Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics
Summary Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential ae...
Saved in:
Published in | Microbial biotechnology Vol. 7; no. 1; pp. 32 - 43 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Open Access
01.01.2014
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r‐strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.
This work describes how sequential aeration impacts the performance and microbial community of membrane‐aerated biofilm reactors performing autotrophic N removal. A detailed description of the microbial diversity and abundance supports the described findings. |
---|---|
AbstractList | Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB
Nitrospira
and
Nitrobacter
and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the
r
-strategists
Nitrosomonas europaea
and
Ca.
Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. Summary Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r‐strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. This work describes how sequential aeration impacts the performance and microbial community of membrane‐aerated biofilm reactors performing autotrophic N removal. A detailed description of the microbial diversity and abundance supports the described findings. Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. Summary Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOBNitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. This work describes how sequential aeration impacts the performance and microbial community of membrane-aerated biofilm reactors performing autotrophic N removal. A detailed description of the microbial diversity and abundance supports the described findings. Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria ( NOB ). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria ( AnAOB ). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB N itrospira and N itrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria ( AOB ) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB , and dominated by the r ‐strategists N itrosomonas europaea and C a. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. |
Author | Gülay, Arda Pellicer‐Nàcher, Carles Hansen, Martin Asser Al‐Soud, Waleed Abu Terada, Akihiko Franck, Stéphanie Smets, Barth F. Ruscalleda, Maël Sørensen, Søren J. |
Author_xml | – sequence: 1 givenname: Carles surname: Pellicer‐Nàcher fullname: Pellicer‐Nàcher, Carles organization: Technical University of Denmark – sequence: 2 givenname: Stéphanie surname: Franck fullname: Franck, Stéphanie organization: Technical University of Denmark – sequence: 3 givenname: Arda surname: Gülay fullname: Gülay, Arda organization: Technical University of Denmark – sequence: 4 givenname: Maël surname: Ruscalleda fullname: Ruscalleda, Maël organization: University of Girona – sequence: 5 givenname: Akihiko surname: Terada fullname: Terada, Akihiko organization: Tokyo University of Agriculture & Technology – sequence: 6 givenname: Waleed Abu surname: Al‐Soud fullname: Al‐Soud, Waleed Abu organization: University of Copenhagen – sequence: 7 givenname: Martin Asser surname: Hansen fullname: Hansen, Martin Asser organization: University of Copenhagen – sequence: 8 givenname: Søren J. surname: Sørensen fullname: Sørensen, Søren J. organization: University of Copenhagen – sequence: 9 givenname: Barth F. surname: Smets fullname: Smets, Barth F. organization: Technical University of Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24112350$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1vFSEUJabGfujanWHp5rXADAy4MNFGW5MaF9Y1YZg7LYaPJ8zUvIX_Xabv-VJdqCSEC5xz4N57jtFBTBEQek7JKa3jjHacrjpF-SllpFOP0NH-5OBBfIiOS_lKiCCEsyfokLWUsoaTI_TjM3ybIU7OeL_BBrKZYMABQp9NBNy7NDofcAZjp5QLHlPGZp7SlNP61lkcXY1uIFZESHfGv8LB2Zz6qodtCmGugM0SrVNxk0sRmzjgYRNNxZWn6PFofIFnu_UEfXn_7vr8cnX16eLD-ZurlRWtVKueyKZVkgKRdgBipTRUmN6argGmqBQtH9nAhFWcNw2YfmxHMVIGSgoyqrY5Qa-3uuu5DzDYmnA2Xq-zCyZvdDJO_34T3a2-SXe6kUqoZhGgWwFbZqszWMjWTPfE_WaZtQlMN4xTSSvn5e7RnGqNy6SDKxa8r4VNc9G0VUxQ0TL2H1DRESE5FRX64mEq-xx-tbQCznZfzamUDOMeQoleTKMXW-jFFvreNJXB_2BYN5mlWbUWzv-FJ7a8787D5l_P6I9vr9mW-BN3w9da |
CitedBy_id | crossref_primary_10_1002_cjce_22172 crossref_primary_10_1016_j_biortech_2022_128441 crossref_primary_10_1016_j_ibiod_2016_02_013 crossref_primary_10_1061_JOEEDU_EEENG_7522 crossref_primary_10_1007_s00253_018_9293_x crossref_primary_10_1016_j_biortech_2017_08_051 crossref_primary_10_1111_1751_7915_13599 crossref_primary_10_1007_s43153_020_00046_6 crossref_primary_10_1016_j_bej_2020_107771 crossref_primary_10_1016_j_jece_2022_108635 crossref_primary_10_1128_AEM_01959_14 crossref_primary_10_1007_s10529_021_03181_3 crossref_primary_10_1016_j_ibiod_2015_01_013 crossref_primary_10_1038_srep28880 crossref_primary_10_1039_D3EW00211J crossref_primary_10_1002_jctb_5692 crossref_primary_10_1016_j_biortech_2023_130130 crossref_primary_10_1002_bit_27581 crossref_primary_10_1016_j_watres_2024_121400 crossref_primary_10_1021_acs_est_3c05600 crossref_primary_10_1016_j_biortech_2019_121649 crossref_primary_10_3389_fmicb_2018_02808 crossref_primary_10_1007_s40726_021_00205_4 crossref_primary_10_1016_j_jclepro_2021_128343 crossref_primary_10_2166_wst_2021_443 