pnas.211303598
– ident: R25
  doi: 10.1038/566
– ident: R5
  doi: 10.1038/35065138
– ident: R22
  doi: 10.1126/science.1065366
– ident: R39
  doi: 10.1093/emboj/cdf560
– ident: R42
  doi: 10.1038/ncb739
– ident: R36
  doi: 10.1016/S1097-2765(00)80204-X
– ident: R41
  doi: 10.1126/science.1064150
– ident: R8
  doi: 10.1093/embo-reports/kvf156
– ident: R56
  doi: 10.1074/jbc.272.23.14983
– volume: 20
  start-page: 6067
  year: 1992
  ident: R11
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/20.22.6067
  contributor:
    fullname: Clark R. F.
– ident: R31
  doi: 10.1016/S0092-8674(00)00177-X
– volume: 110
  start-page: 1851
  issue: 16
  year: 1997
  ident: R21
  publication-title: J. Cell Sci.,
  doi: 10.1242/jcs.110.16.1851
  contributor:
    fullname: Hagan I.
– ident: R47
  doi: 10.1038/35020506
– ident: R48
  doi: 10.1016/S0092-8674(02)00644-X
– ident: R34
  doi: 10.1038/35048610
– ident: R27
  doi: 10.1038/35065132
– ident: R26
  doi: 10.1126/science.1069473
– ident: R2
  doi: 10.1101/gad.9.2.218
– ident: R28
  doi: 10.1242/dev.00405
– ident: R10
  doi: 10.1126/science.1078572
– ident: R50
  doi: 10.1016/S0092-8674(01)00329-4
– ident: R44
  doi: 10.1016/S0076-6879(03)75025-3
– ident: R23
  doi: 10.1093/nar/30.7.1465
– ident: R13
  doi: 10.1016/S0960-9822(00)00467-X
– ident: R38
  doi: 10.1016/S1097-2765(01)00218-0
– ident: R51
  doi: 10.1016/S1047-8477(02)00536-1
SSID ssj0006903
Score 2.094105
Snippet Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by...
SourceID pubmedcentral
proquest
crossref
pubmed
informaworld
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3157
SubjectTerms Animals
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
DNA Dynamics and Chromosome Structure
Evolution, Molecular
Fluorescence Recovery After Photobleaching
Gene Silencing
Heterochromatin
Models, Genetic
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nucleosomes - metabolism
Protein Binding
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
Title In Vivo Dynamics of Swi6 in Yeast: Evidence for a Stochastic Model of Heterochromatin
URI http://mcb.asm.org/content/24/8/3157.abstract
https://www.tandfonline.com/doi/abs/10.1128/MCB.24.8.3157-3167.2004
https://www.ncbi.nlm.nih.gov/pubmed/15060140
https://search.proquest.com/docview/17931201
https://search.proquest.com/docview/71798159
https://pubmed.ncbi.nlm.nih.gov/PMC381678
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7RSQheEIwfy4DhB17TpoljZ_AE3aYCKgKNovFkOa6tRVqdac1A_PfcOQntpk1IvMY_lPgu9nf2-fsAXpsCIVvBs9g6TldyrIj1vtYxYZGkxBVGBoqN2WcxnfOPJ_lJdyls1aVVelNWQ3-2HPrqNORWni_NqM8TG32ZTeiwSxajAQzQP_sIvZt9MdoLp8qpTGIsFV1OF07Do9nk_TDlwwLj1Jw254QM8WFQ5iFaEtoA2VycesLgayymN2HR6ymVG2vU0UN40IFL9q79iEdwx_ptuNvKTf7ehnuTXt3tMcw_ePa9-lmzg1aSfsVqx45_VYJVnv0gQZ83rFccZfhWTLPjpjanmnidGSmonVGLKWXT4OOLmpCvfwLzo8Nvk2ncSSzERvCiiQVfOBybTGuHcU9mjCxLWYpsnJIsOoaDeWr2k8TKBa50pdMuKegq70KStKd1NnsKW772dgeY1rlEfMHNQhuec4ykEpvkemwddu64iyDpx1adt0waKkQgaaHQMirlqlBkGUWWIXlMHsFubwOlV0u1NOW6WgRvN62imrDD4Vo5Eqzxr65f9UZUOPJ0SqK9rS9XimasMcKi22tIInlDGBjBs9bo6-_p_CgCccUd_lYgMu-rJejjgdS79end_234HO6vc4pewFZzcWlfIlxqyj0YfPpa7IW_5A87txAZ
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEWovBcqjKY_6wDXZbOLEKT3BQrWFboXULiony_HaatSuU3WzIPrrmcmD3a5ACK6Jbcmesf2NPf4-gNc6Q8iW8dg3ltOTHJP6ak8pn7BImOMOI2qKjdFxOhzzj2fJWfsobNamVTqdF4G7nAauOK9zK6-mutflifU-jwZ02SWy3l24h9M15F2M3q6_GO_V98qRCH3037TN6sKFuDcavAsiHmQYqSZ0PJeKOkKstXmImISOQJa3p44yeIXH9HdodDWpcmmXOngA465_TXLKRTCv8kDfrFA__usAPITNFrayt83fR3DHuC243whZ_tiC9UGnG_cYxoeOfSm-lex9I3Y_Y6VlJ9-LlBWOfSWpoDes0zJl2Fum2ElV6nNFjNGMtNkuqcaQ8nTw83VJmNo9gfHBh9PB0G_FG3yd8qzyUz6xOOaxUhYjqlhrkeciT-N-RILrGGgmkd4LQyMmuIfmVtkwo0fCE0Giocaa-CmsudKZbWBKJQKRC9cTpXnCMUYLTZiovrHYuOXWg7CzmbxqODpkHdtEmUSLy4jLTJLFJVmchDe5BzudbaWaTeVU54tiHuwvW1tW9dmJbYROsMTfmt7tnEPiyNP9i3KmnM8krYV9BFx_LiGIPg4BpgfPGmda9Kf1Tw_SW272qwDRhN_-g85T04U3zrLzvxV3YX14OjqSR4fHn57DxiJz6QWsVddz8xJBWZW_qufgT4chMOo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIo4XjnKlHPUDrzk2ceIUnmDLagtsVaksap8sx7HViG6y6mZB8OuZycFuVyCkvibjSPZM7G_s8fcBvNYpQraUR66xnK7kmMRV-0q5hEWCDFcY0VBsTI6S8ZR_PI1PtyDt78I0Rfs6K7zyYuaVxXlTWzmfab-vE_OPJ0M67BKpP8-tfwNu4i8bJH2e3s3BmPM1Z8uhCFyM4aSr7MLJ2J8M33sh91LMVmPaoktEkyU2-jxETkLbIOtLVE8bvMFl-jdEullYubZSje7DWd_HtkDlm7esM0__2qB_vM4gPIB7HXxl71qLh7Blyh241Qpa_tyBO8NeP-4RTA9L9rX4XrGDVvR-wSrLTn4UCStKdkaSQW9Yr2nKsMdMsZO60ueKmKMZabRdUIsx1evg48uKsHX5GKajD1-GY7cTcXB1wtPaTXhucdwjpSxmVpHWIstElkSDkITXMeGMQ70fBEbkuJZmVtkgpcvCuSDxUGNN9AS2y6o0z4ApFQtEMFznSvOYY64WmCBWA2Px45ZbB4Leb3LecnXIJscJU4lelyGXqSSvS_I6CXByB3Z7_0q1mMmZzlZmDrxd97ismz0U2wqeoMX_Pr3XB4jEkadzGFWaarmQNCcOEHj920IQjRwCTQeetgG16k8Xow4kV0LtjwHRhV99gwHU0Ia3AbN73YZ7cPv4YCQ_Hx59eg53VwVML2C7vlyal4jN6uxV8xv-BinuM2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Dynamics+of+Swi6+in+Yeast%3A+Evidence+for+a+Stochastic+Model+of+Heterochromatin&rft.jtitle=Molecular+and+Cellular+Biology&rft.au=Thierry+Cheutin&rft.au=Stanislaw+A.+Gorski&rft.au=Karen+M.+May&rft.au=Prim+B.+Singh&rft.date=2004-04-01&rft.pub=American+Society+for+Microbiology&rft.issn=0270-7306&rft.eissn=1098-5549&rft.volume=24&rft.issue=8&rft.spage=3157&rft_id=info:doi/10.1128%2FMCB.24.8.3157-3167.2004&rft_id=info%3Apmid%2F15060140&rft.externalDBID=n%2Fa&rft.externalDocID=mcb_24_8_3157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-7306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-7306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-7306&client=summon