Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method
Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate...
Saved in:
Published in | Artificial intelligence in medicine Vol. 55; no. 2; pp. 107 - 115 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods.
In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection.
Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets.
Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance. |
---|---|
AbstractList | Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance. Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance. Abstract Objective Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. Methods In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Results Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Conclusions Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance. Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods.OBJECTIVEAccurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods.In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection.METHODSIn this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection.Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets.RESULTSFeature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets.Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.CONCLUSIONSOur study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance. |
Author | Chen, Yuzong Li, Zerong Ding, Xianping Rao, Hanbing He, Ju Yang, Guobing |
Author_xml | – sequence: 1 givenname: Ju surname: He fullname: He, Ju organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China – sequence: 2 givenname: Guobing surname: Yang fullname: Yang, Guobing organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China – sequence: 3 givenname: Hanbing surname: Rao fullname: Rao, Hanbing organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China – sequence: 4 givenname: Zerong surname: Li fullname: Li, Zerong email: lizerong@scu.edu.cn organization: College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China – sequence: 5 givenname: Xianping surname: Ding fullname: Ding, Xianping organization: College of Life sciences, Sichuan University, Chengdu 610064, People's Republic of China – sequence: 6 givenname: Yuzong surname: Chen fullname: Chen, Yuzong organization: Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22134095$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1rFDEUhoNU7Lb6D0Ry6c2syeRjpiKCFD8WCgrqdcjHGTfbmWRNMuL-ezPd9kaQ1quQw_O-53Dec4ZOQgyA0HNK1pRQ-Wq31qlM4NYtobSW1oSIR2hF-441bS_JCVqRC8YaJkV3is5y3hFCOk7lE3TatpRxciFW6PAlgfO2-BhwHPB2nnTAk97FhLc-l2jjtNfFGz_6csDLb4Tf2I46Z7zZYOOD8-EH3sO-eAcZmwUKxYc5zhlfQwowYuezTX7yQd_0maBso3uKHg96zPDs9j1H3z-8_3b5qbn6_HFz-e6qsZL3pWkJlwC8J1I7J12vhRWGG2Y6ZwXVxg5UCGN0L7sBOmON6R0ZBLNWtlRCy87Ry6PvPsWfM-SipjoOjKMOUGdUVHaUd4J1D0BJS3retx17AEo7SQXnpKIvbtHZ1LzUvq5Cp4O6C6ECr4-ATTHnBIOyvtysqiTtx-q12Em1U8fE1ZL4Uq2JVzH_S3znf4_s7VEGdfW_PCSVrYdg6zEksEW56P_XwI4-eKvHazhA3sU5hRqroiq3iqivyy0up0gpIZQzWQ3e_Nvg_v5_API_8q0 |
CitedBy_id | crossref_primary_10_1021_acs_jcim_9b01075 |
Cites_doi | 10.1126/science.3287615 10.1016/j.stamet.2011.07.002 10.1093/bioinformatics/btg312 10.1002/qsar.200960021 10.1093/bioinformatics/bth466 10.1016/j.jtbi.2009.11.016 10.1093/bioinformatics/btg424 10.1002/prot.1035 10.1093/biomet/63.3.413 10.1007/s00251-005-0798-y 10.1002/jcc.21616 10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K 10.2174/092986611794328708 10.1021/ci000397q 10.1016/j.jtbi.2007.06.001 10.1186/1471-2105-8-238 10.1371/journal.pone.0024756 10.1073/pnas.92.19.8700 10.1371/journal.pone.0023505 10.1371/journal.pone.0022989 10.1016/j.jtbi.2008.11.003 10.1016/j.artmed.2005.02.002 10.1186/1745-7580-1-6 10.1016/j.jtbi.2011.06.005 10.1021/ci0505426 10.1016/0198-8859(93)90540-H 10.1371/journal.pone.0014556 10.1093/nar/27.1.368 10.1016/j.jtbi.2011.04.017 10.1016/S1389-1723(01)80254-1 10.1371/journal.pone.0022940 10.1021/jm049716l 10.1007/s10822-006-9096-5 10.1016/j.jmgm.2011.06.014 10.2174/0929866511009011473 10.1186/1756-0500-2-61 10.1016/j.jtbi.2010.12.024 10.1186/1471-2105-3-25 10.3109/10409239509083488 10.1186/1471-2105-7-463 10.1021/jm0505258 10.1016/j.ejmech.2009.12.038 10.1016/j.ab.2009.04.009 10.2174/092986608784966930 10.1093/bioinformatics/17.10.942 10.2174/092986608786071184 10.1007/s00726-007-0018-1 10.1007/BF00172063 10.1021/ci025586i 10.1016/j.jtbi.2008.02.004 10.1016/j.jmgm.2005.03.001 10.1038/9858 10.2174/092986611795222795 10.1039/C0MB00170H 10.2174/092986609787049420 10.1186/1471-2105-7-501 10.2174/0929866511009011441 10.2174/157016409789973707 10.2174/092986610792231564 10.1021/ci800072r 10.1371/journal.pone.0018476 10.1016/j.compbiolchem.2010.09.002 10.1021/ci050348j 10.1186/1471-2105-8-459 10.4049/jimmunol.175.6.3826 10.1021/ci050397w 10.1093/bioinformatics/bth100 10.1007/PL00010720 10.1016/j.jtbi.2010.08.001 10.1038/nprot.2007.494 10.1021/ci050004t 10.1016/S0198-8859(97)00078-5 10.1021/ci700087v 10.2174/092986609787848045 10.1371/journal.pone.0020592 10.1002/jcc.21740 10.1016/j.jtbi.2008.03.015 10.1016/j.molimm.2006.04.001 10.1093/bioinformatics/14.2.121 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Elsevier B.V. Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.artmed.2011.10.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1873-2860 |
EndPage | 115 |
ExternalDocumentID | 22134095 10_1016_j_artmed_2011_10_005 S0933365711001436 1_s2_0_S0933365711001436 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c648t-2046ee4806add6d8a5c5b4b3b7dc51abcf155bba867fe7bcbb8d0f53cc6216e23 |
IEDL.DBID | .~1 |
ISSN | 0933-3657 1873-2860 |
IngestDate | Fri Jul 11 11:46:31 EDT 2025 Thu Jul 10 18:37:32 EDT 2025 Mon Jul 21 11:52:25 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 Tue Jul 01 00:24:32 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 23 02:25:16 EST 2024 Sun Feb 23 10:19:32 EST 2025 Tue Aug 26 17:11:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Feature selection Major histocompatibility complex class II peptides Metropolis Monte Carlo simulated annealing Continuous kernel discrimination |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c648t-2046ee4806add6d8a5c5b4b3b7dc51abcf155bba867fe7bcbb8d0f53cc6216e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/106244 |
PMID | 22134095 |
PQID | 1017615440 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671475372 proquest_miscellaneous_1020848273 proquest_miscellaneous_1017615440 pubmed_primary_22134095 crossref_citationtrail_10_1016_j_artmed_2011_10_005 crossref_primary_10_1016_j_artmed_2011_10_005 elsevier_sciencedirect_doi_10_1016_j_artmed_2011_10_005 elsevier_clinicalkeyesjournals_1_s2_0_S0933365711001436 elsevier_clinicalkey_doi_10_1016_j_artmed_2011_10_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Artificial intelligence in medicine |