crossref_primary_10_1016_j_wroa_2020_100066 crossref_primary_10_1111_1751_7915_12435 crossref_primary_10_1080_10643389_2020_1734432 crossref_primary_10_1016_j_watres_2022_118119 crossref_primary_10_1021_acs_estlett_1c00154 crossref_primary_10_1016_j_biortech_2025_132207 crossref_primary_10_1016_j_biortech_2014_10_080 crossref_primary_10_1016_j_cej_2024_159175 crossref_primary_10_1016_j_chemosphere_2020_128224 crossref_primary_10_1016_j_cej_2017_02_096 crossref_primary_10_1016_j_watres_2020_116604 crossref_primary_10_1016_j_watres_2019_115060 crossref_primary_10_1016_j_watres_2021_117217 crossref_primary_10_2166_wst_2022_013 crossref_primary_10_1016_j_chemosphere_2024_143674 crossref_primary_10_1016_j_watres_2016_08_026 crossref_primary_10_1016_j_watres_2024_121984 crossref_primary_10_1016_j_memsci_2015_07_043 crossref_primary_10_1061_JOEEDU_EEENG_7438 crossref_primary_10_1016_j_envres_2022_113554 crossref_primary_10_1016_j_watres_2020_116351 crossref_primary_10_1080_09593330_2017_1302996 crossref_primary_10_2139_ssrn_4117005 crossref_primary_10_1016_j_chemosphere_2022_134402 crossref_primary_10_1016_j_chemosphere_2021_130861 crossref_primary_10_1016_j_watres_2024_123000 |
Cites_doi | 10.1038/nrmicro1857 10.1093/nar/gkl856 10.1016/j.cej.2010.05.037 10.1128/AEM.64.10.3769-3775.1998 10.1111/j.1462-2920.2006.01081.x 10.1078/0723-2020-00093 10.1016/j.watres.2007.08.025 10.1111/1574-6941.12148 10.1371/journal.pone.0019223 10.1128/AEM.67.3.1351-1362.2001 10.1016/j.watres.2009.03.017 10.1038/ismej.2007.45 10.1016/j.idairyj.2010.10.007 10.1128/AEM.00991-10 10.1007/s00775-008-0393-4 10.1111/j.1574-6941.2007.00404.x 10.1007/s10098-011-0355-3 10.1080/10409230902722783 10.1016/j.watres.2010.05.041 10.2166/wst.2004.0388 10.1046/j.1462-2920.2000.00150.x 10.1111/j.1574-6941.2007.00416.x 10.2166/wst.2003.0149 10.1016/S0043-1354(01)00476-6 10.1002/bit.21891 10.1128/AEM.61.6.2093-2098.1995 10.1128/AEM.65.4.1652-1657.1999 10.1089/ees.2012.0222 10.1128/AEM.71.7.3987-3994.2005 10.1111/j.1365-2672.2005.02608.x 10.1128/AEM.02456-09 10.1080/01490450303893 10.1016/0043-1354(94)90043-4 10.1111/j.1574-6941.2007.00418.x 10.1128/AEM.67.5.2213-2221.2001 10.1007/s00248-007-9320-4 10.1038/ismej.2010.99 10.1023/A:1008327815105 10.1099/13500872-142-8-2187 10.1038/nmeth.f.303 10.1016/S0168-6445(03)00039-1 10.1111/j.1462-2920.2005.00880.x 10.1093/bioinformatics/btp636 10.1371/journal.pone.0029973 10.1128/AEM.63.4.1489-1497.1997 10.1111/j.1574-6941.2006.00170.x 10.1016/j.watres.2006.11.024 10.1021/es1013467 10.1016/j.watres.2010.07.021 10.1002/bit.20347 10.4319/lo.1989.34.2.0474 10.1016/S0378-1097(02)01177-1 10.1128/AEM.67.2.972-976.2001 10.1186/1471-2105-12-38 10.1128/AEM.03006-05 10.1002/bit.22018 10.1021/es1002956 10.1111/j.1462-2920.2010.02267.x 10.1016/j.biortech.2012.07.114 10.1002/bit.21213 10.1016/j.watres.2010.07.022 10.3389/fmicb.2012.00372 10.1099/00207713-50-1-273 10.1007/s10532-007-9136-4 10.1128/AEM.02953-09 10.1016/j.femsec.2004.04.011 10.1046/j.1365-2958.2002.02875.x |
ContentType | Journal Article |
Copyright | 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. Attribution 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology 2013 |
Copyright_xml | – notice: 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. – notice: Attribution 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es/">http://creativecommons.org/licenses/by/3.0/es/</a> – notice: 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology 2013 |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7T7 8FD C1K FR3 P64 XX2 5PM |
DOI | 10.1111/1751-7915.12079 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Recercat PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-7915 |
EndPage | 43 |
ExternalDocumentID | PMC3896934 oai_recercat_cat_2072_325181 24112350 10_1111_1751_7915_12079 MBT212079 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Catalan Government (AGAUR) funderid: BE‐2009‐385 – fundername: Danish Agency for Science Technology and Innovation (FTP‐ReSCoBiR) – fundername: Veolia Water |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 31~ 4.4 53G 5DZ 5VS 7X7 8-1 8FE 8FG 8FH 8FI 8FJ A8Z AAHHS AANHP AAZKR ABDBF ABJCF ABUWG ACBWZ ACCFJ ACCMX ACGFO ACIWK ACPRK ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADPDF ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AEUYN AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ASPBG AVUZU AVWKF AZFZN BAWUL BBNVY BCNDV BDRZF BENPR BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 D-9 DIK EBD EBS EJD EMOBN ESX F5P FEDTE FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HYE IAO IHR ITC KQ8 L6V LH4 LK8 LW6 M48 M7P M7S ML0 MM. O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC PTHSS RNS RPM SV3 TEORI TUS UKHRP WIN AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7X8 7QO 7T7 8FD C1K FR3 P64 PUEGO XX2 5PM |
ID | FETCH-LOGICAL-c6489-b0834981e08cde0c88a16abca73e2918645f2d26c95533eabf4f6f12e9860f943 |
IEDL.DBID | M48 |
ISSN | 1751-7915 |
