Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience w...
Saved in:
Published in | Biomaterials Vol. 34; no. 23; pp. 5813 - 5820 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm2, respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies. |
---|---|
AbstractList | Abstract Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm2 , respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 n m ). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm2, respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48–90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48–65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm², respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC₅₀ = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09±0.02 vs. 1.77±0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0±1.1 mN and 11.8±4.5 mN/mm 2 , respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7±1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7±0.3-fold force increase, EC 50 = 95.1 nM). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies. |
Author | Bursac, Nenad Shadrin, Ilya Y. Snodgrass, H. Ralph Zhang, Donghui Lam, Jason Xian, Hai-Qian |
AuthorAffiliation | 1 Department of Biomedical Engineering, Duke University, Durham, NC 2 VistaGen Therapeutics, Inc., San Francisco, CA |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, Duke University, Durham, NC – name: 2 VistaGen Therapeutics, Inc., San Francisco, CA |
Author_xml | – sequence: 1 givenname: Donghui surname: Zhang fullname: Zhang, Donghui organization: Department of Biomedical Engineering, Duke University, Durham, NC, USA – sequence: 2 givenname: Ilya Y. surname: Shadrin fullname: Shadrin, Ilya Y. organization: Department of Biomedical Engineering, Duke University, Durham, NC, USA – sequence: 3 givenname: Jason surname: Lam fullname: Lam, Jason organization: VistaGen Therapeutics, Inc., San Francisco, CA, USA – sequence: 4 givenname: Hai-Qian surname: Xian fullname: Xian, Hai-Qian organization: VistaGen Therapeutics, Inc., San Francisco, CA, USA – sequence: 5 givenname: H. Ralph surname: Snodgrass fullname: Snodgrass, H. Ralph organization: VistaGen Therapeutics, Inc., San Francisco, CA, USA – sequence: 6 givenname: Nenad surname: Bursac fullname: Bursac, Nenad email: nbursac@duke.edu organization: Department of Biomedical Engineering, Duke University, Durham, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23642535$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFv4AiTlwS_BUn4VABSwtIlTi0nC3HnnS9JPZiJyvtv8fpdlGphNjT2JqZZ17NO2foxHkHCL0huCCYiHfrorV-UCMEq_pYUExYgXmBqXiGFqSu6rxscHmCFphwmjeC0FN0FuMapz_m9AU6pUxwWrJygbpbG-MEObg76wACmEyrYKzS2UaNepV1PmTKbJXTKdVNTo_WO9Vnaf4U1PzJfJetpkG57PJmmZukanug-GHn9W6E-BI975JWePUQz9GPq8vb5df8-vuXb8uP17kWvB5zTuuWkK4RgqYAGLhRFVZMmJZXoibpiZu6ZJwZIVhbGaYa3hnG2qaueGvYObrYczdTO4DR4MagerkJdlBhJ72y8u-Msyt557eSCYE5KxPg7QMg-F8TxFEONmroe-XAT1GSimDKSsLq_5cmHK9qXtJU-vqxrD96Dj6kgg_7Ah18jAE6qe14v92k0vaSYDlbL9fysfVytl5iLpP1CfH-CeIw5ajmz_tmSOZsLQQZtYXZcxtAj9J4exzm4glG99ZZrfqfsIO49lNwcw-RkUosb-YDne-TMIx5hec9fPo34FgVvwF2NP8a |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2013_10_052 crossref_primary_10_1016_j_recesp_2024_09_005 crossref_primary_10_1161_CIRCRESAHA_117_310862 crossref_primary_10_4161_org_28918 crossref_primary_10_1016_j_biomaterials_2017_10_054 crossref_primary_10_1002_adhm_201500331 crossref_primary_10_1016_j_molmed_2019_04_005 crossref_primary_10_3389_fcell_2021_730622 crossref_primary_10_1186_scrt376 crossref_primary_10_3390_cells9010009 crossref_primary_10_1038_nnano_2016_96 crossref_primary_10_3390_bioengineering9110646 crossref_primary_10_1002_adfm_201909009 crossref_primary_10_1016_j_addr_2015_11_020 crossref_primary_10_1089_ten_tec_2017_0190 crossref_primary_10_1042_EBC20200106 crossref_primary_10_1002_bit_27582 crossref_primary_10_5339_gcsp_2014_44 crossref_primary_10_1002_advs_202104299 crossref_primary_10_3389_fbioe_2020_00229 crossref_primary_10_15283_ijsc21077 crossref_primary_10_1155_2017_7648409 crossref_primary_10_1586_14779072_2014_879039 crossref_primary_10_1016_j_addr_2019_03_002 crossref_primary_10_1016_j_ydbio_2023_12_008 crossref_primary_10_3389_fcvm_2021_621781 crossref_primary_10_1039_C5TB01276G crossref_primary_10_3390_biology10020135 crossref_primary_10_3389_fphar_2021_617922 crossref_primary_10_1002_jbm_b_34759 crossref_primary_10_1016_j_progpolymsci_2016_09_002 crossref_primary_10_1002_smll_201600178 crossref_primary_10_1021_acsami_6b14020 crossref_primary_10_1039_D0TB02312D crossref_primary_10_1016_j_biomaterials_2018_11_033 crossref_primary_10_1007_s42247_019_00046_4 crossref_primary_10_1038_srep38815 crossref_primary_10_1038_s41598_018_37686_1 crossref_primary_10_1186_s12938_020_0752_0 crossref_primary_10_1021_acsami_0c03464 crossref_primary_10_1186_s13036_019_0155_6 crossref_primary_10_1002_adhm_202101018 crossref_primary_10_1002_ijch_201300064 crossref_primary_10_1016_j_lfs_2019_05_012 crossref_primary_10_1126_science_aaa5458 crossref_primary_10_1016_j_biomaterials_2014_02_001 crossref_primary_10_1016_j_bios_2018_10_061 crossref_primary_10_3389_fcvm_2020_586261 crossref_primary_10_3390_gels8120769 crossref_primary_10_1016_j_taap_2022_115886 crossref_primary_10_1007_s13239_024_00711_8 crossref_primary_10_2217_rme_13_56 crossref_primary_10_1021_acsami_0c17610 crossref_primary_10_1089_ten_teb_2014_0662 crossref_primary_10_1161_CIRCRESAHA_117_310738 crossref_primary_10_1093_icvts_ivy208 crossref_primary_10_1088_1758_5090_aa96de crossref_primary_10_1021_acsnano_9b06761 crossref_primary_10_1002_mame_202300243 crossref_primary_10_1093_stcltm_szab002 crossref_primary_10_1002_mabi_201400448 crossref_primary_10_1089_ten_tec_2016_0257 crossref_primary_10_1002_adhm_202303957 crossref_primary_10_1039_D0TB00947D crossref_primary_10_1007_s12265_018_9811_3 crossref_primary_10_1161_CIRCRESAHA_116_309040 crossref_primary_10_51335_organoid_2022_2_e1 crossref_primary_10_1007_s40778_016_0041_9 crossref_primary_10_1039_C9BM00817A crossref_primary_10_1038_s41467_021_21682_7 crossref_primary_10_3390_polym13193411 crossref_primary_10_1016_j_jmbbm_2015_11_008 crossref_primary_10_1126_sciadv_abn2485 crossref_primary_10_1007_s00466_020_01882_6 crossref_primary_10_1016_j_copbio_2013_07_002 crossref_primary_10_1002_smll_202005828 crossref_primary_10_1039_C6TB00069J crossref_primary_10_1038_s42003_020_0853_0 crossref_primary_10_1038_srep45499 crossref_primary_10_1038_s41569_019_0331_x crossref_primary_10_1016_j_bioadv_2022_212916 crossref_primary_10_1016_j_jacc_2016_01_083 crossref_primary_10_3390_ijms21093404 crossref_primary_10_1002_jcb_28926 crossref_primary_10_1038_s41378_024_00692_7 crossref_primary_10_4137_BMI_S23912 