Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

Summary Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential ae...

Full description

Saved in:
Bibliographic Details
Published inMicrobial biotechnology Vol. 7; no. 1; pp. 32 - 43
Main Authors Pellicer‐Nàcher, Carles, Franck, Stéphanie, Gülay, Arda, Ruscalleda, Maël, Terada, Akihiko, Al‐Soud, Waleed Abu, Hansen, Martin Asser, Sørensen, Søren J., Smets, Barth F.
Format Journal Article
LanguageEnglish
Published United States Wiley Open Access 01.01.2014
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r‐strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. This work describes how sequential aeration impacts the performance and microbial community of membrane‐aerated biofilm reactors performing autotrophic N removal. A detailed description of the microbial diversity and abundance supports the described findings.
AbstractList Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB  Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r -strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.
Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.
Summary Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r‐strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. This work describes how sequential aeration impacts the performance and microbial community of membrane‐aerated biofilm reactors performing autotrophic N removal. A detailed description of the microbial diversity and abundance supports the described findings.
Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal
Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.
Summary Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOBNitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal. This work describes how sequential aeration impacts the performance and microbial community of membrane-aerated biofilm reactors performing autotrophic N removal. A detailed description of the microbial diversity and abundance supports the described findings.
Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria ( NOB ). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria ( AnAOB ). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB   N itrospira and N itrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria ( AOB ) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB , and dominated by the r ‐strategists N itrosomonas europaea and C a. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.
Author Gülay, Arda
Pellicer‐Nàcher, Carles
Hansen, Martin Asser
Al‐Soud, Waleed Abu
Terada, Akihiko
Franck, Stéphanie
Smets, Barth F.
Ruscalleda, Maël
Sørensen, Søren J.
Author_xml – sequence: 1
  givenname: Carles
  surname: Pellicer‐Nàcher
  fullname: Pellicer‐Nàcher, Carles
  organization: Technical University of Denmark
– sequence: 2
  givenname: Stéphanie
  surname: Franck
  fullname: Franck, Stéphanie
  organization: Technical University of Denmark
– sequence: 3
  givenname: Arda
  surname: Gülay
  fullname: Gülay, Arda
  organization: Technical University of Denmark
– sequence: 4
  givenname: Maël
  surname: Ruscalleda
  fullname: Ruscalleda, Maël
  organization: University of Girona
– sequence: 5
  givenname: Akihiko
  surname: Terada
  fullname: Terada, Akihiko
  organization: Tokyo University of Agriculture & Technology
– sequence: 6
  givenname: Waleed Abu
  surname: Al‐Soud
  fullname: Al‐Soud, Waleed Abu
  organization: University of Copenhagen
– sequence: 7
  givenname: Martin Asser
  surname: Hansen
  fullname: Hansen, Martin Asser
  organization: University of Copenhagen
– sequence: 8
  givenname: Søren J.
  surname: Sørensen
  fullname: Sørensen, Søren J.
  organization: University of Copenhagen
– sequence: 9
  givenname: Barth F.
  surname: Smets
  fullname: Smets, Barth F.
  organization: Technical University of Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24112350$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vFSEUJabGfujanWHp5rXADAy4MNFGW5MaF9Y1YZg7LYaPJ8zUvIX_Xabv-VJdqCSEC5xz4N57jtFBTBEQek7JKa3jjHacrjpF-SllpFOP0NH-5OBBfIiOS_lKiCCEsyfokLWUsoaTI_TjM3ybIU7OeL_BBrKZYMABQp9NBNy7NDofcAZjp5QLHlPGZp7SlNP61lkcXY1uIFZESHfGv8LB2Zz6qodtCmGugM0SrVNxk0sRmzjgYRNNxZWn6PFofIFnu_UEfXn_7vr8cnX16eLD-ZurlRWtVKueyKZVkgKRdgBipTRUmN6argGmqBQtH9nAhFWcNw2YfmxHMVIGSgoyqrY5Qa-3uuu5DzDYmnA2Xq-zCyZvdDJO_34T3a2-SXe6kUqoZhGgWwFbZqszWMjWTPfE_WaZtQlMN4xTSSvn5e7RnGqNy6SDKxa8r4VNc9G0VUxQ0TL2H1DRESE5FRX64mEq-xx-tbQCznZfzamUDOMeQoleTKMXW-jFFvreNJXB_2BYN5mlWbUWzv-FJ7a8787D5l_P6I9vr9mW-BN3w9da
CitedBy_id crossref_primary_10_1002_cjce_22172
crossref_primary_10_1016_j_biortech_2022_128441
crossref_primary_10_1016_j_ibiod_2016_02_013
crossref_primary_10_1061_JOEEDU_EEENG_7522
crossref_primary_10_1007_s00253_018_9293_x
crossref_primary_10_1016_j_biortech_2017_08_051
crossref_primary_10_1111_1751_7915_13599
crossref_primary_10_1007_s43153_020_00046_6
crossref_primary_10_1016_j_bej_2020_107771
crossref_primary_10_1016_j_jece_2022_108635
crossref_primary_10_1128_AEM_01959_14
crossref_primary_10_1007_s10529_021_03181_3
crossref_primary_10_1016_j_ibiod_2015_01_013
crossref_primary_10_1038_srep28880
crossref_primary_10_1039_D3EW00211J
crossref_primary_10_1002_jctb_5692
crossref_primary_10_1016_j_biortech_2023_130130
crossref_primary_10_1002_bit_27581
crossref_primary_10_1016_j_watres_2024_121400
crossref_primary_10_1021_acs_est_3c05600
crossref_primary_10_1016_j_biortech_2019_121649
crossref_primary_10_3389_fmicb_2018_02808
crossref_primary_10_1007_s40726_021_00205_4
crossref_primary_10_1016_j_jclepro_2021_128343
crossref_primary_10_2166_wst_2021_443
crossref_primary_10_1016_j_wroa_2020_100066
