Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion
The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a...
Saved in:
Published in | Biological psychiatry (1969) Vol. 79; no. 11; pp. 906 - 916 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity.
To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser845 was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis.
In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning.
The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss. |
---|---|
AbstractList | The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity.
To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser845 was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis.
In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning.
The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss. AbstractBackgroundThe opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity. MethodsTo measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser 845 was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis. ResultsIn vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning. ConclusionsThe beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss. The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity.BACKGROUNDThe opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity.To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser(845) was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis.METHODSTo measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser(845) was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis.In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning.RESULTSIn vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning.The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.CONCLUSIONSThe beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss. The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity. To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser(845) was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis. In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning. The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss. |
Author | Law, Ping-Yee Kibaly, Cherkaouia Kam, Angel Y.F. Loh, Horace H. |
Author_xml | – sequence: 1 givenname: Cherkaouia surname: Kibaly fullname: Kibaly, Cherkaouia email: kibal001@umn.edu – sequence: 2 givenname: Angel Y.F. surname: Kam fullname: Kam, Angel Y.F. – sequence: 3 givenname: Horace H. surname: Loh fullname: Loh, Horace H. – sequence: 4 givenname: Ping-Yee surname: Law fullname: Law, Ping-Yee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26049209$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkttuEzEQhi1URNPCK1R7yU2Wsdd7klBFVHqIlELF4dryemcbB8cO9qbKvj1e0lbQC4pkybL9zzfj-eeIHFhnkZATCikFWrxbpY12mzCoZcqA5inwFGj9gkxoVWZTxoEdkAkAFNOMseyQHIWwiseSMfqKHLICeM2gnpDdJ2l6j7tITy6k0kb3sseQLFB6q-1tIm2bfEQjh5Cc73ptVa-dTZohmVvlUYZRM7u-mSVfUOGmdz65WbqwWTo_GPlbOxKucd14GXPMbUA_Xr8mLztpAr6534_J94vzb2dX08Xny_nZbDFVBS_7KXIqa85L3tRdU1XQNmXW1Z3MGQWZIeSYQcXrtihQsZbRnDXIeNlVKi4oWHZMTvfczbZZY6vQ9l4asfF6Lf0gnNTi7xerl-LW3QleZMCgioC39wDvfm4x9GKtg0Jj4nfcNgha1hC1tM6j9OTPXI9JHtodBcVeoLwLwWP3KKEgRl_FSjz4KkZfBXARfY2B758EqtGo2MdYszbPh3_Yh2Ps9J1GL4LSaBW22qPqRev084jTJwhltNVKmh84YFi5rbfRR0FFYALE13H2xtGjOUCWl_TfgP-p4BdGjPAV |