IngestDate | Thu Aug 21 14:09:54 EDT 2025 Fri Aug 29 12:32:34 EDT 2025 Fri Jul 11 04:29:24 EDT 2025 Fri Jul 11 04:08:53 EDT 2025 Mon Jul 21 05:35:57 EDT 2025 Tue Jul 01 03:37:54 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Wed Jan 22 16:56:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/3.0 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6489-b0834981e08cde0c88a16abca73e2918645f2d26c95533eabf4f6f12e9860f943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Funding Information Veolia Water and the Danish Agency for Science Technology and Innovation (FTP-ReSCoBiR) funded the present study. Maël Ruscalleda was supported by the FI and BE (BE-2009-385) grant programmes from the Catalan Government (AGAUR). |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.12079 |
PMID | 24112350 |
PQID | 1467068516 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3896934 csuc_recercat_oai_recercat_cat_2072_325181 proquest_miscellaneous_1492616422 proquest_miscellaneous_1467068516 pubmed_primary_24112350 crossref_primary_10_1111_1751_7915_12079 crossref_citationtrail_10_1111_1751_7915_12079 wiley_primary_10_1111_1751_7915_12079_MBT212079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Microbial biotechnology |
PublicationTitleAlternate | Microb Biotechnol |
PublicationYear | 2014 |
Publisher | Wiley Open Access Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley Open Access – name: Blackwell Publishing Ltd |
References | 2010; 12 2009; 44 2006; 72 2012; 123 2009; 43 2000; 50 2000; 2 2011; 13 2008; 6 2011; 12 1996; 142 1994; 28 2008; 101 2007; 35 1995; 61 1989; 34 2010a; 44 2003; 48 1996; 62 2011; 21 2008; 63 2005; 71 2007; 1 2010b; 44 2010; 76 2002; 36 2003; 218 1997; 61 2012 2010 2004; 49 1997; 63 2008; 19 2006; 58 2013; 85 2006; 8 1999; 65 2008; 13 2010; 162 1991 2010b; 7 2007; 97 2001; 67 2011; 6 1998; 64 2011; 5 2005; 89 2010; 44 2002; 25 2004; 50 2012; 3 2010a; 26 2013; 30 2003; 27 2008; 42 2007; 41 2012; 7 2005; 99 2003; 20 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 Noophan P. (e_1_2_7_38_1) 2004; 50 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 Okabe S. (e_1_2_7_39_1) 2010 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 Rowan A.K. (e_1_2_7_49_1) 2003; 48 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 Hallin S. (e_1_2_7_21_1) 1999; 65 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Quince C. (e_1_2_7_46_1) 2011; 12 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 21276213 - BMC Bioinformatics. 2011;12:38 12586414 - FEMS Microbiol Lett. 2003 Jan 28;218(2):339-44 15696537 - Biotechnol Bioeng. 2005 Mar 20;89(6):670-9 19966029 - Appl Environ Microbiol. 2010 Feb;76(3):922-6 17611802 - Biodegradation. 2008 Apr;19(2):303-12 11157271 - Appl Environ Microbiol. 2001 Feb;67(2):972-6 20646732 - Water Res. 2010 Aug;44(15):4359-70 21559425 - PLoS One. 2011;6(4):e19223 18421799 - Biotechnol Bioeng. 2008 Oct 1;101(2):286-94 18553112 - J Biol Inorg Chem. 2008 Sep;13(7):1073-83 17915280 - Water Res. 2008 Feb;42(4-5):1102-12 19375773 - Water Res. 2009 Jun;43(10):2699-709 20613788 - ISME J. 2011 Jan;5(1):92-106 9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75 23109930 - Front Microbiol. 2012 Oct 23;3:372 18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40 22944492 - Bioresour Technol. 2012 Nov;123:574-80 18767185 - Biotechnol Bioeng. 2008 Dec 15;101(6):1193-204 18093145 - FEMS Microbiol Ecol. 2008 Feb;63(2):192-204 19247843 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):65-84 20705314 - Water Res. 2010 Sep;44(17):5014-20 18340342 - Nat Rev Microbiol. 2008 Apr;6(4):320-6 19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17 10103263 - Appl Environ Microbiol. 1999 Apr;65(4):1652-7 23678985 - FEMS Microbiol Ecol. 2013 Sep;85(3):612-26 16820507 - Appl Environ Microbiol. 2006 Jul;72(7):5069-72 14518850 - Water Sci Technol. 2003;48(3):17-24 19914921 - Bioinformatics. 2010 Jan 15;26(2):266-7 16000813 - Appl Environ Microbiol. 2005 Jul;71(7):3987-94 18043658 - ISME J. 2007 Sep;1(5):385-93 7793930 - Appl Environ Microbiol. 1995 Jun;61(6):2093-8 9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616 10826814 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:273-82 20815378 - Environ Sci Technol. 2010 Oct 1;44(19):7628-34 15543668 - Water Sci Technol. 2004;50(6):295-304 20545751 - Environ Microbiol. 2010 Oct;12(10):2858-72 20383131 - Nat Methods. 2010 May;7(5):335-6 16958903 - FEMS Microbiol Ecol. 2006 Oct;58(1):1-13 16423009 - Environ Microbiol. 2006 Feb;8(2):200-13 11214800 - Environ Microbiol. 2000 Dec;2(6):680-6 18199085 - FEMS Microbiol Ecol. 2008 Feb;63(2):261-71 9097446 - Appl Environ Microbiol. 1997 Apr;63(4):1489-97 11319103 - Appl Environ Microbiol. 2001 May;67(5):2213-21 8593039 - Appl Environ Microbiol. 1996 Feb;62(2):340-6 11229931 - Appl Environ Microbiol. 2001 Mar;67(3):1351-62 17099228 - Nucleic Acids Res. 2007 Jan;35(Database issue):D800-4 20675452 - Appl Environ Microbiol. 2010 Sep;76(18):6304-6 20418441 - Appl Environ Microbiol. 2010 Jun;76(12):3886-97 12086193 - Syst Appl Microbiol. 2002 Apr;25(1):84-99 17013935 - Biotechnol Bioeng. 2007 May 1;97(1):40-51 22253843 - PLoS One. 2012;7(1):e29973 20704206 - Environ Sci Technol. 2010 Aug 15;44(16):6110-6 20684970 - Water Res. 2010 Sep;44(17):5005-13 17215016 - Water Res. 2007 Feb;41(4):785-94 16108805 - J Appl Microbiol. 2005;99(3):629-40 17014499 - Environ Microbiol. 2006 Nov;8(11):2012-21 14550941 - FEMS Microbiol Rev. 2003 Oct;27(4):481-92 12153013 - Water Res. 2002 May;36(10):2475-82 |