crossref_primary_10_1016_j_biomaterials_2020_120204 crossref_primary_10_1177_2472555220975332 crossref_primary_10_3389_fbioe_2017_00040 crossref_primary_10_1038_s41598_021_87186_y crossref_primary_10_1021_acsbiomaterials_4c00303 crossref_primary_10_1016_j_cej_2024_150403 crossref_primary_10_3390_ijms22168550 crossref_primary_10_1007_s12012_021_09696_5 crossref_primary_10_14814_phy2_15045 crossref_primary_10_1109_TBME_2019_2905763 crossref_primary_10_1177_1535370215589910 crossref_primary_10_1002_stem_2403 crossref_primary_10_1016_j_actbio_2016_11_058 crossref_primary_10_3389_fphys_2022_733706 crossref_primary_10_1002_jbm_a_37456 crossref_primary_10_1371_journal_pone_0131446 crossref_primary_10_1021_acsbiomaterials_9b00505 crossref_primary_10_1007_s12265_018_9801_5 crossref_primary_10_1016_j_vascn_2016_09_001 crossref_primary_10_1088_1758_5082_6_3_035012 crossref_primary_10_1002_adfm_201505372 crossref_primary_10_2139_ssrn_3910129 crossref_primary_10_1002_pat_4602 crossref_primary_10_1002_bit_28818 crossref_primary_10_53941_ijddp_2025_100001 crossref_primary_10_1002_adhm_202301335 crossref_primary_10_1161_CIRCULATIONAHA_117_024751 crossref_primary_10_1080_23746149_2019_1622451 crossref_primary_10_1016_j_jddst_2024_105489 crossref_primary_10_1093_cvr_cvt149 crossref_primary_10_1002_term_2117 crossref_primary_10_1073_pnas_1818392116 crossref_primary_10_1177_2211068214560903 crossref_primary_10_3390_ijms24065188 crossref_primary_10_3390_bioengineering9040168 crossref_primary_10_1016_j_biomaterials_2018_09_036 crossref_primary_10_1080_14740338_2016_1223624 crossref_primary_10_1016_j_tice_2020_101367 crossref_primary_10_1007_s10439_014_1206_2 crossref_primary_10_1159_000496934 crossref_primary_10_15252_emmm_201504395 crossref_primary_10_1016_j_actbio_2021_04_018 crossref_primary_10_1016_j_biomaterials_2024_122671 crossref_primary_10_1016_j_tcm_2016_05_001 crossref_primary_10_3389_fcell_2022_986107 crossref_primary_10_3389_fbioe_2020_00955 crossref_primary_10_1039_C6NR04545F crossref_primary_10_1016_j_addr_2015_05_010 crossref_primary_10_1161_HCG_0000000000000043 crossref_primary_10_1172_JCI181630 crossref_primary_10_1039_D0LC01078B crossref_primary_10_1016_j_addr_2015_05_004 crossref_primary_10_3390_cells7090114 crossref_primary_10_1098_rstb_2017_0225 crossref_primary_10_2217_3dp_2018_0017 crossref_primary_10_1002_stem_2732 crossref_primary_10_1007_s00018_016_2285_z crossref_primary_10_1016_j_isci_2024_109954 crossref_primary_10_1016_j_bbamcr_2022_119379 crossref_primary_10_1016_j_isci_2022_103824 crossref_primary_10_1016_j_clinthera_2020_08_008 crossref_primary_10_1016_j_biomaterials_2014_04_116 crossref_primary_10_1002_jbm_a_37774 crossref_primary_10_1016_j_yjmcc_2023_03_009 crossref_primary_10_1515_medgen_2021_2094 crossref_primary_10_1016_j_pmatsci_2019_02_002 crossref_primary_10_1002_term_2568 crossref_primary_10_1007_s12015_017_9736_2 crossref_primary_10_1016_j_tcb_2016_11_010 crossref_primary_10_1038_srep43210 crossref_primary_10_3390_jfb14010040 crossref_primary_10_1016_j_biopha_2018_05_066 crossref_primary_10_1039_D0MH00542H crossref_primary_10_1021_acsami_5b11671 crossref_primary_10_1016_j_cophys_2017_08_003 crossref_primary_10_1002_adbi_202000190 crossref_primary_10_1002_term_2392 crossref_primary_10_1007_s11936_014_0319_0 crossref_primary_10_1016_j_stemcr_2018_10_008 crossref_primary_10_1016_j_stemcr_2013_10_004 crossref_primary_10_3389_fbioe_2021_673212 crossref_primary_10_1038_srep45641 crossref_primary_10_1007_s00424_021_02536_z crossref_primary_10_1126_scitranslmed_3008921 crossref_primary_10_1016_j_biomaterials_2015_12_011 crossref_primary_10_1016_j_addr_2015_04_019 crossref_primary_10_1093_toxsci_kfz168 crossref_primary_10_1016_j_cjca_2014_08_005 crossref_primary_10_1038_srep24726 crossref_primary_10_1063_1_5070106 crossref_primary_10_1038_nature22978 crossref_primary_10_1097_MAT_0000000000000765 crossref_primary_10_1016_j_biomaterials_2019_119638 crossref_primary_10_1016_j_biomaterials_2018_02_024 crossref_primary_10_1038_s41378_021_00344_0 crossref_primary_10_1177_0963689718779346 crossref_primary_10_1016_j_stemcr_2014_06_002 crossref_primary_10_1016_j_stem_2019_07_010 crossref_primary_10_1016_j_actbio_2016_06_001 crossref_primary_10_1088_1758_5082_6_2_024109 crossref_primary_10_1096_fj_13_228007 crossref_primary_10_1146_annurev_bioeng_092019_034950 crossref_primary_10_1016_j_yjmcc_2014_05_009 crossref_primary_10_1039_C8LC00654G crossref_primary_10_1016_j_biomaterials_2014_05_080 crossref_primary_10_1038_s41551_024_01253_z crossref_primary_10_4252_wjsc_v11_i1_34 crossref_primary_10_3389_fbioe_2022_871867 crossref_primary_10_1089_ten_teb_2024_0212 crossref_primary_10_4252_wjsc_v11_i1_33 crossref_primary_10_1016_j_biomaterials_2018_01_002 crossref_primary_10_1038_srep42290 crossref_primary_10_1016_j_biomaterials_2015_05_019 crossref_primary_10_1161_CIRCULATIONAHA_116_024145 crossref_primary_10_1016_j_bprint_2024_e00371 crossref_primary_10_1016_j_rec_2024_09_003 crossref_primary_10_1038_s41598_020_59371_y crossref_primary_10_1016_j_pbiomolbio_2018_11_011 crossref_primary_10_1002_jbm_a_37737 crossref_primary_10_1016_j_biotechadv_2016_12_002 crossref_primary_10_1536_ihj_13_337 crossref_primary_10_1016_j_apmt_2024_102315 crossref_primary_10_1002_term_2129 crossref_primary_10_1016_j_biotechadv_2019_02_009 crossref_primary_10_1088_1758_5082_6_2_024113 crossref_primary_10_1016_j_stemcr_2019_05_024 crossref_primary_10_1016_j_yjmcc_2021_04_006 crossref_primary_10_1039_D0TB01528H crossref_primary_10_3390_bioengineering4030071 crossref_primary_10_1038_nprot_2017_033 crossref_primary_10_1371_journal_pone_0126338 crossref_primary_10_1093_biosci_biv016 crossref_primary_10_1016_j_carbpol_2021_117924 crossref_primary_10_1016_j_msec_2020_111354 crossref_primary_10_1038_nm_3627 crossref_primary_10_1007_s00216_023_04596_9 crossref_primary_10_1016_j_jacc_2017_06_012 crossref_primary_10_1016_j_jmst_2021_03_062 crossref_primary_10_1016_j_actbio_2019_05_016 crossref_primary_10_1155_2017_5153625 crossref_primary_10_1093_cvr_cvab195 crossref_primary_10_1002_adma_202210713 crossref_primary_10_1063_1_5122804 crossref_primary_10_1038_s41551_018_0244_8 crossref_primary_10_1016_j_molmed_2018_06_009 crossref_primary_10_1161_CIRCEP_113_001050 crossref_primary_10_3389_fcell_2019_00164 crossref_primary_10_1155_2017_8473465 crossref_primary_10_1016_j_jbiomech_2018_03_040 crossref_primary_10_1038_s41578_021_00381_1 crossref_primary_10_1161_CIRCRESAHA_118_311213 crossref_primary_10_1002_admt_202401254 crossref_primary_10_1038_s41551_020_0539_4 crossref_primary_10_1016_j_biomaterials_2015_10_076 crossref_primary_10_1111_jcmm_16429 crossref_primary_10_1038_s41467_024_52221_9 