crossref_primary_10_1111_1751_7915_12435
crossref_primary_10_1080_10643389_2020_1734432
crossref_primary_10_1016_j_watres_2022_118119
crossref_primary_10_1021_acs_estlett_1c00154
crossref_primary_10_1016_j_biortech_2025_132207
crossref_primary_10_1016_j_biortech_2014_10_080
crossref_primary_10_1016_j_cej_2024_159175
crossref_primary_10_1016_j_chemosphere_2020_128224
crossref_primary_10_1016_j_cej_2017_02_096
crossref_primary_10_1016_j_watres_2020_116604
crossref_primary_10_1016_j_watres_2019_115060
crossref_primary_10_1016_j_watres_2021_117217
crossref_primary_10_2166_wst_2022_013
crossref_primary_10_1016_j_chemosphere_2024_143674
crossref_primary_10_1016_j_watres_2016_08_026
crossref_primary_10_1016_j_watres_2024_121984
crossref_primary_10_1016_j_memsci_2015_07_043
crossref_primary_10_1061_JOEEDU_EEENG_7438
crossref_primary_10_1016_j_envres_2022_113554
crossref_primary_10_1016_j_watres_2020_116351
crossref_primary_10_1080_09593330_2017_1302996
crossref_primary_10_2139_ssrn_4117005
crossref_primary_10_1016_j_chemosphere_2022_134402
crossref_primary_10_1016_j_chemosphere_2021_130861
crossref_primary_10_1016_j_watres_2024_123000
Cites_doi 10.1038/nrmicro1857
10.1093/nar/gkl856
10.1016/j.cej.2010.05.037
10.1128/AEM.64.10.3769-3775.1998
10.1111/j.1462-2920.2006.01081.x
10.1078/0723-2020-00093
10.1016/j.watres.2007.08.025
10.1111/1574-6941.12148
10.1371/journal.pone.0019223
10.1128/AEM.67.3.1351-1362.2001
10.1016/j.watres.2009.03.017
10.1038/ismej.2007.45
10.1016/j.idairyj.2010.10.007
10.1128/AEM.00991-10
10.1007/s00775-008-0393-4
10.1111/j.1574-6941.2007.00404.x
10.1007/s10098-011-0355-3
10.1080/10409230902722783
10.1016/j.watres.2010.05.041
10.2166/wst.2004.0388
10.1046/j.1462-2920.2000.00150.x
10.1111/j.1574-6941.2007.00416.x
10.2166/wst.2003.0149
10.1016/S0043-1354(01)00476-6
10.1002/bit.21891
10.1128/AEM.61.6.2093-2098.1995
10.1128/AEM.65.4.1652-1657.1999
10.1089/ees.2012.0222
10.1128/AEM.71.7.3987-3994.2005
10.1111/j.1365-2672.2005.02608.x
10.1128/AEM.02456-09
10.1080/01490450303893
10.1016/0043-1354(94)90043-4
10.1111/j.1574-6941.2007.00418.x
10.1128/AEM.67.5.2213-2221.2001
10.1007/s00248-007-9320-4
10.1038/ismej.2010.99
10.1023/A:1008327815105
10.1099/13500872-142-8-2187
10.1038/nmeth.f.303
10.1016/S0168-6445(03)00039-1
10.1111/j.1462-2920.2005.00880.x
10.1093/bioinformatics/btp636
10.1371/journal.pone.0029973
10.1128/AEM.63.4.1489-1497.1997
10.1111/j.1574-6941.2006.00170.x
10.1016/j.watres.2006.11.024
10.1021/es1013467
10.1016/j.watres.2010.07.021
10.1002/bit.20347
10.4319/lo.1989.34.2.0474
10.1016/S0378-1097(02)01177-1
10.1128/AEM.67.2.972-976.2001
10.1186/1471-2105-12-38
10.1128/AEM.03006-05
10.1002/bit.22018
10.1021/es1002956
10.1111/j.1462-2920.2010.02267.x
10.1016/j.biortech.2012.07.114
10.1002/bit.21213
10.1016/j.watres.2010.07.022
10.3389/fmicb.2012.00372
10.1099/00207713-50-1-273
10.1007/s10532-007-9136-4
10.1128/AEM.02953-09
10.1016/j.femsec.2004.04.011
10.1046/j.1365-2958.2002.02875.x
ContentType Journal Article
Copyright 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Attribution 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es
2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology 2013
Copyright_xml – notice: 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
– notice: Attribution 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es/">http://creativecommons.org/licenses/by/3.0/es/</a>
– notice: 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology 2013
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T7
8FD
C1K
FR3
P64
XX2
5PM
DOI 10.1111/1751-7915.12079
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Recercat
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-7915
EndPage 43
ExternalDocumentID PMC3896934
oai_recercat_cat_2072_325181
24112350
10_1111_1751_7915_12079
MBT212079
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Catalan Government (AGAUR)
  funderid: BE‐2009‐385
– fundername: Danish Agency for Science Technology and Innovation (FTP‐ReSCoBiR)
– fundername: Veolia Water
GroupedDBID ---
0R~
123
1OC
24P
29M
31~
4.4
53G
5DZ
5VS
7X7
8-1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAHHS
AANHP
AAZKR
ABDBF
ABJCF
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFO
ACIWK
ACPRK
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADKYN
ADNMO
ADPDF
ADRAZ
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ASPBG
AVUZU
AVWKF
AZFZN
BAWUL
BBNVY
BCNDV
BDRZF
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-9
DIK
EBD
EBS
EJD
EMOBN
ESX
F5P
FEDTE
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HYE
IAO
IHR
ITC
KQ8
L6V
LH4
LK8
LW6
M48
M7P
M7S
ML0
MM.
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
PTHSS
RNS
RPM
SV3
TEORI
TUS
UKHRP
WIN
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7X8
7QO
7T7
8FD
C1K
FR3
P64
PUEGO
XX2
5PM
ID FETCH-LOGICAL-c6489-b0834981e08cde0c88a16abca73e2918645f2d26c95533eabf4f6f12e9860f943
IEDL.DBID M48
ISSN 1751-7915
IngestDate Thu Aug 21 14:09:54 EDT 2025
Fri Aug 29 12:32:34 EDT 2025
Fri Jul 11 04:29:24 EDT 2025
Fri Jul 11 04:08:53 EDT 2025
Mon Jul 21 05:35:57 EDT 2025
Tue Jul 01 03:37:54 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Wed Jan 22 16:56:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6489-b0834981e08cde0c88a16abca73e2918645f2d26c95533eabf4f6f12e9860f943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Funding Information Veolia Water and the Danish Agency for Science Technology and Innovation (FTP-ReSCoBiR) funded the present study. Maël Ruscalleda was supported by the FI and BE (BE-2009-385) grant programmes from the Catalan Government (AGAUR).
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.12079
PMID 24112350
PQID 1467068516
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3896934
csuc_recercat_oai_recercat_cat_2072_325181
proquest_miscellaneous_1492616422
proquest_miscellaneous_1467068516
pubmed_primary_24112350
crossref_primary_10_1111_1751_7915_12079
crossref_citationtrail_10_1111_1751_7915_12079
wiley_primary_10_1111_1751_7915_12079_MBT212079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Microbial biotechnology
PublicationTitleAlternate Microb Biotechnol
PublicationYear 2014
Publisher Wiley Open Access
Blackwell Publishing Ltd
Publisher_xml – name: Wiley Open Access
– name: Blackwell Publishing Ltd
References 2010; 12
2009; 44
2006; 72
2012; 123
2009; 43
2000; 50
2000; 2
2011; 13
2008; 6
2011; 12
1996; 142
1994; 28
2008; 101
2007; 35
1995; 61
1989; 34
2010a; 44
2003; 48
1996; 62
2011; 21
2008; 63
2005; 71
2007; 1
2010b; 44
2010; 76
2002; 36
2003; 218
1997; 61
2012
2010
2004; 49
1997; 63
2008; 19
2006; 58
2013; 85
2006; 8
1999; 65
2008; 13
2010; 162
1991
2010b; 7
2007; 97
2001; 67
2011; 6
1998; 64
2011; 5
2005; 89
2010; 44
2002; 25
2004; 50
2012; 3
2010a; 26
2013; 30
2003; 27
2008; 42
2007; 41
2012; 7
2005; 99
2003; 20
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
Noophan P. (e_1_2_7_38_1) 2004; 50
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
Okabe S. (e_1_2_7_39_1) 2010
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
Rowan A.K. (e_1_2_7_49_1) 2003; 48
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Hallin S. (e_1_2_7_21_1) 1999; 65
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Quince C. (e_1_2_7_46_1) 2011; 12
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
21276213 - BMC Bioinformatics. 2011;12:38
12586414 - FEMS Microbiol Lett. 2003 Jan 28;218(2):339-44
15696537 - Biotechnol Bioeng. 2005 Mar 20;89(6):670-9
19966029 - Appl Environ Microbiol. 2010 Feb;76(3):922-6
17611802 - Biodegradation. 2008 Apr;19(2):303-12
11157271 - Appl Environ Microbiol. 2001 Feb;67(2):972-6
20646732 - Water Res. 2010 Aug;44(15):4359-70
21559425 - PLoS One. 2011;6(4):e19223
18421799 - Biotechnol Bioeng. 2008 Oct 1;101(2):286-94
18553112 - J Biol Inorg Chem. 2008 Sep;13(7):1073-83
17915280 - Water Res. 2008 Feb;42(4-5):1102-12
19375773 - Water Res. 2009 Jun;43(10):2699-709
20613788 - ISME J. 2011 Jan;5(1):92-106
9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75
23109930 - Front Microbiol. 2012 Oct 23;3:372
18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40
22944492 - Bioresour Technol. 2012 Nov;123:574-80
18767185 - Biotechnol Bioeng. 2008 Dec 15;101(6):1193-204
18093145 - FEMS Microbiol Ecol. 2008 Feb;63(2):192-204
19247843 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):65-84
20705314 - Water Res. 2010 Sep;44(17):5014-20
18340342 - Nat Rev Microbiol. 2008 Apr;6(4):320-6
19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17
10103263 - Appl Environ Microbiol. 1999 Apr;65(4):1652-7
23678985 - FEMS Microbiol Ecol. 2013 Sep;85(3):612-26
16820507 - Appl Environ Microbiol. 2006 Jul;72(7):5069-72
14518850 - Water Sci Technol. 2003;48(3):17-24
19914921 - Bioinformatics. 2010 Jan 15;26(2):266-7
16000813 - Appl Environ Microbiol. 2005 Jul;71(7):3987-94
18043658 - ISME J. 2007 Sep;1(5):385-93
7793930 - Appl Environ Microbiol. 1995 Jun;61(6):2093-8
9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616
10826814 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:273-82
20815378 - Environ Sci Technol. 2010 Oct 1;44(19):7628-34
15543668 - Water Sci Technol. 2004;50(6):295-304
20545751 - Environ Microbiol. 2010 Oct;12(10):2858-72
20383131 - Nat Methods. 2010 May;7(5):335-6
16958903 - FEMS Microbiol Ecol. 2006 Oct;58(1):1-13
16423009 - Environ Microbiol. 2006 Feb;8(2):200-13
11214800 - Environ Microbiol. 2000 Dec;2(6):680-6
18199085 - FEMS Microbiol Ecol. 2008 Feb;63(2):261-71
9097446 - Appl Environ Microbiol. 1997 Apr;63(4):1489-97
11319103 - Appl Environ Microbiol. 2001 May;67(5):2213-21
8593039 - Appl Environ Microbiol. 1996 Feb;62(2):340-6
11229931 - Appl Environ Microbiol. 2001 Mar;67(3):1351-62
17099228 - Nucleic Acids Res. 2007 Jan;35(Database issue):D800-4
20675452 - Appl Environ Microbiol. 2010 Sep;76(18):6304-6
20418441 - Appl Environ Microbiol. 2010 Jun;76(12):3886-97
12086193 - Syst Appl Microbiol. 2002 Apr;25(1):84-99
17013935 - Biotechnol Bioeng. 2007 May 1;97(1):40-51
22253843 - PLoS One. 2012;7(1):e29973
20704206 - Environ Sci Technol. 2010 Aug 15;44(16):6110-6
20684970 - Water Res. 2010 Sep;44(17):5005-13
17215016 - Water Res. 2007 Feb;41(4):785-94
16108805 - J Appl Microbiol. 2005;99(3):629-40
17014499 - Environ Microbiol. 2006 Nov;8(11):2012-21
14550941 - FEMS Microbiol Rev. 2003 Oct;27(4):481-92
12153013 - Water Res. 2002 May;36(10):2475-82
References_xml – volume: 21
  start-page: 142
  year: 2011
  end-page: 148
  article-title: Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing
  publication-title: Int Dairy J
– volume: 8
  start-page: 2012
  year: 2006
  end-page: 2021
  article-title: The incidence of and and their genetic heterogeneity in cultivated denitrifiers
  publication-title: Environ Microbiol
– volume: 63
  start-page: 1489
  year: 1997
  end-page: 1497
  article-title: Analysis of ammonia‐oxidizing bacteria of the beta subdivision of the class in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR‐amplified 16S ribosomal DNA fragments
  publication-title: Appl Environ Microbiol
– volume: 2
  start-page: 680
  year: 2000
  end-page: 686
  article-title: Microenvironments and distribution of nitrifying bacteria in a membrane‐bound biofilm
  publication-title: Environ Microbiol
– volume: 49
  start-page: 401
  year: 2004
  end-page: 417
  article-title: Reassessing PCR primers targeting , and genes for community surveys of denitrifying bacteria with DGGE
  publication-title: FEMS Microbiol Ecol
– volume: 76
  start-page: 3886
  year: 2010
  end-page: 3897
  article-title: Diversity of 16S rRNA genes within individual prokaryotic genomes
  publication-title: Appl Environ Microbiol
– volume: 43
  start-page: 2699
  year: 2009
  end-page: 2709
  article-title: Nitritation performance and biofilm development of co‐ and counter‐diffusion biofilm reactors: modeling and experimental comparison
  publication-title: Water Res
– volume: 101
  start-page: 1193
  year: 2008
  end-page: 1204
  article-title: Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane‐aerated biofilm
  publication-title: Biotechnol Bioeng
– volume: 34
  start-page: 474
  year: 1989
  end-page: 478
  article-title: An oxygen microsensor with a guard cathode
  publication-title: Limnol Oceanogr
– volume: 26
  start-page: 266
  year: 2010a
  end-page: 267
  article-title: PyNAST: a flexible tool for aligning sequences to a template alignment
  publication-title: Bioinformatics
– volume: 99
  start-page: 629
  year: 2005
  end-page: 640
  article-title: Community survey of ammonia‐oxidizing bacteria in full‐scale activated sludge processes with different solids retention time
  publication-title: J Appl Microbiol
– volume: 72
  start-page: 5069
  year: 2006
  end-page: 5072
  article-title: Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB
  publication-title: Appl Environ Microbiol
– volume: 36
  start-page: 2475
  year: 2002
  end-page: 2482
  article-title: Completely autotrophic nitrogen removal over nitrite in one single reactor
  publication-title: Water Res
– volume: 5
  start-page: 92
  year: 2011
  end-page: 106
  article-title: and as active fermenters in earthworm gut content
  publication-title: ISME J
– volume: 1
  start-page: 385
  year: 2007
  end-page: 393
  article-title: Experimental demonstration of chaotic instability in biological nitrification
  publication-title: ISME J
– volume: 65
  start-page: 1652
  year: 1999
  end-page: 1657
  article-title: PCR Detection of genes encoding nitrite reductase in denitrifying bacteria PCR detection of genes encoding nitrite reductase in denitrifying bacteria
  publication-title: Appl Environ Microbiol
– volume: 50
  start-page: 295
  year: 2004
  end-page: 304
  article-title: Nitrite oxidation inhibition by hydroxylamine: experimental and model evaluation
  publication-title: Water Sci Technol
– volume: 7
  start-page: e29973
  year: 2012
  article-title: Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities
  publication-title: PLoS ONE
– volume: 61
  start-page: 2093
  year: 1995
  end-page: 2098
  article-title: Detection and counting of populations in soil by PCR
  publication-title: Appl Environ Microbiol
– volume: 162
  start-page: 1
  year: 2010
  end-page: 20
  article-title: Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams
  publication-title: Chem Eng J
– volume: 218
  start-page: 339
  year: 2003
  end-page: 344
  article-title: CANON and Anammox in a gas‐lift reactor
  publication-title: FEMS Microbiol Lett
– volume: 41
  start-page: 785
  year: 2007
  end-page: 794
  article-title: Quantification of anaerobic ammonium‐oxidizing bacteria in enrichment cultures by real‐time PCR
  publication-title: Water Res
– volume: 97
  start-page: 40
  year: 2007
  end-page: 51
  article-title: Redox‐stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co‐ versus counter‐diffusion on reactor performance
  publication-title: Biotechnol Bioeng
– volume: 6
  start-page: 320
  year: 2008
  end-page: 326
  article-title: Anammox bacteria: from discovery to application
  publication-title: Nat Rev Microbiol
– volume: 76
  start-page: 6304
  year: 2010
  end-page: 6306
  article-title: Effect of nitric oxide on anammox bacteria
  publication-title: Appl Environ Microbiol
– volume: 71
  start-page: 3987
  year: 2005
  end-page: 3994
  article-title: Fate of 14C‐labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms
  publication-title: Appl Environ Microbiol
– start-page: 115
  year: 1991
  end-page: 175
– volume: 123
  start-page: 574
  year: 2012
  end-page: 580
  article-title: Distribution and genetic diversity of functional microorganisms in different CANON reactors
  publication-title: Bioresour Technol
– volume: 30
  start-page: 38
  year: 2013
  end-page: 45
  article-title: Autotrophic nitrogen removal in a membrane‐aerated biofilm reactor under continuous aeration: a demonstration
  publication-title: Environ Eng Sci
– volume: 44
  start-page: 7628
  year: 2010
  end-page: 7634
  article-title: Sequential aeration of membrane‐aerated biofilm reactors for high‐rate autotrophic nitrogen removal: experimental demonstration
  publication-title: Environ Sci Technol
– volume: 27
  start-page: 481
  year: 2003