References_xml | – volume: 21 start-page: 142 year: 2011 end-page: 148 article-title: Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing publication-title: Int Dairy J – volume: 8 start-page: 2012 year: 2006 end-page: 2021 article-title: The incidence of and and their genetic heterogeneity in cultivated denitrifiers publication-title: Environ Microbiol – volume: 63 start-page: 1489 year: 1997 end-page: 1497 article-title: Analysis of ammonia‐oxidizing bacteria of the beta subdivision of the class in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR‐amplified 16S ribosomal DNA fragments publication-title: Appl Environ Microbiol – volume: 2 start-page: 680 year: 2000 end-page: 686 article-title: Microenvironments and distribution of nitrifying bacteria in a membrane‐bound biofilm publication-title: Environ Microbiol – volume: 49 start-page: 401 year: 2004 end-page: 417 article-title: Reassessing PCR primers targeting , and genes for community surveys of denitrifying bacteria with DGGE publication-title: FEMS Microbiol Ecol – volume: 76 start-page: 3886 year: 2010 end-page: 3897 article-title: Diversity of 16S rRNA genes within individual prokaryotic genomes publication-title: Appl Environ Microbiol – volume: 43 start-page: 2699 year: 2009 end-page: 2709 article-title: Nitritation performance and biofilm development of co‐ and counter‐diffusion biofilm reactors: modeling and experimental comparison publication-title: Water Res – volume: 101 start-page: 1193 year: 2008 end-page: 1204 article-title: Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane‐aerated biofilm publication-title: Biotechnol Bioeng – volume: 34 start-page: 474 year: 1989 end-page: 478 article-title: An oxygen microsensor with a guard cathode publication-title: Limnol Oceanogr – volume: 26 start-page: 266 year: 2010a end-page: 267 article-title: PyNAST: a flexible tool for aligning sequences to a template alignment publication-title: Bioinformatics – volume: 99 start-page: 629 year: 2005 end-page: 640 article-title: Community survey of ammonia‐oxidizing bacteria in full‐scale activated sludge processes with different solids retention time publication-title: J Appl Microbiol – volume: 72 start-page: 5069 year: 2006 end-page: 5072 article-title: Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB publication-title: Appl Environ Microbiol – volume: 36 start-page: 2475 year: 2002 end-page: 2482 article-title: Completely autotrophic nitrogen removal over nitrite in one single reactor publication-title: Water Res – volume: 5 start-page: 92 year: 2011 end-page: 106 article-title: and as active fermenters in earthworm gut content publication-title: ISME J – volume: 1 start-page: 385 year: 2007 end-page: 393 article-title: Experimental demonstration of chaotic instability in biological nitrification publication-title: ISME J – volume: 65 start-page: 1652 year: 1999 end-page: 1657 article-title: PCR Detection of genes encoding nitrite reductase in denitrifying bacteria PCR detection of genes encoding nitrite reductase in denitrifying bacteria publication-title: Appl Environ Microbiol – volume: 50 start-page: 295 year: 2004 end-page: 304 article-title: Nitrite oxidation inhibition by hydroxylamine: experimental and model evaluation publication-title: Water Sci Technol – volume: 7 start-page: e29973 year: 2012 article-title: Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities publication-title: PLoS ONE – volume: 61 start-page: 2093 year: 1995 end-page: 2098 article-title: Detection and counting of populations in soil by PCR publication-title: Appl Environ Microbiol – volume: 162 start-page: 1 year: 2010 end-page: 20 article-title: Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams publication-title: Chem Eng J – volume: 218 start-page: 339 year: 2003 end-page: 344 article-title: CANON and Anammox in a gas‐lift reactor publication-title: FEMS Microbiol Lett – volume: 41 start-page: 785 year: 2007 end-page: 794 article-title: Quantification of anaerobic ammonium‐oxidizing bacteria in enrichment cultures by real‐time PCR publication-title: Water Res – volume: 97 start-page: 40 year: 2007 end-page: 51 article-title: Redox‐stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co‐ versus counter‐diffusion on reactor performance publication-title: Biotechnol Bioeng – volume: 6 start-page: 320 year: 2008 end-page: 326 article-title: Anammox bacteria: from discovery to application publication-title: Nat Rev Microbiol – volume: 76 start-page: 6304 year: 2010 end-page: 6306 article-title: Effect of nitric oxide on anammox bacteria publication-title: Appl Environ Microbiol – volume: 71 start-page: 3987 year: 2005 end-page: 3994 article-title: Fate of 14C‐labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms publication-title: Appl Environ Microbiol – start-page: 115 year: 1991 end-page: 175 – volume: 123 start-page: 574 year: 2012 end-page: 580 article-title: Distribution and genetic diversity of functional microorganisms in different CANON reactors publication-title: Bioresour Technol – volume: 30 start-page: 38 year: 2013 end-page: 45 article-title: Autotrophic nitrogen removal in a membrane‐aerated biofilm reactor under continuous aeration: a demonstration