crossref_primary_10_3390_coatings10100925 crossref_primary_10_1088_1758_5090_aaa15d crossref_primary_10_1016_j_actbio_2021_03_007 crossref_primary_10_1093_ejcts_ezaa093 crossref_primary_10_3390_mi10070487 crossref_primary_10_1007_s43152_020_00007_8 crossref_primary_10_1186_s13619_023_00182_7 crossref_primary_10_1016_j_yjmcc_2022_06_007 crossref_primary_10_1038_srep06614 crossref_primary_10_1038_s41467_017_01946_x crossref_primary_10_1089_scd_2014_0533 crossref_primary_10_1016_j_vascn_2020_106892 crossref_primary_10_1016_j_stemcr_2019_04_002 crossref_primary_10_3389_fcell_2017_00050 crossref_primary_10_1089_ten_tec_2020_0195 crossref_primary_10_1038_s41598_020_73801_x crossref_primary_10_1089_adt_2017_792 crossref_primary_10_1093_lifemedi_lnac002 crossref_primary_10_1161_CIRCULATIONAHA_120_047904 crossref_primary_10_1021_acsbiomaterials_6b00109 crossref_primary_10_1016_j_phrs_2020_105176 crossref_primary_10_1161_CIRCRESAHA_118_311209 crossref_primary_10_1242_dev_143966 crossref_primary_10_1016_j_semcdb_2021_06_002 crossref_primary_10_1016_j_biomaterials_2019_119574 crossref_primary_10_1039_C5TB02658J crossref_primary_10_1253_circj_CJ_16_1113 crossref_primary_10_3390_ijms23073482 crossref_primary_10_1038_s42003_022_03875_y crossref_primary_10_1038_s41467_018_06347_2 crossref_primary_10_1371_journal_pone_0172671 crossref_primary_10_3389_fbioe_2023_1155052 crossref_primary_10_1002_adfm_202003440 crossref_primary_10_1039_C7BM00266A crossref_primary_10_1586_14779072_2013_854165 crossref_primary_10_1115_1_4032355 crossref_primary_10_1002_mrd_22739 crossref_primary_10_1177_09636897211048786 crossref_primary_10_1088_1758_5090_aa6c3a crossref_primary_10_1016_j_stemcr_2020_09_002 crossref_primary_10_1016_j_addr_2015_07_009 crossref_primary_10_3389_fpubh_2018_00185 crossref_primary_10_1016_j_addr_2015_07_004 crossref_primary_10_3389_fphys_2023_1123190 crossref_primary_10_1002_bit_25918 crossref_primary_10_1371_journal_pone_0127977 crossref_primary_10_3390_cimb47010007 crossref_primary_10_1146_annurev_chembioeng_092120_033922 crossref_primary_10_1038_s41551_022_00885_3 crossref_primary_10_1039_C7LC00740J crossref_primary_10_1093_intbio_zyaa003 crossref_primary_10_1016_j_stemcr_2017_09_008 crossref_primary_10_1002_adbi_202200067 crossref_primary_10_1016_j_tcm_2013_05_003 crossref_primary_10_1016_j_biomaterials_2016_09_024 crossref_primary_10_1007_s10439_013_0966_4 crossref_primary_10_1016_j_biomaterials_2021_121133 crossref_primary_10_15212_bioi_2022_0027 crossref_primary_10_3389_fphys_2021_770906 crossref_primary_10_1063_5_0093399 crossref_primary_10_1007_s00424_021_02651_x crossref_primary_10_1021_acsbiomaterials_7b00083 crossref_primary_10_1038_nrcardio_2016_36 crossref_primary_10_1089_ten_tea_2013_0620 crossref_primary_10_1517_17460441_2015_983471 crossref_primary_10_12688_f1000research_8237_1 crossref_primary_10_3389_fcell_2017_00019 crossref_primary_10_1016_j_yjmcc_2013_12_011 crossref_primary_10_1002_VIW_20200153 crossref_primary_10_1021_acsabm_0c01270 crossref_primary_10_1038_s41569_018_0032_x crossref_primary_10_1002_adem_201900986 crossref_primary_10_1126_scitranslmed_aad2304 crossref_primary_10_1038_s41551_022_00884_4 crossref_primary_10_1021_acsbiomaterials_6b00547 crossref_primary_10_1016_j_coche_2014_11_004 crossref_primary_10_1039_C8BM01348A crossref_primary_10_1016_j_biomaterials_2018_08_010 crossref_primary_10_1016_j_scr_2016_04_014 crossref_primary_10_1021_acsbiomaterials_6b00662 crossref_primary_10_1002_advs_202404509 crossref_primary_10_1039_C7BM00132K crossref_primary_10_1039_C7NR00001D crossref_primary_10_1002_smll_202202235 crossref_primary_10_1093_cvr_cvz010 crossref_primary_10_1016_j_bprint_2022_e00221 crossref_primary_10_3389_fcvm_2018_00052 crossref_primary_10_1089_ten_tec_2020_0342 crossref_primary_10_1021_nl502227a crossref_primary_10_1039_C6TB00324A crossref_primary_10_12688_f1000research_139482_1 crossref_primary_10_12688_f1000research_139482_2 crossref_primary_10_1016_j_biomaterials_2025_123275 crossref_primary_10_1038_s41598_017_08713_4 crossref_primary_10_1073_pnas_1707316114 crossref_primary_10_3389_fcvm_2022_889553 crossref_primary_10_1016_j_addr_2016_03_007 crossref_primary_10_3390_biomedicines9121836 crossref_primary_10_1016_j_jmbbm_2018_08_020 crossref_primary_10_3390_biomedicines9050563 crossref_primary_10_1016_j_actbio_2024_11_014 crossref_primary_10_4137_BMI_S20313 crossref_primary_10_1038_srep11817 crossref_primary_10_1089_ten_tea_2013_0312 crossref_primary_10_1007_s13346_025_01802_2 crossref_primary_10_3390_ijms22063005 crossref_primary_10_1016_j_biomaterials_2015_01_078 crossref_primary_10_14814_phy2_15407 crossref_primary_10_1016_j_biomaterials_2021_120764 crossref_primary_10_1016_j_flatc_2021_100315 crossref_primary_10_1186_scrt507 crossref_primary_10_1089_ten_tea_2016_0027 crossref_primary_10_1242_dev_133652 crossref_primary_10_1186_scrt406 crossref_primary_10_1016_j_colsurfb_2015_07_019 crossref_primary_10_1177_2280800018793818 crossref_primary_10_1007_s11936_015_0404_z crossref_primary_10_1002_stem_3131 crossref_primary_10_1016_j_biomaterials_2015_01_067 crossref_primary_10_1042_CS20170055 crossref_primary_10_1016_j_biomaterials_2014_01_045 crossref_primary_10_1161_CIRCULATIONAHA_114_014998 crossref_primary_10_1002_btm2_10581 crossref_primary_10_1089_ars_2020_8193 crossref_primary_10_1038_srep08883 crossref_primary_10_1016_j_biomaterials_2016_10_029 crossref_primary_10_1002_ijch_201300050 crossref_primary_10_1177_1074248413520343 crossref_primary_10_1016_j_biopha_2023_115551 crossref_primary_10_1016_j_addr_2015_09_001 crossref_primary_10_1016_j_eurpolymj_2022_111336 crossref_primary_10_1016_j_yjmcc_2013_09_009 crossref_primary_10_1016_j_biomaterials_2020_120195 crossref_primary_10_1371_journal_pone_0198026 crossref_primary_10_3390_mi14081643 crossref_primary_10_7554_eLife_65512 crossref_primary_10_1039_C4CS00226A crossref_primary_10_1155_2014_512831 crossref_primary_10_1002_mabi_201500396 crossref_primary_10_3389_fcvm_2018_00119 crossref_primary_10_1002_adhm_201300620 crossref_primary_10_1016_j_actbio_2017_04_027 crossref_primary_10_1038_nmat4782 crossref_primary_10_1007_s11886_017_0892_4 crossref_primary_10_1016_j_biomaterials_2020_120060 crossref_primary_10_1016_j_bbamcr_2015_11_010 crossref_primary_10_1161_CIRCULATIONAHA_117_030785 crossref_primary_10_1016_j_sna_2019_111760 crossref_primary_10_1039_C9AY01888C crossref_primary_10_1152_ajpheart_00110_2018 crossref_primary_10_1007_s11886_017_0829_y crossref_primary_10_1093_toxsci_kfv128 crossref_primary_10_1080_13813455_2020_1802600 crossref_primary_10_3390_bioengineering10020165 crossref_primary_10_1002_adbi_201800251 crossref_primary_10_1039_C9BM00418A crossref_primary_10_5966_sctm_2015_0044 crossref_primary_10_1155_2017_7471582 crossref_primary_10_1038_am_2014_19 crossref_primary_10_1080_17460441_2020_1736549 crossref_primary_10_1089_ten_tec_2015_0220 crossref_primary_10_3389_fgene_2022_891159 crossref_primary_10_1126_scitranslmed_abd1817 crossref_primary_10_1002_adhm_202300719 crossref_primary_10_1161_CIRCRESAHA_117_311589 crossref_primary_10_1016_j_addr_2015_09_010 crossref_primary_10_1038_s41467_020_16204_w crossref_primary_10_1016_j_pmatsci_2019_100589 crossref_primary_10_1038_s41598_020_65681_y crossref_primary_10_1016_j_addr_2015_09_011 crossref_primary_10_1016_j_trsl_2019_09_001 crossref_primary_10_3389_fbioe_2020_00126 crossref_primary_10_1016_j_biomaterials_2017_05_048 crossref_primary_10_3390_bioengineering10010106 crossref_primary_10_3390_ijms22031479 |