  end-page: 492
  article-title: New concepts of microbial treatment processes for the nitrogen removal in wastewater
  publication-title: FEMS Microbiol Rev
– volume: 67
  start-page: 972
  year: 2001
  end-page: 976
  article-title: Quantification of ammonia‐oxidizing bacteria in arable soil by real‐time PCR
  publication-title: Appl Environ Microbiol
– volume: 89
  start-page: 670
  year: 2005
  end-page: 679
  article-title: Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction
  publication-title: Biotechnol Bioeng
– volume: 50
  start-page: 273
  year: 2000
  end-page: 282
  article-title: Characterization of N O‐producing ‐like isolates from biofilters as sp. nov., gen. nov., sp. nov. and gen. nov., sp. nov
  publication-title: Int J Syst Evol Microbiol
– volume: 13
  start-page: 759
  year: 2011
  end-page: 781
  article-title: Presence and detection of anaerobic ammonium‐oxidizing (anammox) bacteria and appraisal of anammox process for high‐strength nitrogenous wastewater treatment: a review
  publication-title: Clean Techn Environ Policy
– volume: 6
  start-page: e19223
  year: 2011
  article-title: Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non‐cyanobacteria
  publication-title: PLoS ONE
– volume: 48
  start-page: 17
  year: 2003
  end-page: 24
  article-title: A comparitive study of ammonia‐oxidizing bacteria in lab‐scale industrial wastewater treatment reactors
  publication-title: Water Sci Technol
– volume: 142
  start-page: 2187
  year: 1996
  end-page: 2196
  article-title: Autotrophic growth of anaerobic ammonium‐oxidizing micro‐organisms in a fluidized bed reactor
  publication-title: Microbiology
– volume: 61
  start-page: 533
  year: 1997
  end-page: 616
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiol Mol Biol Rev
– volume: 62
  start-page: 340
  year: 1996
  end-page: 346
  article-title: Denaturing gradient gel electrophoresis profiles of 16S rRNA‐defined populations inhabiting a hot spring microbial mat community
  publication-title: Appl Environ Microbiol
– volume: 64
  start-page: 3769
  year: 1998
  end-page: 3775
  article-title: Development of PCR primer systems for amplification of nitrite reductase genes ( and ) to detect denitrifying bacteria in environmental samples
  publication-title: Appl Environ Microbiol
– volume: 44
  start-page: 5005
  year: 2010a
  end-page: 5013
  article-title: Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities
  publication-title: Water Res
– volume: 44
  start-page: 6110
  year: 2010b
  end-page: 6116
  article-title: Linking community profiles, gene expression and N‐removal in anammox bioreactors treating municipal anaerobic digestion reject water
  publication-title: Environ Sci Technol
– volume: 19
  start-page: 303
  year: 2008
  end-page: 312
  article-title: Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor
  publication-title: Biodegradation
– volume: 67
  start-page: 1351
  year: 2001
  end-page: 1362
  article-title: Community structure and activity dynamics of nitrifying bacteria in a phosphate‐removing biofilm
  publication-title: Appl Environ Microbiol
– volume: 20
  start-page: 313
  year: 2003
  end-page: 334
  article-title: In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments
  publication-title: Geomicrobiol J
– start-page: 191
  year: 2010
  end-page: 210
– volume: 85
  start-page: 612
  year: 2013
  end-page: 626
  article-title: 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full‐scale biogas digesters
  publication-title: FEMS Microbiol Ecol
– volume: 8
  start-page: 200
  year: 2006
  end-page: 213
  article-title: Daime, a novel image analysis program for microbial ecology and biofilm research
  publication-title: Environ Microbiol
– volume: 44
  start-page: 4359
  year: 2010
  end-page: 4370
  article-title: Microbial community distribution and activity dynamics of granular biomass in a CANON reactor
  publication-title: Water Res
– volume: 44
  start-page: 65
  year: 2009
  end-page: 84
  article-title: Biochemistry and molecular biology of anammox bacteria
  publication-title: Crit Rev Biochem Mol Biol
– volume: 12
  start-page: 1
  year: 2011
  end-page: 18
  article-title: Removing noise from pyrosequenced amplicons
  publication-title: BMC Bioinformatics
– volume: 63
  start-page: 132
  year: 2008
  end-page: 140
  article-title: First exploration of diversity in soils by a PCR cloning‐sequencing approach targeting functional gene
  publication-title: FEMS Microbiol Ecol
– year: 2012
– volume: 13
  start-page: 1073
  year: 2008
  end-page: 1083
  article-title: Kinetic and product distribution analysis of NO center dot reductase activity in hydroxylamine oxidoreductase
  publication-title: J Biol Inorg Chem
– volume: 67
  start-page: 2213
  year: 2001
  end-page: 2221
  article-title: Dissimilatory nitrite reductase genes from autotrophic ammonia‐oxidizing bacteria
  publication-title: Appl Environ Microbiol
– volume: 3
  start-page: 1
  year: 2012
  end-page: 24
  article-title: Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies
  publication-title: Front Microbiol
– volume: 12
  start-page: 2858
  year: 2010
  end-page: 2872
  article-title: Inoculum effects on community composition and nitritation performance of autotrophic nitrifying biofilm reactors with counter‐diffusion geometry