publication-title: Environ Eng Sci – volume: 44 start-page: 7628 year: 2010 end-page: 7634 article-title: Sequential aeration of membrane‐aerated biofilm reactors for high‐rate autotrophic nitrogen removal: experimental demonstration publication-title: Environ Sci Technol – volume: 27 start-page: 481 year: 2003 end-page: 492 article-title: New concepts of microbial treatment processes for the nitrogen removal in wastewater publication-title: FEMS Microbiol Rev – volume: 67 start-page: 972 year: 2001 end-page: 976 article-title: Quantification of ammonia‐oxidizing bacteria in arable soil by real‐time PCR publication-title: Appl Environ Microbiol – volume: 89 start-page: 670 year: 2005 end-page: 679 article-title: Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction publication-title: Biotechnol Bioeng – volume: 50 start-page: 273 year: 2000 end-page: 282 article-title: Characterization of N O‐producing ‐like isolates from biofilters as sp. nov., gen. nov., sp. nov. and gen. nov., sp. nov publication-title: Int J Syst Evol Microbiol – volume: 13 start-page: 759 year: 2011 end-page: 781 article-title: Presence and detection of anaerobic ammonium‐oxidizing (anammox) bacteria and appraisal of anammox process for high‐strength nitrogenous wastewater treatment: a review publication-title: Clean Techn Environ Policy – volume: 6 start-page: e19223 year: 2011 article-title: Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non‐cyanobacteria publication-title: PLoS ONE – volume: 48 start-page: 17 year: 2003 end-page: 24 article-title: A comparitive study of ammonia‐oxidizing bacteria in lab‐scale industrial wastewater treatment reactors publication-title: Water Sci Technol – volume: 142 start-page: 2187 year: 1996 end-page: 2196 article-title: Autotrophic growth of anaerobic ammonium‐oxidizing micro‐organisms in a fluidized bed reactor publication-title: Microbiology – volume: 61 start-page: 533 year: 1997 end-page: 616 article-title: Cell biology and molecular basis of denitrification publication-title: Microbiol Mol Biol Rev – volume: 62 start-page: 340 year: 1996 end-page: 346 article-title: Denaturing gradient gel electrophoresis profiles of 16S rRNA‐defined populations inhabiting a hot spring microbial mat community publication-title: Appl Environ Microbiol – volume: 64 start-page: 3769 year: 1998 end-page: 3775 article-title: Development of PCR primer systems for amplification of nitrite reductase genes ( and ) to detect denitrifying bacteria in environmental samples publication-title: Appl Environ Microbiol – volume: 44 start-page: 5005 year: 2010a end-page: 5013 article-title: Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities publication-title: Water Res – volume: 44 start-page: 6110 year: 2010b end-page: 6116 article-title: Linking community profiles, gene expression and N‐removal in anammox bioreactors treating municipal anaerobic digestion reject water publication-title: Environ Sci Technol – volume: 19 start-page: 303 year: 2008 end-page: 312 article-title: Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor publication-title: Biodegradation – volume: 67 start-page: 1351 year: 2001 end-page: 1362 article-title: Community structure and activity dynamics of nitrifying bacteria in a phosphate‐removing biofilm publication-title: Appl Environ Microbiol – volume: 20 start-page: 313 year: 2003 end-page: 334 article-title: In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments publication-title: Geomicrobiol J – start-page: 191 year: 2010 end-page: 210 – volume: 85 start-page: 612 year: 2013 end-page: 626 article-title: 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full‐scale biogas digesters publication-title: FEMS Microbiol Ecol – volume: 8 start-page: 200 year: 2006 end-page: 213 article-title: Daime, a novel image analysis program for microbial ecology and biofilm research publication-title: Environ Microbiol – volume: 44 start-page: 4359 year: 2010 end-page: 4370 article-title: Microbial community distribution and activity dynamics of granular biomass in a CANON reactor publication-title: Water Res – volume: 44 start-page: 65 year: 2009 end-page: 84 article-title: Biochemistry and molecular biology of anammox bacteria publication-title: Crit Rev Biochem Mol Biol – volume: 12 start-page: 1 year: 2011 end-page: 18 article-title: Removing noise from pyrosequenced amplicons publication-title: BMC Bioinformatics – volume: 63 start-page: 132 year: 2008 end-page: 140 article-title: First exploration of diversity in soils by a PCR cloning‐sequencing approach targeting functional gene publication-title: FEMS Microbiol Ecol – year: 2012 – volume: 13 start-page: 1073 year: 2008 end-page: 1083 article-title: Kinetic and product distribution analysis of NO center dot reductase activity in hydroxylamine oxidoreductase publication-title: J Biol Inorg Chem – volume: 67 start-page: 2213 year: 2001 end-page: 2221 article-title: Dissimilatory nitrite reductase genes from autotrophic ammonia‐oxidizing bacteria publication-title: Appl Environ Microbiol – volume: 3 start-page: 1 year: 2012 end-page: 24 article-title: Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies publication-title: Front Microbiol – volume: 12 start-page: 2858 year: 2010 end-page: 2872 article-title: Inoculum effects on community composition and nitritation performance of autotrophic nitrifying biofilm reactors with counter‐diffusion geometry publication-title: Environ Microbiol – volume: 35 start-page: D800 year: 2007 end-page: D804 article-title: probeBase – an online resource for rRNA‐targeted oligonucleotide probes: new features 2007 publication-title: Nucleic Acids Res – volume: 42 start-page: 1102 year: 2008 end-page: 1112 article-title: Heterotrophic activity compromises autotrophic nitrogen removal in membrane‐aerated biofilms: results of a modeling study publication-title: Water Res – volume: 101 start-page: 286 year: 2008 end-page: 294 article-title: The membrane bioreactor: a novel tool to grow anammox bacteria as free cells publication-title: Biotechnol Bioeng – volume: 63 start-page: 192 year: 2008 end-page: 204 article-title: Nm143‐like ammonia oxidizers and ‐like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm publication-title: FEMS Microbiol Ecol – volume: 28 start-page: 2279 year: 1994 end-page: 2287 article-title: Evaluation of tortuosity factors and effective diffusivities in biofilms publication-title: Water Res – volume: 25 start-page: 84 year: 2002 end-page: 99 article-title: The microbial community composition of a nitrifying‐denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full‐cycle rRNA approach publication-title: Syst Appl Microbiol – volume: 44 start-page: 5014 year: 2010 end-page: 5020 article-title: Identification and quantification of anammox bacteria in eight nitrogen removal reactors publication-title: Water Res – volume: 76 start-page: 922 year: 2010 end-page: 926 article-title: Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE‐FISH) improves signal intensity and increases rRNA accessibility publication-title: Appl Environ Microbiol – volume: 58 start-page: 1 year: 2006 end-page: 13 article-title: Strategies of aerobic ammonia‐oxidizing bacteria for coping with nutrient and oxygen fluctuations publication-title: FEMS Microbiol Ecol – volume: 63 start-page: 261 year: 2008 end-page: 271 article-title: Development and application of a PCR‐denaturing gradient gel electrophoresis tool to study the diversity of ‐like sequences in soil publication-title: FEMS Microbiol Ecol – volume: 7 start-page: 335 year: 2010b end-page: 336 article-title: QIIME allows analysis of high‐ throughput community sequencing data publication-title: Nat Methods – ident: e_1_2_7_32_1 doi: 10.1038/nrmicro1857 – ident: e_1_2_7_36_1 doi: 10.1093/nar/gkl856 – ident: e_1_2_7_26_1 doi: 10.1016/j.cej.2010.05.037 – ident: e_1_2_7_3_1 doi: 10.1128/AEM.64.10.3769-3775.1998 – ident: e_1_2_7_24_1 doi: 10.1111/j.1462-2920.2006.01081.x – ident: e_1_2_7_28_1 doi: 10.1078/0723-2020-00093 – ident: e_1_2_7_33_1 doi: 10.1016/j.watres.2007.08.025 – ident: e_1_2_7_58_1 doi: 10.1111/1574-6941.12148 – ident: e_1_2_7_11_1 doi: 10.1371/journal.pone.0019223 – ident: e_1_2_7_16_1 doi: 10.1128/AEM.67.3.1351-1362.2001 – ident: e_1_2_7_65_1 doi: 10.1016/j.watres.2009.03.017 – ident: e_1_2_7_47_1 – ident: e_1_2_7_20_1 doi: 10.1038/ismej.2007.45 – ident: e_1_2_7_37_1 doi: 10.1016/j.idairyj.2010.10.007 – ident: e_1_2_7_29_1 doi: 10.1128/AEM.00991-10 – ident: e_1_2_7_30_1 doi: 10.1007/s00775-008-0393-4 – ident: e_1_2_7_45_1 doi: 10.1111/j.1574-6941.2007.00404.x – ident: e_1_2_7_61_1 doi: 10.1007/s10098-011-0355-3 – ident: e_1_2_7_27_1 doi: 10.1080/10409230902722783 – ident: e_1_2_7_64_1 doi: 10.1016/j.watres.2010.05.041 – volume: 50 start-page: 295 year: 2004 ident: e_1_2_7_38_1 article-title: Nitrite oxidation inhibition by hydroxylamine: experimental and model evaluation publication-title: Water Sci Technol doi: 10.2166/wst.2004.0388 – ident: e_1_2_7_52_1 doi: 10.1046/j.1462-2920.2000.00150.x – ident: e_1_2_7_66_1 doi: 10.1111/j.1574-6941.2007.00416.x – volume: 48 start-page: 17 year: 2003 ident: e_1_2_7_49_1 article-title: A comparitive study of ammonia‐oxidizing bacteria in lab‐scale industrial wastewater treatment reactors publication-title: Water Sci Technol doi: 10.2166/wst.2003.0149 – ident: e_1_2_7_54_1 doi: 10.1016/S0043-1354(01)00476-6 – ident: e_1_2_7_56_1 doi: 10.1002/bit.21891 – ident: e_1_2_7_8_1 doi: 10.1128/AEM.61.6.2093-2098.1995 – volume: 65 start-page: 1652 year: 1999 ident: e_1_2_7_21_1 article-title: PCR Detection of genes encoding nitrite reductase in denitrifying bacteria PCR detection of genes encoding nitrite reductase in denitrifying bacteria publication-title: Appl Environ Microbiol doi: 10.1128/AEM.65.4.1652-1657.1999 – ident: e_1_2_7_17_1 doi: 10.1089/ees.2012.0222 – ident: e_1_2_7_40_1 doi: 10.1128/AEM.71.7.3987-3994.2005 – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-2672.2005.02608.x – ident: e_1_2_7_57_1 doi: 10.1128/AEM.02456-09 – ident: e_1_2_7_51_1 doi: 10.1080/01490450303893 – ident: e_1_2_7_69_1 doi: 10.1016/0043-1354(94)90043-4 – ident: e_1_2_7_14_1 doi: 10.1111/j.1574-6941.2007.00418.x – ident: e_1_2_7_6_1 doi: 10.1128/AEM.67.5.2213-2221.2001 – ident: e_1_2_7_34_1 doi: 10.1007/s00248-007-9320-4 – ident: e_1_2_7_67_1 doi: 10.1038/ismej.2010.99 – ident: e_1_2_7_12_1 doi: 10.1023/A:1008327815105 – ident: e_1_2_7_19_1 doi: 10.1099/13500872-142-8-2187 – ident: e_1_2_7_5_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_7_50_1 doi: 10.1016/S0168-6445(03)00039-1 – ident: e_1_2_7_7_1 doi: 10.1111/j.1462-2920.2005.00880.x – ident: e_1_2_7_4_1 doi: 10.1093/bioinformatics/btp636 – ident: e_1_2_7_18_1 doi: 10.1371/journal.pone.0029973 – ident: e_1_2_7_31_1 doi: 10.1128/AEM.63.4.1489-1497.1997 – ident: e_1_2_7_15_1 doi: 10.1111/j.1574-6941.2006.00170.x – ident: e_1_2_7_63_1 doi: 10.1016/j.watres.2006.11.024 – ident: e_1_2_7_44_1 doi: 10.1021/es1013467 – ident: e_1_2_7_25_1 doi: 10.1016/j.watres.2010.07.021 – ident: e_1_2_7_68_1 doi: 10.1002/bit.20347 – ident: e_1_2_7_48_1 doi: 10.4319/lo.1989.34.2.0474 – ident: e_1_2_7_55_1 doi: 10.1016/S0378-1097(02)01177-1 – ident: e_1_2_7_23_1 doi: 10.1128/AEM.67.2.972-976.2001 – volume: 12 start-page: 1 year: 2011 ident: e_1_2_7_46_1 article-title: Removing noise from pyrosequenced amplicons publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-38 – ident: e_1_2_7_9_1 doi: 10.1128/AEM.03006-05 – ident: e_1_2_7_10_1 doi: 10.1002/bit.22018 – ident: e_1_2_7_42_1 doi: 10.1021/es1002956 – ident: e_1_2_7_60_1 doi: 10.1111/j.1462-2920.2010.02267.x – ident: e_1_2_7_35_1 doi: 10.1016/j.biortech.2012.07.114 – ident: e_1_2_7_59_1 doi: 10.1002/bit.21213 – ident: e_1_2_7_41_1 doi: 10.1016/j.watres.2010.07.022 – ident: e_1_2_7_53_1 doi: 10.3389/fmicb.2012.00372 – ident: e_1_2_7_13_1 doi: 10.1099/00207713-50-1-273 – ident: e_1_2_7_2_1 doi: 10.1007/s10532-007-9136-4 – ident: e_1_2_7_43_1 doi: 10.1128/AEM.02953-09 – ident: e_1_2_7_62_1 doi: 10.1016/j.femsec.2004.04.011 – start-page: 191 volume-title: Environmental Molecular Microbiology year: 2010 ident: e_1_2_7_39_1 – ident: e_1_2_7_70_1 doi: 10.1046/j.1365-2958.2002.02875.x – reference: 9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616 – reference: 22944492 - Bioresour Technol. 2012 Nov;123:574-80 – reference: 19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17 – reference: 18340342 - Nat Rev Microbiol. 2008 Apr;6(4):320-6 – reference: 12586414 - FEMS Microbiol Lett. 2003 Jan 28;218(2):339-44 – reference: 16958903 - FEMS Microbiol Ecol. 2006 Oct;58(1):1-13 – reference: 20705314 - Water Res. 2010 Sep;44(17):5014-20 – reference: 20675452 - Appl Environ Microbiol. 2010 Sep;76(18):6304-6 – reference: 20613788 - ISME J. 2011 Jan;5(1):92-106 – reference: 9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75 – reference: 14550941 - FEMS Microbiol Rev. 2003 Oct;27(4):481-92 – reference: 7793930 - Appl Environ Microbiol. 1995 Jun;61(6):2093-8 – reference: 17013935 - Biotechnol Bioeng. 2007 May 1;97(1):40-51 – reference: 16423009 - Environ Microbiol. 2006 Feb;8(2):200-13 – reference: 18767185 - Biotechnol Bioeng. 2008 Dec 15;101(6):1193-204 – reference: 18199085 - FEMS Microbiol Ecol. 2008 Feb;63(2):261-71 – reference: 11214800 - Environ Microbiol. 2000 Dec;2(6):680-6 – reference: 14518850 - Water Sci Technol. 2003;48(3):17-24 – reference: 18093145 - FEMS Microbiol Ecol. 2008 Feb;63(2):192-204 – reference: 21276213 - BMC Bioinformatics. 2011;12:38 – reference: 18553112 - J Biol Inorg Chem. 2008 Sep;13(7):1073-83 – reference: 10103263 - Appl Environ Microbiol. 1999 Apr;65(4):1652-7 – reference: 11157271 - Appl Environ Microbiol. 2001 Feb;67(2):972-6 – reference: 19247843 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):65-84 – reference: 20815378 - Environ Sci Technol. 2010 Oct 1;44(19):7628-34 – reference: 16108805 - J Appl Microbiol. 2005;99(3):629-40 – reference: 19966029 - Appl Environ Microbiol. 2010 Feb;76(3):922-6 – reference: 12153013 - Water Res. 2002 May;36(10):2475-82 – reference: 18043658 - ISME J. 2007 Sep;1(5):385-93 – reference: 17915280 - Water Res. 2008 Feb;42(4-5):1102-12 – reference: 21559425 - PLoS One. 2011;6(4):e19223 – reference: 20646732 - Water Res. 2010 Aug;44(15):4359-70 – reference: 23678985 - FEMS Microbiol Ecol. 2013 Sep;85(3):612-26 – reference: 16820507 - Appl Environ Microbiol. 2006 Jul;72(7):5069-72 – reference: 22253843 - PLoS One. 2012;7(1):e29973 – reference: 15696537 - Biotechnol Bioeng. 2005 Mar 20;89(6):670-9 – reference: 11229931 - Appl Environ Microbiol. 2001 Mar;67(3):1351-62 – reference: 15543668 - Water Sci Technol. 2004;50(6):295-304 – reference: 17014499 - Environ Microbiol. 2006 Nov;8(11):2012-21 – reference: 23109930 - Front Microbiol. 2012 Oct 23;3:372 – reference: 17099228 - Nucleic Acids Res. 2007 Jan;35(Database issue):D800-4 – reference: 20383131 - Nat Methods. 2010 May;7(5):335-6 – reference: 20418441 - Appl Environ Microbiol. 2010 Jun;76(12):3886-97 – reference: 10826814 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:273-82 – reference: 17611802 - Biodegradation. 2008 Apr;19(2):303-12 – reference: 20684970 - Water Res. 2010 Sep;44(17):5005-13 – reference: 20545751 - Environ Microbiol. 2010 Oct;12(10):2858-72 – reference: 17215016 - Water Res. 2007 Feb;41(4):785-94 – reference: 12086193 - Syst Appl Microbiol. 2002 Apr;25(1):84-99 – reference: 19375773 - Water Res. 2009 Jun;43(10):2699-709 – reference: 20704206 - Environ Sci Technol. 2010 Aug 15;44(16):6110-6 – reference: 18421799 - Biotechnol Bioeng. 2008 Oct 1;101(2):286-94 – reference: 19914921 - Bioinformatics. 2010 Jan 15;26(2):266-7 – reference: 11319103 - Appl Environ Microbiol. 2001 May;67(5):2213-21 – reference: 9097446 - Appl Environ Microbiol. 1997 Apr;63(4):1489-97 – reference: 18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40 – reference: 16000813 - Appl Environ Microbiol. 2005 Jul;71(7):3987-94 – reference: 8593039 - Appl Environ Microbiol. 1996 Feb;62(2):340-6 |