Cites_doi | 10.1161/CIRCRESAHA.112.273144 10.1038/nmeth.1403 10.1038/nprot.2012.150 10.1161/01.CIR.94.5.992 10.1161/01.CIR.92.10.2904 10.1161/CIRCRESAHA.111.262535 10.1161/CIRCRESAHA.110.227512 10.1634/stemcells.2007-0549 10.1016/j.jelectrocard.2007.05.035 10.1161/CIRCRESAHA.110.237206 10.1016/S0021-9258(20)82162-0 10.1371/journal.pcbi.1002061 10.1016/j.celrep.2012.09.015 10.1089/scd.2011.0312 10.1016/j.biomaterials.2011.08.050 10.1016/j.stem.2012.09.013 10.1002/9780470151808.sc01f02s2 10.1038/nbt.2005 10.1161/01.CIR.85.5.1743 10.1152/ajpheart.2001.280.4.H1814 10.1016/j.biomaterials.2011.06.049 10.1161/01.RES.0000080317.92718.99 10.1038/nmeth.1740 10.1634/stemcells.2005-0036 10.1073/pnas.1200250109 10.1093/cvr/cvr259 10.1371/journal.pone.0026397 10.1038/nprot.2009.155 10.1073/pnas.0908381106 10.1021/mp2002363 10.1016/j.biomaterials.2011.01.062 10.1007/s12265-011-9304-0 10.1016/j.pbiomolbio.2007.03.014 10.1016/j.stem.2010.12.008 10.1093/cvr/cvp164 10.1371/journal.pone.0018037 10.1089/ten.tea.2011.0313 10.1161/01.RES.0000257776.05673.ff 10.1196/annals.1380.017 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. 2013 Elsevier Ltd. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. – notice: 2013 Elsevier Ltd. All rights reserved. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.biomaterials.2013.04.026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 5820 |
ExternalDocumentID | PMC3660435 23642535 10_1016_j_biomaterials_2013_04_026 S0142961213004705 1_s2_0_S0142961213004705 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UH2 TR000505 – fundername: NHLBI NIH HHS grantid: R21 HL095069 – fundername: NCATS NIH HHS grantid: UH2TR000505 – fundername: NHLBI NIH HHS grantid: R01HL104326 – fundername: NIGMS NIH HHS grantid: T32 GM007171 – fundername: NHLBI NIH HHS grantid: R01 HL104326 – fundername: NHLBI NIH HHS grantid: R21HL095069 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL104326 || HL – fundername: National Center for Advancing Translational Sciences : NCATS grantid: UH2 TR000505 || TR – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R21 HL095069 || HL |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c648t-428b11f966211fe0e4da70a36db476810a30985343d663b7d3a94fd33b9874bd3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Aug 21 18:26:41 EDT 2025 Thu Jul 10 16:44:31 EDT 2025 Fri Jul 11 15:23:03 EDT 2025 Mon Jul 21 06:08:05 EDT 2025 Thu Apr 24 23:06:42 EDT 2025 Tue Jul 01 03:47:38 EDT 2025 Fri Feb 23 02:23:07 EST 2024 Sun Feb 23 10:18:55 EST 2025 Tue Aug 26 17:17:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Adrenergic stimulation Optical mapping Hydrogel Human pluripotent stem cells Cardiac tissue engineering |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c648t-428b11f966211fe0e4da70a36db476810a30985343d663b7d3a94fd33b9874bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23642535 |
PQID | 1353478452 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660435 proquest_miscellaneous_1710235138 proquest_miscellaneous_1353478452 pubmed_primary_23642535 crossref_citationtrail_10_1016_j_biomaterials_2013_04_026 crossref_primary_10_1016_j_biomaterials_2013_04_026 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2013_04_026 elsevier_clinicalkeyesjournals_1_s2_0_S0142961213004705 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2013_04_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Itzhaki, Schiller, Beyar, Satin, Gepstein (bib17) 2006; 1080 Brandenburger, Wenzel, Bogdan, Richardt, Nguemo, Reppel (bib38) 2012; 93 Reiser, Portman, Ning, Schomisch Moravec (bib32) 2001; 280 Mulieri, Hasenfuss, Leavitt, Allen, Alpert (bib24) 1992; 85 Bian, Juhas, Pfeiler, Bursac (bib30) 2012; 18 O'Hara, Virag, Varro, Rudy (bib12) 2011; 7 Itzhaki, Rapoport, Huber, Mizrahi, Zwi-Dantsis, Arbel (bib16) 2011; 6 Lian, Zhang, Azarin, Zhu, Hazeltine, Bao (bib2) 2012; 8 Elliott, Braam, Koutsis, Ng, Jenny, Lagerqvist (bib8) 2011; 8 Binah, Dolnikov, Sadan, Shilkrut, Zeevi-Levin, Amit (bib14) 2007; 40 Liau, Christoforou, Leong, Bursac (bib26) 2011; 32 Stevens, Kreutziger, Dupras, Korte, Regnier, Muskheli (bib35) 2009; 106 Pillekamp, Haustein, Khalil, Emmelheinz, Nazzal, Adelmann (bib18) 2012; 21 Kensah, Roa Lara, Dahlmann, Zweigerdt, Schwanke, Hegermann (bib21) 2012 Poon, Kong, Li (bib13) 2011; 8 Kattman, Witty, Gagliardi, Dubois, Niapour, Hotta (bib7) 2011; 8 He, Ma, Lee, Thomson, Kamp (bib40) 2003; 93 Dolnikov, Shilkrut, Zeevi-Levin, Gerecht-Nir, Amit, Danon (bib39) 2006; 24 Caspi, Lesman, Basevitch, Gepstein, Arbel, Habib (bib34) 2007; 100 Dubois, Craft, Sharma, Elliott, Stanley, Elefanty (bib9) 2011; 29 Minami, Yamada, Otsuji, Yamamoto, Shen, Otsuka (bib3) 2012; 2 Liu, Fu, Siu, Li (bib15) 2007; 25 Valderrabano (bib25) 2007; 94 Hinds, Bian, Dennis, Bursac (bib29) 2011; 32 Pedrotty, Klinger, Kirkton, Bursac (bib28) 2009; 83 Tohyama, Hattori, Sano, Hishiki, Nagahata, Matsuura (bib11) 2013; 12 Tulloch, Muskheli, Razumova, Korte, Regnier, Hauch (bib23) 2011; 109 Mummery, Ward, Passier (bib4) 2007 Lian, Hsiao, Wilson, Zhu, Hazeltine, Azarin (bib6) 2012; 109 Schaaf, Shibamiya, Mewe, Eder, Stohr, Hirt (bib19) 2011; 6 Flesch, Schwinger, Schiffer, Frank, Sudkamp, Kuhn-Regnier (bib41) 1996; 94 Hattori, Chen, Yamashita, Tohyama, Satoh, Yuasa (bib10) 2010; 7 Mummery, Zhang, Ng, Elliott, Elefanty, Kamp (bib1) 2012; 111 Lompre, Nadal-Ginard, Mahdavi (bib33) 1984; 259 Habib, Shapira-Schweitzer, Caspi, Gepstein, Arbel, Aronson (bib37) 2011; 32 Zhang, Klos, Wilson, Herman, Lian, Raval (bib5) 2012; 111 Bian, Liau, Badie, Bursac (bib27) 2009; 4 Streckfuss-Bomeke, Wolf, Azizian, Stauske, Tiburcy, Wagner (bib22) 2012 Rubin, Strayer, Rubin (bib31) 2012 Duan, Liu, O'Neill, Wan, Freytes, Vunjak-Novakovic (bib36) 2011; 4 Lee, Klos, Bollensdorff, Hou, Ewart, Kamp (bib20) 2012; 110 Holubarsch, Schneider, Pieske, Ruf, Hasenfuss, Fraedrich (bib42) 1995; 92 Valderrabano (10.1016/j.biomaterials.2013.04.026_bib25) 2007; 94 He (10.1016/j.biomaterials.2013.04.026_bib40) 2003; 93 Holubarsch (10.1016/j.biomaterials.2013.04.026_bib42) 1995; 92 Kattman (10.1016/j.biomaterials.2013.04.026_bib7) 2011; 8 Lee (10.1016/j.biomaterials.2013.04.026_bib20) 2012; 110 Liau (10.1016/j.biomaterials.2013.04.026_bib26) 2011; 32 Binah (10.1016/j.biomaterials.2013.04.026_bib14) 2007; 40 Reiser (10.1016/j.biomaterials.2013.04.026_bib32) 2001; 280 Poon (10.1016/j.biomaterials.2013.04.026_bib13) 2011; 8 Itzhaki (10.1016/j.biomaterials.2013.04.026_bib16) 2011; 6 Bian (10.1016/j.biomaterials.2013.04.026_bib30) 2012; 18 Lian (10.1016/j.biomaterials.2013.04.026_bib2) 2012; 8 Caspi (10.1016/j.biomaterials.2013.04.026_bib34) 2007; 100 Itzhaki (10.1016/j.biomaterials.2013.04.026_bib17) 2006; 1080 Dubois (10.1016/j.biomaterials.2013.04.026_bib9) 2011; 29 O'Hara (10.1016/j.biomaterials.2013.04.026_bib12) 2011; 7 Tulloch (10.1016/j.biomaterials.2013.04.026_bib23) 2011; 109 Hattori (10.1016/j.biomaterials.2013.04.026_bib10) 2010; 7 Rubin (10.1016/j.biomaterials.2013.04.026_bib31) 2012 Schaaf (10.1016/j.biomaterials.2013.04.026_bib19) 2011; 6 Lompre (10.1016/j.biomaterials.2013.04.026_bib33) 1984; 259 Duan (10.1016/j.biomaterials.2013.04.026_bib36) 2011; 4 Zhang (10.1016/j.biomaterials.2013.04.026_bib5) 2012; 111 Stevens (10.1016/j.biomaterials.2013.04.026_bib35) 2009; 106 Brandenburger (10.1016/j.biomaterials.2013.04.026_bib38) 2012; 93 Minami (10.1016/j.biomaterials.2013.04.026_bib3) 2012; 2 Mummery (10.1016/j.biomaterials.2013.04.026_bib4) 2007 Kensah (10.1016/j.biomaterials.2013.04.026_bib21) 2012 Pillekamp (10.1016/j.biomaterials.2013.04.026_bib18) 2012; 21 Streckfuss-Bomeke (10.1016/j.biomaterials.2013.04.026_bib22) 2012 Mulieri (10.1016/j.biomaterials.2013.04.026_bib24) 1992; 85 Dolnikov (10.1016/j.biomaterials.2013.04.026_bib39) 2006; 24 Bian (10.1016/j.biomaterials.2013.04.026_bib27) 2009; 4 Lian (10.1016/j.biomaterials.2013.04.026_bib6) 2012; 109 Liu (10.1016/j.biomaterials.2013.04.026_bib15) 2007; 25 Hinds (10.1016/j.biomaterials.2013.04.026_bib29) 2011; 32 Mummery (10.1016/j.biomaterials.2013.04.026_bib1) 2012; 111 Habib (10.1016/j.biomaterials.2013.04.026_bib37) 2011; 32 Tohyama (10.1016/j.biomaterials.2013.04.026_bib11) 2013; 12 Flesch (10.1016/j.biomaterials.2013.04.026_bib41) 1996; 94 Pedrotty (10.1016/j.biomaterials.2013.04.026_bib28) 2009; 83 Elliott (10.1016/j.biomaterials.2013.04.026_bib8) 2011; 8 17482242 - Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):144-68 21906802 - Biomaterials. 2011 Dec;32(35):9180-7 23257984 - Nat Protoc. 2013 Jan;8(1):162-75 11247796 - Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1814-20 16322641 - Stem Cells. 2006 Feb;24(2):236-45 22020065 - Nat Methods. 2011 Dec;8(12):1037-40 17993321 - J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S192-6 21597009 - Circ Res. 2011 Jun 24;109(1):47-59 17872499 - Stem Cells. 2007 Dec;25(12):3038-44 21637795 - PLoS Comput Biol. 2011 May;7(5):e1002061 22020386 - Nat Biotechnol. 2011 Nov;29(11):1011-8 22570367 - Circ Res. 2012 Jun 8;110(12):1556-63 22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 19946277 - Nat Methods. 2010 Jan;7(1):61-6 1572031 - Circulation. 1992 May;85(5):1743-50 22028871 - PLoS One. 2011;6(10):e26397 22115339 - Tissue Eng Part A. 2012 May;18(9-10):957-67 6327679 - J Biol Chem. 1984 May 25;259(10):6437-46 22912385 - Circ Res. 2012 Oct 12;111(9):1125-36 17132785 - Ann N Y Acad Sci. 2006 Oct;1080:207-15 21324402 - Biomaterials. 2011 May;32(14):3575-83 21483779 - PLoS One. 2011;6(4):e18037 21783246 - Biomaterials. 2011 Oct;32(30):7514-23 17218605 - Circ Res. 2007 Feb 2;100(2):263-72 22798560 - Eur Heart J. 2013 Sep;34(33):2618-29 23103664 - Eur Heart J. 2013 Apr;34(15):1134-46 12791707 - Circ Res. 2003 Jul 11;93(1):32-9 19805339 - Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16568-73 21744185 - J Cardiovasc Transl Res. 2011 Oct;4(5):605-15 21972180 - Cardiovasc Res. 2012 Jan 1;93(1):50-9 23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60 18785170 - Curr Protoc Stem Cell Biol. 2007 Jul;Chapter 1:Unit 1F.2 19798085 - Nat Protoc. 2009;4(10):1522-34 21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40 7586258 - Circulation. 1995 Nov 15;92(10):2904-10 22821908 - Circ Res. 2012 Jul 20;111(3):344-58 22268955 - Stem Cells Dev. 2012 Aug 10;21(12):2111-21 8790037 - Circulation. 1996 Sep 1;94(5):992-1002 23168164 - Cell Stem Cell. 2013 Jan 3;12(1):127-37 21879736 - Mol Pharm. 2011 Oct 3;8(5):1495-504 19477968 - Cardiovasc Res. 2009 Sep 1;83(4):688-97 |
References_xml | – volume: 2 start-page: 1448 year: 2012 end-page: 1460 ident: bib3 article-title: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions publication-title: Cell Rep – volume: 6 start-page: e26397 year: 2011 ident: bib19 article-title: Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology publication-title: PloS One – volume: 106 start-page: 16568 year: 2009 end-page: 16573 ident: bib35 article-title: Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue publication-title: Proc Natl Acad Sci U S A – volume: 32 start-page: 7514 year: 2011 end-page: 7523 ident: bib37 article-title: A combined cell therapy and in-situ tissue-engineering approach for myocardial repair publication-title: Biomaterials – volume: 93 start-page: 32 year: 2003 end-page: 39 ident: bib40 article-title: Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization publication-title: Circ Res – volume: 18 start-page: 957 year: 2012 end-page: 967 ident: bib30 article-title: Local tissue geometry determines contractile force generation of engineered muscle networks publication-title: Tissue Eng Part A – volume: 93 start-page: 50 year: 2012 end-page: 59 ident: bib38 article-title: Organotypic slice culture from human adult ventricular myocardium publication-title: Cardiovasc Res – volume: 94 start-page: 992 year: 1996 end-page: 1002 ident: bib41 article-title: Evidence for functional relevance of an enhanced expression of the Na(+)–Ca2+ exchanger in failing human myocardium publication-title: Circulation – volume: 110 start-page: 1556 year: 2012 end-page: 1563 ident: bib20 article-title: Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers publication-title: Circ Res – year: 2012 ident: bib31 article-title: Rubin's pathology: clinicopathologic foundations of medicine – year: 2012 ident: bib21 article-title: Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro publication-title: Eur Heart J – volume: 7 start-page: 61 year: 2010 end-page: 66 ident: bib10 article-title: Nongenetic method for purifying stem cell-derived cardiomyocytes publication-title: Nat Methods – volume: 32 start-page: 3575 year: 2011 end-page: 3583 ident: bib29 article-title: The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle publication-title: Biomaterials – volume: 280 start-page: H1814 year: 2001 end-page: H1820 ident: bib32 article-title: Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles publication-title: Am J Physiol Heart Circ Physiol – volume: 8 start-page: 162 year: 2012 end-page: 175 ident: bib2 article-title: Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions publication-title: Nat Protoc – volume: 111 start-page: 344 year: 2012 end-page: 358 ident: bib1 article-title: Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview publication-title: Circ Res – volume: 8 start-page: 1495 year: 2011 end-page: 1504 ident: bib13 article-title: Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective publication-title: Mol Pharmacol – volume: 6 start-page: e18037 year: 2011 ident: bib16 article-title: Calcium handling in human induced pluripotent stem cell derived cardiomyocytes publication-title: PLoS One – volume: 29 start-page: 1011 year: 2011 end-page: 1018 ident: bib9 article-title: SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells publication-title: Nat Biotechnol – volume: 111 start-page: 1125 year: 2012 end-page: 1136 ident: bib5 article-title: Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method publication-title: Circ Res – volume: 83 start-page: 688 year: 2009 end-page: 697 ident: bib28 article-title: Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes publication-title: Cardiovasc Res – volume: 259 start-page: 6437 year: 1984 end-page: 6446 ident: bib33 article-title: Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated publication-title: J Biol Chem – volume: 32 start-page: 9180 year: 2011 end-page: 9187 ident: bib26 article-title: Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function publication-title: Biomaterials – volume: 7 start-page: e1002061 year: 2011 ident: bib12 article-title: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation publication-title: PLoS Comput Biol – volume: 94 start-page: 144 year: 2007 end-page: 168 ident: bib25 article-title: Influence of anisotropic conduction properties in the propagation of the cardiac action potential publication-title: Prog Biophys Mol Biol – volume: 100 start-page: 263 year: 2007 end-page: 272 ident: bib34 article-title: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells publication-title: Circ Res – volume: 8 start-page: 1037 year: 2011 end-page: 1040 ident: bib8 article-title: NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes publication-title: Nat Methods – volume: 4 start-page: 1522 year: 2009 end-page: 1534 ident: bib27 article-title: Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues publication-title: Nat Protoc – volume: 21 start-page: 2111 year: 2012 end-page: 2121 ident: bib18 article-title: Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy publication-title: Stem Cells Dev – volume: 4 start-page: 605 year: 2011 end-page: 615 ident: bib36 article-title: Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors publication-title: J Cardiovasc Transl Res – volume: 8 start-page: 228 year: 2011 end-page: 240 ident: bib7 article-title: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines publication-title: Cell Stem Cell. – volume: 109 start-page: 47 year: 2011 end-page: 59 ident: bib23 article-title: Growth of engineered human myocardium with mechanical loading and vascular coculture publication-title: Circ Res – volume: 92 start-page: 2904 year: 1995 end-page: 2910 ident: bib42 article-title: Positive and negative inotropic effects of DL-sotalol and D-sotalol in failing and nonfailing human myocardium under physiological experimental conditions publication-title: Circulation – year: 2007 ident: bib4 article-title: Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium publication-title: Curr Protoc Stem Cell Biol – volume: 12 start-page: 127 year: 2013 end-page: 137 ident: bib11 article-title: Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes publication-title: Cell Stem Cell – volume: 25 start-page: 3038 year: 2007 end-page: 3044 ident: bib15 article-title: Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation publication-title: Stem Cells – volume: 85 start-page: 1743 year: 1992 end-page: 1750 ident: bib24 article-title: Altered myocardial force-frequency relation in human heart failure publication-title: Circulation – volume: 40 start-page: S192 year: 2007 end-page: S196 ident: bib14 article-title: Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes publication-title: J Electrocardiol – volume: 1080 start-page: 207 year: 2006 end-page: 215 ident: bib17 article-title: Calcium handling in embryonic stem cell-derived cardiac myocytes: of mice and men publication-title: Ann N Y Acad Sci – year: 2012 ident: bib22 article-title: Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts publication-title: Eur Heart J – volume: 109 start-page: E1848 year: 2012 end-page: E1857 ident: bib6 article-title: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling publication-title: Proc Natl Acad Sci U S A – volume: 24 start-page: 236 year: 2006 end-page: 245 ident: bib39 article-title: Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction publication-title: Stem Cells – volume: 111 start-page: 1125 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib5 article-title: Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.273144 – volume: 7 start-page: 61 year: 2010 ident: 10.1016/j.biomaterials.2013.04.026_bib10 article-title: Nongenetic method for purifying stem cell-derived cardiomyocytes publication-title: Nat Methods doi: 10.1038/nmeth.1403 – year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib22 article-title: Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts publication-title: Eur Heart J – volume: 8 start-page: 162 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib2 article-title: Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions publication-title: Nat Protoc doi: 10.1038/nprot.2012.150 – volume: 94 start-page: 992 year: 1996 ident: 10.1016/j.biomaterials.2013.04.026_bib41 article-title: Evidence for functional relevance of an enhanced expression of the Na(+)–Ca2+ exchanger in failing human myocardium publication-title: Circulation doi: 10.1161/01.CIR.94.5.992 – volume: 92 start-page: 2904 year: 1995 ident: 10.1016/j.biomaterials.2013.04.026_bib42 article-title: Positive and negative inotropic effects of DL-sotalol and D-sotalol in failing and nonfailing human myocardium under physiological experimental conditions publication-title: Circulation doi: 10.1161/01.CIR.92.10.2904 – volume: 110 start-page: 1556 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib20 article-title: Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers publication-title: Circ Res doi: 10.1161/CIRCRESAHA.111.262535 – volume: 111 start-page: 344 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib1 article-title: Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.227512 – volume: 25 start-page: 3038 year: 2007 ident: 10.1016/j.biomaterials.2013.04.026_bib15 article-title: Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation publication-title: Stem Cells doi: 10.1634/stemcells.2007-0549 – volume: 40 start-page: S192 year: 2007 ident: 10.1016/j.biomaterials.2013.04.026_bib14 article-title: Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2007.05.035 – volume: 109 start-page: 47 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib23 article-title: Growth of engineered human myocardium with mechanical loading and vascular coculture publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.237206 – volume: 259 start-page: 6437 year: 1984 ident: 10.1016/j.biomaterials.2013.04.026_bib33 article-title: Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated publication-title: J Biol Chem doi: 10.1016/S0021-9258(20)82162-0 – volume: 7 start-page: e1002061 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib12 article-title: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002061 – volume: 2 start-page: 1448 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib3 article-title: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions publication-title: Cell Rep doi: 10.1016/j.celrep.2012.09.015 – volume: 21 start-page: 2111 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib18 article-title: Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy publication-title: Stem Cells Dev doi: 10.1089/scd.2011.0312 – volume: 32 start-page: 9180 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib26 article-title: Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.050 – volume: 12 start-page: 127 year: 2013 ident: 10.1016/j.biomaterials.2013.04.026_bib11 article-title: Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.09.013 – year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib31 – year: 2007 ident: 10.1016/j.biomaterials.2013.04.026_bib4 article-title: Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium publication-title: Curr Protoc Stem Cell Biol doi: 10.1002/9780470151808.sc01f02s2 – volume: 29 start-page: 1011 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib9 article-title: SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells publication-title: Nat Biotechnol doi: 10.1038/nbt.2005 – volume: 85 start-page: 1743 year: 1992 ident: 10.1016/j.biomaterials.2013.04.026_bib24 article-title: Altered myocardial force-frequency relation in human heart failure publication-title: Circulation doi: 10.1161/01.CIR.85.5.1743 – volume: 280 start-page: H1814 year: 2001 ident: 10.1016/j.biomaterials.2013.04.026_bib32 article-title: Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.2001.280.4.H1814 – volume: 32 start-page: 7514 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib37 article-title: A combined cell therapy and in-situ tissue-engineering approach for myocardial repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.049 – volume: 93 start-page: 32 year: 2003 ident: 10.1016/j.biomaterials.2013.04.026_bib40 article-title: Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization publication-title: Circ Res doi: 10.1161/01.RES.0000080317.92718.99 – volume: 8 start-page: 1037 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib8 article-title: NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes publication-title: Nat Methods doi: 10.1038/nmeth.1740 – volume: 24 start-page: 236 year: 2006 ident: 10.1016/j.biomaterials.2013.04.026_bib39 article-title: Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction publication-title: Stem Cells doi: 10.1634/stemcells.2005-0036 – volume: 109 start-page: E1848 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib6 article-title: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1200250109 – volume: 93 start-page: 50 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib38 article-title: Organotypic slice culture from human adult ventricular myocardium publication-title: Cardiovasc Res doi: 10.1093/cvr/cvr259 – volume: 6 start-page: e26397 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib19 article-title: Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology publication-title: PloS One doi: 10.1371/journal.pone.0026397 – volume: 4 start-page: 1522 year: 2009 ident: 10.1016/j.biomaterials.2013.04.026_bib27 article-title: Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues publication-title: Nat Protoc doi: 10.1038/nprot.2009.155 – volume: 106 start-page: 16568 year: 2009 ident: 10.1016/j.biomaterials.2013.04.026_bib35 article-title: Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0908381106 – volume: 8 start-page: 1495 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib13 article-title: Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective publication-title: Mol Pharmacol doi: 10.1021/mp2002363 – year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib21 article-title: Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro publication-title: Eur Heart J – volume: 32 start-page: 3575 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib29 article-title: The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.01.062 – volume: 4 start-page: 605 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib36 article-title: Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors publication-title: J Cardiovasc Transl Res doi: 10.1007/s12265-011-9304-0 – volume: 94 start-page: 144 year: 2007 ident: 10.1016/j.biomaterials.2013.04.026_bib25 article-title: Influence of anisotropic conduction properties in the propagation of the cardiac action potential publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2007.03.014 – volume: 8 start-page: 228 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib7 article-title: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2010.12.008 – volume: 83 start-page: 688 year: 2009 ident: 10.1016/j.biomaterials.2013.04.026_bib28 article-title: Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes publication-title: Cardiovasc Res doi: 10.1093/cvr/cvp164 – volume: 6 start-page: e18037 year: 2011 ident: 10.1016/j.biomaterials.2013.04.026_bib16 article-title: Calcium handling in human induced pluripotent stem cell derived cardiomyocytes publication-title: PLoS One doi: 10.1371/journal.pone.0018037 – volume: 18 start-page: 957 year: 2012 ident: 10.1016/j.biomaterials.2013.04.026_bib30 article-title: Local tissue geometry determines contractile force generation of engineered muscle networks publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2011.0313 – volume: 100 start-page: 263 year: 2007 ident: 10.1016/j.biomaterials.2013.04.026_bib34 article-title: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells publication-title: Circ Res doi: 10.1161/01.RES.0000257776.05673.ff – volume: 1080 start-page: 207 year: 2006 ident: 10.1016/j.biomaterials.2013.04.026_bib17 article-title: Calcium handling in embryonic stem cell-derived cardiac myocytes: of mice and men publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1380.017 – reference: 16322641 - Stem Cells. 2006 Feb;24(2):236-45 – reference: 22570367 - Circ Res. 2012 Jun 8;110(12):1556-63 – reference: 22020065 - Nat Methods. 2011 Dec;8(12):1037-40 – reference: 21879736 - Mol Pharm. 2011 Oct 3;8(5):1495-504 – reference: 22020386 - Nat Biotechnol. 2011 Nov;29(11):1011-8 – reference: 22912385 - Circ Res. 2012 Oct 12;111(9):1125-36 – reference: 21324402 - Biomaterials. 2011 May;32(14):3575-83 – reference: 19477968 - Cardiovasc Res. 2009 Sep 1;83(4):688-97 – reference: 17218605 - Circ Res. 2007 Feb 2;100(2):263-72 – reference: 21597009 - Circ Res. 2011 Jun 24;109(1):47-59 – reference: 17872499 - Stem Cells. 2007 Dec;25(12):3038-44 – reference: 21783246 - Biomaterials. 2011 Oct;32(30):7514-23 – reference: 22821908 - Circ Res. 2012 Jul 20;111(3):344-58 – reference: 21744185 - J Cardiovasc Transl Res. 2011 Oct;4(5):605-15 – reference: 1572031 - Circulation. 1992 May;85(5):1743-50 – reference: 17132785 - Ann N Y Acad Sci. 2006 Oct;1080:207-15 – reference: 12791707 - Circ Res. 2003 Jul 11;93(1):32-9 – reference: 21972180 - Cardiovasc Res. 2012 Jan 1;93(1):50-9 – reference: 19946277 - Nat Methods. 2010 Jan;7(1):61-6 – reference: 8790037 - Circulation. 1996 Sep 1;94(5):992-1002 – reference: 22028871 - PLoS One. 2011;6(10):e26397 – reference: 22268955 - Stem Cells Dev. 2012 Aug 10;21(12):2111-21 – reference: 23257984 - Nat Protoc. 2013 Jan;8(1):162-75 – reference: 23103664 - Eur Heart J. 2013 Apr;34(15):1134-46 – reference: 21483779 - PLoS One. 2011;6(4):e18037 – reference: 11247796 - Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1814-20 – reference: 23168164 - Cell Stem Cell. 2013 Jan 3;12(1):127-37 – reference: 19805339 - Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16568-73 – reference: 18785170 - Curr Protoc Stem Cell Biol. 2007 Jul;Chapter 1:Unit 1F.2 – reference: 22115339 - Tissue Eng Part A. 2012 May;18(9-10):957-67 – reference: 23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60 – reference: 22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 – reference: 6327679 - J Biol Chem. 1984 May 25;259(10):6437-46 – reference: 22798560 - Eur Heart J. 2013 Sep;34(33):2618-29 – reference: 21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40 – reference: 17482242 - Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):144-68 – reference: 19798085 - Nat Protoc. 2009;4(10):1522-34 – reference: 7586258 - Circulation. 1995 Nov 15;92(10):2904-10 – reference: 17993321 - J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S192-6 – reference: 21906802 - Biomaterials. 2011 Dec;32(35):9180-7 – reference: 21637795 - PLoS Comput Biol. 2011 May;7(5):e1002061 |
SSID | ssj0014042 |
Score | 2.591969 |
Snippet | Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist... Abstract Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5813 |
SubjectTerms | Action Potentials - drug effects Action Potentials - genetics Adrenergic stimulation Advanced Basic Science Animals Cardiac tissue engineering Cardiotonic Agents - pharmacology Cell Line Dentistry drug therapy drugs Embryonic Stem Cells - cytology Embryonic Stem Cells - drug effects Embryonic Stem Cells - metabolism Gene Expression Regulation - drug effects genes Human pluripotent stem cells Humans Hydrogel Mice Myocardial Contraction - drug effects Myocardial Contraction - genetics Myocytes, Cardiac - cytology Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Optical mapping Phenotype Receptors, Adrenergic, beta - metabolism sarcomeres screening Time Factors Tissue Engineering - methods Tissue Scaffolds - chemistry |
Title | Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961213004705 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213004705 https://dx.doi.org/10.1016/j.biomaterials.2013.04.026 https://www.ncbi.nlm.nih.gov/pubmed/23642535 https://www.proquest.com/docview/1353478452 https://www.proquest.com/docview/1710235138 https://pubmed.ncbi.nlm.nih.gov/PMC3660435 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalg7E9jK770bRb0WCvWmxLtmXGHkpoyTbal7XQNyHJEs1Y7dCkg770b9-dLJtkLSOwN2PpLEd3ujvFn74j5GNWGS-MK5jV3jIhDWcy1ZJ57vMs1yXsifDs8OlZMb0Q3y7zyy0y6c_CIKwy-v7OpwdvHe-M42yO57PZGGFJWYUEWEgaVQYeUyFKtPJP9wPMA9ljsg7GmDHs3ROPBowXHnHXy07VCPPigfYUiRYeD1IPk9C_sZQrwelkh7yIWSU96l78JdlyzS55vsI1uEuensav6K-IPw-zzVxsdzW1wVAsnYNnvqKQyNIeHEAx8nV_GNJrZAENqqStp6G8Hz3-MWE1jPG7f0p7fdfaO8hgX5OLk-PzyZTFegvMFkIuGexETJp62ADBrtC7xIlal4nmRW1gXmUKl0kF4V3wGvIUU9ZcV8LXnJtKlsLU_A3ZbtrG7RFaOfBbdVLYwkKLrDRkQSa38FzBNehiRKp-gpWNZORYE-OX6lFnP9WqchQqRyVCgXJGhA-y846SYyOpz70eVX_oFNykgsixkXT5mLRbxBW_UKlaZCpRD6xyRL4MkmuGvfHIH3qjU7Dy8XOOblx7CyNyUEUpRZ79ow8mkDxPuRyRt52hDnOGpQOynMMblmsmPHRA5vH1lmZ2FRjIeVEkkGfv_-dvOyDPslBdBNHP78j28ubWvYccb2kOwyI-JE-Ovn6fnv0Bu8BVEQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclhW19GFv3lX1qsFcR25K_GHsooSVdm7wshb4JSZZoxmqHJh30v9-dLJtkLSOw10hnObrT3U_W6XeEfElK7YS2GTPKGSYKzVkRq4I57tIkVTnsifDu8HSWTS7E98v0co-Mu7swmFYZfH_r0723Dr-MwmyOlovFCNOSkhIJsJA0Kkce031kp0oHZP_o9Gwy6w8TRORr6GB_hgId96hP88Jb7mrdahszvbhnPkWuhYfj1H0c-nc65UZ8OnlGngZgSY_ad39O9mx9SA426AYPyaNpOEh_QdzcTzizod1W1HhbMXQJzvmKApalXX4AxeDXfjOk10gE6rVJG0d9hT96_GPMKhjjd_eU5vquMXcAYl-Si5Pj-XjCQskFZjJRrBlsRnQcO9gDwcbQ2ciKSuWR4lmlRY7UZYpHJUR4wSuAKjqvuCqFqzjXZZELXfFXZFA3tX1DaGnBdVVRZjIDLUWpAAjp1MBzBVegiyEpuwmWJvCRY1mMX7JLPPspN5UjUTkyEhKUMyS8l122rBw7SX3t9Ci7e6fgKSUEj52k84ek7Sos-pWM5SqRkbxnmEPyrZfcsu2dR_7cGZ2ExY8nOqq2zS2MyEEVeSHS5B99EEPyNObFkLxuDbWfM6wekKQc3jDfMuG-A5KPb7fUiytPQs6zLAKo_fY__9sn8ngyn57L89PZ2TvyJPHFRjAZ-j0ZrG9u7QeAfGv9MSzpPzZJV8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue-engineered+cardiac+patch+for+advanced+functional+maturation+of+human+ESC-derived+cardiomyocytes&rft.jtitle=Biomaterials&rft.au=Zhang%2C+Donghui&rft.au=Shadrin%2C+Ilya+Y&rft.au=Lam%2C+Jason&rft.au=Xian%2C+Hai-Qian&rft.date=2013-07-01&rft.issn=0142-9612&rft.volume=34&rft.issue=23+p.5813-5820&rft.spage=5813&rft.epage=5820&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.04.026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961213X0016X%2Fcov150h.gif |