PublicationTitleAlternate | Artif Intell Med |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ding, Liu, Guo, Huang, Lin (bib0330) 2011; 18 Swets (bib0345) 1988; 240 Aitchison, Aitken (bib0095) 1976; 63 Li, Li (bib0260) 2008; 15 Bhasin, Raghava (bib0130) 2004; 20 Mallios (bib0080) 2001; 17 Georgiou, Karakasidis, Nieto, Torres (bib0335) 2009; 257 Donnes, Elofsson (bib0025) 2002; 3 Rammennsee, Friede, Stevanovic (bib0030) 1995; 41 Chou (bib0215) 2005; 21 Chou, Shen (bib0420) 2009; 2 Rajapakse, Schmidt, Feng, Brusic (bib0055) 2007; 8 Wang, Wang, Yang, Deng (bib0255) 2010; 17 Hu, Huang, Shi, Lu, Cai, Chou (bib0360) 2011; 6 Doytchinova, Flower (bib0135) 2003; 19 Nielsen, Lundegaard, Lund (bib0415) 2007; 8 Chou (bib0210) 2001; 43 Wilton, Harrison, Willett, Delaney, Lawson, Mullier (bib0105) 2006; 46 MHCBench. Liu, Mao, Li, Han, Lai (bib0175) 2000; 6 Qiu, Huang, Liang, Lu (bib0285) 2009; 390 Dubchak, Muchink, Holbrook, Kim (bib0160) 1995; 92 Lin, Fang, Xiao, Chou (bib0400) 2011; 6 Nielsen, Lundegaard, Worning, Hvid, Lamberth, Buus (bib0040) 2004; 20 Salomon, Flower (bib0065) 2006; 7 Hert, Willett, Wilton (bib0100) 2006; 46 Chou (bib0220) 2009; 6 Xiao, Wu, Chou (bib0390) 2011; 6 Zhang, Li, Gao, Fang (bib0320) 2008; 15 . Esmaeili, Mohabatkar, Mohsenzadeh (bib0280) 2010; 263 Lin (bib0295) 2008; 252 Sturniolo, Bono, Jiayi, Raddrizzani, Tuereci, Sahin (bib0195) 1999; 17 Zhang, Fang (bib0315) 2008; 253 Hu, Huang, Cai, Chou (bib0365) 2011; 6 Brusic, Rudy, Honeyman, Hammer, Harrison (bib0035) 1998; 14 Chou (bib0185) 2011; 273 NetMHCII. Max, Halder, Kropshofer, Kalbus, Müller, Kalbacher (bib0020) 1993; 38 Chou, Shen (bib0355) 2008; 3 Kandaswamy, Pugalenthi, Moller, Hartmann, Kalies, Suganthan (bib0265) 2010; 17 Wang, Xiao, Chou (bib0385) 2011; 6 Guan, Doytchinova, Walshe, Borrow, Flower (bib0145) 2005; 48 Sahu, Panda (bib0245) 2010; 34 Miles, Elhassen, Borg, Silins, Tynan, Burrows (bib0015) 2005; 175 Wang, Hu, Liu, Jiang, Chen, Xu (bib0375) 2011; 6 Mohabatkar, Mohammad Beigi, Esmaeili (bib0305) 2011; 281 Rizzi, Fioni (bib0340) 2008; 48 Chou, Zhang (bib0350) 1995; 30 Xiao, Wu, Chou (bib0380) 2011; 284 Zou, He, He, Xia (bib0240) 2011; 32 Cui, Han, Lin, Zhang, Tang, Zheng (bib0060) 2007; 44 Bui, Sidney, Peters, Sathiamurthy, Sinichi, Purton (bib0410) 2005; 57 Guo, Rao, Liu, Yang, Wang (bib0290) 2011; 32 Chen, Harrison, Papadatos, Willett, Wood, Lewell (bib0090) 2007; 21 Hu, Zheng, Wang, Li, Liu (bib0325) 2011; 18 Zhang, Liu, Niu, Wang, Zhang (bib0150) 2008 Burden, Winkler (bib0010) 2005; 23 Willett, Wilton, Hartzoulakis, Tang, Ford, Madge (bib0125) 2007; 47 Lv, Xue (bib0165) 2010; 45 Yang, Johnson (bib0075) 2005; 45 Kawashima, Ogata, Kanehisa (bib0140) 1999; 27 Chen, Harrison, Pasupa, Willett, Wilton, Wood (bib0110) 2006; 46 Murugan, Dai (bib0050) 2005; 1 Harper, Bradshaw, Gittins, Green, Leach (bib0085) 2001; 41 Qiu, Suo, Sun, Shi, Liang (bib0230) 2011; 30 Noguchi, Hanai, Honda, Harrison, Kobayashi (bib0070) 2001; 92 Dubchak, Muchnik, Mayor, Dralyuk, Kim (bib0155) 1999; 35 Nanni, Lumini, Gupta, Garg (bib0225) 2011 Mohabatkar (bib0300) 2010; 17 Yu, Guo, Li, Li, Li, Luo (bib0310) 2010; 267 Rao, Yang, Tan, Li, Li, Li (bib0170) 2009; 28 Ding, Luo, Lin (bib0275) 2009; 16 Wilton, Willett (bib0115) 2003; 43 Lata, Bhasin, Raghava (bib0190) 2009; 2 Huang, Niu, Xu, Huang, Kong, Cai (bib0370) 2011; 6 Chen, Chen, Zou, Cai (bib0235) 2009; 16 Zhou, Chen, Li, Zou (bib0250) 2007; 248 Castellino, Zhong, Germain (bib0005) 1997; 54 Kokonendji, Senga Kiesse (bib0120) 2011; 8 Karpenko, Shi, Dai (bib0045) 2005; 35 Parish, Yarger, Sinclair, Dure, Goldberg (bib0180) 2004; 47 Nanni, Lumini (bib0270) 2008; 34 Xiao, Wang, Chou (bib0395) 2011; 7 Wan, Liu, Xu, Flower, Li (bib0405) 2006; 7 Zhang (10.1016/j.artmed.2011.10.005_bib0150) 2008 Chou (10.1016/j.artmed.2011.10.005_bib0355) 2008; 3 Lin (10.1016/j.artmed.2011.10.005_bib0295) 2008; 252 Rajapakse (10.1016/j.artmed.2011.10.005_bib0055) 2007; 8 Karpenko (10.1016/j.artmed.2011.10.005_bib0045) 2005; 35 10.1016/j.artmed.2011.10.005_bib0200 Xiao (10.1016/j.artmed.2011.10.005_bib0390) 2011; 6 Rao (10.1016/j.artmed.2011.10.005_bib0170) 2009; 28 Zhou (10.1016/j.artmed.2011.10.005_bib0250) 2007; 248 Mohabatkar (10.1016/j.artmed.2011.10.005_bib0300) 2010; 17 Nanni (10.1016/j.artmed.2011.10.005_bib0270) 2008; 34 Nielsen (10.1016/j.artmed.2011.10.005_bib0040) 2004; 20 Chen (10.1016/j.artmed.2011.10.005_bib0110) 2006; 46 Bhasin (10.1016/j.artmed.2011.10.005_bib0130) 2004; 20 Qiu (10.1016/j.artmed.2011.10.005_bib0285) 2009; 390 Zhang (10.1016/j.artmed.2011.10.005_bib0315) 2008; 253 Chou (10.1016/j.artmed.2011.10.005_bib0210) 2001; 43 Qiu (10.1016/j.artmed.2011.10.005_bib0230) 2011; 30 Mallios (10.1016/j.artmed.2011.10.005_bib0080) 2001; 17 Rizzi (10.1016/j.artmed.2011.10.005_bib0340) 2008; 48 Rammennsee (10.1016/j.artmed.2011.10.005_bib0030) 1995; 41 Bui (10.1016/j.artmed.2011.10.005_bib0410) 2005; 57 10.1016/j.artmed.2011.10.005_bib0205 Li (10.1016/j.artmed.2011.10.005_bib0260) 2008; 15 Chen (10.1016/j.artmed.2011.10.005_bib0090) 2007; 21 Dubchak (10.1016/j.artmed.2011.10.005_bib0155) 1999; 35 Chou (10.1016/j.artmed.2011.10.005_bib0185) 2011; 273 Hu (10.1016/j.artmed.2011.10.005_bib0360) 2011; 6 Mohabatkar (10.1016/j.artmed.2011.10.005_bib0305) 2011; 281 Lv (10.1016/j.artmed.2011.10.005_bib0165) 2010; 45 Sahu (10.1016/j.artmed.2011.10.005_bib0245) 2010; 34 Noguchi (10.1016/j.artmed.2011.10.005_bib0070) 2001; 92 Hert (10.1016/j.artmed.2011.10.005_bib0100) 2006; 46 Willett (10.1016/j.artmed.2011.10.005_bib0125) 2007; 47 Chou (10.1016/j.artmed.2011.10.005_bib0215) 2005; 21 Guan (10.1016/j.artmed.2011.10.005_bib0145) 2005; 48 Max (10.1016/j.artmed.2011.10.005_bib0020) 1993; 38 Yang (10.1016/j.artmed.2011.10.005_bib0075) 2005; 45 Donnes (10.1016/j.artmed.2011.10.005_bib0025) 2002; 3 Georgiou (10.1016/j.artmed.2011.10.005_bib0335) 2009; 257 Aitchison (10.1016/j.artmed.2011.10.005_bib0095) 1976; 63 Dubchak (10.1016/j.artmed.2011.10.005_bib0160) 1995; 92 Chou (10.1016/j.artmed.2011.10.005_bib0220) 2009; 6 Kawashima (10.1016/j.artmed.2011.10.005_bib0140) 1999; 27 Parish (10.1016/j.artmed.2011.10.005_bib0180) 2004; 47 Huang (10.1016/j.artmed.2011.10.005_bib0370) 2011; 6 Sturniolo (10.1016/j.artmed.2011.10.005_bib0195) 1999; 17 Wang (10.1016/j.artmed.2011.10.005_bib0375) 2011; 6 Doytchinova (10.1016/j.artmed.2011.10.005_bib0135) 2003; 19 Yu (10.1016/j.artmed.2011.10.005_bib0310) 2010; 267 Swets (10.1016/j.artmed.2011.10.005_bib0345) 1988; 240 Wilton (10.1016/j.artmed.2011.10.005_bib0105) 2006; 46 Zou (10.1016/j.artmed.2011.10.005_bib0240) 2011; 32 Wang (10.1016/j.artmed.2011.10.005_bib0255) 2010; 17 Lata (10.1016/j.artmed.2011.10.005_bib0190) 2009; 2 Hu (10.1016/j.artmed.2011.10.005_bib0365) 2011; 6 Ding (10.1016/j.artmed.2011.10.005_bib0330) 2011; 18 Chou (10.1016/j.artmed.2011.10.005_bib0420) 2009; 2 Xiao (10.1016/j.artmed.2011.10.005_bib0395) 2011; 7 Hu (10.1016/j.artmed.2011.10.005_bib0325) 2011; 18 Castellino (10.1016/j.artmed.2011.10.005_bib0005) 1997; 54 Burden (10.1016/j.artmed.2011.10.005_bib0010) 2005; 23 Lin (10.1016/j.artmed.2011.10.005_bib0400) 2011; 6 Zhang (10.1016/j.artmed.2011.10.005_bib0320) 2008; 15 Wang (10.1016/j.artmed.2011.10.005_bib0385) 2011; 6 Xiao (10.1016/j.artmed.2011.10.005_bib0380) 2011; 284 Chou (10.1016/j.artmed.2011.10.005_bib0350) 1995; 30 Guo (10.1016/j.artmed.2011.10.005_bib0290) 2011; 32 Cui (10.1016/j.artmed.2011.10.005_bib0060) 2007; 44 Ding (10.1016/j.artmed.2011.10.005_bib0275) 2009; 16 Kandaswamy (10.1016/j.artmed.2011.10.005_bib0265) 2010; 17 Kokonendji (10.1016/j.artmed.2011.10.005_bib0120) 2011; 8 Liu (10.1016/j.artmed.2011.10.005_bib0175) 2000; 6 Esmaeili (10.1016/j.artmed.2011.10.005_bib0280) 2010; 263 Brusic (10.1016/j.artmed.2011.10.005_bib0035) 1998; 14 Wilton (10.1016/j.artmed.2011.10.005_bib0115) 2003; 43 Nanni (10.1016/j.artmed.2011.10.005_bib0225) 2011 Miles (10.1016/j.artmed.2011.10.005_bib0015) 2005; 175 Salomon (10.1016/j.artmed.2011.10.005_bib0065) 2006; 7 Chen (10.1016/j.artmed.2011.10.005_bib0235) 2009; 16 Nielsen (10.1016/j.artmed.2011.10.005_bib0415) 2007; 8 Murugan (10.1016/j.artmed.2011.10.005_bib0050) 2005; 1 Harper (10.1016/j.artmed.2011.10.005_bib0085) 2001; 41 Wan (10.1016/j.artmed.2011.10.005_bib0405) 2006; 7 22633493 - Artif Intell Med. 2012 Jul;55(3):209 |
References_xml | – start-page: 352 year: 2008 end-page: 356 ident: bib0150 article-title: Quantitative prediction of MHC-II peptide binding affinity using global description of peptide sequences publication-title: International conference on biomedical engineering and informatics – volume: 7 start-page: 463 year: 2006 ident: bib0405 article-title: SVRMHC prediction server for MHC-binding peptides publication-title: BMC Bioinform – volume: 7 start-page: 501 year: 2006 ident: bib0065 article-title: Predicting class II MHC–peptide binding: a kernel based approach using similarity scores publication-title: BMC Bioinform – volume: 284 start-page: 42 year: 2011 end-page: 51 ident: bib0380 article-title: iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites publication-title: J Theor Biol – volume: 41 start-page: 1295 year: 2001 end-page: 1300 ident: bib0085 article-title: Prediction of biological activity for high-throughput screening using binary kernel discrimination publication-title: J Chem Inform Model – volume: 390 start-page: 68 year: 2009 end-page: 73 ident: bib0285 article-title: Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform publication-title: Anal Biochem – volume: 57 start-page: 304 year: 2005 end-page: 314 ident: bib0410 article-title: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications publication-title: Immunogenetics – volume: 6 start-page: e23505 year: 2011 ident: bib0385 article-title: NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features publication-title: PLoS One – volume: 3 start-page: 153 year: 2008 end-page: 162 ident: bib0355 article-title: Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms (updated version: Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms, Natural Science, 2010, 2, 1090–1103) publication-title: Nat Protoc – volume: 17 start-page: 1441 year: 2010 end-page: 1449 ident: bib0255 article-title: Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature publication-title: Protein Pept Lett – volume: 43 start-page: 469 year: 2003 end-page: 474 ident: bib0115 article-title: Comparison of ranking methods for virtual screening in lead-discovery programs publication-title: J Chem Inform Model – volume: 19 start-page: 2263 year: 2003 end-page: 2270 ident: bib0135 article-title: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction publication-title: Bioinformatics – volume: 15 start-page: 1132 year: 2008 end-page: 1137 ident: bib0320 article-title: Predicting lipase types by improved Chou's pseudo-amino acid composition publication-title: Protein Pept Lett – volume: 281 start-page: 18 year: 2011 end-page: 23 ident: bib0305 article-title: Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine publication-title: J Theor Biol – volume: 48 start-page: 1686 year: 2008 end-page: 1692 ident: bib0340 article-title: Virtual screening using PLS discriminant analysis and ROC curve approach: an application study on PDE4 inhibitors publication-title: J Chem Inform Model – volume: 46 start-page: 462 year: 2006 end-page: 470 ident: bib0100 article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching publication-title: J Chem Inform Model – volume: 175 start-page: 3826 year: 2005 end-page: 3834 ident: bib0015 article-title: CTL recognition of a bulged viral peptide involves biased TCR selection publication-title: J Immunol – reference: MHCBench. – volume: 92 start-page: 8700 year: 1995 end-page: 8704 ident: bib0160 article-title: Prediction of protein folding class using global description of amino acid sequence publication-title: Proc Natl Acad Sci U S A – volume: 273 start-page: 236 year: 2011 end-page: 247 ident: bib0185 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review) publication-title: J Theor Biol – volume: 20 start-page: 421 year: 2004 end-page: 423 ident: bib0130 article-title: SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence publication-title: Bioinformatics – volume: 17 start-page: 1473 year: 2010 end-page: 1479 ident: bib0265 article-title: Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition publication-title: Protein Pept Lett – volume: 63 start-page: 413 year: 1976 end-page: 420 ident: bib0095 article-title: Multivariate binary discrimination by the kernel method publication-title: Biometrika – volume: 27 start-page: 368 year: 1999 end-page: 369 ident: bib0140 article-title: AAindex amino acid index database publication-title: Nucleic Acids Res – volume: 7 start-page: 911 year: 2011 end-page: 919 ident: bib0395 article-title: GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions publication-title: Mol Biosyst – volume: 32 start-page: 271 year: 2011 end-page: 278 ident: bib0240 article-title: Supersecondary structure prediction using Chou's pseudo amino acid composition publication-title: J Comput Chem – volume: 47 start-page: 4838 year: 2004 end-page: 4850 ident: bib0180 article-title: Comparing the conformational behavior of a series of diastereomeric cyclic urea HIV-1 inhibitors using the low mode: Monte Carlo conformational search method publication-title: J Med Chem – volume: 15 start-page: 612 year: 2008 end-page: 616 ident: bib0260 article-title: Predicting protein subcellular location using Chou's pseudo amino acid composition and improved hybrid approach publication-title: Protein Pept Lett – volume: 253 start-page: 310 year: 2008 end-page: 315 ident: bib0315 article-title: Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou's amphiphilic pseudo amino acid composition publication-title: J Theor Biol – volume: 1 start-page: 6 year: 2005 ident: bib0050 article-title: Prediction of MHC class II binding peptides based on an iterative learning model publication-title: Immun Res – volume: 41 start-page: 178 year: 1995 end-page: 228 ident: bib0030 article-title: MHC ligands and peptide motifs: first listing publication-title: Immunogenetics – volume: 16 start-page: 27 year: 2009 end-page: 31 ident: bib0235 article-title: Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine publication-title: Protein Pept Lett – volume: 267 start-page: 1 year: 2010 end-page: 6 ident: bib0310 article-title: SecretP: identifying bacterial secreted proteins by fusing new features into Chou's pseudo-amino acid composition publication-title: J Theor Biol – volume: 14 start-page: 121 year: 1998 end-page: 130 ident: bib0035 article-title: Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network publication-title: Bioinformatics – volume: 45 start-page: 1167 year: 2010 end-page: 1172 ident: bib0165 article-title: Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods publication-title: Eur J Med Chem – volume: 8 start-page: 459 year: 2007 ident: bib0055 article-title: Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms publication-title: BMC Bioinform – volume: 6 start-page: e20592 year: 2011 ident: bib0390 article-title: A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites publication-title: PLoS One – volume: 17 start-page: 555 year: 1999 end-page: 561 ident: bib0195 article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices publication-title: Nat Biotechnol – volume: 92 start-page: 227 year: 2001 end-page: 231 ident: bib0070 article-title: Fuzzy neural network-based prediction of the motif for MHC class II binding peptides publication-title: J Biosci Bioeng – volume: 2 start-page: 63 year: 2009 end-page: 92 ident: bib0420 article-title: Review: recent advances in developing web-servers for predicting protein attributes publication-title: Nat Sci – volume: 48 start-page: 7418 year: 2005 end-page: 7425 ident: bib0145 article-title: Analysis of peptide–protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201 publication-title: J Med Chem – volume: 3 start-page: 25 year: 2002 ident: bib0025 article-title: Prediction of MHC class I binding peptides, using SVMHC publication-title: BMC Bioinform – volume: 46 start-page: 471 year: 2006 end-page: 477 ident: bib0105 article-title: Virtual screening using binary kernel discrimination: analysis of pesticide data publication-title: J Chem Inform Model – volume: 34 start-page: 653 year: 2008 end-page: 660 ident: bib0270 article-title: Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization publication-title: Amino Acids – volume: 44 start-page: 866 year: 2007 end-page: 877 ident: bib0060 article-title: Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes publication-title: Mol Immunol – volume: 35 start-page: 401 year: 1999 end-page: 407 ident: bib0155 article-title: Recognition of a protein fold in the context of the SCOP classification publication-title: Proteins – volume: 6 start-page: e18476 year: 2011 ident: bib0375 article-title: Prediction of antimicrobial peptides based on sequence alignment and feature selection methods publication-title: PLoS One – volume: 8 start-page: 238 year: 2007 ident: bib0415 article-title: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method publication-title: BMC Bioinform – volume: 17 start-page: 942 year: 2001 end-page: 948 ident: bib0080 article-title: Predicting class II MHC/peptide multi-level binding with an iterative stepwise discriminant analysis meta-algorithm publication-title: Bioinformatics – volume: 28 start-page: 1346 year: 2009 end-page: 1357 ident: bib0170 article-title: Prediction of HIV-1 protease inhibitors using machine learning approaches publication-title: QSAR Comb Sci – volume: 16 start-page: 351 year: 2009 end-page: 355 ident: bib0275 article-title: Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition publication-title: Protein Pept Lett – volume: 6 start-page: e24756 year: 2011 ident: bib0400 article-title: iDNA-Prot: identification of DNA binding proteins using random forest with grey model publication-title: PLoS One – volume: 21 start-page: 53 year: 2007 end-page: 62 ident: bib0090 article-title: Evaluation of machine-learning methods for ligand-based virtual screening publication-title: J Comput Aided Mol Des – volume: 46 start-page: 478 year: 2006 end-page: 486 ident: bib0110 article-title: Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of performance publication-title: J Chem Inform Model – volume: 47 start-page: 1961 year: 2007 end-page: 1966 ident: bib0125 article-title: Prediction of ion channel activity using binary kernel discrimination publication-title: J Chem Inform Model – volume: 6 start-page: 262 year: 2009 end-page: 274 ident: bib0220 article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology publication-title: Curr Proteomics – volume: 35 start-page: 147 year: 2005 end-page: 156 ident: bib0045 article-title: Prediction of MHC class II binders using the ant colony search strategy publication-title: Artif Intell Med – volume: 6 start-page: e14556 year: 2011 ident: bib0360 article-title: Predicting functions of proteins in mouse based on weighted protein–protein interaction network and protein hybrid properties publication-title: PLoS One – volume: 21 start-page: 10 year: 2005 end-page: 19 ident: bib0215 article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes publication-title: Bioinformatics – volume: 18 start-page: 58 year: 2011 end-page: 63 ident: bib0330 article-title: Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition publication-title: Protein Pept Lett – year: 2011 ident: bib0225 article-title: Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou's pseudo amino acid composition and on evolutionary information publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 30 start-page: 129 year: 2011 end-page: 134 ident: bib0230 article-title: OligoPred: a web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou's pseudo amino acid composition publication-title: J Mol Graph Model – volume: 8 start-page: 497 year: 2011 end-page: 516 ident: bib0120 article-title: Discrete associated kernels method and extensions publication-title: Stat Methodol – volume: 38 start-page: 193 year: 1993 end-page: 200 ident: bib0020 article-title: Characterization of peptides bound to extracellular and intracellular HLA-DR1 molecules publication-title: Hum Immunol – volume: 6 start-page: e22989 year: 2011 ident: bib0365 article-title: Prediction of body fluids where proteins are secreted into based on protein interaction network publication-title: PLoS One – volume: 6 start-page: 1 year: 2000 end-page: 8 ident: bib0175 article-title: Calculation of protein surface loops using Monte-Carlo simulated annealing simulation publication-title: J Mol Model – volume: 17 start-page: 1207 year: 2010 end-page: 1214 ident: bib0300 article-title: Prediction of cyclin proteins using Chou's pseudo amino acid composition publication-title: Protein Pept Lett – volume: 43 start-page: 246 year: 2001 end-page: 255 ident: bib0210 article-title: Prediction of protein cellular attributes using pseudo amino acid composition publication-title: Proteins Struct Funct Genet – volume: 2 start-page: 61 year: 2009 ident: bib0190 article-title: MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes publication-title: BMC Res Notes – volume: 23 start-page: 481 year: 2005 end-page: 489 ident: bib0010 article-title: Predictive Bayesian neural network models of MHC class II peptide binding publication-title: J Mol Graph Modell – volume: 257 start-page: 17 year: 2009 end-page: 26 ident: bib0335 article-title: Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition publication-title: J Theor Biol – volume: 30 start-page: 275 year: 1995 end-page: 349 ident: bib0350 article-title: Review: prediction of protein structural classes publication-title: Crit Rev Biochem Mol Biol – volume: 20 start-page: 1388 year: 2004 end-page: 1397 ident: bib0040 article-title: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach publication-title: Bioinformatics – reference: . – volume: 240 start-page: 1285 year: 1988 end-page: 1293 ident: bib0345 article-title: Measuring the accuracy of diagnostic systems publication-title: Science – volume: 45 start-page: 1424 year: 2005 end-page: 1428 ident: bib0075 article-title: Prediction of T-cell epitopes using biosupport vector machines publication-title: J Chem Inform Model – volume: 252 start-page: 350 year: 2008 end-page: 356 ident: bib0295 article-title: The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition publication-title: J Theor Biol – volume: 248 start-page: 546 year: 2007 end-page: 551 ident: bib0250 article-title: Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes publication-title: J Theor Biol – volume: 34 start-page: 320 year: 2010 end-page: 327 ident: bib0245 article-title: A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction publication-title: Comput Biol Chem – reference: NetMHCII. – volume: 54 start-page: 159 year: 1997 end-page: 169 ident: bib0005 article-title: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture publication-title: Hum Immunol – volume: 18 start-page: 552 year: 2011 end-page: 558 ident: bib0325 article-title: Using pseudo amino acid composition to predict protease families by incorporating a series of protein biological features publication-title: Protein Pept Lett – volume: 32 start-page: 1612 year: 2011 end-page: 1617 ident: bib0290 article-title: Predicting protein folding rates using the concept of Chou's pseudo amino acid composition publication-title: J Comput Chem – volume: 263 start-page: 203 year: 2010 end-page: 209 ident: bib0280 article-title: Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses publication-title: J Theor Biol – volume: 6 start-page: e22940 year: 2011 ident: bib0370 article-title: Predicting transcriptional activity of multiple site p53 mutants based on hybrid properties publication-title: PLoS One – volume: 240 start-page: 1285 year: 1988 ident: 10.1016/j.artmed.2011.10.005_bib0345 article-title: Measuring the accuracy of diagnostic systems publication-title: Science doi: 10.1126/science.3287615 – volume: 8 start-page: 497 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0120 article-title: Discrete associated kernels method and extensions publication-title: Stat Methodol doi: 10.1016/j.stamet.2011.07.002 – volume: 19 start-page: 2263 year: 2003 ident: 10.1016/j.artmed.2011.10.005_bib0135 article-title: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg312 – volume: 28 start-page: 1346 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0170 article-title: Prediction of HIV-1 protease inhibitors using machine learning approaches publication-title: QSAR Comb Sci doi: 10.1002/qsar.200960021 – volume: 21 start-page: 10 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0215 article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth466 – volume: 263 start-page: 203 year: 2010 ident: 10.1016/j.artmed.2011.10.005_bib0280 article-title: Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses publication-title: J Theor Biol doi: 10.1016/j.jtbi.2009.11.016 – volume: 20 start-page: 421 year: 2004 ident: 10.1016/j.artmed.2011.10.005_bib0130 article-title: SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg424 – volume: 43 start-page: 246 year: 2001 ident: 10.1016/j.artmed.2011.10.005_bib0210 article-title: Prediction of protein cellular attributes using pseudo amino acid composition publication-title: Proteins Struct Funct Genet doi: 10.1002/prot.1035 – volume: 63 start-page: 413 year: 1976 ident: 10.1016/j.artmed.2011.10.005_bib0095 article-title: Multivariate binary discrimination by the kernel method publication-title: Biometrika doi: 10.1093/biomet/63.3.413 – volume: 57 start-page: 304 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0410 article-title: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications publication-title: Immunogenetics doi: 10.1007/s00251-005-0798-y – volume: 32 start-page: 271 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0240 article-title: Supersecondary structure prediction using Chou's pseudo amino acid composition publication-title: J Comput Chem doi: 10.1002/jcc.21616 – volume: 35 start-page: 401 year: 1999 ident: 10.1016/j.artmed.2011.10.005_bib0155 article-title: Recognition of a protein fold in the context of the SCOP classification publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K – volume: 18 start-page: 58 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0330 article-title: Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition publication-title: Protein Pept Lett doi: 10.2174/092986611794328708 – volume: 41 start-page: 1295 year: 2001 ident: 10.1016/j.artmed.2011.10.005_bib0085 article-title: Prediction of biological activity for high-throughput screening using binary kernel discrimination publication-title: J Chem Inform Model doi: 10.1021/ci000397q – volume: 248 start-page: 546 year: 2007 ident: 10.1016/j.artmed.2011.10.005_bib0250 article-title: Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes publication-title: J Theor Biol doi: 10.1016/j.jtbi.2007.06.001 – volume: 8 start-page: 238 year: 2007 ident: 10.1016/j.artmed.2011.10.005_bib0415 article-title: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method publication-title: BMC Bioinform doi: 10.1186/1471-2105-8-238 – volume: 6 start-page: e24756 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0400 article-title: iDNA-Prot: identification of DNA binding proteins using random forest with grey model publication-title: PLoS One doi: 10.1371/journal.pone.0024756 – volume: 92 start-page: 8700 year: 1995 ident: 10.1016/j.artmed.2011.10.005_bib0160 article-title: Prediction of protein folding class using global description of amino acid sequence publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.19.8700 – volume: 6 start-page: e23505 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0385 article-title: NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features publication-title: PLoS One doi: 10.1371/journal.pone.0023505 – volume: 6 start-page: e22989 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0365 article-title: Prediction of body fluids where proteins are secreted into based on protein interaction network publication-title: PLoS One doi: 10.1371/journal.pone.0022989 – volume: 257 start-page: 17 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0335 article-title: Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.11.003 – volume: 35 start-page: 147 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0045 article-title: Prediction of MHC class II binders using the ant colony search strategy publication-title: Artif Intell Med doi: 10.1016/j.artmed.2005.02.002 – volume: 1 start-page: 6 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0050 article-title: Prediction of MHC class II binding peptides based on an iterative learning model publication-title: Immun Res doi: 10.1186/1745-7580-1-6 – volume: 284 start-page: 42 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0380 article-title: iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites publication-title: J Theor Biol doi: 10.1016/j.jtbi.2011.06.005 – volume: 46 start-page: 478 year: 2006 ident: 10.1016/j.artmed.2011.10.005_bib0110 article-title: Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of performance publication-title: J Chem Inform Model doi: 10.1021/ci0505426 – volume: 38 start-page: 193 year: 1993 ident: 10.1016/j.artmed.2011.10.005_bib0020 article-title: Characterization of peptides bound to extracellular and intracellular HLA-DR1 molecules publication-title: Hum Immunol doi: 10.1016/0198-8859(93)90540-H – volume: 6 start-page: e14556 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0360 article-title: Predicting functions of proteins in mouse based on weighted protein–protein interaction network and protein hybrid properties publication-title: PLoS One doi: 10.1371/journal.pone.0014556 – volume: 27 start-page: 368 year: 1999 ident: 10.1016/j.artmed.2011.10.005_bib0140 article-title: AAindex amino acid index database publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.368 – ident: 10.1016/j.artmed.2011.10.005_bib0205 – volume: 281 start-page: 18 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0305 article-title: Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine publication-title: J Theor Biol doi: 10.1016/j.jtbi.2011.04.017 – volume: 92 start-page: 227 year: 2001 ident: 10.1016/j.artmed.2011.10.005_bib0070 article-title: Fuzzy neural network-based prediction of the motif for MHC class II binding peptides publication-title: J Biosci Bioeng doi: 10.1016/S1389-1723(01)80254-1 – volume: 6 start-page: e22940 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0370 article-title: Predicting transcriptional activity of multiple site p53 mutants based on hybrid properties publication-title: PLoS One doi: 10.1371/journal.pone.0022940 – volume: 47 start-page: 4838 year: 2004 ident: 10.1016/j.artmed.2011.10.005_bib0180 article-title: Comparing the conformational behavior of a series of diastereomeric cyclic urea HIV-1 inhibitors using the low mode: Monte Carlo conformational search method publication-title: J Med Chem doi: 10.1021/jm049716l – volume: 21 start-page: 53 year: 2007 ident: 10.1016/j.artmed.2011.10.005_bib0090 article-title: Evaluation of machine-learning methods for ligand-based virtual screening publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-006-9096-5 – volume: 30 start-page: 129 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0230 article-title: OligoPred: a web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou's pseudo amino acid composition publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2011.06.014 – volume: 17 start-page: 1473 year: 2010 ident: 10.1016/j.artmed.2011.10.005_bib0265 article-title: Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition publication-title: Protein Pept Lett doi: 10.2174/0929866511009011473 – volume: 2 start-page: 61 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0190 article-title: MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes publication-title: BMC Res Notes doi: 10.1186/1756-0500-2-61 – volume: 273 start-page: 236 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0185 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review) publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.12.024 – volume: 3 start-page: 25 year: 2002 ident: 10.1016/j.artmed.2011.10.005_bib0025 article-title: Prediction of MHC class I binding peptides, using SVMHC publication-title: BMC Bioinform doi: 10.1186/1471-2105-3-25 – volume: 30 start-page: 275 year: 1995 ident: 10.1016/j.artmed.2011.10.005_bib0350 article-title: Review: prediction of protein structural classes publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409239509083488 – volume: 7 start-page: 463 year: 2006 ident: 10.1016/j.artmed.2011.10.005_bib0405 article-title: SVRMHC prediction server for MHC-binding peptides publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-463 – volume: 48 start-page: 7418 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0145 article-title: Analysis of peptide–protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201 publication-title: J Med Chem doi: 10.1021/jm0505258 – volume: 45 start-page: 1167 year: 2010 ident: 10.1016/j.artmed.2011.10.005_bib0165 article-title: Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2009.12.038 – volume: 390 start-page: 68 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0285 article-title: Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform publication-title: Anal Biochem doi: 10.1016/j.ab.2009.04.009 – volume: 15 start-page: 612 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0260 article-title: Predicting protein subcellular location using Chou's pseudo amino acid composition and improved hybrid approach publication-title: Protein Pept Lett doi: 10.2174/092986608784966930 – volume: 17 start-page: 942 year: 2001 ident: 10.1016/j.artmed.2011.10.005_bib0080 article-title: Predicting class II MHC/peptide multi-level binding with an iterative stepwise discriminant analysis meta-algorithm publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.10.942 – volume: 2 start-page: 63 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0420 article-title: Review: recent advances in developing web-servers for predicting protein attributes publication-title: Nat Sci – volume: 15 start-page: 1132 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0320 article-title: Predicting lipase types by improved Chou's pseudo-amino acid composition publication-title: Protein Pept Lett doi: 10.2174/092986608786071184 – start-page: 352 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0150 article-title: Quantitative prediction of MHC-II peptide binding affinity using global description of peptide sequences – ident: 10.1016/j.artmed.2011.10.005_bib0200 – volume: 34 start-page: 653 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0270 article-title: Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization publication-title: Amino Acids doi: 10.1007/s00726-007-0018-1 – volume: 41 start-page: 178 year: 1995 ident: 10.1016/j.artmed.2011.10.005_bib0030 article-title: MHC ligands and peptide motifs: first listing publication-title: Immunogenetics doi: 10.1007/BF00172063 – volume: 43 start-page: 469 year: 2003 ident: 10.1016/j.artmed.2011.10.005_bib0115 article-title: Comparison of ranking methods for virtual screening in lead-discovery programs publication-title: J Chem Inform Model doi: 10.1021/ci025586i – volume: 252 start-page: 350 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0295 article-title: The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.02.004 – volume: 23 start-page: 481 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0010 article-title: Predictive Bayesian neural network models of MHC class II peptide binding publication-title: J Mol Graph Modell doi: 10.1016/j.jmgm.2005.03.001 – volume: 17 start-page: 555 year: 1999 ident: 10.1016/j.artmed.2011.10.005_bib0195 article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices publication-title: Nat Biotechnol doi: 10.1038/9858 – volume: 18 start-page: 552 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0325 article-title: Using pseudo amino acid composition to predict protease families by incorporating a series of protein biological features publication-title: Protein Pept Lett doi: 10.2174/092986611795222795 – volume: 7 start-page: 911 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0395 article-title: GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions publication-title: Mol Biosyst doi: 10.1039/C0MB00170H – volume: 16 start-page: 27 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0235 article-title: Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine publication-title: Protein Pept Lett doi: 10.2174/092986609787049420 – year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0225 article-title: Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou's pseudo amino acid composition and on evolutionary information publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 7 start-page: 501 year: 2006 ident: 10.1016/j.artmed.2011.10.005_bib0065 article-title: Predicting class II MHC–peptide binding: a kernel based approach using similarity scores publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-501 – volume: 17 start-page: 1441 year: 2010 ident: 10.1016/j.artmed.2011.10.005_bib0255 article-title: Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature publication-title: Protein Pept Lett doi: 10.2174/0929866511009011441 – volume: 6 start-page: 262 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0220 article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology publication-title: Curr Proteomics doi: 10.2174/157016409789973707 – volume: 17 start-page: 1207 year: 2010 ident: 10.1016/j.artmed.2011.10.005_bib0300 article-title: Prediction of cyclin proteins using Chou's pseudo amino acid composition publication-title: Protein Pept Lett doi: 10.2174/092986610792231564 – volume: 48 start-page: 1686 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0340 article-title: Virtual screening using PLS discriminant analysis and ROC curve approach: an application study on PDE4 inhibitors publication-title: J Chem Inform Model doi: 10.1021/ci800072r – volume: 6 start-page: e18476 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0375 article-title: Prediction of antimicrobial peptides based on sequence alignment and feature selection methods publication-title: PLoS One doi: 10.1371/journal.pone.0018476 – volume: 34 start-page: 320 year: 2010 ident: 10.1016/j.artmed.2011.10.005_bib0245 article-title: A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2010.09.002 – volume: 46 start-page: 462 year: 2006 ident: 10.1016/j.artmed.2011.10.005_bib0100 article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching publication-title: J Chem Inform Model doi: 10.1021/ci050348j – volume: 8 start-page: 459 year: 2007 ident: 10.1016/j.artmed.2011.10.005_bib0055 article-title: Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms publication-title: BMC Bioinform doi: 10.1186/1471-2105-8-459 – volume: 175 start-page: 3826 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0015 article-title: CTL recognition of a bulged viral peptide involves biased TCR selection publication-title: J Immunol doi: 10.4049/jimmunol.175.6.3826 – volume: 46 start-page: 471 year: 2006 ident: 10.1016/j.artmed.2011.10.005_bib0105 article-title: Virtual screening using binary kernel discrimination: analysis of pesticide data publication-title: J Chem Inform Model doi: 10.1021/ci050397w – volume: 20 start-page: 1388 year: 2004 ident: 10.1016/j.artmed.2011.10.005_bib0040 article-title: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth100 – volume: 6 start-page: 1 year: 2000 ident: 10.1016/j.artmed.2011.10.005_bib0175 article-title: Calculation of protein surface loops using Monte-Carlo simulated annealing simulation publication-title: J Mol Model doi: 10.1007/PL00010720 – volume: 267 start-page: 1 year: 2010 ident: 10.1016/j.artmed.2011.10.005_bib0310 article-title: SecretP: identifying bacterial secreted proteins by fusing new features into Chou's pseudo-amino acid composition publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.08.001 – volume: 3 start-page: 153 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0355 publication-title: Nat Protoc doi: 10.1038/nprot.2007.494 – volume: 45 start-page: 1424 year: 2005 ident: 10.1016/j.artmed.2011.10.005_bib0075 article-title: Prediction of T-cell epitopes using biosupport vector machines publication-title: J Chem Inform Model doi: 10.1021/ci050004t – volume: 54 start-page: 159 year: 1997 ident: 10.1016/j.artmed.2011.10.005_bib0005 article-title: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture publication-title: Hum Immunol doi: 10.1016/S0198-8859(97)00078-5 – volume: 47 start-page: 1961 year: 2007 ident: 10.1016/j.artmed.2011.10.005_bib0125 article-title: Prediction of ion channel activity using binary kernel discrimination publication-title: J Chem Inform Model doi: 10.1021/ci700087v – volume: 16 start-page: 351 year: 2009 ident: 10.1016/j.artmed.2011.10.005_bib0275 article-title: Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition publication-title: Protein Pept Lett doi: 10.2174/092986609787848045 – volume: 6 start-page: e20592 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0390 article-title: A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites publication-title: PLoS One doi: 10.1371/journal.pone.0020592 – volume: 32 start-page: 1612 year: 2011 ident: 10.1016/j.artmed.2011.10.005_bib0290 article-title: Predicting protein folding rates using the concept of Chou's pseudo amino acid composition publication-title: J Comput Chem doi: 10.1002/jcc.21740 – volume: 253 start-page: 310 year: 2008 ident: 10.1016/j.artmed.2011.10.005_bib0315 article-title: Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou's amphiphilic pseudo amino acid composition publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.03.015 – volume: 44 start-page: 866 year: 2007 ident: 10.1016/j.artmed.2011.10.005_bib0060 article-title: Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes publication-title: Mol Immunol doi: 10.1016/j.molimm.2006.04.001 – volume: 14 start-page: 121 year: 1998 ident: 10.1016/j.artmed.2011.10.005_bib0035 article-title: Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.2.121 – reference: 22633493 - Artif Intell Med. 2012 Jul;55(3):209 |
SSID | ssj0007416 |
Score | 1.9695656 |
Snippet | Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell... Abstract Objective Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107 |
SubjectTerms | Area Under Curve Artificial Intelligence Benchmarking Binding Binding Sites Computer Simulation Continuous kernel discrimination Databases, Protein Feature selection Histocompatibility Antigens Class II - chemistry Humans Internal Medicine Kernels Machine learning Major histocompatibility complex class II peptides Mathematical models Metropolis Monte Carlo simulated annealing Models, Chemical Monte Carlo Method Monte Carlo methods Other Peptides Peptides - chemistry Protein Binding |
Title | Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365711001436 https://www.clinicalkey.es/playcontent/1-s2.0-S0933365711001436 https://dx.doi.org/10.1016/j.artmed.2011.10.005 https://www.ncbi.nlm.nih.gov/pubmed/22134095 https://www.proquest.com/docview/1017615440 https://www.proquest.com/docview/1020848273 https://www.proquest.com/docview/1671475372 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLH-krjwYVenXX1tN7DCFht6Wh0AZyExpZhk1T77LeheaS3x6NJKctbZLSm21mbKOZ0YzxN_MR8q6p1FhpBYVTHArhx6IA63XRlNIKxqqmthEge6Imp-LDmTzbIIdDLwzCKvPen_b0uFvnK6O8mqPFbDb6gt_iXEmNQ89C1sex20Jo9PL3Vz9hHlhxxHl7nBcoPbTPRYxXuF_IOWmQZ8R4ydvS023lZ0xDx0_J41w_0oP0is_Ihu-2yJOBm4HmUN0iDz_ln-bPyeXnJR6jBei8pZGVj3635_MljdOGIwx9lVCylzRizP0P6rCsptMphVlsfKELxL80vqeAQkgwsZ6ve_rNLzt_QbG7NzGExeckYuoX5PT46OvhpMiMC8FUol6FkBHKe1GXyiLTVG2lkyCAg26crCy4NpQfALZWuvUaHEDdlK3kzilWKc_4S7LZzTv_mlDXCNUICePScuGktrWz3JVtBZUux45tEz4stHF5HDmyYlyYAXd2bpJ5DJoHrwbzbJPiRmuRxnHcIy8HG5qh1TRsjibki3v09N_0fJ8jvDeV6ZkpzR9e-Kvmb478D898OziZCTGOP25s54MlUUUrHJtU3iXDkBohVKN3yChdifB9qsPqv0pefLOKDEf7hXp757_ff5c8Cmcs4ej2yOZqufZvQsW2gv0YkvvkwcH04-TkGjAGQrk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD50KWx92aXbuu6qwV5NbOvmPJaykqxtGKyFvglJliFt54Q4gfXfT0eSw8bWduwtODqx0dG5BH_n-wA-1YUYCSlMZgU1GXMjlhntZFbnXLOyLOpKB4DsVIzP2ZcLfrEFh_0sDMIqU-6POT1k63RlmHZzuJjNht_wvzgVXCLpma_64gFsIzsVH8D2weR4PN0kZGw6AuUepRka9BN0Aeblf9KXncjlGWBe_LYKdVsHGirR0VN4nFpIchCf8hlsuXYXnvTyDCRF6y48PE3vzZ_DzdclfkYnkHlDgjAf-a4v50sSCIcDEn0VgbI3JMDM3Q9isbMmkwkxszD7QhYIgaldRwwuQo2J9XzdkSu3bN01wQHfKBIW7hO1qV_A-dHns8NxlkQXvLdYtfJRw4RzrMqFRrGpSnPLDTPUyNryQhvb-A7EGF0J2ThprDFVnTecWivKQriSvoRBO2_dKyC2ZqJm3IxyTZnlUldWU5s3hSlkPrLlPtB-o5VNjOQojHGteujZpYruUegevOrdsw_ZxmoRGTnuWc97H6p-2tTnR-VLxj128m92rktB3qlCdaXK1R8H8VfL387yP9zzY3_IlA9zfHejW-c9iSZSIHNSfteaEtURfEN6xxohCx8jVPrd34uneLOLJbL7-Zb79X8__wd4ND47PVEnk-nxG9jx35QRVvcWBqvl2r3zDdzKvE8B-hMU9EVq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+human+major+histocompatibility+complex+class+II+binding+peptides+by+continuous+kernel+discrimination+method&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=He%2C+Ju&rft.au=Yang%2C+Guobing&rft.au=Rao%2C+Hanbing&rft.au=Li%2C+Zerong&rft.date=2012-06-01&rft.issn=0933-3657&rft.volume=55&rft.issue=2&rft.spage=107&rft.epage=115&rft_id=info:doi/10.1016%2Fj.artmed.2011.10.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365712X00058%2Fcov150h.gif |