  publication-title: Environ Microbiol
– volume: 35
  start-page: D800
  year: 2007
  end-page: D804
  article-title: probeBase – an online resource for rRNA‐targeted oligonucleotide probes: new features 2007
  publication-title: Nucleic Acids Res
– volume: 42
  start-page: 1102
  year: 2008
  end-page: 1112
  article-title: Heterotrophic activity compromises autotrophic nitrogen removal in membrane‐aerated biofilms: results of a modeling study
  publication-title: Water Res
– volume: 101
  start-page: 286
  year: 2008
  end-page: 294
  article-title: The membrane bioreactor: a novel tool to grow anammox bacteria as free cells
  publication-title: Biotechnol Bioeng
– volume: 63
  start-page: 192
  year: 2008
  end-page: 204
  article-title: Nm143‐like ammonia oxidizers and ‐like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm
  publication-title: FEMS Microbiol Ecol
– volume: 28
  start-page: 2279
  year: 1994
  end-page: 2287
  article-title: Evaluation of tortuosity factors and effective diffusivities in biofilms
  publication-title: Water Res
– volume: 25
  start-page: 84
  year: 2002
  end-page: 99
  article-title: The microbial community composition of a nitrifying‐denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full‐cycle rRNA approach
  publication-title: Syst Appl Microbiol
– volume: 44
  start-page: 5014
  year: 2010
  end-page: 5020
  article-title: Identification and quantification of anammox bacteria in eight nitrogen removal reactors
  publication-title: Water Res
– volume: 76
  start-page: 922
  year: 2010
  end-page: 926
  article-title: Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE‐FISH) improves signal intensity and increases rRNA accessibility
  publication-title: Appl Environ Microbiol
– volume: 58
  start-page: 1
  year: 2006
  end-page: 13
  article-title: Strategies of aerobic ammonia‐oxidizing bacteria for coping with nutrient and oxygen fluctuations
  publication-title: FEMS Microbiol Ecol
– volume: 63
  start-page: 261
  year: 2008
  end-page: 271
  article-title: Development and application of a PCR‐denaturing gradient gel electrophoresis tool to study the diversity of ‐like sequences in soil
  publication-title: FEMS Microbiol Ecol
– volume: 7
  start-page: 335
  year: 2010b
  end-page: 336
  article-title: QIIME allows analysis of high‐ throughput community sequencing data
  publication-title: Nat Methods
– ident: e_1_2_7_32_1
  doi: 10.1038/nrmicro1857
– ident: e_1_2_7_36_1
  doi: 10.1093/nar/gkl856
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cej.2010.05.037
– ident: e_1_2_7_3_1
  doi: 10.1128/AEM.64.10.3769-3775.1998
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1462-2920.2006.01081.x
– ident: e_1_2_7_28_1
  doi: 10.1078/0723-2020-00093
– ident: e_1_2_7_33_1
  doi: 10.1016/j.watres.2007.08.025
– ident: e_1_2_7_58_1
  doi: 10.1111/1574-6941.12148
– ident: e_1_2_7_11_1
  doi: 10.1371/journal.pone.0019223
– ident: e_1_2_7_16_1
  doi: 10.1128/AEM.67.3.1351-1362.2001
– ident: e_1_2_7_65_1
  doi: 10.1016/j.watres.2009.03.017
– ident: e_1_2_7_47_1
– ident: e_1_2_7_20_1
  doi: 10.1038/ismej.2007.45
– ident: e_1_2_7_37_1
  doi: 10.1016/j.idairyj.2010.10.007
– ident: e_1_2_7_29_1
  doi: 10.1128/AEM.00991-10
– ident: e_1_2_7_30_1
  doi: 10.1007/s00775-008-0393-4
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1574-6941.2007.00404.x
– ident: e_1_2_7_61_1
  doi: 10.1007/s10098-011-0355-3
– ident: e_1_2_7_27_1
  doi: 10.1080/10409230902722783
– ident: e_1_2_7_64_1
  doi: 10.1016/j.watres.2010.05.041
– volume: 50
  start-page: 295
  year: 2004
  ident: e_1_2_7_38_1
  article-title: Nitrite oxidation inhibition by hydroxylamine: experimental and model evaluation
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2004.0388
– ident: e_1_2_7_52_1
  doi: 10.1046/j.1462-2920.2000.00150.x
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1574-6941.2007.00416.x
– volume: 48
  start-page: 17
  year: 2003
  ident: e_1_2_7_49_1
  article-title: A comparitive study of ammonia‐oxidizing bacteria in lab‐scale industrial wastewater treatment reactors
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2003.0149
– ident: e_1_2_7_54_1
  doi: 10.1016/S0043-1354(01)00476-6
– ident: e_1_2_7_56_1
  doi: 10.1002/bit.21891
– ident: e_1_2_7_8_1
  doi: 10.1128/AEM.61.6.2093-2098.1995
– volume: 65
  start-page: 1652
  year: 1999
  ident: e_1_2_7_21_1
  article-title: PCR Detection of genes encoding nitrite reductase in denitrifying bacteria PCR detection of genes encoding nitrite reductase in denitrifying bacteria
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.4.1652-1657.1999
– ident: e_1_2_7_17_1
  doi: 10.1089/ees.2012.0222
– ident: e_1_2_7_40_1
  doi: 10.1128/AEM.71.7.3987-3994.2005
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-2672.2005.02608.x
– ident: e_1_2_7_57_1
  doi: 10.1128/AEM.02456-09
– ident: e_1_2_7_51_1
  doi: 10.1080/01490450303893
– ident: e_1_2_7_69_1
  doi: 10.1016/0043-1354(94)90043-4
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1574-6941.2007.00418.x
– ident: e_1_2_7_6_1
  doi: 10.1128/AEM.67.5.2213-2221.2001
– ident: e_1_2_7_34_1
  doi: 10.1007/s00248-007-9320-4
– ident: e_1_2_7_67_1
  doi: 10.1038/ismej.2010.99
– ident: e_1_2_7_12_1
  doi: 10.1023/A:1008327815105
– ident: e_1_2_7_19_1
  doi: 10.1099/13500872-142-8-2187
– ident: e_1_2_7_5_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_7_50_1
  doi: 10.1016/S0168-6445(03)00039-1
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1462-2920.2005.00880.x
– ident: e_1_2_7_4_1
  doi: 10.1093/bioinformatics/btp636
– ident: e_1_2_7_18_1
  doi: 10.1371/journal.pone.0029973
– ident: e_1_2_7_31_1
  doi: 10.1128/AEM.63.4.1489-1497.1997
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1574-6941.2006.00170.x
– ident: e_1_2_7_63_1
  doi: 10.1016/j.watres.2006.11.024
– ident: e_1_2_7_44_1
  doi: 10.1021/es1013467
– ident: e_1_2_7_25_1
  doi: 10.1016/j.watres.2010.07.021
– ident: e_1_2_7_68_1
  doi: 10.1002/bit.20347
– ident: e_1_2_7_48_1
  doi: 10.4319/lo.1989.34.2.0474
– ident: e_1_2_7_55_1
  doi: 10.1016/S0378-1097(02)01177-1
– ident: e_1_2_7_23_1
  doi: 10.1128/AEM.67.2.972-976.2001
– volume: 12
  start-page: 1
  year: 2011
  ident: e_1_2_7_46_1
  article-title: Removing noise from pyrosequenced amplicons
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-38
– ident: e_1_2_7_9_1
  doi: 10.1128/AEM.03006-05
– ident: e_1_2_7_10_1
  doi: 10.1002/bit.22018
– ident: e_1_2_7_42_1
  doi: 10.1021/es1002956
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1462-2920.2010.02267.x
– ident: e_1_2_7_35_1
  doi: 10.1016/j.biortech.2012.07.114
– ident: e_1_2_7_59_1
  doi: 10.1002/bit.21213
– ident: e_1_2_7_41_1
  doi: 10.1016/j.watres.2010.07.022
– ident: e_1_2_7_53_1
  doi: 10.3389/fmicb.2012.00372
– ident: e_1_2_7_13_1
  doi: 10.1099/00207713-50-1-273
– ident: e_1_2_7_2_1
  doi: 10.1007/s10532-007-9136-4
– ident: e_1_2_7_43_1
  doi: 10.1128/AEM.02953-09
– ident: e_1_2_7_62_1
  doi: 10.1016/j.femsec.2004.04.011
– start-page: 191
  volume-title: Environmental Molecular Microbiology
  year: 2010
  ident: e_1_2_7_39_1
– ident: e_1_2_7_70_1
  doi: 10.1046/j.1365-2958.2002.02875.x
– reference: 9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616
– reference: 22944492 - Bioresour Technol. 2012 Nov;123:574-80
– reference: 19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17
– reference: 18340342 - Nat Rev Microbiol. 2008 Apr;6(4):320-6
– reference: 12586414 - FEMS Microbiol Lett. 2003 Jan 28;218(2):339-44
– reference: 16958903 - FEMS Microbiol Ecol. 2006 Oct;58(1):1-13
– reference: 20705314 - Water Res. 2010 Sep;44(17):5014-20
– reference: 20675452 - Appl Environ Microbiol. 2010 Sep;76(18):6304-6
– reference: 20613788 - ISME J. 2011 Jan;5(1):92-106
– reference: 9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75
– reference: 14550941 - FEMS Microbiol Rev. 2003 Oct;27(4):481-92
– reference: 7793930 - Appl Environ Microbiol. 1995 Jun;61(6):2093-8
– reference: 17013935 - Biotechnol Bioeng. 2007 May 1;97(1):40-51
– reference: 16423009 - Environ Microbiol. 2006 Feb;8(2):200-13
– reference: 18767185 - Biotechnol Bioeng. 2008 Dec 15;101(6):1193-204
– reference: 18199085 - FEMS Microbiol Ecol. 2008 Feb;63(2):261-71
– reference: 11214800 - Environ Microbiol. 2000 Dec;2(6):680-6
– reference: 14518850 - Water Sci Technol. 2003;48(3):17-24
– reference: 18093145 - FEMS Microbiol Ecol. 2008 Feb;63(2):192-204
– reference: 21276213 - BMC Bioinformatics. 2011;12:38
– reference: 18553112 - J Biol Inorg Chem. 2008 Sep;13(7):1073-83
– reference: 10103263 - Appl Environ Microbiol. 1999 Apr;65(4):1652-7
– reference: 11157271 - Appl Environ Microbiol. 2001 Feb;67(2):972-6
– reference: 19247843 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):65-84
– reference: 20815378 - Environ Sci Technol. 2010 Oct 1;44(19):7628-34
– reference: 16108805 - J Appl Microbiol. 2005;99(3):629-40
– reference: 19966029 - Appl Environ Microbiol. 2010 Feb;76(3):922-6
– reference: 12153013 - Water Res. 2002 May;36(10):2475-82
– reference: 18043658 - ISME J. 2007 Sep;1(5):385-93
– reference: 17915280 - Water Res. 2008 Feb;42(4-5):1102-12
– reference: 21559425 - PLoS One. 2011;6(4):e19223
– reference: 20646732 - Water Res. 2010 Aug;44(15):4359-70
– reference: 23678985 - FEMS Microbiol Ecol. 2013 Sep;85(3):612-26
– reference: 16820507 - Appl Environ Microbiol. 2006 Jul;72(7):5069-72
– reference: 22253843 - PLoS One. 2012;7(1):e29973
– reference: 15696537 - Biotechnol Bioeng. 2005 Mar 20;89(6):670-9
– reference: 11229931 - Appl Environ Microbiol. 2001 Mar;67(3):1351-62
– reference: 15543668 - Water Sci Technol. 2004;50(6):295-304
– reference: 17014499 - Environ Microbiol. 2006 Nov;8(11):2012-21
– reference: 23109930 - Front Microbiol. 2012 Oct 23;3:372
– reference: 17099228 - Nucleic Acids Res. 2007 Jan;35(Database issue):D800-4
– reference: 20383131 - Nat Methods. 2010 May;7(5):335-6
– reference: 20418441 - Appl Environ Microbiol. 2010 Jun;76(12):3886-97
– reference: 10826814 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:273-82
– reference: 17611802 - Biodegradation. 2008 Apr;19(2):303-12
– reference: 20684970 - Water Res. 2010 Sep;44(17):5005-13
– reference: 20545751 - Environ Microbiol. 2010 Oct;12(10):2858-72
– reference: 17215016 - Water Res. 2007 Feb;41(4):785-94
– reference: 12086193 - Syst Appl Microbiol. 2002 Apr;25(1):84-99
– reference: 19375773 - Water Res. 2009 Jun;43(10):2699-709
– reference: 20704206 - Environ Sci Technol. 2010 Aug 15;44(16):6110-6
– reference: 18421799 - Biotechnol Bioeng. 2008 Oct 1;101(2):286-94
– reference: 19914921 - Bioinformatics. 2010 Jan 15;26(2):266-7
– reference: 11319103 - Appl Environ Microbiol. 2001 May;67(5):2213-21
– reference: 9097446 - Appl Environ Microbiol. 1997 Apr;63(4):1489-97
– reference: 18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40
– reference: 16000813 - Appl Environ Microbiol. 2005 Jul;71(7):3987-94
– reference: 8593039 - Appl Environ Microbiol. 1996 Feb;62(2):340-6
SSID ssj0060052
Score 2.2392173
Snippet Summary Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However,...
Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their...
Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their...
Summary Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However,...
SourceID pubmedcentral
csuc
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32
SubjectTerms Abundance
Aerobiosis
Ammonium Compounds - metabolism
Bacteria - classification
Bacteria - metabolism
Bacterial Physiological Phenomena
Bacteris nitrificants
Biofilms - growth & development
Bioreactors - microbiology
Biota
Cluster Analysis
Desnitrificació
In Situ Hybridization, Fluorescence
Microbiologia
Nitrites - metabolism
Nitrobacter
Nitrogen - metabolism
Phylogeny
Real-Time Polymerase Chain Reaction
Soil microbiology
Sòls
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbt9tIeQp-J-0KFHkrBqSTLstRbWxpCoaXQBHoTsiyThbUddr2HHPrfOyM_2O0r9GCw8fg5M9Y38sw3hLxkpc6Fr1zqmaixJAd8DgK41GRVLYo6YLskzLb4ok7P5afv-ZRNiLUwAz_EPOGGnhG_1-jgrtzsODmMexzJFvNjLlhhbpJbWGCL9PlCfp0-xgqnPWNN5Cg8svtgMs8vJ9gbmBZ-s_V_Ap2_507uYto4KJ3cJQcjmqTvBvXfIzdCe5_c2eEYfEB-fIvJ0uDIq9UVdcihHCrahAaevQ20XGLP7oYCdoyNdyiAWOq2fdevu8uLpafg8usOrAwkmg7M8i1tlpG8Ca7rh-qS_grXpvQv6tqKVkOj-81Dcn7y8ezDaTr2XEi9ktqkJUAyaTQPTPsqMK-148qV3hUZ6I1rJfNaVEJ5kwNQDK6sZa1qLoLRitVGZo_Iou3acESoY6VnZciCx9-7RjnkEdI89z6vK8_zhBxPL9z6kZAc-2Ks7BSYoIYsashGDSXk1XzA5cDF8XfR16hBC6NGWHvXW2TRnjdwASlhM0B3mifkxaRnC86Ff0xAAd12g3FRwRSAUvUvGQNRKIRxIiGHg23MdwfwCGuRWUKKPauZBfC29ve0y4tI8g1AUplMJuRNtK_rHth-fn8m4trj_z7iCbkNMFAOE0tPyaJfb8MzgFp9-Tw600_aiyCd
  priority: 102
  providerName: Wiley-Blackwell
Title Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.12079
https://www.ncbi.nlm.nih.gov/pubmed/24112350
https://www.proquest.com/docview/1467068516
https://www.proquest.com/docview/1492616422
https://recercat.cat/handle/2072/325181
https://pubmed.ncbi.nlm.nih.gov/PMC3896934
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF-83os-iN_Gj7KCDyK0JpvNZlcQ8eTqIdxx6BX6FjabDVdokjNNwT74vzuz-fCKVcGHhpRMm4-Zyfxmd_Y3hLz0Uxkxk-mJ8VmOS3LA5yCBm6gwy1mcW2yXhNUWZ-Jkzj8vosWvdkDdA1zvTe2wn9S8Xk2_f9u-B4d_11flQAQMkHYxmgbMj9UBOYSwFKOXnvJhSkHgAKhbHdkJdzw_e_4ACYJ5gItI_Z1oNTLrjdmHRH8vqLwOdF2kmt0htzuIST-0NnGX3LDlPXLrGvHgffLjq6ugBu9erbZUI7GyzWhhC8idS0vTJTbyLigASteNhwKypXrTVE1dXV0uDYX3QF2B6YFEUYGtvqXF0jE6wXlNu-Sk2eJeXxNGdZnRbFtqkFs_IPPZ8cXHk0nXiGFiBJdqkgJO40oG1pcms76RUgdCp0bHISgzkIJHOcuYMCoC9Gh1mvNc5AGzSgo_Vzx8SEZlVdrHhGo_NX5qQ2twzlcJjeRCMoiMifLMBJFHpv0DT0zHUo7NMlZJn62gshJUVuKU5ZFXww-uWoKOP4u-Rg0mEEpsbXSTILX28AU_IMWSECCfDDzyotdzAh6H0yiggGqzxmQp9gUgVfE3GQWpKeR2zCOPWtsYrq63LY_EO1YzCOBl7R4pl5eO-RvQpVAh98gbZ1__uuHk9OiCub0n_32up-QmYETejjo9I6Om3tjngMOadEwOGD-HbbyIYStnn8bk8Oj47PzL2I1sjJ3__QQq-TPM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgOQCHijfhaSQOCCmt4ziOzQ0Q1QJthcRW6s1yHEddaZNUu9lDD_3vzDibaJenOERKlMlzZuJvnJlvCHnNCpVxV9rYMV5hSQ74HARwsU7LiueVx3ZJmG1xIqen4stZdrZVC9PzQ4wTbugZ4XuNDo4T0lteDgNfgmyL2X7CWa6vkxtC8hydk4tvw9dY4rxnKIrcCG_ofTCb56cT7IxME7dau9-hzl-TJ7dBbRiVDu-QvQ2cpO97_d8l13xzj9zeIhm8T66-h2xp8OTF4pJaJFH2Ja19DQ_feFrMsWl3TQE8hs47FFAsteuu7ZbtxfncUfD5ZQtmBhJ1C3b5jtbzwN4E13V9eUl3iWtD_he1TUnLvtP96gE5Pfw0-ziNN00XYieF0nEBmExolXimXOmZU8om0hbO5ikoLlFSZBUvuXQ6A6TobVGJSlYJ91pJVmmRPiSTpm38Y0ItKxwrfOod_t_V0iKRkEoy57KqdEkWkf3hhRu3YSTHxhgLM0QmqCGDGjJBQxF5Mx5w0ZNx_Fn0LWrQwLDhl852Bmm0xw1cQIqbFOCdSiLyatCzAe_CXyaggHa9wsAoZxJQqfybjIYwFOI4HpFHvW2Mdwf4CIuRWUTyHasZBfC2dvc08_PA8g1IUupUROQg2Ne_Htgcf5jxsPbkv494SW5OZ8dH5ujzyden5BZgQtHPMj0jk2659s8Bd3XFi-BYPwBojSQJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zi9swEBZtFkr7sPSue6rQh1Lwrizbsty37RG211LoppS-CFmW2EBsh8R52If9752RD5Ke9MFg4_E5M9Y38sw3hDxjhUy5KXVoGHdYkgM-BwFcmMel45mz2C4Jsy1OxPEsef8tHbIJsRam44cYJ9zQM_z3Gh18WbotJ4dxL0KyxfQg4izLL5M95MoDw947-jr7Phs-xwInPn1VZC_e8_tgOs9Pp9gZmiZmvTG_g52_Zk9uo1o_LE2vk_0eT9KjzgBukEu2vkmubbEM3iIXX3y6NLjyYnFONbIo25JWtoKnry0t5ti1u6KAHn3rHQowlupN27SrZnk2NxScftWAnYFE1YBhvqTV3NM3wXVNV1_SnuPakABGdV3Ssmt1v75NZtO3p6-Pw77rQmhEIvOwAFCW5DKyTJrSMiOljoQujM5i0FwkRZI6XnJh8hSgotWFS5xwEbe5FMzlSXyHTOqmtvcI1awwrLCxNfiDNxcamYRklBqTutJEaUAOhheuTE9Jjp0xFmoITVBDCjWkvIYC8nw8YNmxcfxZ9AVqUMG4YVdGtwp5tMcNXECKqxjwnYwC8nTQswL3wn8moIBms8bIKGMCYKn4m0wOcSgEcjwgdzvbGO8OABJWI7OAZDtWMwrgbe3uqednnuYboKTI4yQgh96-_vXA6tOrU-7X7v_3EU_Ilc9vpurju5MPD8hVwIRJN8v0kEza1cY-AtzVFo97z_oBDTUlAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequentially+aerated+membrane+biofilm+reactors+for+autotrophic+nitrogen+removal%3A+microbial+community+composition+and+dynamics&rft.jtitle=Microbial+biotechnology&rft.au=Pellicer-N%C3%A0cher%2C+Carles&rft.au=Franck%2C+St%C3%A9phanie&rft.au=G%C3%BClay%2C+Arda&rft.au=Ruscalleda%2C+Ma%C3%ABl&rft.date=2014-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1751-7915&rft.eissn=1751-7915&rft.volume=7&rft.issue=1&rft.spage=32&rft.epage=43&rft_id=info:doi/10.1111%2F1751-7915.12079&rft_id=info%3Apmid%2F24112350&rft.externalDocID=PMC3896934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon