Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method

Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 55; no. 2; pp. 107 - 115
Main Authors He, Ju, Yang, Guobing, Rao, Hanbing, Li, Zerong, Ding, Xianping, Chen, Yuzong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.
AbstractList Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.
Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.
Abstract Objective Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. Methods In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Results Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Conclusions Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.
Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods.OBJECTIVEAccurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods.In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection.METHODSIn this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection.Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets.RESULTSFeature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets.Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.CONCLUSIONSOur study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.
Author Chen, Yuzong
Li, Zerong
Ding, Xianping
Rao, Hanbing
He, Ju
Yang, Guobing
Author_xml – sequence: 1
  givenname: Ju
  surname: He
  fullname: He, Ju
  organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
– sequence: 2
  givenname: Guobing
  surname: Yang
  fullname: Yang, Guobing
  organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
– sequence: 3
  givenname: Hanbing
  surname: Rao
  fullname: Rao, Hanbing
  organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
– sequence: 4
  givenname: Zerong
  surname: Li
  fullname: Li, Zerong
  email: lizerong@scu.edu.cn
  organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
– sequence: 5
  givenname: Xianping
  surname: Ding
  fullname: Ding, Xianping
  organization: College of Life sciences, Sichuan University, Chengdu 610064, People's Republic of China
– sequence: 6
  givenname: Yuzong
  surname: Chen
  fullname: Chen, Yuzong
  organization: Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22134095$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEUhoNU7Lb6D0Ry6c2syeRjpiKCFD8WCgrqdcjHGTfbmWRNMuL-ezPd9kaQ1quQw_O-53Dec4ZOQgyA0HNK1pRQ-Wq31qlM4NYtobSW1oSIR2hF-441bS_JCVqRC8YaJkV3is5y3hFCOk7lE3TatpRxciFW6PAlgfO2-BhwHPB2nnTAk97FhLc-l2jjtNfFGz_6csDLb4Tf2I46Z7zZYOOD8-EH3sO-eAcZmwUKxYc5zhlfQwowYuezTX7yQd_0maBso3uKHg96zPDs9j1H3z-8_3b5qbn6_HFz-e6qsZL3pWkJlwC8J1I7J12vhRWGG2Y6ZwXVxg5UCGN0L7sBOmON6R0ZBLNWtlRCy87Ry6PvPsWfM-SipjoOjKMOUGdUVHaUd4J1D0BJS3retx17AEo7SQXnpKIvbtHZ1LzUvq5Cp4O6C6ECr4-ATTHnBIOyvtysqiTtx-q12Em1U8fE1ZL4Uq2JVzH_S3znf4_s7VEGdfW_PCSVrYdg6zEksEW56P_XwI4-eKvHazhA3sU5hRqroiq3iqivyy0up0gpIZQzWQ3e_Nvg_v5_API_8q0
CitedBy_id crossref_primary_10_1021_acs_jcim_9b01075
Cites_doi 10.1126/science.3287615
10.1016/j.stamet.2011.07.002
10.1093/bioinformatics/btg312
10.1002/qsar.200960021
10.1093/bioinformatics/bth466
10.1016/j.jtbi.2009.11.016
10.1093/bioinformatics/btg424
10.1002/prot.1035
10.1093/biomet/63.3.413
10.1007/s00251-005-0798-y
10.1002/jcc.21616
10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K
10.2174/092986611794328708
10.1021/ci000397q
10.1016/j.jtbi.2007.06.001
10.1186/1471-2105-8-238
10.1371/journal.pone.0024756
10.1073/pnas.92.19.8700
10.1371/journal.pone.0023505
10.1371/journal.pone.0022989
10.1016/j.jtbi.2008.11.003
10.1016/j.artmed.2005.02.002
10.1186/1745-7580-1-6
10.1016/j.jtbi.2011.06.005
10.1021/ci0505426
10.1016/0198-8859(93)90540-H
10.1371/journal.pone.0014556
10.1093/nar/27.1.368
10.1016/j.jtbi.2011.04.017
10.1016/S1389-1723(01)80254-1
10.1371/journal.pone.0022940
10.1021/jm049716l
10.1007/s10822-006-9096-5
10.1016/j.jmgm.2011.06.014
10.2174/0929866511009011473
10.1186/1756-0500-2-61
10.1016/j.jtbi.2010.12.024
10.1186/1471-2105-3-25
10.3109/10409239509083488
10.1186/1471-2105-7-463
10.1021/jm0505258
10.1016/j.ejmech.2009.12.038
10.1016/j.ab.2009.04.009
10.2174/092986608784966930
10.1093/bioinformatics/17.10.942
10.2174/092986608786071184
10.1007/s00726-007-0018-1
10.1007/BF00172063
10.1021/ci025586i
10.1016/j.jtbi.2008.02.004
10.1016/j.jmgm.2005.03.001
10.1038/9858
10.2174/092986611795222795
10.1039/C0MB00170H
10.2174/092986609787049420
10.1186/1471-2105-7-501
10.2174/0929866511009011441
10.2174/157016409789973707
10.2174/092986610792231564
10.1021/ci800072r
10.1371/journal.pone.0018476
10.1016/j.compbiolchem.2010.09.002
10.1021/ci050348j
10.1186/1471-2105-8-459
10.4049/jimmunol.175.6.3826
10.1021/ci050397w
10.1093/bioinformatics/bth100
10.1007/PL00010720
10.1016/j.jtbi.2010.08.001
10.1038/nprot.2007.494
10.1021/ci050004t
10.1016/S0198-8859(97)00078-5
10.1021/ci700087v
10.2174/092986609787848045
10.1371/journal.pone.0020592
10.1002/jcc.21740
10.1016/j.jtbi.2008.03.015
10.1016/j.molimm.2006.04.001
10.1093/bioinformatics/14.2.121
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.artmed.2011.10.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 115
ExternalDocumentID 22134095
10_1016_j_artmed_2011_10_005
S0933365711001436
1_s2_0_S0933365711001436
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c648t-2046ee4806add6d8a5c5b4b3b7dc51abcf155bba867fe7bcbb8d0f53cc6216e23
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Fri Jul 11 11:46:31 EDT 2025
Thu Jul 10 18:37:32 EDT 2025
Mon Jul 21 11:52:25 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 00:24:32 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 23 02:25:16 EST 2024
Sun Feb 23 10:19:32 EST 2025
Tue Aug 26 17:11:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Feature selection
Major histocompatibility complex class II peptides
Metropolis Monte Carlo simulated annealing
Continuous kernel discrimination
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c648t-2046ee4806add6d8a5c5b4b3b7dc51abcf155bba867fe7bcbb8d0f53cc6216e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/106244
PMID 22134095
PQID 1017615440
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671475372
proquest_miscellaneous_1020848273
proquest_miscellaneous_1017615440
pubmed_primary_22134095
crossref_citationtrail_10_1016_j_artmed_2011_10_005
crossref_primary_10_1016_j_artmed_2011_10_005
elsevier_sciencedirect_doi_10_1016_j_artmed_2011_10_005
elsevier_clinicalkeyesjournals_1_s2_0_S0933365711001436
elsevier_clinicalkey_doi_10_1016_j_artmed_2011_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ding, Liu, Guo, Huang, Lin (bib0330) 2011; 18
Swets (bib0345) 1988; 240
Aitchison, Aitken (bib0095) 1976; 63
Li, Li (bib0260) 2008; 15
Bhasin, Raghava (bib0130) 2004; 20
Mallios (bib0080) 2001; 17
Georgiou, Karakasidis, Nieto, Torres (bib0335) 2009; 257
Donnes, Elofsson (bib0025) 2002; 3
Rammennsee, Friede, Stevanovic (bib0030) 1995; 41
Chou (bib0215) 2005; 21
Chou, Shen (bib0420) 2009; 2
Rajapakse, Schmidt, Feng, Brusic (bib0055) 2007; 8
Wang, Wang, Yang, Deng (bib0255) 2010; 17
Hu, Huang, Shi, Lu, Cai, Chou (bib0360) 2011; 6
Doytchinova, Flower (bib0135) 2003; 19
Nielsen, Lundegaard, Lund (bib0415) 2007; 8
Chou (bib0210) 2001; 43
Wilton, Harrison, Willett, Delaney, Lawson, Mullier (bib0105) 2006; 46
MHCBench.
Liu, Mao, Li, Han, Lai (bib0175) 2000; 6
Qiu, Huang, Liang, Lu (bib0285) 2009; 390
Dubchak, Muchink, Holbrook, Kim (bib0160) 1995; 92
Lin, Fang, Xiao, Chou (bib0400) 2011; 6
Nielsen, Lundegaard, Worning, Hvid, Lamberth, Buus (bib0040) 2004; 20
Salomon, Flower (bib0065) 2006; 7
Hert, Willett, Wilton (bib0100) 2006; 46
Chou (bib0220) 2009; 6
Xiao, Wu, Chou (bib0390) 2011; 6
Zhang, Li, Gao, Fang (bib0320) 2008; 15
.
Esmaeili, Mohabatkar, Mohsenzadeh (bib0280) 2010; 263
Lin (bib0295) 2008; 252
Sturniolo, Bono, Jiayi, Raddrizzani, Tuereci, Sahin (bib0195) 1999; 17
Zhang, Fang (bib0315) 2008; 253
Hu, Huang, Cai, Chou (bib0365) 2011; 6
Brusic, Rudy, Honeyman, Hammer, Harrison (bib0035) 1998; 14
Chou (bib0185) 2011; 273
NetMHCII.
Max, Halder, Kropshofer, Kalbus, Müller, Kalbacher (bib0020) 1993; 38
Chou, Shen (bib0355) 2008; 3
Kandaswamy, Pugalenthi, Moller, Hartmann, Kalies, Suganthan (bib0265) 2010; 17
Wang, Xiao, Chou (bib0385) 2011; 6
Guan, Doytchinova, Walshe, Borrow, Flower (bib0145) 2005; 48
Sahu, Panda (bib0245) 2010; 34
Miles, Elhassen, Borg, Silins, Tynan, Burrows (bib0015) 2005; 175
Wang, Hu, Liu, Jiang, Chen, Xu (bib0375) 2011; 6
Mohabatkar, Mohammad Beigi, Esmaeili (bib0305) 2011; 281
Rizzi, Fioni (bib0340) 2008; 48
Chou, Zhang (bib0350) 1995; 30
Xiao, Wu, Chou (bib0380) 2011; 284
Zou, He, He, Xia (bib0240) 2011; 32
Cui, Han, Lin, Zhang, Tang, Zheng (bib0060) 2007; 44
Bui, Sidney, Peters, Sathiamurthy, Sinichi, Purton (bib0410) 2005; 57
Guo, Rao, Liu, Yang, Wang (bib0290) 2011; 32
Chen, Harrison, Papadatos, Willett, Wood, Lewell (bib0090) 2007; 21
Hu, Zheng, Wang, Li, Liu (bib0325) 2011; 18
Zhang, Liu, Niu, Wang, Zhang (bib0150) 2008
Burden, Winkler (bib0010) 2005; 23
Willett, Wilton, Hartzoulakis, Tang, Ford, Madge (bib0125) 2007; 47
Lv, Xue (bib0165) 2010; 45
Yang, Johnson (bib0075) 2005; 45
Kawashima, Ogata, Kanehisa (bib0140) 1999; 27
Chen, Harrison, Pasupa, Willett, Wilton, Wood (bib0110) 2006; 46
Murugan, Dai (bib0050) 2005; 1
Harper, Bradshaw, Gittins, Green, Leach (bib0085) 2001; 41
Qiu, Suo, Sun, Shi, Liang (bib0230) 2011; 30
Noguchi, Hanai, Honda, Harrison, Kobayashi (bib0070) 2001; 92
Dubchak, Muchnik, Mayor, Dralyuk, Kim (bib0155) 1999; 35
Nanni, Lumini, Gupta, Garg (bib0225) 2011
Mohabatkar (bib0300) 2010; 17
Yu, Guo, Li, Li, Li, Luo (bib0310) 2010; 267
Rao, Yang, Tan, Li, Li, Li (bib0170) 2009; 28
Ding, Luo, Lin (bib0275) 2009; 16
Wilton, Willett (bib0115) 2003; 43
Lata, Bhasin, Raghava (bib0190) 2009; 2
Huang, Niu, Xu, Huang, Kong, Cai (bib0370) 2011; 6
Chen, Chen, Zou, Cai (bib0235) 2009; 16
Zhou, Chen, Li, Zou (bib0250) 2007; 248
Castellino, Zhong, Germain (bib0005) 1997; 54
Kokonendji, Senga Kiesse (bib0120) 2011; 8
Karpenko, Shi, Dai (bib0045) 2005; 35
Parish, Yarger, Sinclair, Dure, Goldberg (bib0180) 2004; 47
Nanni, Lumini (bib0270) 2008; 34
Xiao, Wang, Chou (bib0395) 2011; 7
Wan, Liu, Xu, Flower, Li (bib0405) 2006; 7
Zhang (10.1016/j.artmed.2011.10.005_bib0150) 2008
Chou (10.1016/j.artmed.2011.10.005_bib0355) 2008; 3
Lin (10.1016/j.artmed.2011.10.005_bib0295) 2008; 252
Rajapakse (10.1016/j.artmed.2011.10.005_bib0055) 2007; 8
Karpenko (10.1016/j.artmed.2011.10.005_bib0045) 2005; 35
10.1016/j.artmed.2011.10.005_bib0200
Xiao (10.1016/j.artmed.2011.10.005_bib0390) 2011; 6
Rao (10.1016/j.artmed.2011.10.005_bib0170) 2009; 28
Zhou (10.1016/j.artmed.2011.10.005_bib0250) 2007; 248
Mohabatkar (10.1016/j.artmed.2011.10.005_bib0300) 2010; 17
Nanni (10.1016/j.artmed.2011.10.005_bib0270) 2008; 34
Nielsen (10.1016/j.artmed.2011.10.005_bib0040) 2004; 20
Chen (10.1016/j.artmed.2011.10.005_bib0110) 2006; 46
Bhasin (10.1016/j.artmed.2011.10.005_bib0130) 2004; 20
Qiu (10.1016/j.artmed.2011.10.005_bib0285) 2009; 390
Zhang (10.1016/j.artmed.2011.10.005_bib0315) 2008; 253
Chou (10.1016/j.artmed.2011.10.005_bib0210) 2001; 43
Qiu (10.1016/j.artmed.2011.10.005_bib0230) 2011; 30
Mallios (10.1016/j.artmed.2011.10.005_bib0080) 2001; 17
Rizzi (10.1016/j.artmed.2011.10.005_bib0340) 2008; 48
Rammennsee (10.1016/j.artmed.2011.10.005_bib0030) 1995; 41
Bui (10.1016/j.artmed.2011.10.005_bib0410) 2005; 57
10.1016/j.artmed.2011.10.005_bib0205
Li (10.1016/j.artmed.2011.10.005_bib0260) 2008; 15
Chen (10.1016/j.artmed.2011.10.005_bib0090) 2007; 21
Dubchak (10.1016/j.artmed.2011.10.005_bib0155) 1999; 35
Chou (10.1016/j.artmed.2011.10.005_bib0185) 2011; 273
Hu (10.1016/j.artmed.2011.10.005_bib0360) 2011; 6
Mohabatkar (10.1016/j.artmed.2011.10.005_bib0305) 2011; 281
Lv (10.1016/j.artmed.2011.10.005_bib0165) 2010; 45
Sahu (10.1016/j.artmed.2011.10.005_bib0245) 2010; 34
Noguchi (10.1016/j.artmed.2011.10.005_bib0070) 2001; 92
Hert (10.1016/j.artmed.2011.10.005_bib0100) 2006; 46
Willett (10.1016/j.artmed.2011.10.005_bib0125) 2007; 47
Chou (10.1016/j.artmed.2011.10.005_bib0215) 2005; 21
Guan (10.1016/j.artmed.2011.10.005_bib0145) 2005; 48
Max (10.1016/j.artmed.2011.10.005_bib0020) 1993; 38
Yang (10.1016/j.artmed.2011.10.005_bib0075) 2005; 45
Donnes (10.1016/j.artmed.2011.10.005_bib0025) 2002; 3
Georgiou (10.1016/j.artmed.2011.10.005_bib0335) 2009; 257
Aitchison (10.1016/j.artmed.2011.10.005_bib0095) 1976; 63
Dubchak (10.1016/j.artmed.2011.10.005_bib0160) 1995; 92
Chou (10.1016/j.artmed.2011.10.005_bib0220) 2009; 6
Kawashima (10.1016/j.artmed.2011.10.005_bib0140) 1999; 27
Parish (10.1016/j.artmed.2011.10.005_bib0180) 2004; 47
Huang (10.1016/j.artmed.2011.10.005_bib0370) 2011; 6
Sturniolo (10.1016/j.artmed.2011.10.005_bib0195) 1999; 17
Wang (10.1016/j.artmed.2011.10.005_bib0375) 2011; 6
Doytchinova (10.1016/j.artmed.2011.10.005_bib0135) 2003; 19
Yu (10.1016/j.artmed.2011.10.005_bib0310) 2010; 267
Swets (10.1016/j.artmed.2011.10.005_bib0345) 1988; 240
Wilton (10.1016/j.artmed.2011.10.005_bib0105) 2006; 46
Zou (10.1016/j.artmed.2011.10.005_bib0240) 2011; 32
Wang (10.1016/j.artmed.2011.10.005_bib0255) 2010; 17
Lata (10.1016/j.artmed.2011.10.005_bib0190) 2009; 2
Hu (10.1016/j.artmed.2011.10.005_bib0365) 2011; 6
Ding (10.1016/j.artmed.2011.10.005_bib0330) 2011; 18
Chou (10.1016/j.artmed.2011.10.005_bib0420) 2009; 2
Xiao (10.1016/j.artmed.2011.10.005_bib0395) 2011; 7
Hu (10.1016/j.artmed.2011.10.005_bib0325) 2011; 18
Castellino (10.1016/j.artmed.2011.10.005_bib0005) 1997; 54
Burden (10.1016/j.artmed.2011.10.005_bib0010) 2005; 23
Lin (10.1016/j.artmed.2011.10.005_bib0400) 2011; 6
Zhang (10.1016/j.artmed.2011.10.005_bib0320) 2008; 15
Wang (10.1016/j.artmed.2011.10.005_bib0385) 2011; 6
Xiao (10.1016/j.artmed.2011.10.005_bib0380) 2011; 284
Chou (10.1016/j.artmed.2011.10.005_bib0350) 1995; 30
Guo (10.1016/j.artmed.2011.10.005_bib0290) 2011; 32
Cui (10.1016/j.artmed.2011.10.005_bib0060) 2007; 44
Ding (10.1016/j.artmed.2011.10.005_bib0275) 2009; 16
Kandaswamy (10.1016/j.artmed.2011.10.005_bib0265) 2010; 17
Kokonendji (10.1016/j.artmed.2011.10.005_bib0120) 2011; 8
Liu (10.1016/j.artmed.2011.10.005_bib0175) 2000; 6
Esmaeili (10.1016/j.artmed.2011.10.005_bib0280) 2010; 263
Brusic (10.1016/j.artmed.2011.10.005_bib0035) 1998; 14
Wilton (10.1016/j.artmed.2011.10.005_bib0115) 2003; 43
Nanni (10.1016/j.artmed.2011.10.005_bib0225) 2011
Miles (10.1016/j.artmed.2011.10.005_bib0015) 2005; 175
Salomon (10.1016/j.artmed.2011.10.005_bib0065) 2006; 7
Chen (10.1016/j.artmed.2011.10.005_bib0235) 2009; 16
Nielsen (10.1016/j.artmed.2011.10.005_bib0415) 2007; 8
Murugan (10.1016/j.artmed.2011.10.005_bib0050) 2005; 1
Harper (10.1016/j.artmed.2011.10.005_bib0085) 2001; 41
Wan (10.1016/j.artmed.2011.10.005_bib0405) 2006; 7
22633493 - Artif Intell Med. 2012 Jul;55(3):209
References_xml – start-page: 352
  year: 2008
  end-page: 356
  ident: bib0150
  article-title: Quantitative prediction of MHC-II peptide binding affinity using global description of peptide sequences
  publication-title: International conference on biomedical engineering and informatics
– volume: 7
  start-page: 463
  year: 2006
  ident: bib0405
  article-title: SVRMHC prediction server for MHC-binding peptides
  publication-title: BMC Bioinform
– volume: 7
  start-page: 501
  year: 2006
  ident: bib0065
  article-title: Predicting class II MHC–peptide binding: a kernel based approach using similarity scores
  publication-title: BMC Bioinform
– volume: 284
  start-page: 42
  year: 2011
  end-page: 51
  ident: bib0380
  article-title: iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
  publication-title: J Theor Biol
– volume: 41
  start-page: 1295
  year: 2001
  end-page: 1300
  ident: bib0085
  article-title: Prediction of biological activity for high-throughput screening using binary kernel discrimination
  publication-title: J Chem Inform Model
– volume: 390
  start-page: 68
  year: 2009
  end-page: 73
  ident: bib0285
  article-title: Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform
  publication-title: Anal Biochem
– volume: 57
  start-page: 304
  year: 2005
  end-page: 314
  ident: bib0410
  article-title: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications
  publication-title: Immunogenetics
– volume: 6
  start-page: e23505
  year: 2011
  ident: bib0385
  article-title: NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features
  publication-title: PLoS One
– volume: 3
  start-page: 153
  year: 2008
  end-page: 162
  ident: bib0355
  article-title: Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms (updated version: Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms, Natural Science, 2010, 2, 1090–1103)
  publication-title: Nat Protoc
– volume: 17
  start-page: 1441
  year: 2010
  end-page: 1449
  ident: bib0255
  article-title: Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature
  publication-title: Protein Pept Lett
– volume: 43
  start-page: 469
  year: 2003
  end-page: 474
  ident: bib0115
  article-title: Comparison of ranking methods for virtual screening in lead-discovery programs
  publication-title: J Chem Inform Model
– volume: 19
  start-page: 2263
  year: 2003
  end-page: 2270
  ident: bib0135
  article-title: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction
  publication-title: Bioinformatics
– volume: 15
  start-page: 1132
  year: 2008
  end-page: 1137
  ident: bib0320
  article-title: Predicting lipase types by improved Chou's pseudo-amino acid composition
  publication-title: Protein Pept Lett
– volume: 281
  start-page: 18
  year: 2011
  end-page: 23
  ident: bib0305
  article-title: Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine
  publication-title: J Theor Biol
– volume: 48
  start-page: 1686
  year: 2008
  end-page: 1692
  ident: bib0340
  article-title: Virtual screening using PLS discriminant analysis and ROC curve approach: an application study on PDE4 inhibitors
  publication-title: J Chem Inform Model
– volume: 46
  start-page: 462
  year: 2006
  end-page: 470
  ident: bib0100
  article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching
  publication-title: J Chem Inform Model
– volume: 175
  start-page: 3826
  year: 2005
  end-page: 3834
  ident: bib0015
  article-title: CTL recognition of a bulged viral peptide involves biased TCR selection
  publication-title: J Immunol
– reference: MHCBench.
– volume: 92
  start-page: 8700
  year: 1995
  end-page: 8704
  ident: bib0160
  article-title: Prediction of protein folding class using global description of amino acid sequence
  publication-title: Proc Natl Acad Sci U S A
– volume: 273
  start-page: 236
  year: 2011
  end-page: 247
  ident: bib0185
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
  publication-title: J Theor Biol
– volume: 20
  start-page: 421
  year: 2004
  end-page: 423
  ident: bib0130
  article-title: SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence
  publication-title: Bioinformatics
– volume: 17
  start-page: 1473
  year: 2010
  end-page: 1479
  ident: bib0265
  article-title: Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition
  publication-title: Protein Pept Lett
– volume: 63
  start-page: 413
  year: 1976
  end-page: 420
  ident: bib0095
  article-title: Multivariate binary discrimination by the kernel method
  publication-title: Biometrika
– volume: 27
  start-page: 368
  year: 1999
  end-page: 369
  ident: bib0140
  article-title: AAindex amino acid index database
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 911
  year: 2011
  end-page: 919
  ident: bib0395
  article-title: GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions
  publication-title: Mol Biosyst
– volume: 32
  start-page: 271
  year: 2011
  end-page: 278
  ident: bib0240
  article-title: Supersecondary structure prediction using Chou's pseudo amino acid composition
  publication-title: J Comput Chem
– volume: 47
  start-page: 4838
  year: 2004
  end-page: 4850
  ident: bib0180
  article-title: Comparing the conformational behavior of a series of diastereomeric cyclic urea HIV-1 inhibitors using the low mode: Monte Carlo conformational search method
  publication-title: J Med Chem
– volume: 15
  start-page: 612
  year: 2008
  end-page: 616
  ident: bib0260
  article-title: Predicting protein subcellular location using Chou's pseudo amino acid composition and improved hybrid approach
  publication-title: Protein Pept Lett
– volume: 253
  start-page: 310
  year: 2008
  end-page: 315
  ident: bib0315
  article-title: Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou's amphiphilic pseudo amino acid composition
  publication-title: J Theor Biol
– volume: 1
  start-page: 6
  year: 2005
  ident: bib0050
  article-title: Prediction of MHC class II binding peptides based on an iterative learning model
  publication-title: Immun Res
– volume: 41
  start-page: 178
  year: 1995
  end-page: 228
  ident: bib0030
  article-title: MHC ligands and peptide motifs: first listing
  publication-title: Immunogenetics
– volume: 16
  start-page: 27
  year: 2009
  end-page: 31
  ident: bib0235
  article-title: Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine
  publication-title: Protein Pept Lett
– volume: 267
  start-page: 1
  year: 2010
  end-page: 6
  ident: bib0310
  article-title: SecretP: identifying bacterial secreted proteins by fusing new features into Chou's pseudo-amino acid composition
  publication-title: J Theor Biol
– volume: 14
  start-page: 121
  year: 1998
  end-page: 130
  ident: bib0035
  article-title: Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
  publication-title: Bioinformatics
– volume: 45
  start-page: 1167
  year: 2010
  end-page: 1172
  ident: bib0165
  article-title: Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods
  publication-title: Eur J Med Chem
– volume: 8
  start-page: 459
  year: 2007
  ident: bib0055
  article-title: Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
  publication-title: BMC Bioinform
– volume: 6
  start-page: e20592
  year: 2011
  ident: bib0390
  article-title: A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites
  publication-title: PLoS One
– volume: 17
  start-page: 555
  year: 1999
  end-page: 561
  ident: bib0195
  article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices
  publication-title: Nat Biotechnol
– volume: 92
  start-page: 227
  year: 2001
  end-page: 231
  ident: bib0070
  article-title: Fuzzy neural network-based prediction of the motif for MHC class II binding peptides
  publication-title: J Biosci Bioeng
– volume: 2
  start-page: 63
  year: 2009
  end-page: 92
  ident: bib0420
  article-title: Review: recent advances in developing web-servers for predicting protein attributes
  publication-title: Nat Sci
– volume: 48
  start-page: 7418
  year: 2005
  end-page: 7425
  ident: bib0145
  article-title: Analysis of peptide–protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201
  publication-title: J Med Chem
– volume: 3
  start-page: 25
  year: 2002
  ident: bib0025
  article-title: Prediction of MHC class I binding peptides, using SVMHC
  publication-title: BMC Bioinform
– volume: 46
  start-page: 471
  year: 2006
  end-page: 477
  ident: bib0105
  article-title: Virtual screening using binary kernel discrimination: analysis of pesticide data
  publication-title: J Chem Inform Model
– volume: 34
  start-page: 653
  year: 2008
  end-page: 660
  ident: bib0270
  article-title: Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization
  publication-title: Amino Acids
– volume: 44
  start-page: 866
  year: 2007
  end-page: 877
  ident: bib0060
  article-title: Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes
  publication-title: Mol Immunol
– volume: 35
  start-page: 401
  year: 1999
  end-page: 407
  ident: bib0155
  article-title: Recognition of a protein fold in the context of the SCOP classification
  publication-title: Proteins
– volume: 6
  start-page: e18476
  year: 2011
  ident: bib0375
  article-title: Prediction of antimicrobial peptides based on sequence alignment and feature selection methods
  publication-title: PLoS One
– volume: 8
  start-page: 238
  year: 2007
  ident: bib0415
  article-title: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
  publication-title: BMC Bioinform
– volume: 17
  start-page: 942
  year: 2001
  end-page: 948
  ident: bib0080
  article-title: Predicting class II MHC/peptide multi-level binding with an iterative stepwise discriminant analysis meta-algorithm
  publication-title: Bioinformatics