SSID | ssj0060052 |
Score | 2.2392173 |
Snippet | Summary
Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However,... Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their... Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their... Summary Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However,... |
SourceID | pubmedcentral csuc proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 32 |
SubjectTerms | Abundance Aerobiosis Ammonium Compounds - metabolism Bacteria - classification Bacteria - metabolism Bacterial Physiological Phenomena Bacteris nitrificants Biofilms - growth & development Bioreactors - microbiology Biota Cluster Analysis Desnitrificació In Situ Hybridization, Fluorescence Microbiologia Nitrites - metabolism Nitrobacter Nitrogen - metabolism Phylogeny Real-Time Polymerase Chain Reaction Soil microbiology Sòls |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbt9tIeQp-J-0KFHkrBqSTLstRbWxpCoaXQBHoTsiyThbUddr2HHPrfOyM_2O0r9GCw8fg5M9Y38sw3hLxkpc6Fr1zqmaixJAd8DgK41GRVLYo6YLskzLb4ok7P5afv-ZRNiLUwAz_EPOGGnhG_1-jgrtzsODmMexzJFvNjLlhhbpJbWGCL9PlCfp0-xgqnPWNN5Cg8svtgMs8vJ9gbmBZ-s_V_Ap2_507uYto4KJ3cJQcjmqTvBvXfIzdCe5_c2eEYfEB-fIvJ0uDIq9UVdcihHCrahAaevQ20XGLP7oYCdoyNdyiAWOq2fdevu8uLpafg8usOrAwkmg7M8i1tlpG8Ca7rh-qS_grXpvQv6tqKVkOj-81Dcn7y8ezDaTr2XEi9ktqkJUAyaTQPTPsqMK-148qV3hUZ6I1rJfNaVEJ5kwNQDK6sZa1qLoLRitVGZo_Iou3acESoY6VnZciCx9-7RjnkEdI89z6vK8_zhBxPL9z6kZAc-2Ks7BSYoIYsashGDSXk1XzA5cDF8XfR16hBC6NGWHvXW2TRnjdwASlhM0B3mifkxaRnC86Ff0xAAd12g3FRwRSAUvUvGQNRKIRxIiGHg23MdwfwCGuRWUKKPauZBfC29ve0y4tI8g1AUplMJuRNtK_rHth-fn8m4trj_z7iCbkNMFAOE0tPyaJfb8MzgFp9-Tw600_aiyCd priority: 102 providerName: Wiley-Blackwell |
Title | Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.12079 https://www.ncbi.nlm.nih.gov/pubmed/24112350 https://www.proquest.com/docview/1467068516 https://www.proquest.com/docview/1492616422 https://recercat.cat/handle/2072/325181 https://pubmed.ncbi.nlm.nih.gov/PMC3896934 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF-83os-iN_Gj7KCDyK0JpvNZlcQ8eTqIdxx6BX6FjabDVdokjNNwT74vzuz-fCKVcGHhpRMm4-Zyfxmd_Y3hLz0Uxkxk-mJ8VmOS3LA5yCBm6gwy1mcW2yXhNUWZ-Jkzj8vosWvdkDdA1zvTe2wn9S8Xk2_f9u-B4d_11flQAQMkHYxmgbMj9UBOYSwFKOXnvJhSkHgAKhbHdkJdzw_e_4ACYJ5gItI_Z1oNTLrjdmHRH8vqLwOdF2kmt0htzuIST-0NnGX3LDlPXLrGvHgffLjq6ugBu9erbZUI7GyzWhhC8idS0vTJTbyLigASteNhwKypXrTVE1dXV0uDYX3QF2B6YFEUYGtvqXF0jE6wXlNu-Sk2eJeXxNGdZnRbFtqkFs_IPPZ8cXHk0nXiGFiBJdqkgJO40oG1pcms76RUgdCp0bHISgzkIJHOcuYMCoC9Gh1mvNc5AGzSgo_Vzx8SEZlVdrHhGo_NX5qQ2twzlcJjeRCMoiMifLMBJFHpv0DT0zHUo7NMlZJn62gshJUVuKU5ZFXww-uWoKOP4u-Rg0mEEpsbXSTILX28AU_IMWSECCfDDzyotdzAh6H0yiggGqzxmQp9gUgVfE3GQWpKeR2zCOPWtsYrq63LY_EO1YzCOBl7R4pl5eO-RvQpVAh98gbZ1__uuHk9OiCub0n_32up-QmYETejjo9I6Om3tjngMOadEwOGD-HbbyIYStnn8bk8Oj47PzL2I1sjJ3__QQq-TPM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgOQCHijfhaSQOCCmt4ziOzQ0Q1QJthcRW6s1yHEddaZNUu9lDD_3vzDibaJenOERKlMlzZuJvnJlvCHnNCpVxV9rYMV5hSQ74HARwsU7LiueVx3ZJmG1xIqen4stZdrZVC9PzQ4wTbugZ4XuNDo4T0lteDgNfgmyL2X7CWa6vkxtC8hydk4tvw9dY4rxnKIrcCG_ofTCb56cT7IxME7dau9-hzl-TJ7dBbRiVDu-QvQ2cpO97_d8l13xzj9zeIhm8T66-h2xp8OTF4pJaJFH2Ja19DQ_feFrMsWl3TQE8hs47FFAsteuu7ZbtxfncUfD5ZQtmBhJ1C3b5jtbzwN4E13V9eUl3iWtD_he1TUnLvtP96gE5Pfw0-ziNN00XYieF0nEBmExolXimXOmZU8om0hbO5ikoLlFSZBUvuXQ6A6TobVGJSlYJ91pJVmmRPiSTpm38Y0ItKxwrfOod_t_V0iKRkEoy57KqdEkWkf3hhRu3YSTHxhgLM0QmqCGDGjJBQxF5Mx5w0ZNx_Fn0LWrQwLDhl852Bmm0xw1cQIqbFOCdSiLyatCzAe_CXyaggHa9wsAoZxJQqfybjIYwFOI4HpFHvW2Mdwf4CIuRWUTyHasZBfC2dvc08_PA8g1IUupUROQg2Ne_Htgcf5jxsPbkv494SW5OZ8dH5ujzyden5BZgQtHPMj0jk2659s8Bd3XFi-BYPwBojSQJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zi9swEBZtFkr7sPSue6rQh1Lwrizbsty37RG211LoppS-CFmW2EBsh8R52If9752RD5Ke9MFg4_E5M9Y38sw3hDxjhUy5KXVoGHdYkgM-BwFcmMel45mz2C4Jsy1OxPEsef8tHbIJsRam44cYJ9zQM_z3Gh18WbotJ4dxL0KyxfQg4izLL5M95MoDw947-jr7Phs-xwInPn1VZC_e8_tgOs9Pp9gZmiZmvTG_g52_Zk9uo1o_LE2vk_0eT9KjzgBukEu2vkmubbEM3iIXX3y6NLjyYnFONbIo25JWtoKnry0t5ti1u6KAHn3rHQowlupN27SrZnk2NxScftWAnYFE1YBhvqTV3NM3wXVNV1_SnuPakABGdV3Ssmt1v75NZtO3p6-Pw77rQmhEIvOwAFCW5DKyTJrSMiOljoQujM5i0FwkRZI6XnJh8hSgotWFS5xwEbe5FMzlSXyHTOqmtvcI1awwrLCxNfiDNxcamYRklBqTutJEaUAOhheuTE9Jjp0xFmoITVBDCjWkvIYC8nw8YNmxcfxZ9AVqUMG4YVdGtwp5tMcNXECKqxjwnYwC8nTQswL3wn8moIBms8bIKGMCYKn4m0wOcSgEcjwgdzvbGO8OABJWI7OAZDtWMwrgbe3uqednnuYboKTI4yQgh96-_vXA6tOrU-7X7v_3EU_Ilc9vpurju5MPD8hVwIRJN8v0kEza1cY-AtzVFo97z_oBDTUlAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequentially+aerated+membrane+biofilm+reactors+for+autotrophic+nitrogen+removal%3A+microbial+community+composition+and+dynamics&rft.jtitle=Microbial+biotechnology&rft.au=Pellicer-N%C3%A0cher%2C+Carles&rft.au=Franck%2C+St%C3%A9phanie&rft.au=G%C3%BClay%2C+Arda&rft.au=Ruscalleda%2C+Ma%C3%ABl&rft.date=2014-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1751-7915&rft.eissn=1751-7915&rft.volume=7&rft.issue=1&rft.spage=32&rft.epage=43&rft_id=info:doi/10.1111%2F1751-7915.12079&rft_id=info%3Apmid%2F24112350&rft.externalDocID=PMC3896934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon |