Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience w...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 34; no. 23; pp. 5813 - 5820
Main Authors Zhang, Donghui, Shadrin, Ilya Y., Lam, Jason, Xian, Hai-Qian, Snodgrass, H. Ralph, Bursac, Nenad
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm2, respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
AbstractList Abstract Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm2 , respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50  = 95.1 n m ). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm2, respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm², respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC₅₀ = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09±0.02 vs. 1.77±0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0±1.1 mN and 11.8±4.5 mN/mm 2 , respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7±1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7±0.3-fold force increase, EC 50 = 95.1 nM). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Author Bursac, Nenad
Shadrin, Ilya Y.
Snodgrass, H. Ralph
Zhang, Donghui
Lam, Jason
Xian, Hai-Qian
AuthorAffiliation 1 Department of Biomedical Engineering, Duke University, Durham, NC
2 VistaGen Therapeutics, Inc., San Francisco, CA
AuthorAffiliation_xml – name: 1 Department of Biomedical Engineering, Duke University, Durham, NC
– name: 2 VistaGen Therapeutics, Inc., San Francisco, CA
Author_xml – sequence: 1
  givenname: Donghui
  surname: Zhang
  fullname: Zhang, Donghui
  organization: Department of Biomedical Engineering, Duke University, Durham, NC, USA
– sequence: 2
  givenname: Ilya Y.
  surname: Shadrin
  fullname: Shadrin, Ilya Y.
  organization: Department of Biomedical Engineering, Duke University, Durham, NC, USA
– sequence: 3
  givenname: Jason
  surname: Lam
  fullname: Lam, Jason
  organization: VistaGen Therapeutics, Inc., San Francisco, CA, USA
– sequence: 4
  givenname: Hai-Qian
  surname: Xian
  fullname: Xian, Hai-Qian
  organization: VistaGen Therapeutics, Inc., San Francisco, CA, USA
– sequence: 5
  givenname: H. Ralph
  surname: Snodgrass
  fullname: Snodgrass, H. Ralph
  organization: VistaGen Therapeutics, Inc., San Francisco, CA, USA
– sequence: 6
  givenname: Nenad
  surname: Bursac
  fullname: Bursac, Nenad
  email: nbursac@duke.edu
  organization: Department of Biomedical Engineering, Duke University, Durham, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23642535$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFv4AiTlwS_BUn4VABSwtIlTi0nC3HnnS9JPZiJyvtv8fpdlGphNjT2JqZZ17NO2foxHkHCL0huCCYiHfrorV-UCMEq_pYUExYgXmBqXiGFqSu6rxscHmCFphwmjeC0FN0FuMapz_m9AU6pUxwWrJygbpbG-MEObg76wACmEyrYKzS2UaNepV1PmTKbJXTKdVNTo_WO9Vnaf4U1PzJfJetpkG57PJmmZukanug-GHn9W6E-BI975JWePUQz9GPq8vb5df8-vuXb8uP17kWvB5zTuuWkK4RgqYAGLhRFVZMmJZXoibpiZu6ZJwZIVhbGaYa3hnG2qaueGvYObrYczdTO4DR4MagerkJdlBhJ72y8u-Msyt557eSCYE5KxPg7QMg-F8TxFEONmroe-XAT1GSimDKSsLq_5cmHK9qXtJU-vqxrD96Dj6kgg_7Ah18jAE6qe14v92k0vaSYDlbL9fysfVytl5iLpP1CfH-CeIw5ajmz_tmSOZsLQQZtYXZcxtAj9J4exzm4glG99ZZrfqfsIO49lNwcw-RkUosb-YDne-TMIx5hec9fPo34FgVvwF2NP8a
CitedBy_id crossref_primary_10_1016_j_biomaterials_2013_10_052
crossref_primary_10_1016_j_recesp_2024_09_005
crossref_primary_10_1161_CIRCRESAHA_117_310862
crossref_primary_10_4161_org_28918
crossref_primary_10_1016_j_biomaterials_2017_10_054
crossref_primary_10_1002_adhm_201500331
crossref_primary_10_1016_j_molmed_2019_04_005
crossref_primary_10_3389_fcell_2021_730622
crossref_primary_10_1186_scrt376
crossref_primary_10_3390_cells9010009
crossref_primary_10_1038_nnano_2016_96
crossref_primary_10_3390_bioengineering9110646
crossref_primary_10_1002_adfm_201909009
crossref_primary_10_1016_j_addr_2015_11_020
crossref_primary_10_1089_ten_tec_2017_0190
crossref_primary_10_1042_EBC20200106
crossref_primary_10_1002_bit_27582
crossref_primary_10_5339_gcsp_2014_44
crossref_primary_10_1002_advs_202104299
crossref_primary_10_3389_fbioe_2020_00229
crossref_primary_10_15283_ijsc21077
crossref_primary_10_1155_2017_7648409
crossref_primary_10_1586_14779072_2014_879039
crossref_primary_10_1016_j_addr_2019_03_002
crossref_primary_10_1016_j_ydbio_2023_12_008
crossref_primary_10_3389_fcvm_2021_621781
crossref_primary_10_1039_C5TB01276G
crossref_primary_10_3390_biology10020135
crossref_primary_10_3389_fphar_2021_617922
crossref_primary_10_1002_jbm_b_34759
crossref_primary_10_1016_j_progpolymsci_2016_09_002
crossref_primary_10_1002_smll_201600178
crossref_primary_10_1021_acsami_6b14020
crossref_primary_10_1039_D0TB02312D
crossref_primary_10_1016_j_biomaterials_2018_11_033
crossref_primary_10_1007_s42247_019_00046_4
crossref_primary_10_1038_srep38815
crossref_primary_10_1038_s41598_018_37686_1
crossref_primary_10_1186_s12938_020_0752_0
crossref_primary_10_1021_acsami_0c03464
crossref_primary_10_1186_s13036_019_0155_6
crossref_primary_10_1002_adhm_202101018
crossref_primary_10_1002_ijch_201300064
crossref_primary_10_1016_j_lfs_2019_05_012
crossref_primary_10_1126_science_aaa5458
crossref_primary_10_1016_j_biomaterials_2014_02_001
crossref_primary_10_1016_j_bios_2018_10_061
crossref_primary_10_3389_fcvm_2020_586261
crossref_primary_10_3390_gels8120769
crossref_primary_10_1016_j_taap_2022_115886
crossref_primary_10_1007_s13239_024_00711_8
crossref_primary_10_2217_rme_13_56
crossref_primary_10_1021_acsami_0c17610
crossref_primary_10_1089_ten_teb_2014_0662
crossref_primary_10_1161_CIRCRESAHA_117_310738
crossref_primary_10_1093_icvts_ivy208
crossref_primary_10_1088_1758_5090_aa96de
crossref_primary_10_1021_acsnano_9b06761
crossref_primary_10_1002_mame_202300243
crossref_primary_10_1093_stcltm_szab002
crossref_primary_10_1002_mabi_201400448
crossref_primary_10_1089_ten_tec_2016_0257
crossref_primary_10_1002_adhm_202303957
crossref_primary_10_1039_D0TB00947D
crossref_primary_10_1007_s12265_018_9811_3
crossref_primary_10_1161_CIRCRESAHA_116_309040
crossref_primary_10_51335_organoid_2022_2_e1
crossref_primary_10_1007_s40778_016_0041_9
crossref_primary_10_1039_C9BM00817A
crossref_primary_10_1038_s41467_021_21682_7
crossref_primary_10_3390_polym13193411
crossref_primary_10_1016_j_jmbbm_2015_11_008
crossref_primary_10_1126_sciadv_abn2485
crossref_primary_10_1007_s00466_020_01882_6
crossref_primary_10_1016_j_copbio_2013_07_002
crossref_primary_10_1002_smll_202005828
crossref_primary_10_1039_C6TB00069J
crossref_primary_10_1038_s42003_020_0853_0
crossref_primary_10_1038_srep45499
crossref_primary_10_1038_s41569_019_0331_x
crossref_primary_10_1016_j_bioadv_2022_212916
crossref_primary_10_1016_j_jacc_2016_01_083
crossref_primary_10_3390_ijms21093404
crossref_primary_10_1002_jcb_28926
crossref_primary_10_1038_s41378_024_00692_7
crossref_primary_10_4137_BMI_S23912
crossref_primary_10_1016_j_biomaterials_2020_120204
crossref_primary_10_1177_2472555220975332
crossref_primary_10_3389_fbioe_2017_00040
crossref_primary_10_1038_s41598_021_87186_y
crossref_primary_10_1021_acsbiomaterials_4c00303
crossref_primary_10_1016_j_cej_2024_150403
crossref_primary_10_3390_ijms22168550
crossref_primary_10_1007_s12012_021_09696_5
crossref_primary_10_14814_phy2_15045
crossref_primary_10_1109_TBME_2019_2905763
crossref_primary_10_1177_1535370215589910
crossref_primary_10_1002_stem_2403
crossref_primary_10_1016_j_actbio_2016_11_058
crossref_primary_10_3389_fphys_2022_733706
crossref_primary_10_1002_jbm_a_37456
crossref_primary_10_1371_journal_pone_0131446
crossref_primary_10_1021_acsbiomaterials_9b00505
crossref_primary_10_1007_s12265_018_9801_5
crossref_primary_10_1016_j_vascn_2016_09_001
crossref_primary_10_1088_1758_5082_6_3_035012
crossref_primary_10_1002_adfm_201505372
crossref_primary_10_2139_ssrn_3910129
crossref_primary_10_1002_pat_4602
crossref_primary_10_1002_bit_28818
crossref_primary_10_53941_ijddp_2025_100001
crossref_primary_10_1002_adhm_202301335
crossref_primary_10_1161_CIRCULATIONAHA_117_024751
crossref_primary_10_1080_23746149_2019_1622451
crossref_primary_10_1016_j_jddst_2024_105489
crossref_primary_10_1093_cvr_cvt149
crossref_primary_10_1002_term_2117
crossref_primary_10_1073_pnas_1818392116
crossref_primary_10_1177_2211068214560903
crossref_primary_10_3390_ijms24065188
crossref_primary_10_3390_bioengineering9040168
crossref_primary_10_1016_j_biomaterials_2018_09_036
crossref_primary_10_1080_14740338_2016_1223624
crossref_primary_10_1016_j_tice_2020_101367
crossref_primary_10_1007_s10439_014_1206_2
crossref_primary_10_1159_000496934
crossref_primary_10_15252_emmm_201504395
crossref_primary_10_1016_j_actbio_2021_04_018
crossref_primary_10_1016_j_biomaterials_2024_122671
crossref_primary_10_1016_j_tcm_2016_05_001
crossref_primary_10_3389_fcell_2022_986107
crossref_primary_10_3389_fbioe_2020_00955
crossref_primary_10_1039_C6NR04545F
crossref_primary_10_1016_j_addr_2015_05_010
crossref_primary_10_1161_HCG_0000000000000043
crossref_primary_10_1172_JCI181630
crossref_primary_10_1039_D0LC01078B
crossref_primary_10_1016_j_addr_2015_05_004
crossref_primary_10_3390_cells7090114
crossref_primary_10_1098_rstb_2017_0225
crossref_primary_10_2217_3dp_2018_0017
crossref_primary_10_1002_stem_2732
crossref_primary_10_1007_s00018_016_2285_z
crossref_primary_10_1016_j_isci_2024_109954
crossref_primary_10_1016_j_bbamcr_2022_119379
crossref_primary_10_1016_j_isci_2022_103824
crossref_primary_10_1016_j_clinthera_2020_08_008
crossref_primary_10_1016_j_biomaterials_2014_04_116
crossref_primary_10_1002_jbm_a_37774
crossref_primary_10_1016_j_yjmcc_2023_03_009
crossref_primary_10_1515_medgen_2021_2094
crossref_primary_10_1016_j_pmatsci_2019_02_002
crossref_primary_10_1002_term_2568
crossref_primary_10_1007_s12015_017_9736_2
crossref_primary_10_1016_j_tcb_2016_11_010
crossref_primary_10_1038_srep43210
crossref_primary_10_3390_jfb14010040
crossref_primary_10_1016_j_biopha_2018_05_066
crossref_primary_10_1039_D0MH00542H
crossref_primary_10_1021_acsami_5b11671
crossref_primary_10_1016_j_cophys_2017_08_003
crossref_primary_10_1002_adbi_202000190
crossref_primary_10_1002_term_2392
crossref_primary_10_1007_s11936_014_0319_0
crossref_primary_10_1016_j_stemcr_2018_10_008
crossref_primary_10_1016_j_stemcr_2013_10_004
crossref_primary_10_3389_fbioe_2021_673212
crossref_primary_10_1038_srep45641
crossref_primary_10_1007_s00424_021_02536_z
crossref_primary_10_1126_scitranslmed_3008921
crossref_primary_10_1016_j_biomaterials_2015_12_011
crossref_primary_10_1016_j_addr_2015_04_019
crossref_primary_10_1093_toxsci_kfz168
crossref_primary_10_1016_j_cjca_2014_08_005
crossref_primary_10_1038_srep24726
crossref_primary_10_1063_1_5070106
crossref_primary_10_1038_nature22978
crossref_primary_10_1097_MAT_0000000000000765
crossref_primary_10_1016_j_biomaterials_2019_119638
crossref_primary_10_1016_j_biomaterials_2018_02_024
crossref_primary_10_1038_s41378_021_00344_0
crossref_primary_10_1177_0963689718779346
crossref_primary_10_1016_j_stemcr_2014_06_002
crossref_primary_10_1016_j_stem_2019_07_010
crossref_primary_10_1016_j_actbio_2016_06_001
crossref_primary_10_1088_1758_5082_6_2_024109
crossref_primary_10_1096_fj_13_228007
crossref_primary_10_1146_annurev_bioeng_092019_034950
crossref_primary_10_1016_j_yjmcc_2014_05_009
crossref_primary_10_1039_C8LC00654G
crossref_primary_10_1016_j_biomaterials_2014_05_080
crossref_primary_10_1038_s41551_024_01253_z
crossref_primary_10_4252_wjsc_v11_i1_34
crossref_primary_10_3389_fbioe_2022_871867
crossref_primary_10_1089_ten_teb_2024_0212
crossref_primary_10_4252_wjsc_v11_i1_33
crossref_primary_10_1016_j_biomaterials_2018_01_002
crossref_primary_10_1038_srep42290
crossref_primary_10_1016_j_biomaterials_2015_05_019
crossref_primary_10_1161_CIRCULATIONAHA_116_024145
crossref_primary_10_1016_j_bprint_2024_e00371
crossref_primary_10_1016_j_rec_2024_09_003
crossref_primary_10_1038_s41598_020_59371_y
crossref_primary_10_1016_j_pbiomolbio_2018_11_011
crossref_primary_10_1002_jbm_a_37737
crossref_primary_10_1016_j_biotechadv_2016_12_002
crossref_primary_10_1536_ihj_13_337
crossref_primary_10_1016_j_apmt_2024_102315
crossref_primary_10_1002_term_2129
crossref_primary_10_1016_j_biotechadv_2019_02_009
crossref_primary_10_1088_1758_5082_6_2_024113
crossref_primary_10_1016_j_stemcr_2019_05_024
crossref_primary_10_1016_j_yjmcc_2021_04_006
crossref_primary_10_1039_D0TB01528H
crossref_primary_10_3390_bioengineering4030071
crossref_primary_10_1038_nprot_2017_033
crossref_primary_10_1371_journal_pone_0126338
crossref_primary_10_1093_biosci_biv016
crossref_primary_10_1016_j_carbpol_2021_117924
crossref_primary_10_1016_j_msec_2020_111354
crossref_primary_10_1038_nm_3627
crossref_primary_10_1007_s00216_023_04596_9
crossref_primary_10_1016_j_jacc_2017_06_012
crossref_primary_10_1016_j_jmst_2021_03_062
crossref_primary_10_1016_j_actbio_2019_05_016
crossref_primary_10_1155_2017_5153625
crossref_primary_10_1093_cvr_cvab195
crossref_primary_10_1002_adma_202210713
crossref_primary_10_1063_1_5122804
crossref_primary_10_1038_s41551_018_0244_8
crossref_primary_10_1016_j_molmed_2018_06_009
crossref_primary_10_1161_CIRCEP_113_001050
crossref_primary_10_3389_fcell_2019_00164
crossref_primary_10_1155_2017_8473465
crossref_primary_10_1016_j_jbiomech_2018_03_040
crossref_primary_10_1038_s41578_021_00381_1
crossref_primary_10_1161_CIRCRESAHA_118_311213
crossref_primary_10_1002_admt_202401254
crossref_primary_10_1038_s41551_020_0539_4
crossref_primary_10_1016_j_biomaterials_2015_10_076
crossref_primary_10_1111_jcmm_16429
crossref_primary_10_1038_s41467_024_52221_9
crossref_primary_10_3390_coatings10100925
crossref_primary_10_1088_1758_5090_aaa15d
crossref_primary_10_1016_j_actbio_2021_03_007
crossref_primary_10_1093_ejcts_ezaa093
crossref_primary_10_3390_mi10070487
crossref_primary_10_1007_s43152_020_00007_8
crossref_primary_10_1186_s13619_023_00182_7
crossref_primary_10_1016_j_yjmcc_2022_06_007
crossref_primary_10_1038_srep06614
crossref_primary_10_1038_s41467_017_01946_x
crossref_primary_10_1089_scd_2014_0533
crossref_primary_10_1016_j_vascn_2020_106892
crossref_primary_10_1016_j_stemcr_2019_04_002
crossref_primary_10_3389_fcell_2017_00050
crossref_primary_10_1089_ten_tec_2020_0195
crossref_primary_10_1038_s41598_020_73801_x
crossref_primary_10_1089_adt_2017_792
crossref_primary_10_1093_lifemedi_lnac002
crossref_primary_10_1161_CIRCULATIONAHA_120_047904
crossref_primary_10_1021_acsbiomaterials_6b00109
crossref_primary_10_1016_j_phrs_2020_105176
crossref_primary_10_1161_CIRCRESAHA_118_311209
crossref_primary_10_1242_dev_143966
crossref_primary_10_1016_j_semcdb_2021_06_002
crossref_primary_10_1016_j_biomaterials_2019_119574
crossref_primary_10_1039_C5TB02658J
crossref_primary_10_1253_circj_CJ_16_1113
crossref_primary_10_3390_ijms23073482
crossref_primary_10_1038_s42003_022_03875_y
crossref_primary_10_1038_s41467_018_06347_2
crossref_primary_10_1371_journal_pone_0172671
crossref_primary_10_3389_fbioe_2023_1155052
crossref_primary_10_1002_adfm_202003440
crossref_primary_10_1039_C7BM00266A
crossref_primary_10_1586_14779072_2013_854165
crossref_primary_10_1115_1_4032355
crossref_primary_10_1002_mrd_22739
crossref_primary_10_1177_09636897211048786
crossref_primary_10_1088_1758_5090_aa6c3a
crossref_primary_10_1016_j_stemcr_2020_09_002
crossref_primary_10_1016_j_addr_2015_07_009
crossref_primary_10_3389_fpubh_2018_00185
crossref_primary_10_1016_j_addr_2015_07_004
crossref_primary_10_3389_fphys_2023_1123190
crossref_primary_10_1002_bit_25918
crossref_primary_10_1371_journal_pone_0127977
crossref_primary_10_3390_cimb47010007
crossref_primary_10_1146_annurev_chembioeng_092120_033922
crossref_primary_10_1038_s41551_022_00885_3
crossref_primary_10_1039_C7LC00740J
crossref_primary_10_1093_intbio_zyaa003
crossref_primary_10_1016_j_stemcr_2017_09_008
crossref_primary_10_1002_adbi_202200067
crossref_primary_10_1016_j_tcm_2013_05_003
crossref_primary_10_1016_j_biomaterials_2016_09_024
crossref_primary_10_1007_s10439_013_0966_4
crossref_primary_10_1016_j_biomaterials_2021_121133
crossref_primary_10_15212_bioi_2022_0027
crossref_primary_10_3389_fphys_2021_770906
crossref_primary_10_1063_5_0093399
crossref_primary_10_1007_s00424_021_02651_x
crossref_primary_10_1021_acsbiomaterials_7b00083
crossref_primary_10_1038_nrcardio_2016_36
crossref_primary_10_1089_ten_tea_2013_0620
crossref_primary_10_1517_17460441_2015_983471
crossref_primary_10_12688_f1000research_8237_1
crossref_primary_10_3389_fcell_2017_00019
crossref_primary_10_1016_j_yjmcc_2013_12_011
crossref_primary_10_1002_VIW_20200153
crossref_primary_10_1021_acsabm_0c01270
crossref_primary_10_1038_s41569_018_0032_x
crossref_primary_10_1002_adem_201900986
crossref_primary_10_1126_scitranslmed_aad2304
crossref_primary_10_1038_s41551_022_00884_4
crossref_primary_10_1021_acsbiomaterials_6b00547
crossref_primary_10_1016_j_coche_2014_11_004
crossref_primary_10_1039_C8BM01348A
crossref_primary_10_1016_j_biomaterials_2018_08_010
crossref_primary_10_1016_j_scr_2016_04_014
crossref_primary_10_1021_acsbiomaterials_6b00662
crossref_primary_10_1002_advs_202404509
crossref_primary_10_1039_C7BM00132K
crossref_primary_10_1039_C7NR00001D
crossref_primary_10_1002_smll_202202235
crossref_primary_10_1093_cvr_cvz010
crossref_primary_10_1016_j_bprint_2022_e00221
crossref_primary_10_3389_fcvm_2018_00052
crossref_primary_10_1089_ten_tec_2020_0342
crossref_primary_10_1021_nl502227a
crossref_primary_10_1039_C6TB00324A
crossref_primary_10_12688_f1000research_139482_1
crossref_primary_10_12688_f1000research_139482_2
crossref_primary_10_1016_j_biomaterials_2025_123275
crossref_primary_10_1038_s41598_017_08713_4
crossref_primary_10_1073_pnas_1707316114
crossref_primary_10_3389_fcvm_2022_889553
crossref_primary_10_1016_j_addr_2016_03_007
crossref_primary_10_3390_biomedicines9121836
crossref_primary_10_1016_j_jmbbm_2018_08_020
crossref_primary_10_3390_biomedicines9050563
crossref_primary_10_1016_j_actbio_2024_11_014
crossref_primary_10_4137_BMI_S20313
crossref_primary_10_1038_srep11817
crossref_primary_10_1089_ten_tea_2013_0312
crossref_primary_10_1007_s13346_025_01802_2
crossref_primary_10_3390_ijms22063005
crossref_primary_10_1016_j_biomaterials_2015_01_078
crossref_primary_10_14814_phy2_15407
crossref_primary_10_1016_j_biomaterials_2021_120764
crossref_primary_10_1016_j_flatc_2021_100315
crossref_primary_10_1186_scrt507
crossref_primary_10_1089_ten_tea_2016_0027
crossref_primary_10_1242_dev_133652
crossref_primary_10_1186_scrt406
crossref_primary_10_1016_j_colsurfb_2015_07_019
crossref_primary_10_1177_2280800018793818
crossref_primary_10_1007_s11936_015_0404_z
crossref_primary_10_1002_stem_3131
crossref_primary_10_1016_j_biomaterials_2015_01_067
crossref_primary_10_1042_CS20170055
crossref_primary_10_1016_j_biomaterials_2014_01_045
crossref_primary_10_1161_CIRCULATIONAHA_114_014998
crossref_primary_10_1002_btm2_10581
crossref_primary_10_1089_ars_2020_8193
crossref_primary_10_1038_srep08883
crossref_primary_10_1016_j_biomaterials_2016_10_029
crossref_primary_10_1002_ijch_201300050
crossref_primary_10_1177_1074248413520343
crossref_primary_10_1016_j_biopha_2023_115551
crossref_primary_10_1016_j_addr_2015_09_001
crossref_primary_10_1016_j_eurpolymj_2022_111336
crossref_primary_10_1016_j_yjmcc_2013_09_009
crossref_primary_10_1016_j_biomaterials_2020_120195
crossref_primary_10_1371_journal_pone_0198026
crossref_primary_10_3390_mi14081643
crossref_primary_10_7554_eLife_65512
crossref_primary_10_1039_C4CS00226A
crossref_primary_10_1155_2014_512831
crossref_primary_10_1002_mabi_201500396
crossref_primary_10_3389_fcvm_2018_00119
crossref_primary_10_1002_adhm_201300620
crossref_primary_10_1016_j_actbio_2017_04_027
crossref_primary_10_1038_nmat4782
crossref_primary_10_1007_s11886_017_0892_4
crossref_primary_10_1016_j_biomaterials_2020_120060
crossref_primary_10_1016_j_bbamcr_2015_11_010
crossref_primary_10_1161_CIRCULATIONAHA_117_030785
crossref_primary_10_1016_j_sna_2019_111760
crossref_primary_10_1039_C9AY01888C
crossref_primary_10_1152_ajpheart_00110_2018
crossref_primary_10_1007_s11886_017_0829_y
crossref_primary_10_1093_toxsci_kfv128
crossref_primary_10_1080_13813455_2020_1802600
crossref_primary_10_3390_bioengineering10020165
crossref_primary_10_1002_adbi_201800251
crossref_primary_10_1039_C9BM00418A
crossref_primary_10_5966_sctm_2015_0044
crossref_primary_10_1155_2017_7471582
crossref_primary_10_1038_am_2014_19
crossref_primary_10_1080_17460441_2020_1736549
crossref_primary_10_1089_ten_tec_2015_0220
crossref_primary_10_3389_fgene_2022_891159
crossref_primary_10_1126_scitranslmed_abd1817
crossref_primary_10_1002_adhm_202300719
crossref_primary_10_1161_CIRCRESAHA_117_311589
crossref_primary_10_1016_j_addr_2015_09_010
crossref_primary_10_1038_s41467_020_16204_w
crossref_primary_10_1016_j_pmatsci_2019_100589
crossref_primary_10_1038_s41598_020_65681_y
crossref_primary_10_1016_j_addr_2015_09_011
crossref_primary_10_1016_j_trsl_2019_09_001
crossref_primary_10_3389_fbioe_2020_00126
crossref_primary_10_1016_j_biomaterials_2017_05_048
crossref_primary_10_3390_bioengineering10010106
crossref_primary_10_3390_ijms22031479
Cites_doi 10.1161/CIRCRESAHA.112.273144
10.1038/nmeth.1403
10.1038/nprot.2012.150
10.1161/01.CIR.94.5.992
10.1161/01.CIR.92.10.2904
10.1161/CIRCRESAHA.111.262535
10.1161/CIRCRESAHA.110.227512
10.1634/stemcells.2007-0549
10.1016/j.jelectrocard.2007.05.035
10.1161/CIRCRESAHA.110.237206
10.1016/S0021-9258(20)82162-0
10.1371/journal.pcbi.1002061
10.1016/j.celrep.2012.09.015
10.1089/scd.2011.0312
10.1016/j.biomaterials.2011.08.050
10.1016/j.stem.2012.09.013
10.1002/9780470151808.sc01f02s2
10.1038/nbt.2005
10.1161/01.CIR.85.5.1743
10.1152/ajpheart.2001.280.4.H1814
10.1016/j.biomaterials.2011.06.049
10.1161/01.RES.0000080317.92718.99
10.1038/nmeth.1740
10.1634/stemcells.2005-0036
10.1073/pnas.1200250109
10.1093/cvr/cvr259
10.1371/journal.pone.0026397
10.1038/nprot.2009.155
10.1073/pnas.0908381106
10.1021/mp2002363
10.1016/j.biomaterials.2011.01.062
10.1007/s12265-011-9304-0
10.1016/j.pbiomolbio.2007.03.014
10.1016/j.stem.2010.12.008
10.1093/cvr/cvp164
10.1371/journal.pone.0018037
10.1089/ten.tea.2011.0313
10.1161/01.RES.0000257776.05673.ff
10.1196/annals.1380.017
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Elsevier Ltd
Copyright © 2013 Elsevier Ltd. All rights reserved.
2013 Elsevier Ltd. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
– notice: 2013 Elsevier Ltd. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.biomaterials.2013.04.026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 5820
ExternalDocumentID PMC3660435
23642535
10_1016_j_biomaterials_2013_04_026
S0142961213004705
1_s2_0_S0142961213004705
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UH2 TR000505
– fundername: NHLBI NIH HHS
  grantid: R21 HL095069
– fundername: NCATS NIH HHS
  grantid: UH2TR000505
– fundername: NHLBI NIH HHS
  grantid: R01HL104326
– fundername: NIGMS NIH HHS
  grantid: T32 GM007171
– fundername: NHLBI NIH HHS
  grantid: R01 HL104326
– fundername: NHLBI NIH HHS
  grantid: R21HL095069
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL104326 || HL
– fundername: National Center for Advancing Translational Sciences : NCATS
  grantid: UH2 TR000505 || TR
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R21 HL095069 || HL
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c648t-428b11f966211fe0e4da70a36db476810a30985343d663b7d3a94fd33b9874bd3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Aug 21 18:26:41 EDT 2025
Thu Jul 10 16:44:31 EDT 2025
Fri Jul 11 15:23:03 EDT 2025
Mon Jul 21 06:08:05 EDT 2025
Thu Apr 24 23:06:42 EDT 2025
Tue Jul 01 03:47:38 EDT 2025
Fri Feb 23 02:23:07 EST 2024
Sun Feb 23 10:18:55 EST 2025
Tue Aug 26 17:17:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Adrenergic stimulation
Optical mapping
Hydrogel
Human pluripotent stem cells
Cardiac tissue engineering
Language English
License Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c648t-428b11f966211fe0e4da70a36db476810a30985343d663b7d3a94fd33b9874bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23642535
PQID 1353478452
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660435
proquest_miscellaneous_1710235138
proquest_miscellaneous_1353478452
pubmed_primary_23642535
crossref_citationtrail_10_1016_j_biomaterials_2013_04_026
crossref_primary_10_1016_j_biomaterials_2013_04_026
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2013_04_026
elsevier_clinicalkeyesjournals_1_s2_0_S0142961213004705
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2013_04_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Itzhaki, Schiller, Beyar, Satin, Gepstein (bib17) 2006; 1080
Brandenburger, Wenzel, Bogdan, Richardt, Nguemo, Reppel (bib38) 2012; 93
Reiser, Portman, Ning, Schomisch Moravec (bib32) 2001; 280
Mulieri, Hasenfuss, Leavitt, Allen, Alpert (bib24) 1992; 85
Bian, Juhas, Pfeiler, Bursac (bib30) 2012; 18
O'Hara, Virag, Varro, Rudy (bib12) 2011; 7
Itzhaki, Rapoport, Huber, Mizrahi, Zwi-Dantsis, Arbel (bib16) 2011; 6
Lian, Zhang, Azarin, Zhu, Hazeltine, Bao (bib2) 2012; 8
Elliott, Braam, Koutsis, Ng, Jenny, Lagerqvist (bib8) 2011; 8
Binah, Dolnikov, Sadan, Shilkrut, Zeevi-Levin, Amit (bib14) 2007; 40
Liau, Christoforou, Leong, Bursac (bib26) 2011; 32
Stevens, Kreutziger, Dupras, Korte, Regnier, Muskheli (bib35) 2009; 106
Pillekamp, Haustein, Khalil, Emmelheinz, Nazzal, Adelmann (bib18) 2012; 21
Kensah, Roa Lara, Dahlmann, Zweigerdt, Schwanke, Hegermann (bib21) 2012
Poon, Kong, Li (bib13) 2011; 8
Kattman, Witty, Gagliardi, Dubois, Niapour, Hotta (bib7) 2011; 8
He, Ma, Lee, Thomson, Kamp (bib40) 2003; 93
Dolnikov, Shilkrut, Zeevi-Levin, Gerecht-Nir, Amit, Danon (bib39) 2006; 24
Caspi, Lesman, Basevitch, Gepstein, Arbel, Habib (bib34) 2007; 100
Dubois, Craft, Sharma, Elliott, Stanley, Elefanty (bib9) 2011; 29
Minami, Yamada, Otsuji, Yamamoto, Shen, Otsuka (bib3) 2012; 2
Liu, Fu, Siu, Li (bib15) 2007; 25
Valderrabano (bib25) 2007; 94
Hinds, Bian, Dennis, Bursac (bib29) 2011; 32
Pedrotty, Klinger, Kirkton, Bursac (bib28) 2009; 83
Tohyama, Hattori, Sano, Hishiki, Nagahata, Matsuura (bib11) 2013; 12
Tulloch, Muskheli, Razumova, Korte, Regnier, Hauch (bib23) 2011; 109
Mummery, Ward, Passier (bib4) 2007
Lian, Hsiao, Wilson, Zhu, Hazeltine, Azarin (bib6) 2012; 109
Schaaf, Shibamiya, Mewe, Eder, Stohr, Hirt (bib19) 2011; 6
Flesch, Schwinger, Schiffer, Frank, Sudkamp, Kuhn-Regnier (bib41) 1996; 94
Hattori, Chen, Yamashita, Tohyama, Satoh, Yuasa (bib10) 2010; 7
Mummery, Zhang, Ng, Elliott, Elefanty, Kamp (bib1) 2012; 111
Lompre, Nadal-Ginard, Mahdavi (bib33) 1984; 259
Habib, Shapira-Schweitzer, Caspi, Gepstein, Arbel, Aronson (bib37) 2011; 32
Zhang, Klos, Wilson, Herman, Lian, Raval (bib5) 2012; 111
Bian, Liau, Badie, Bursac (bib27) 2009; 4
Streckfuss-Bomeke, Wolf, Azizian, Stauske, Tiburcy, Wagner (bib22) 2012
Rubin, Strayer, Rubin (bib31) 2012
Duan, Liu, O'Neill, Wan, Freytes, Vunjak-Novakovic (bib36) 2011; 4
Lee, Klos, Bollensdorff, Hou, Ewart, Kamp (bib20) 2012; 110
Holubarsch, Schneider, Pieske, Ruf, Hasenfuss, Fraedrich (bib42) 1995; 92
Valderrabano (10.1016/j.biomaterials.2013.04.026_bib25) 2007; 94
He (10.1016/j.biomaterials.2013.04.026_bib40) 2003; 93
Holubarsch (10.1016/j.biomaterials.2013.04.026_bib42) 1995; 92
Kattman (10.1016/j.biomaterials.2013.04.026_bib7) 2011; 8
Lee (10.1016/j.biomaterials.2013.04.026_bib20) 2012; 110
Liau (10.1016/j.biomaterials.2013.04.026_bib26) 2011; 32
Binah (10.1016/j.biomaterials.2013.04.026_bib14) 2007; 40
Reiser (10.1016/j.biomaterials.2013.04.026_bib32) 2001; 280
Poon (10.1016/j.biomaterials.2013.04.026_bib13) 2011; 8
Itzhaki (10.1016/j.biomaterials.2013.04.026_bib16) 2011; 6
Bian (10.1016/j.biomaterials.2013.04.026_bib30) 2012; 18
Lian (10.1016/j.biomaterials.2013.04.026_bib2) 2012; 8
Caspi (10.1016/j.biomaterials.2013.04.026_bib34) 2007; 100
Itzhaki (10.1016/j.biomaterials.2013.04.026_bib17) 2006; 1080
Dubois (10.1016/j.biomaterials.2013.04.026_bib9) 2011; 29
O'Hara (10.1016/j.biomaterials.2013.04.026_bib12) 2011; 7
Tulloch (10.1016/j.biomaterials.2013.04.026_bib23) 2011; 109
Hattori (10.1016/j.biomaterials.2013.04.026_bib10) 2010; 7
Rubin (10.1016/j.biomaterials.2013.04.026_bib31) 2012
Schaaf (10.1016/j.biomaterials.2013.04.026_bib19) 2011; 6
Lompre (10.1016/j.biomaterials.2013.04.026_bib33) 1984; 259
Duan (10.1016/j.biomaterials.2013.04.026_bib36) 2011; 4
Zhang (10.1016/j.biomaterials.2013.04.026_bib5) 2012; 111
Stevens (10.1016/j.biomaterials.2013.04.026_bib35) 2009; 106
Brandenburger (10.1016/j.biomaterials.2013.04.026_bib38) 2012; 93
Minami (10.1016/j.biomaterials.2013.04.026_bib3) 2012; 2
Mummery (10.1016/j.biomaterials.2013.04.026_bib4) 2007
Kensah (10.1016/j.biomaterials.2013.04.026_bib21) 2012
Pillekamp (10.1016/j.biomaterials.2013.04.026_bib18) 2012; 21
Streckfuss-Bomeke (10.1016/j.biomaterials.2013.04.026_bib22) 2012
Mulieri (10.1016/j.biomaterials.2013.04.026_bib24) 1992; 85
Dolnikov (10.1016/j.biomaterials.2013.04.026_bib39) 2006; 24
Bian (10.1016/j.biomaterials.2013.04.026_bib27) 2009; 4
Lian (10.1016/j.biomaterials.2013.04.026_bib6) 2012; 109
Liu (10.1016/j.biomaterials.2013.04.026_bib15) 2007; 25
Hinds (10.1016/j.biomaterials.2013.04.026_bib29) 2011; 32
Mummery (10.1016/j.biomaterials.2013.04.026_bib1) 2012; 111
Habib (10.1016/j.biomaterials.2013.04.026_bib37) 2011; 32
Tohyama (10.1016/j.biomaterials.2013.04.026_bib11) 2013; 12
Flesch (10.1016/j.biomaterials.2013.04.026_bib41) 1996; 94
Pedrotty (10.1016/j.biomaterials.2013.04.026_bib28) 2009; 83
Elliott (10.1016/j.biomaterials.2013.04.026_bib8) 2011; 8
17482242 - Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):144-68
21906802 - Biomaterials. 2011 Dec;32(35):9180-7
23257984 - Nat Protoc. 2013 Jan;8(1):162-75
11247796 - Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1814-20
16322641 - Stem Cells. 2006 Feb;24(2):236-45
22020065 - Nat Methods. 2011 Dec;8(12):1037-40
17993321 - J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S192-6
21597009 - Circ Res. 2011 Jun 24;109(1):47-59
17872499 - Stem Cells. 2007 Dec;25(12):3038-44
21637795 - PLoS Comput Biol. 2011 May;7(5):e1002061
22020386 - Nat Biotechnol. 2011 Nov;29(11):1011-8
22570367 - Circ Res. 2012 Jun 8;110(12):1556-63
22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57
19946277 - Nat Methods. 2010 Jan;7(1):61-6
1572031 - Circulation. 1992 May;85(5):1743-50
22028871 - PLoS One. 2011;6(10):e26397
22115339 - Tissue Eng Part A. 2012 May;18(9-10):957-67
6327679 - J Biol Chem. 1984 May 25;259(10):6437-46
22912385 - Circ Res. 2012 Oct 12;111(9):1125-36
17132785 - Ann N Y Acad Sci. 2006 Oct;1080:207-15
21324402 - Biomaterials. 2011 May;32(14):3575-83
21483779 - PLoS One. 2011;6(4):e18037
21783246 - Biomaterials. 2011 Oct;32(30):7514-23
17218605 - Circ Res. 2007 Feb 2;100(2):263-72
22798560 - Eur Heart J. 2013 Sep;34(33):2618-29
23103664 - Eur Heart J. 2013 Apr;34(15):1134-46
12791707 - Circ Res. 2003 Jul 11;93(1):32-9
19805339 - Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16568-73
21744185 - J Cardiovasc Transl Res. 2011 Oct;4(5):605-15
21972180 - Cardiovasc Res. 2012 Jan 1;93(1):50-9
23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60
18785170 - Curr Protoc Stem Cell Biol. 2007 Jul;Chapter 1:Unit 1F.2
19798085 - Nat Protoc. 2009;4(10):1522-34
21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40
7586258 - Circulation. 1995 Nov 15;92(10):2904-10
22821908 - Circ Res. 2012 Jul 20;111(3):344-58
22268955 - Stem Cells Dev. 2012 Aug 10;21(12):2111-21
8790037 - Circulation. 1996 Sep 1;94(5):992-1002
23168164 - Cell Stem Cell. 2013 Jan 3;12(1):127-37
21879736 - Mol Pharm. 2011 Oct 3;8(5):1495-504
19477968 - Cardiovasc Res. 2009 Sep 1;83(4):688-97
References_xml – volume: 2
  start-page: 1448
  year: 2012
  end-page: 1460
  ident: bib3
  article-title: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions
  publication-title: Cell Rep
– volume: 6
  start-page: e26397
  year: 2011
  ident: bib19
  article-title: Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology
  publication-title: PloS One
– volume: 106
  start-page: 16568
  year: 2009
  end-page: 16573
  ident: bib35
  article-title: Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue
  publication-title: Proc Natl Acad Sci U S A
– volume: 32
  start-page: 7514
  year: 2011
  end-page: 7523
  ident: bib37
  article-title: A combined cell therapy and in-situ tissue-engineering approach for myocardial repair
  publication-title: Biomaterials
– volume: 93
  start-page: 32
  year: 2003
  end-page: 39
  ident: bib40
  article-title: Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization
  publication-title: Circ Res
– volume: 18
  start-page: 957
  year: 2012
  end-page: 967
  ident: bib30
  article-title: Local tissue geometry determines contractile force generation of engineered muscle networks
  publication-title: Tissue Eng Part A
– volume: 93
  start-page: 50
  year: 2012
  end-page: 59
  ident: bib38
  article-title: Organotypic slice culture from human adult ventricular myocardium
  publication-title: Cardiovasc Res
– volume: 94
  start-page: 992
  year: 1996
  end-page: 1002
  ident: bib41
  article-title: Evidence for functional relevance of an enhanced expression of the Na(+)–Ca2+ exchanger in failing human myocardium
  publication-title: Circulation
– volume: 110
  start-page: 1556
  year: 2012
  end-page: 1563
  ident: bib20
  article-title: Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers
  publication-title: Circ Res
– year: 2012
  ident: bib31
  article-title: Rubin's pathology: clinicopathologic foundations of medicine
– year: 2012
  ident: bib21
  article-title: Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro
  publication-title: Eur Heart J
– volume: 7
  start-page: 61
  year: 2010
  end-page: 66
  ident: bib10
  article-title: Nongenetic method for purifying stem cell-derived cardiomyocytes
  publication-title: Nat Methods
– volume: 32
  start-page: 3575
  year: 2011
  end-page: 3583
  ident: bib29
  article-title: The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle
  publication-title: Biomaterials
– volume: 280
  start-page: H1814
  year: 2001
  end-page: H1820
  ident: bib32
  article-title: Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 8
  start-page: 162
  year: 2012
  end-page: 175
  ident: bib2
  article-title: Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions
  publication-title: Nat Protoc
– volume: 111
  start-page: 344
  year: 2012
  end-page: 358
  ident: bib1
  article-title: Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview
  publication-title: Circ Res
– volume: 8
  start-page: 1495
  year: 2011
  end-page: 1504
  ident: bib13
  article-title: Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective
  publication-title: Mol Pharmacol
– volume: 6
  start-page: e18037
  year: 2011
  ident: bib16
  article-title: Calcium handling in human induced pluripotent stem cell derived cardiomyocytes
  publication-title: PLoS One
– volume: 29
  start-page: 1011
  year: 2011
  end-page: 1018
  ident: bib9
  article-title: SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells
  publication-title: Nat Biotechnol
– volume: 111
  start-page: 1125
  year: 2012
  end-page: 1136
  ident: bib5
  article-title: Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method
  publication-title: Circ Res
– volume: 83
  start-page: 688
  year: 2009
  end-page: 697
  ident: bib28
  article-title: Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes
  publication-title: Cardiovasc Res
– volume: 259
  start-page: 6437
  year: 1984
  end-page: 6446
  ident: bib33
  article-title: Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated
  publication-title: J Biol Chem
– volume: 32
  start-page: 9180
  year: 2011
  end-page: 9187
  ident: bib26
  article-title: Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function
  publication-title: Biomaterials
– volume: 7
  start-page: e1002061
  year: 2011
  ident: bib12
  article-title: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation
  publication-title: PLoS Comput Biol
– volume: 94
  start-page: 144
  year: 2007
  end-page: 168
  ident: bib25
  article-title: Influence of anisotropic conduction properties in the propagation of the cardiac action potential
  publication-title: Prog Biophys Mol Biol
– volume: 100
  start-page: 263
  year: 2007
  end-page: 272
  ident: bib34
  article-title: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells
  publication-title: Circ Res
– volume: 8
  start-page: 1037
  year: 2011
  end-page: 1040
  ident: bib8
  article-title: NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes
  publication-title: Nat Methods
– volume: 4
  start-page: 1522
  year: 2009
  end-page: 1534
  ident: bib27
  article-title: Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues
  publication-title: Nat Protoc
– volume: 21
  start-page: 2111
  year: 2012
  end-page: 2121
  ident: bib18
  article-title: Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy
  publication-title: Stem Cells Dev
– volume: 4
  start-page: 605
  year: 2011
  end-page: 615
  ident: bib36
  article-title: Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors
  publication-title: J Cardiovasc Transl Res
– volume: 8
  start-page: 228
  year: 2011
  end-page: 240
  ident: bib7
  article-title: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines
  publication-title: Cell Stem Cell.
– volume: 109
  start-page: 47
  year: 2011
  end-page: 59
  ident: bib23
  article-title: Growth of engineered human myocardium with mechanical loading and vascular coculture
  publication-title: Circ Res
– volume: 92
  start-page: 2904
  year: 1995
  end-page: 2910
  ident: bib42
  article-title: Positive and negative inotropic effects of DL-sotalol and D-sotalol in failing and nonfailing human myocardium under physiological experimental conditions
  publication-title: Circulation
– year: 2007
  ident: bib4
  article-title: Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium
  publication-title: Curr Protoc Stem Cell Biol
– volume: 12
  start-page: 127
  year: 2013
  end-page: 137
  ident: bib11
  article-title: Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes
  publication-title: Cell Stem Cell
– volume: 25
  start-page: 3038
  year: 2007
  end-page: 3044
  ident: bib15
  article-title: Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation
  publication-title: Stem Cells
– volume: 85
  start-page: 1743
  year: 1992
  end-page: 1750
  ident: bib24
  article-title: Altered myocardial force-frequency relation in human heart failure
  publication-title: Circulation
– volume: 40
  start-page: S192
  year: 2007
  end-page: S196
  ident: bib14
  article-title: Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes
  publication-title: J Electrocardiol
– volume: 1080
  start-page: 207
  year: 2006
  end-page: 215
  ident: bib17
  article-title: Calcium handling in embryonic stem cell-derived cardiac myocytes: of mice and men
  publication-title: Ann N Y Acad Sci
– year: 2012
  ident: bib22
  article-title: Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts
  publication-title: Eur Heart J
– volume: 109
  start-page: E1848
  year: 2012
  end-page: E1857
  ident: bib6
  article-title: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling
  publication-title: Proc Natl Acad Sci U S A
– volume: 24
  start-page: 236
  year: 2006
  end-page: 245
  ident: bib39
  article-title: Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction
  publication-title: Stem Cells
– volume: 111
  start-page: 1125
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib5
  article-title: Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.273144
– volume: 7
  start-page: 61
  year: 2010
  ident: 10.1016/j.biomaterials.2013.04.026_bib10
  article-title: Nongenetic method for purifying stem cell-derived cardiomyocytes
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1403
– year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib22
  article-title: Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts
  publication-title: Eur Heart J
– volume: 8
  start-page: 162
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib2
  article-title: Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.150
– volume: 94
  start-page: 992
  year: 1996
  ident: 10.1016/j.biomaterials.2013.04.026_bib41
  article-title: Evidence for functional relevance of an enhanced expression of the Na(+)–Ca2+ exchanger in failing human myocardium
  publication-title: Circulation
  doi: 10.1161/01.CIR.94.5.992
– volume: 92
  start-page: 2904
  year: 1995
  ident: 10.1016/j.biomaterials.2013.04.026_bib42
  article-title: Positive and negative inotropic effects of DL-sotalol and D-sotalol in failing and nonfailing human myocardium under physiological experimental conditions
  publication-title: Circulation
  doi: 10.1161/01.CIR.92.10.2904
– volume: 110
  start-page: 1556
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib20
  article-title: Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.111.262535
– volume: 111
  start-page: 344
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib1
  article-title: Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.227512
– volume: 25
  start-page: 3038
  year: 2007
  ident: 10.1016/j.biomaterials.2013.04.026_bib15
  article-title: Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0549
– volume: 40
  start-page: S192
  year: 2007
  ident: 10.1016/j.biomaterials.2013.04.026_bib14
  article-title: Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2007.05.035
– volume: 109
  start-page: 47
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib23
  article-title: Growth of engineered human myocardium with mechanical loading and vascular coculture
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.237206
– volume: 259
  start-page: 6437
  year: 1984
  ident: 10.1016/j.biomaterials.2013.04.026_bib33
  article-title: Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(20)82162-0
– volume: 7
  start-page: e1002061
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib12
  article-title: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002061
– volume: 2
  start-page: 1448
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib3
  article-title: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.09.015
– volume: 21
  start-page: 2111
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib18
  article-title: Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2011.0312
– volume: 32
  start-page: 9180
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib26
  article-title: Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.050
– volume: 12
  start-page: 127
  year: 2013
  ident: 10.1016/j.biomaterials.2013.04.026_bib11
  article-title: Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.09.013
– year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib31
– year: 2007
  ident: 10.1016/j.biomaterials.2013.04.026_bib4
  article-title: Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium
  publication-title: Curr Protoc Stem Cell Biol
  doi: 10.1002/9780470151808.sc01f02s2
– volume: 29
  start-page: 1011
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib9
  article-title: SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2005
– volume: 85
  start-page: 1743
  year: 1992
  ident: 10.1016/j.biomaterials.2013.04.026_bib24
  article-title: Altered myocardial force-frequency relation in human heart failure
  publication-title: Circulation
  doi: 10.1161/01.CIR.85.5.1743
– volume: 280
  start-page: H1814
  year: 2001
  ident: 10.1016/j.biomaterials.2013.04.026_bib32
  article-title: Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.2001.280.4.H1814
– volume: 32
  start-page: 7514
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib37
  article-title: A combined cell therapy and in-situ tissue-engineering approach for myocardial repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.06.049
– volume: 93
  start-page: 32
  year: 2003
  ident: 10.1016/j.biomaterials.2013.04.026_bib40
  article-title: Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000080317.92718.99
– volume: 8
  start-page: 1037
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib8
  article-title: NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1740
– volume: 24
  start-page: 236
  year: 2006
  ident: 10.1016/j.biomaterials.2013.04.026_bib39
  article-title: Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0036
– volume: 109
  start-page: E1848
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib6
  article-title: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1200250109
– volume: 93
  start-page: 50
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib38
  article-title: Organotypic slice culture from human adult ventricular myocardium
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvr259
– volume: 6
  start-page: e26397
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib19
  article-title: Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology
  publication-title: PloS One
  doi: 10.1371/journal.pone.0026397
– volume: 4
  start-page: 1522
  year: 2009
  ident: 10.1016/j.biomaterials.2013.04.026_bib27
  article-title: Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.155
– volume: 106
  start-page: 16568
  year: 2009
  ident: 10.1016/j.biomaterials.2013.04.026_bib35
  article-title: Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0908381106
– volume: 8
  start-page: 1495
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib13
  article-title: Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective
  publication-title: Mol Pharmacol
  doi: 10.1021/mp2002363
– year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib21
  article-title: Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro
  publication-title: Eur Heart J
– volume: 32
  start-page: 3575
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib29
  article-title: The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.01.062
– volume: 4
  start-page: 605
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib36
  article-title: Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors
  publication-title: J Cardiovasc Transl Res
  doi: 10.1007/s12265-011-9304-0
– volume: 94
  start-page: 144
  year: 2007
  ident: 10.1016/j.biomaterials.2013.04.026_bib25
  article-title: Influence of anisotropic conduction properties in the propagation of the cardiac action potential
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2007.03.014
– volume: 8
  start-page: 228
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib7
  article-title: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2010.12.008
– volume: 83
  start-page: 688
  year: 2009
  ident: 10.1016/j.biomaterials.2013.04.026_bib28
  article-title: Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvp164
– volume: 6
  start-page: e18037
  year: 2011
  ident: 10.1016/j.biomaterials.2013.04.026_bib16
  article-title: Calcium handling in human induced pluripotent stem cell derived cardiomyocytes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018037
– volume: 18
  start-page: 957
  year: 2012
  ident: 10.1016/j.biomaterials.2013.04.026_bib30
  article-title: Local tissue geometry determines contractile force generation of engineered muscle networks
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2011.0313
– volume: 100
  start-page: 263
  year: 2007
  ident: 10.1016/j.biomaterials.2013.04.026_bib34
  article-title: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000257776.05673.ff
– volume: 1080
  start-page: 207
  year: 2006
  ident: 10.1016/j.biomaterials.2013.04.026_bib17
  article-title: Calcium handling in embryonic stem cell-derived cardiac myocytes: of mice and men
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1380.017
– reference: 16322641 - Stem Cells. 2006 Feb;24(2):236-45
– reference: 22570367 - Circ Res. 2012 Jun 8;110(12):1556-63
– reference: 22020065 - Nat Methods. 2011 Dec;8(12):1037-40
– reference: 21879736 - Mol Pharm. 2011 Oct 3;8(5):1495-504
– reference: 22020386 - Nat Biotechnol. 2011 Nov;29(11):1011-8
– reference: 22912385 - Circ Res. 2012 Oct 12;111(9):1125-36
– reference: 21324402 - Biomaterials. 2011 May;32(14):3575-83
– reference: 19477968 - Cardiovasc Res. 2009 Sep 1;83(4):688-97
– reference: 17218605 - Circ Res. 2007 Feb 2;100(2):263-72
– reference: 21597009 - Circ Res. 2011 Jun 24;109(1):47-59
– reference: 17872499 - Stem Cells. 2007 Dec;25(12):3038-44
– reference: 21783246 - Biomaterials. 2011 Oct;32(30):7514-23
– reference: 22821908 - Circ Res. 2012 Jul 20;111(3):344-58
– reference: 21744185 - J Cardiovasc Transl Res. 2011 Oct;4(5):605-15
– reference: 1572031 - Circulation. 1992 May;85(5):1743-50
– reference: 17132785 - Ann N Y Acad Sci. 2006 Oct;1080:207-15
– reference: 12791707 - Circ Res. 2003 Jul 11;93(1):32-9
– reference: 21972180 - Cardiovasc Res. 2012 Jan 1;93(1):50-9
– reference: 19946277 - Nat Methods. 2010 Jan;7(1):61-6
– reference: 8790037 - Circulation. 1996 Sep 1;94(5):992-1002
– reference: 22028871 - PLoS One. 2011;6(10):e26397
– reference: 22268955 - Stem Cells Dev. 2012 Aug 10;21(12):2111-21
– reference: 23257984 - Nat Protoc. 2013 Jan;8(1):162-75
– reference: 23103664 - Eur Heart J. 2013 Apr;34(15):1134-46
– reference: 21483779 - PLoS One. 2011;6(4):e18037
– reference: 11247796 - Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1814-20
– reference: 23168164 - Cell Stem Cell. 2013 Jan 3;12(1):127-37
– reference: 19805339 - Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16568-73
– reference: 18785170 - Curr Protoc Stem Cell Biol. 2007 Jul;Chapter 1:Unit 1F.2
– reference: 22115339 - Tissue Eng Part A. 2012 May;18(9-10):957-67
– reference: 23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60
– reference: 22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57
– reference: 6327679 - J Biol Chem. 1984 May 25;259(10):6437-46
– reference: 22798560 - Eur Heart J. 2013 Sep;34(33):2618-29
– reference: 21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40
– reference: 17482242 - Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):144-68
– reference: 19798085 - Nat Protoc. 2009;4(10):1522-34
– reference: 7586258 - Circulation. 1995 Nov 15;92(10):2904-10
– reference: 17993321 - J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S192-6
– reference: 21906802 - Biomaterials. 2011 Dec;32(35):9180-7
– reference: 21637795 - PLoS Comput Biol. 2011 May;7(5):e1002061
SSID ssj0014042
Score 2.591969
Snippet Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist...
Abstract Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5813
SubjectTerms Action Potentials - drug effects
Action Potentials - genetics
Adrenergic stimulation
Advanced Basic Science
Animals
Cardiac tissue engineering
Cardiotonic Agents - pharmacology
Cell Line
Dentistry
drug therapy
drugs
Embryonic Stem Cells - cytology
Embryonic Stem Cells - drug effects
Embryonic Stem Cells - metabolism
Gene Expression Regulation - drug effects
genes
Human pluripotent stem cells
Humans
Hydrogel
Mice
Myocardial Contraction - drug effects
Myocardial Contraction - genetics
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Optical mapping
Phenotype
Receptors, Adrenergic, beta - metabolism
sarcomeres
screening
Time Factors
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Title Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961213004705
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213004705
https://dx.doi.org/10.1016/j.biomaterials.2013.04.026
https://www.ncbi.nlm.nih.gov/pubmed/23642535
https://www.proquest.com/docview/1353478452
https://www.proquest.com/docview/1710235138
https://pubmed.ncbi.nlm.nih.gov/PMC3660435
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalg7E9jK770bRb0WCvWmxLtmXGHkpoyTbal7XQNyHJEs1Y7dCkg770b9-dLJtkLSOwN2PpLEd3ujvFn74j5GNWGS-MK5jV3jIhDWcy1ZJ57vMs1yXsifDs8OlZMb0Q3y7zyy0y6c_CIKwy-v7OpwdvHe-M42yO57PZGGFJWYUEWEgaVQYeUyFKtPJP9wPMA9ljsg7GmDHs3ROPBowXHnHXy07VCPPigfYUiRYeD1IPk9C_sZQrwelkh7yIWSU96l78JdlyzS55vsI1uEuensav6K-IPw-zzVxsdzW1wVAsnYNnvqKQyNIeHEAx8nV_GNJrZAENqqStp6G8Hz3-MWE1jPG7f0p7fdfaO8hgX5OLk-PzyZTFegvMFkIuGexETJp62ADBrtC7xIlal4nmRW1gXmUKl0kF4V3wGvIUU9ZcV8LXnJtKlsLU_A3ZbtrG7RFaOfBbdVLYwkKLrDRkQSa38FzBNehiRKp-gpWNZORYE-OX6lFnP9WqchQqRyVCgXJGhA-y846SYyOpz70eVX_oFNykgsixkXT5mLRbxBW_UKlaZCpRD6xyRL4MkmuGvfHIH3qjU7Dy8XOOblx7CyNyUEUpRZ79ow8mkDxPuRyRt52hDnOGpQOynMMblmsmPHRA5vH1lmZ2FRjIeVEkkGfv_-dvOyDPslBdBNHP78j28ubWvYccb2kOwyI-JE-Ovn6fnv0Bu8BVEQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclhW19GFv3lX1qsFcR25K_GHsooSVdm7wshb4JSZZoxmqHJh30v9-dLJtkLSOw10hnObrT3U_W6XeEfElK7YS2GTPKGSYKzVkRq4I57tIkVTnsifDu8HSWTS7E98v0co-Mu7swmFYZfH_r0723Dr-MwmyOlovFCNOSkhIJsJA0Kkce031kp0oHZP_o9Gwy6w8TRORr6GB_hgId96hP88Jb7mrdahszvbhnPkWuhYfj1H0c-nc65UZ8OnlGngZgSY_ad39O9mx9SA426AYPyaNpOEh_QdzcTzizod1W1HhbMXQJzvmKApalXX4AxeDXfjOk10gE6rVJG0d9hT96_GPMKhjjd_eU5vquMXcAYl-Si5Pj-XjCQskFZjJRrBlsRnQcO9gDwcbQ2ciKSuWR4lmlRY7UZYpHJUR4wSuAKjqvuCqFqzjXZZELXfFXZFA3tX1DaGnBdVVRZjIDLUWpAAjp1MBzBVegiyEpuwmWJvCRY1mMX7JLPPspN5UjUTkyEhKUMyS8l122rBw7SX3t9Ci7e6fgKSUEj52k84ek7Sos-pWM5SqRkbxnmEPyrZfcsu2dR_7cGZ2ExY8nOqq2zS2MyEEVeSHS5B99EEPyNObFkLxuDbWfM6wekKQc3jDfMuG-A5KPb7fUiytPQs6zLAKo_fY__9sn8ngyn57L89PZ2TvyJPHFRjAZ-j0ZrG9u7QeAfGv9MSzpPzZJV8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue-engineered+cardiac+patch+for+advanced+functional+maturation+of+human+ESC-derived+cardiomyocytes&rft.jtitle=Biomaterials&rft.au=Zhang%2C+Donghui&rft.au=Shadrin%2C+Ilya+Y&rft.au=Lam%2C+Jason&rft.au=Xian%2C+Hai-Qian&rft.date=2013-07-01&rft.issn=0142-9612&rft.volume=34&rft.issue=23+p.5813-5820&rft.spage=5813&rft.epage=5820&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.04.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961213X0016X%2Fcov150h.gif