– volume: 28
  start-page: 1346
  year: 2009
  end-page: 1357
  ident: bib0170
  article-title: Prediction of HIV-1 protease inhibitors using machine learning approaches
  publication-title: QSAR Comb Sci
– volume: 16
  start-page: 351
  year: 2009
  end-page: 355
  ident: bib0275
  article-title: Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition
  publication-title: Protein Pept Lett
– volume: 6
  start-page: e24756
  year: 2011
  ident: bib0400
  article-title: iDNA-Prot: identification of DNA binding proteins using random forest with grey model
  publication-title: PLoS One
– volume: 21
  start-page: 53
  year: 2007
  end-page: 62
  ident: bib0090
  article-title: Evaluation of machine-learning methods for ligand-based virtual screening
  publication-title: J Comput Aided Mol Des
– volume: 46
  start-page: 478
  year: 2006
  end-page: 486
  ident: bib0110
  article-title: Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of performance
  publication-title: J Chem Inform Model
– volume: 47
  start-page: 1961
  year: 2007
  end-page: 1966
  ident: bib0125
  article-title: Prediction of ion channel activity using binary kernel discrimination
  publication-title: J Chem Inform Model
– volume: 6
  start-page: 262
  year: 2009
  end-page: 274
  ident: bib0220
  article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology
  publication-title: Curr Proteomics
– volume: 35
  start-page: 147
  year: 2005
  end-page: 156
  ident: bib0045
  article-title: Prediction of MHC class II binders using the ant colony search strategy
  publication-title: Artif Intell Med
– volume: 6
  start-page: e14556
  year: 2011
  ident: bib0360
  article-title: Predicting functions of proteins in mouse based on weighted protein–protein interaction network and protein hybrid properties
  publication-title: PLoS One
– volume: 21
  start-page: 10
  year: 2005
  end-page: 19
  ident: bib0215
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
– volume: 18
  start-page: 58
  year: 2011
  end-page: 63
  ident: bib0330
  article-title: Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition
  publication-title: Protein Pept Lett
– year: 2011
  ident: bib0225
  article-title: Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou's pseudo amino acid composition and on evolutionary information
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 30
  start-page: 129
  year: 2011
  end-page: 134
  ident: bib0230
  article-title: OligoPred: a web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou's pseudo amino acid composition
  publication-title: J Mol Graph Model
– volume: 8
  start-page: 497
  year: 2011
  end-page: 516
  ident: bib0120
  article-title: Discrete associated kernels method and extensions
  publication-title: Stat Methodol
– volume: 38
  start-page: 193
  year: 1993
  end-page: 200
  ident: bib0020
  article-title: Characterization of peptides bound to extracellular and intracellular HLA-DR1 molecules
  publication-title: Hum Immunol
– volume: 6
  start-page: e22989
  year: 2011
  ident: bib0365
  article-title: Prediction of body fluids where proteins are secreted into based on protein interaction network
  publication-title: PLoS One
– volume: 6
  start-page: 1
  year: 2000
  end-page: 8
  ident: bib0175
  article-title: Calculation of protein surface loops using Monte-Carlo simulated annealing simulation
  publication-title: J Mol Model
– volume: 17
  start-page: 1207
  year: 2010
  end-page: 1214
  ident: bib0300
  article-title: Prediction of cyclin proteins using Chou's pseudo amino acid composition
  publication-title: Protein Pept Lett
– volume: 43
  start-page: 246
  year: 2001
  end-page: 255
  ident: bib0210
  article-title: Prediction of protein cellular attributes using pseudo amino acid composition
  publication-title: Proteins Struct Funct Genet
– volume: 2
  start-page: 61
  year: 2009
  ident: bib0190
  article-title: MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes
  publication-title: BMC Res Notes
– volume: 23
  start-page: 481
  year: 2005
  end-page: 489
  ident: bib0010
  article-title: Predictive Bayesian neural network models of MHC class II peptide binding
  publication-title: J Mol Graph Modell
– volume: 257
  start-page: 17
  year: 2009
  end-page: 26
  ident: bib0335
  article-title: Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition
  publication-title: J Theor Biol
– volume: 30
  start-page: 275
  year: 1995
  end-page: 349
  ident: bib0350
  article-title: Review: prediction of protein structural classes
  publication-title: Crit Rev Biochem Mol Biol
– volume: 20
  start-page: 1388
  year: 2004
  end-page: 1397
  ident: bib0040
  article-title: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
  publication-title: Bioinformatics
– reference: .
– volume: 240
  start-page: 1285
  year: 1988
  end-page: 1293
  ident: bib0345
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
– volume: 45
  start-page: 1424
  year: 2005
  end-page: 1428
  ident: bib0075
  article-title: Prediction of T-cell epitopes using biosupport vector machines
  publication-title: J Chem Inform Model
– volume: 252
  start-page: 350
  year: 2008
  end-page: 356
  ident: bib0295
  article-title: The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition
  publication-title: J Theor Biol
– volume: 248
  start-page: 546
  year: 2007
  end-page: 551
  ident: bib0250
  article-title: Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes
  publication-title: J Theor Biol
– volume: 34
  start-page: 320
  year: 2010
  end-page: 327
  ident: bib0245
  article-title: A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction
  publication-title: Comput Biol Chem
– reference: NetMHCII.
– volume: 54
  start-page: 159
  year: 1997
  end-page: 169
  ident: bib0005
  article-title: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture
  publication-title: Hum Immunol
– volume: 18
  start-page: 552
  year: 2011
  end-page: 558
  ident: bib0325
  article-title: Using pseudo amino acid composition to predict protease families by incorporating a series of protein biological features
  publication-title: Protein Pept Lett
– volume: 32
  start-page: 1612
  year: 2011
  end-page: 1617
  ident: bib0290
  article-title: Predicting protein folding rates using the concept of Chou's pseudo amino acid composition
  publication-title: J Comput Chem
– volume: 263
  start-page: 203
  year: 2010
  end-page: 209
  ident: bib0280
  article-title: Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses
  publication-title: J Theor Biol
– volume: 6
  start-page: e22940
  year: 2011
  ident: bib0370
  article-title: Predicting transcriptional activity of multiple site p53 mutants based on hybrid properties
  publication-title: PLoS One
– volume: 240
  start-page: 1285
  year: 1988
  ident: 10.1016/j.artmed.2011.10.005_bib0345
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 8
  start-page: 497
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0120
  article-title: Discrete associated kernels method and extensions
  publication-title: Stat Methodol
  doi: 10.1016/j.stamet.2011.07.002
– volume: 19
  start-page: 2263
  year: 2003
  ident: 10.1016/j.artmed.2011.10.005_bib0135
  article-title: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg312
– volume: 28
  start-page: 1346
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0170
  article-title: Prediction of HIV-1 protease inhibitors using machine learning approaches
  publication-title: QSAR Comb Sci
  doi: 10.1002/qsar.200960021
– volume: 21
  start-page: 10
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0215
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth466
– volume: 263
  start-page: 203
  year: 2010
  ident: 10.1016/j.artmed.2011.10.005_bib0280
  article-title: Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2009.11.016
– volume: 20
  start-page: 421
  year: 2004
  ident: 10.1016/j.artmed.2011.10.005_bib0130
  article-title: SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg424
– volume: 43
  start-page: 246
  year: 2001
  ident: 10.1016/j.artmed.2011.10.005_bib0210
  article-title: Prediction of protein cellular attributes using pseudo amino acid composition
  publication-title: Proteins Struct Funct Genet
  doi: 10.1002/prot.1035
– volume: 63
  start-page: 413
  year: 1976
  ident: 10.1016/j.artmed.2011.10.005_bib0095
  article-title: Multivariate binary discrimination by the kernel method
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.413
– volume: 57
  start-page: 304
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0410
  article-title: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications
  publication-title: Immunogenetics
  doi: 10.1007/s00251-005-0798-y
– volume: 32
  start-page: 271
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0240
  article-title: Supersecondary structure prediction using Chou's pseudo amino acid composition
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21616
– volume: 35
  start-page: 401
  year: 1999
  ident: 10.1016/j.artmed.2011.10.005_bib0155
  article-title: Recognition of a protein fold in the context of the SCOP classification
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K
– volume: 18
  start-page: 58
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0330
  article-title: Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition
  publication-title: Protein Pept Lett
  doi: 10.2174/092986611794328708
– volume: 41
  start-page: 1295
  year: 2001
  ident: 10.1016/j.artmed.2011.10.005_bib0085
  article-title: Prediction of biological activity for high-throughput screening using binary kernel discrimination
  publication-title: J Chem Inform Model
  doi: 10.1021/ci000397q
– volume: 248
  start-page: 546
  year: 2007
  ident: 10.1016/j.artmed.2011.10.005_bib0250
  article-title: Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2007.06.001
– volume: 8
  start-page: 238
  year: 2007
  ident: 10.1016/j.artmed.2011.10.005_bib0415
  article-title: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-238
– volume: 6
  start-page: e24756
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0400
  article-title: iDNA-Prot: identification of DNA binding proteins using random forest with grey model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024756
– volume: 92
  start-page: 8700
  year: 1995
  ident: 10.1016/j.artmed.2011.10.005_bib0160
  article-title: Prediction of protein folding class using global description of amino acid sequence
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.19.8700
– volume: 6
  start-page: e23505
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0385
  article-title: NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023505
– volume: 6
  start-page: e22989
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0365
  article-title: Prediction of body fluids where proteins are secreted into based on protein interaction network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022989
– volume: 257
  start-page: 17
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0335
  article-title: Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.11.003
– volume: 35
  start-page: 147
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0045
  article-title: Prediction of MHC class II binders using the ant colony search strategy
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2005.02.002
– volume: 1
  start-page: 6
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0050
  article-title: Prediction of MHC class II binding peptides based on an iterative learning model
  publication-title: Immun Res
  doi: 10.1186/1745-7580-1-6
– volume: 284
  start-page: 42
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0380
  article-title: iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2011.06.005
– volume: 46
  start-page: 478
  year: 2006
  ident: 10.1016/j.artmed.2011.10.005_bib0110
  article-title: Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of performance
  publication-title: J Chem Inform Model
  doi: 10.1021/ci0505426
– volume: 38
  start-page: 193
  year: 1993
  ident: 10.1016/j.artmed.2011.10.005_bib0020
  article-title: Characterization of peptides bound to extracellular and intracellular HLA-DR1 molecules
  publication-title: Hum Immunol
  doi: 10.1016/0198-8859(93)90540-H
– volume: 6
  start-page: e14556
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0360
  article-title: Predicting functions of proteins in mouse based on weighted protein–protein interaction network and protein hybrid properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014556
– volume: 27
  start-page: 368
  year: 1999
  ident: 10.1016/j.artmed.2011.10.005_bib0140
  article-title: AAindex amino acid index database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.1.368
– ident: 10.1016/j.artmed.2011.10.005_bib0205
– volume: 281
  start-page: 18
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0305
  article-title: Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2011.04.017
– volume: 92
  start-page: 227
  year: 2001
  ident: 10.1016/j.artmed.2011.10.005_bib0070
  article-title: Fuzzy neural network-based prediction of the motif for MHC class II binding peptides
  publication-title: J Biosci Bioeng
  doi: 10.1016/S1389-1723(01)80254-1
– volume: 6
  start-page: e22940
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0370
  article-title: Predicting transcriptional activity of multiple site p53 mutants based on hybrid properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022940
– volume: 47
  start-page: 4838
  year: 2004
  ident: 10.1016/j.artmed.2011.10.005_bib0180
  article-title: Comparing the conformational behavior of a series of diastereomeric cyclic urea HIV-1 inhibitors using the low mode: Monte Carlo conformational search method
  publication-title: J Med Chem
  doi: 10.1021/jm049716l
– volume: 21
  start-page: 53
  year: 2007
  ident: 10.1016/j.artmed.2011.10.005_bib0090
  article-title: Evaluation of machine-learning methods for ligand-based virtual screening
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-006-9096-5
– volume: 30
  start-page: 129
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0230
  article-title: OligoPred: a web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou's pseudo amino acid composition
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2011.06.014
– volume: 17
  start-page: 1473
  year: 2010
  ident: 10.1016/j.artmed.2011.10.005_bib0265
  article-title: Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition
  publication-title: Protein Pept Lett
  doi: 10.2174/0929866511009011473
– volume: 2
  start-page: 61
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0190
  article-title: MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-2-61
– volume: 273
  start-page: 236
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0185
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 3
  start-page: 25
  year: 2002
  ident: 10.1016/j.artmed.2011.10.005_bib0025
  article-title: Prediction of MHC class I binding peptides, using SVMHC
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-3-25
– volume: 30
  start-page: 275
  year: 1995
  ident: 10.1016/j.artmed.2011.10.005_bib0350
  article-title: Review: prediction of protein structural classes
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409239509083488
– volume: 7
  start-page: 463
  year: 2006
  ident: 10.1016/j.artmed.2011.10.005_bib0405
  article-title: SVRMHC prediction server for MHC-binding peptides
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-463
– volume: 48
  start-page: 7418
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0145
  article-title: Analysis of peptide–protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201
  publication-title: J Med Chem
  doi: 10.1021/jm0505258
– volume: 45
  start-page: 1167
  year: 2010
  ident: 10.1016/j.artmed.2011.10.005_bib0165
  article-title: Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2009.12.038
– volume: 390
  start-page: 68
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0285
  article-title: Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2009.04.009
– volume: 15
  start-page: 612
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0260
  article-title: Predicting protein subcellular location using Chou's pseudo amino acid composition and improved hybrid approach
  publication-title: Protein Pept Lett
  doi: 10.2174/092986608784966930
– volume: 17
  start-page: 942
  year: 2001
  ident: 10.1016/j.artmed.2011.10.005_bib0080
  article-title: Predicting class II MHC/peptide multi-level binding with an iterative stepwise discriminant analysis meta-algorithm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.10.942
– volume: 2
  start-page: 63
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0420
  article-title: Review: recent advances in developing web-servers for predicting protein attributes
  publication-title: Nat Sci
– volume: 15
  start-page: 1132
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0320
  article-title: Predicting lipase types by improved Chou's pseudo-amino acid composition
  publication-title: Protein Pept Lett
  doi: 10.2174/092986608786071184
– start-page: 352
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0150
  article-title: Quantitative prediction of MHC-II peptide binding affinity using global description of peptide sequences
– ident: 10.1016/j.artmed.2011.10.005_bib0200
– volume: 34
  start-page: 653
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0270
  article-title: Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization
  publication-title: Amino Acids
  doi: 10.1007/s00726-007-0018-1
– volume: 41
  start-page: 178
  year: 1995
  ident: 10.1016/j.artmed.2011.10.005_bib0030
  article-title: MHC ligands and peptide motifs: first listing
  publication-title: Immunogenetics
  doi: 10.1007/BF00172063
– volume: 43
  start-page: 469
  year: 2003
  ident: 10.1016/j.artmed.2011.10.005_bib0115
  article-title: Comparison of ranking methods for virtual screening in lead-discovery programs
  publication-title: J Chem Inform Model
  doi: 10.1021/ci025586i
– volume: 252
  start-page: 350
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0295
  article-title: The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.02.004
– volume: 23
  start-page: 481
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0010
  article-title: Predictive Bayesian neural network models of MHC class II peptide binding
  publication-title: J Mol Graph Modell
  doi: 10.1016/j.jmgm.2005.03.001
– volume: 17
  start-page: 555
  year: 1999
  ident: 10.1016/j.artmed.2011.10.005_bib0195
  article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices
  publication-title: Nat Biotechnol
  doi: 10.1038/9858
– volume: 18
  start-page: 552
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0325
  article-title: Using pseudo amino acid composition to predict protease families by incorporating a series of protein biological features
  publication-title: Protein Pept Lett
  doi: 10.2174/092986611795222795
– volume: 7
  start-page: 911
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0395
  article-title: GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions
  publication-title: Mol Biosyst
  doi: 10.1039/C0MB00170H
– volume: 16
  start-page: 27
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0235
  article-title: Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine
  publication-title: Protein Pept Lett
  doi: 10.2174/092986609787049420
– year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0225
  article-title: Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou's pseudo amino acid composition and on evolutionary information
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 7
  start-page: 501
  year: 2006
  ident: 10.1016/j.artmed.2011.10.005_bib0065
  article-title: Predicting class II MHC–peptide binding: a kernel based approach using similarity scores
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-501
– volume: 17
  start-page: 1441
  year: 2010
  ident: 10.1016/j.artmed.2011.10.005_bib0255
  article-title: Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature
  publication-title: Protein Pept Lett
  doi: 10.2174/0929866511009011441
– volume: 6
  start-page: 262
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0220
  article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology
  publication-title: Curr Proteomics
  doi: 10.2174/157016409789973707
– volume: 17
  start-page: 1207
  year: 2010
  ident: 10.1016/j.artmed.2011.10.005_bib0300
  article-title: Prediction of cyclin proteins using Chou's pseudo amino acid composition
  publication-title: Protein Pept Lett
  doi: 10.2174/092986610792231564
– volume: 48
  start-page: 1686
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0340
  article-title: Virtual screening using PLS discriminant analysis and ROC curve approach: an application study on PDE4 inhibitors
  publication-title: J Chem Inform Model
  doi: 10.1021/ci800072r
– volume: 6
  start-page: e18476
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0375
  article-title: Prediction of antimicrobial peptides based on sequence alignment and feature selection methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018476
– volume: 34
  start-page: 320
  year: 2010
  ident: 10.1016/j.artmed.2011.10.005_bib0245
  article-title: A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2010.09.002
– volume: 46
  start-page: 462
  year: 2006
  ident: 10.1016/j.artmed.2011.10.005_bib0100
  article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching
  publication-title: J Chem Inform Model
  doi: 10.1021/ci050348j
– volume: 8
  start-page: 459
  year: 2007
  ident: 10.1016/j.artmed.2011.10.005_bib0055
  article-title: Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-459
– volume: 175
  start-page: 3826
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0015
  article-title: CTL recognition of a bulged viral peptide involves biased TCR selection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.6.3826
– volume: 46
  start-page: 471
  year: 2006
  ident: 10.1016/j.artmed.2011.10.005_bib0105
  article-title: Virtual screening using binary kernel discrimination: analysis of pesticide data
  publication-title: J Chem Inform Model
  doi: 10.1021/ci050397w
– volume: 20
  start-page: 1388
  year: 2004
  ident: 10.1016/j.artmed.2011.10.005_bib0040
  article-title: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth100
– volume: 6
  start-page: 1
  year: 2000
  ident: 10.1016/j.artmed.2011.10.005_bib0175
  article-title: Calculation of protein surface loops using Monte-Carlo simulated annealing simulation
  publication-title: J Mol Model
  doi: 10.1007/PL00010720
– volume: 267
  start-page: 1
  year: 2010
  ident: 10.1016/j.artmed.2011.10.005_bib0310
  article-title: SecretP: identifying bacterial secreted proteins by fusing new features into Chou's pseudo-amino acid composition
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.08.001
– volume: 3
  start-page: 153
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0355
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.494
– volume: 45
  start-page: 1424
  year: 2005
  ident: 10.1016/j.artmed.2011.10.005_bib0075
  article-title: Prediction of T-cell epitopes using biosupport vector machines
  publication-title: J Chem Inform Model
  doi: 10.1021/ci050004t
– volume: 54
  start-page: 159
  year: 1997
  ident: 10.1016/j.artmed.2011.10.005_bib0005
  article-title: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(97)00078-5
– volume: 47
  start-page: 1961
  year: 2007
  ident: 10.1016/j.artmed.2011.10.005_bib0125
  article-title: Prediction of ion channel activity using binary kernel discrimination
  publication-title: J Chem Inform Model
  doi: 10.1021/ci700087v
– volume: 16
  start-page: 351
  year: 2009
  ident: 10.1016/j.artmed.2011.10.005_bib0275
  article-title: Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition
  publication-title: Protein Pept Lett
  doi: 10.2174/092986609787848045
– volume: 6
  start-page: e20592
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0390
  article-title: A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020592
– volume: 32
  start-page: 1612
  year: 2011
  ident: 10.1016/j.artmed.2011.10.005_bib0290
  article-title: Predicting protein folding rates using the concept of Chou's pseudo amino acid composition
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21740
– volume: 253
  start-page: 310
  year: 2008
  ident: 10.1016/j.artmed.2011.10.005_bib0315
  article-title: Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou's amphiphilic pseudo amino acid composition
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.03.015
– volume: 44
  start-page: 866
  year: 2007
  ident: 10.1016/j.artmed.2011.10.005_bib0060
  article-title: Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2006.04.001
– volume: 14
  start-page: 121
  year: 1998
  ident: 10.1016/j.artmed.2011.10.005_bib0035
  article-title: Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.2.121
– reference: 22633493 - Artif Intell Med. 2012 Jul;55(3):209
SSID ssj0007416
Score 1.9695656
Snippet Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell...
Abstract Objective Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107
SubjectTerms Area Under Curve
Artificial Intelligence
Benchmarking
Binding
Binding Sites
Computer Simulation
Continuous kernel discrimination
Databases, Protein
Feature selection
Histocompatibility Antigens Class II - chemistry
Humans
Internal Medicine
Kernels
Machine learning
Major histocompatibility complex class II peptides
Mathematical models
Metropolis Monte Carlo simulated annealing
Models, Chemical
Monte Carlo Method
Monte Carlo methods
Other
Peptides
Peptides - chemistry
Protein Binding
Title Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365711001436
https://www.clinicalkey.es/playcontent/1-s2.0-S0933365711001436
https://dx.doi.org/10.1016/j.artmed.2011.10.005
https://www.ncbi.nlm.nih.gov/pubmed/22134095
https://www.proquest.com/docview/1017615440
https://www.proquest.com/docview/1020848273
https://www.proquest.com/docview/1671475372
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLH-krjwYVenXX1tN7DCFht6Wh0AZyExpZhk1T77LeheaS3x6NJKctbZLSm21mbKOZ0YzxN_MR8q6p1FhpBYVTHArhx6IA63XRlNIKxqqmthEge6Imp-LDmTzbIIdDLwzCKvPen_b0uFvnK6O8mqPFbDb6gt_iXEmNQ89C1sex20Jo9PL3Vz9hHlhxxHl7nBcoPbTPRYxXuF_IOWmQZ8R4ydvS023lZ0xDx0_J41w_0oP0is_Ihu-2yJOBm4HmUN0iDz_ln-bPyeXnJR6jBei8pZGVj3635_MljdOGIwx9lVCylzRizP0P6rCsptMphVlsfKELxL80vqeAQkgwsZ6ve_rNLzt_QbG7NzGExeckYuoX5PT46OvhpMiMC8FUol6FkBHKe1GXyiLTVG2lkyCAg26crCy4NpQfALZWuvUaHEDdlK3kzilWKc_4S7LZzTv_mlDXCNUICePScuGktrWz3JVtBZUux45tEz4stHF5HDmyYlyYAXd2bpJ5DJoHrwbzbJPiRmuRxnHcIy8HG5qh1TRsjibki3v09N_0fJ8jvDeV6ZkpzR9e-Kvmb478D898OziZCTGOP25s54MlUUUrHJtU3iXDkBohVKN3yChdifB9qsPqv0pefLOKDEf7hXp757_ff5c8Cmcs4ej2yOZqufZvQsW2gv0YkvvkwcH04-TkGjAGQrk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD50KWx92aXbuu6qwV5NbOvmPJaykqxtGKyFvglJliFt54Q4gfXfT0eSw8bWduwtODqx0dG5BH_n-wA-1YUYCSlMZgU1GXMjlhntZFbnXLOyLOpKB4DsVIzP2ZcLfrEFh_0sDMIqU-6POT1k63RlmHZzuJjNht_wvzgVXCLpma_64gFsIzsVH8D2weR4PN0kZGw6AuUepRka9BN0Aeblf9KXncjlGWBe_LYKdVsHGirR0VN4nFpIchCf8hlsuXYXnvTyDCRF6y48PE3vzZ_DzdclfkYnkHlDgjAf-a4v50sSCIcDEn0VgbI3JMDM3Q9isbMmkwkxszD7QhYIgaldRwwuQo2J9XzdkSu3bN01wQHfKBIW7hO1qV_A-dHns8NxlkQXvLdYtfJRw4RzrMqFRrGpSnPLDTPUyNryQhvb-A7EGF0J2ThprDFVnTecWivKQriSvoRBO2_dKyC2ZqJm3IxyTZnlUldWU5s3hSlkPrLlPtB-o5VNjOQojHGteujZpYruUegevOrdsw_ZxmoRGTnuWc97H6p-2tTnR-VLxj128m92rktB3qlCdaXK1R8H8VfL387yP9zzY3_IlA9zfHejW-c9iSZSIHNSfteaEtURfEN6xxohCx8jVPrd34uneLOLJbL7-Zb79X8__wd4ND47PVEnk-nxG9jx35QRVvcWBqvl2r3zDdzKvE8B-hMU9EVq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+human+major+histocompatibility+complex+class+II+binding+peptides+by+continuous+kernel+discrimination+method&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=He%2C+Ju&rft.au=Yang%2C+Guobing&rft.au=Rao%2C+Hanbing&rft.au=Li%2C+Zerong&rft.date=2012-06-01&rft.issn=0933-3657&rft.volume=55&rft.issue=2&rft.spage=107&rft.epage=115&rft_id=info:doi/10.1016%2Fj.artmed.2011.10.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365712X00058%2Fcov150h.gif