CitedBy_id | crossref_primary_10_1097_HRP_0000000000000242 crossref_primary_10_3389_fphys_2022_823152 crossref_primary_10_1007_s00210_021_02086_2 crossref_primary_10_1097_FBP_0000000000000557 crossref_primary_10_1016_j_neuropharm_2017_08_030 crossref_primary_10_1016_j_physbeh_2020_113212 crossref_primary_10_1016_j_neuropharm_2018_08_031 crossref_primary_10_1096_fj_201800029R crossref_primary_10_5812_ircmj_59814 crossref_primary_10_1038_s41583_018_0092_2 crossref_primary_10_1096_fj_201802351R crossref_primary_10_1097_FBP_0000000000000769 crossref_primary_10_1124_molpharm_121_000429 crossref_primary_10_1101_cshperspect_a039602 crossref_primary_10_1016_j_neuroscience_2019_04_007 crossref_primary_10_1007_s10571_020_00970_8 crossref_primary_10_1016_j_neubiorev_2019_12_007 crossref_primary_10_3389_fnins_2019_00071 crossref_primary_10_1097_FBP_0000000000000449 crossref_primary_10_1038_srep38771 crossref_primary_10_2478_intox_2020_0012 crossref_primary_10_1186_s40035_022_00334_w crossref_primary_10_3389_fncel_2021_685838 crossref_primary_10_1016_j_bbr_2020_112971 crossref_primary_10_1016_j_cellsig_2018_11_003 crossref_primary_10_1007_s10571_019_00752_x crossref_primary_10_1016_j_peptides_2018_01_011 |
Cites_doi | 10.1016/j.bbr.2008.03.026 10.1007/BF02316870 10.1002/jnr.490350513 10.1016/S0163-1047(79)92328-8 10.1002/syn.10146 10.1155/2012/247150 10.1038/nprot.2006.116 10.1016/j.neuroscience.2004.03.066 10.1016/j.bbrc.2004.02.086 10.1146/annurev.neuro.25.112701.142758 10.1016/j.tins.2011.02.004 10.1016/S0092-8674(03)00122-3 10.1007/BF00427631 10.1038/sj.npp.1301642 10.1111/j.1460-9568.2010.07339.x 10.1038/35016089 10.1016/j.pain.2005.06.022 10.1007/s00213-013-2968-1 10.1146/annurev.ne.17.030194.000335 10.1046/j.1471-4159.2001.00362.x 10.1523/JNEUROSCI.3835-11.2011 10.1523/JNEUROSCI.20-01-00089.2000 10.1016/j.bbr.2007.02.021 10.1016/S0896-6273(00)80632-7 10.1371/journal.pone.0004410 10.1124/mol.112.078162 10.1101/lm.315206 10.1016/0896-6273(92)90245-9 10.1016/S0163-1047(85)90688-0 10.1016/j.neuron.2004.09.012 10.1523/JNEUROSCI.4255-10.2010 10.1006/nlme.1995.1021 10.1016/j.neuron.2009.08.035 10.1146/annurev.cellbio.23.090506.123516 10.1016/S0959-4388(00)00194-X 10.1073/pnas.0406797102 10.1038/nn997 10.1073/pnas.0702308104 10.1124/jpet.103.054049 10.1016/S0022-3565(25)22179-6 10.1111/j.1460-9568.2012.08165.x 10.1523/JNEUROSCI.4603-04.2005 10.1016/S0014-2999(01)01009-3 10.1385/MN:32:3:237 10.1038/4540 10.1523/JNEUROSCI.15-05-03328.1995 10.1016/j.cell.2008.09.057 10.1083/jcb.86.3.831 10.1016/S0896-6273(02)01064-4 10.1016/S0163-1047(82)91020-2 10.1152/jn.00790.2006 10.1007/BF00495865 10.1152/jn.00835.2009 10.1007/BF00735874 10.1016/j.mcn.2007.04.007 10.1016/j.neuroscience.2014.07.039 |
ContentType | Journal Article |
Copyright | 2016 Published by Elsevier Inc. |
Copyright_xml | – notice: 2016 – notice: Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.biopsych.2015.04.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 916 |
ExternalDocumentID | PMC4630208 26049209 10_1016_j_biopsych_2015_04_019 S0006322315003571 1_s2_0_S0006322315003571 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA031442 – fundername: NIDA NIH HHS grantid: P50 DA011806 |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSN SSZ T5K UNMZH UPT UV1 WH7 Z5R ZCA ~G- .GJ 3O- 53G AAQXK ABDPE ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AIGII APXCP ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HEG HMK HMO HMQ HVGLF HZ~ H~9 R2- SNS UAP WUQ XJT XOL ZGI ZKB ZXP AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c647t-e41a94474b9fb880db73f9fa5210a3e05e30849d66ec2d2152be247f8cf8c0623 |
IEDL.DBID | .~1 |
ISSN | 0006-3223 1873-2402 |
IngestDate | Thu Aug 21 14:00:33 EDT 2025 Fri Jul 11 03:28:14 EDT 2025 Mon Jul 21 06:04:49 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Sun Jul 06 05:08:13 EDT 2025 Fri Feb 23 02:15:04 EST 2024 Fri Aug 22 09:50:53 EDT 2025 Tue Aug 26 16:58:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | GluA1-S845A mutant GluA1-S845 AMPA receptors GluA1 Naltrexone Spatial memory |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c647t-e41a94474b9fb880db73f9fa5210a3e05e30849d66ec2d2152be247f8cf8c0623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.biopsych.2015.04.019 |
PMID | 26049209 |
PQID | 1790463195 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4630208 proquest_miscellaneous_1790463195 pubmed_primary_26049209 crossref_primary_10_1016_j_biopsych_2015_04_019 crossref_citationtrail_10_1016_j_biopsych_2015_04_019 elsevier_sciencedirect_doi_10_1016_j_biopsych_2015_04_019 elsevier_clinicalkeyesjournals_1_s2_0_S0006322315003571 elsevier_clinicalkey_doi_10_1016_j_biopsych_2015_04_019 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Olmstead, Ouagazzal, Kieffer (bib44) 2009; 4 Duman, Tallman, Nestler (bib32) 1988; 246 Liao, Zhang, OʼBrien, Ehlers, Huganir (bib25) 1999; 2 Gallagher (bib7) 1982; 35 Gallagher, Bostock, King (bib8) 1985; 44 Chang, Verbich, McKinney (bib39) 2012; 35 Sun, Zhao, Wolf (bib21) 2005; 25 Henley, Barker, Glebov (bib45) 2011; 34 Kam, Liao, Loh, Law (bib19) 2010; 30 Keifer, Zheng (bib11) 2010; 32 Oh, Yang, Ahn, Youn, Choi, Wang, Choe (bib50) 2013; 227 Malinow, Malenka (bib10) 2002; 25 Yu, Lu (bib12) 2012; 2012 Wong, Howland, Robillard, Ge, Yu, Titterness (bib56) 2007; 104 Malenka, Bear (bib38) 2004; 44 Arvidsson, Riedl, Chakrabarti, Lee, Nakano, Dado (bib47) 1995; 15 Esteban, Shi, Wilson, Nuriya, Huganir, Malinow (bib33) 2003; 6 Lee, Barbarosie, Kameyama, Bear, Huganir (bib55) 2000; 405 Robinson, Gorny, Savage, Kolb (bib18) 2002; 46 Abel, Lattal (bib31) 2001; 1 Kamboj, Tookman, Jones, Curran (bib4) 2005; 117 Ukai, Watanabe, Kameyama (bib2) 2001; 421 Liao, Grigoriants, Wang, Wiens, Loh, Law (bib17) 2007; 35 Carlin, Grab, Cohen, Siekevitz (bib27) 1980; 86 Sharp, Ross, Koehnle, Gietzen (bib49) 2004; 126 Spain, Newsom (bib3) 1991; 105 Izquierdo (bib5) 1979; 66 Liao, Grigoriants, Loh, Law (bib16) 2007; 97 Myers, Davis (bib30) 2002; 36 Brewer, Torricelli, Evege, Price (bib24) 1993; 35 Crombag, Sutton, Takamiya, Lee, Holland, Gallagher, Huganir (bib53) 2008; 191 Shepherd, Huganir (bib35) 2007; 23 Wang, Arora, Yang, Parelkar, Zhang, Liu (bib14) 2005; 32 Cominski, Ansonoff, Turchin, Pintar (bib43) 2014; 278 Lubbers, van den Bos, Spruijt (bib42) 2007; 180 Xia, Portugal, Fakira, Melyan, Neve, Lee (bib20) 2011; 31 Miller, Zhang, Dummer, Cariveau, Loh, Law, Liao (bib48) 2012; 82 Wang, Raehal, Bilsky, Sadée (bib40) 2001; 77 Messing, Jensen, Martinez, Spiehler, Vasquez, Soumireu-Mourat (bib6) 1979; 27 Magnan, Paterson, Tavani, Kosterlitz (bib46) 1982; 319 Lee, Takamiya, He, Song, Huganir (bib51) 2010; 103 Oh, Derkach, Guire, Soderling (bib22) 2006; 281 Lin, Huganir, Liao (bib26) 2004; 316 Dalton, Wang, Floresco, Phillips (bib57) 2008; 33 Rossato, Bevilaqua, Medina, Izquierdo, Cammarota (bib29) 2006; 13 Liao, Lin, Law, Loh (bib15) 2005; 102 Makino, Malinow (bib37) 2009; 64 Lee, Takamiya, Han, Man, Kim, Rumbaugh (bib52) 2003; 112 Banke, Bowie, Lee, Huganir, Schousboe, Traynelis (bib34) 2000; 20 Introini-Collison, Ford, McGaugh (bib1) 1995; 63 Hollmann, Heinemann (bib13) 1994; 17 Wang, Edwards, Riley, Provance, Karcher, Li (bib36) 2008; 135 Aigner, Mishkin (bib9) 1988; 94 Vorhees, Williams (bib23) 2006; 1 Wang, Raehal, Lin, Lowery, Kieffer, Bilsky, Sadée (bib41) 2004; 308 Lee, Kameyama, Huganir, Bear (bib54) 1998; 21 Cho, Hunt, Kennedy (bib28) 1992; 9 Olmstead (10.1016/j.biopsych.2015.04.019_bib44) 2009; 4 Liao (10.1016/j.biopsych.2015.04.019_bib25) 1999; 2 Oh (10.1016/j.biopsych.2015.04.019_bib50) 2013; 227 Dalton (10.1016/j.biopsych.2015.04.019_bib57) 2008; 33 Lubbers (10.1016/j.biopsych.2015.04.019_bib42) 2007; 180 Esteban (10.1016/j.biopsych.2015.04.019_bib33) 2003; 6 Wang (10.1016/j.biopsych.2015.04.019_bib36) 2008; 135 Hollmann (10.1016/j.biopsych.2015.04.019_bib13) 1994; 17 Brewer (10.1016/j.biopsych.2015.04.019_bib24) 1993; 35 Malinow (10.1016/j.biopsych.2015.04.019_bib10) 2002; 25 Miller (10.1016/j.biopsych.2015.04.019_bib48) 2012; 82 Lee (10.1016/j.biopsych.2015.04.019_bib51) 2010; 103 Kam (10.1016/j.biopsych.2015.04.019_bib19) 2010; 30 Oh (10.1016/j.biopsych.2015.04.019_bib22) 2006; 281 Magnan (10.1016/j.biopsych.2015.04.019_bib46) 1982; 319 Wong (10.1016/j.biopsych.2015.04.019_bib56) 2007; 104 Henley (10.1016/j.biopsych.2015.04.019_bib45) 2011; 34 Messing (10.1016/j.biopsych.2015.04.019_bib6) 1979; 27 Lin (10.1016/j.biopsych.2015.04.019_bib26) 2004; 316 Wang (10.1016/j.biopsych.2015.04.019_bib41) 2004; 308 Arvidsson (10.1016/j.biopsych.2015.04.019_bib47) 1995; 15 Myers (10.1016/j.biopsych.2015.04.019_bib30) 2002; 36 Keifer (10.1016/j.biopsych.2015.04.019_bib11) 2010; 32 Aigner (10.1016/j.biopsych.2015.04.019_bib9) 1988; 94 Kamboj (10.1016/j.biopsych.2015.04.019_bib4) 2005; 117 Izquierdo (10.1016/j.biopsych.2015.04.019_bib5) 1979; 66 Carlin (10.1016/j.biopsych.2015.04.019_bib27) 1980; 86 Crombag (10.1016/j.biopsych.2015.04.019_bib53) 2008; 191 Sharp (10.1016/j.biopsych.2015.04.019_bib49) 2004; 126 Wang (10.1016/j.biopsych.2015.04.019_bib14) 2005; 32 Lee (10.1016/j.biopsych.2015.04.019_bib52) 2003; 112 Abel (10.1016/j.biopsych.2015.04.019_bib31) 2001; 1 Xia (10.1016/j.biopsych.2015.04.019_bib20) 2011; 31 Cho (10.1016/j.biopsych.2015.04.019_bib28) 1992; 9 Liao (10.1016/j.biopsych.2015.04.019_bib17) 2007; 35 Shepherd (10.1016/j.biopsych.2015.04.019_bib35) 2007; 23 Makino (10.1016/j.biopsych.2015.04.019_bib37) 2009; 64 Robinson (10.1016/j.biopsych.2015.04.019_bib18) 2002; 46 Gallagher (10.1016/j.biopsych.2015.04.019_bib7) 1982; 35 Gallagher (10.1016/j.biopsych.2015.04.019_bib8) 1985; 44 Lee (10.1016/j.biopsych.2015.04.019_bib54) 1998; 21 Duman (10.1016/j.biopsych.2015.04.019_bib32) 1988; 246 Wang (10.1016/j.biopsych.2015.04.019_bib40) 2001; 77 Malenka (10.1016/j.biopsych.2015.04.019_bib38) 2004; 44 Liao (10.1016/j.biopsych.2015.04.019_bib15) 2005; 102 Ukai (10.1016/j.biopsych.2015.04.019_bib2) 2001; 421 Chang (10.1016/j.biopsych.2015.04.019_bib39) 2012; 35 Introini-Collison (10.1016/j.biopsych.2015.04.019_bib1) 1995; 63 Liao (10.1016/j.biopsych.2015.04.019_bib16) 2007; 97 Banke (10.1016/j.biopsych.2015.04.019_bib34) 2000; 20 Spain (10.1016/j.biopsych.2015.04.019_bib3) 1991; 105 Yu (10.1016/j.biopsych.2015.04.019_bib12) 2012; 2012 Lee (10.1016/j.biopsych.2015.04.019_bib55) 2000; 405 Vorhees (10.1016/j.biopsych.2015.04.019_bib23) 2006; 1 Cominski (10.1016/j.biopsych.2015.04.019_bib43) 2014; 278 Sun (10.1016/j.biopsych.2015.04.019_bib21) 2005; 25 Rossato (10.1016/j.biopsych.2015.04.019_bib29) 2006; 13 12441048 - Neuron. 2002 Nov 14;36(4):567-84 12373743 - Synapse. 2002 Dec 15;46(4):271-9 1419001 - Neuron. 1992 Nov;9(5):929-42 10195178 - Nat Neurosci. 1999 Jan;2(1):37-43 21068335 - J Neurosci. 2010 Nov 10;30(45):15304-16 22708602 - Eur J Neurosci. 2012 Jun;35(12):1908-16 16272153 - J Biol Chem. 2006 Jan 13;281(2):752-8 22474602 - Neural Plast. 2012;2012:247150 18455244 - Behav Brain Res. 2008 Aug 22;191(2):178-83 7410481 - J Cell Biol. 1980 Sep;86(3):831-45 20646058 - Eur J Neurosci. 2010 Jul;32(2):269-77 21420743 - Trends Neurosci. 2011 May;34(5):258-68 518457 - Behav Neural Biol. 1979 Nov;27(3):266-75 3126524 - Psychopharmacology (Berl). 1988;94(1):21-3 119264 - Psychopharmacology (Berl). 1979 Nov;66(2):199-203 11301237 - Curr Opin Neurobiol. 2001 Apr;11(2):180-7 25086317 - Neuroscience. 2014 Oct 10;278:11-9 23334104 - Psychopharmacology (Berl). 2013 Jun;227(3):437-45 1745703 - Psychopharmacology (Berl). 1991;105(1):101-6 17513124 - Mol Cell Neurosci. 2007 Jul;35(3):456-69 15207338 - Neuroscience. 2004;126(4):1053-62 6125900 - Naunyn Schmiedebergs Arch Pharmacol. 1982 Jun;319(3):197-205 12628184 - Cell. 2003 Mar 7;112(5):631-43 19906877 - J Neurophysiol. 2010 Jan;103(1):479-89 16882860 - Learn Mem. 2006 Jul-Aug;13(4):431-40 16093384 - J Neurosci. 2005 Aug 10;25(32):7342-51 18046303 - Neuropsychopharmacology. 2008 Sep;33(10):2416-26 15020245 - Biochem Biophys Res Commun. 2004 Apr 2;316(2):501-11 12536214 - Nat Neurosci. 2003 Feb;6(2):136-43 14600246 - J Pharmacol Exp Ther. 2004 Feb;308(2):512-20 22596350 - Mol Pharmacol. 2012 Aug;82(2):333-43 10879537 - Nature. 2000 Jun 22;405(6789):955-9 19914186 - Neuron. 2009 Nov 12;64(3):381-90 17506699 - Annu Rev Cell Dev Biol. 2007;23:613-43 11413242 - J Neurochem. 2001 Jun;77(6):1590-600 17122315 - J Neurophysiol. 2007 Feb;97(2):1485-94 6299265 - Behav Neural Biol. 1982 Aug;35(4):375-82 7663894 - Neurobiol Learn Mem. 1995 Mar;63(2):200-5 12052905 - Annu Rev Neurosci. 2002;25:103-26 11399267 - Eur J Pharmacol. 2001 Jun 8;421(2):115-9 16385140 - Mol Neurobiol. 2005 Dec;32(3):237-49 8210177 - Annu Rev Neurosci. 1994;17:31-108 16198201 - Pain. 2005 Oct;117(3):388-95 22072679 - J Neurosci. 2011 Nov 9;31(45):16279-91 15659552 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1725-30 18984164 - Cell. 2008 Oct 31;135(3):535-48 19198656 - PLoS One. 2009;4(2):e4410 7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41 8377226 - J Neurosci Res. 1993 Aug 1;35(5):567-76 17397942 - Behav Brain Res. 2007 Jun 4;180(1):107-11 15450156 - Neuron. 2004 Sep 30;44(1):5-21 9856470 - Neuron. 1998 Nov;21(5):1151-62 2843624 - J Pharmacol Exp Ther. 1988 Sep;246(3):1033-9 10627585 - J Neurosci. 2000 Jan 1;20(1):89-102 17406317 - Nat Protoc. 2006;1(2):848-58 17592137 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11471-6 4084183 - Behav Neural Biol. 1985 Nov;44(3):374-85 |
References_xml | – volume: 2 start-page: 37 year: 1999 end-page: 43 ident: bib25 article-title: Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons publication-title: Nat Neurosci – volume: 6 start-page: 136 year: 2003 end-page: 143 ident: bib33 article-title: PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity publication-title: Nat Neurosci – volume: 104 start-page: 11471 year: 2007 end-page: 11476 ident: bib56 article-title: Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment publication-title: Proc Natl Acad Sci U S A – volume: 9 start-page: 929 year: 1992 end-page: 942 ident: bib28 article-title: The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein publication-title: Neuron – volume: 31 start-page: 16279 year: 2011 end-page: 16291 ident: bib20 article-title: Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine publication-title: J Neurosci – volume: 44 start-page: 374 year: 1985 end-page: 385 ident: bib8 article-title: Effects of opiate antagonists on spatial memory in young and aged rats publication-title: Behav Neural Biol – volume: 77 start-page: 1590 year: 2001 end-page: 1600 ident: bib40 article-title: Inverse agonists and neutral antagonists at mu opioid receptor (MOR): Possible role of basal receptor signaling in narcotic dependence publication-title: J Neurochem – volume: 405 start-page: 955 year: 2000 end-page: 959 ident: bib55 article-title: Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity publication-title: Nature – volume: 64 start-page: 381 year: 2009 end-page: 390 ident: bib37 article-title: AMPA receptor incorporation into synapses during LTP: The role of lateral movement and exocytosis publication-title: Neuron – volume: 86 start-page: 831 year: 1980 end-page: 845 ident: bib27 article-title: Isolation and characterization of postsynaptic densities from various brain regions: Enrichment of different types of postsynaptic densities publication-title: J Cell Biol – volume: 36 start-page: 567 year: 2002 end-page: 584 ident: bib30 article-title: Behavioral and neural analysis of extinction publication-title: Neuron – volume: 35 start-page: 1908 year: 2012 end-page: 1916 ident: bib39 article-title: AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook publication-title: Eur J Neurosci – volume: 20 start-page: 89 year: 2000 end-page: 102 ident: bib34 article-title: Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase publication-title: J Neurosci – volume: 117 start-page: 388 year: 2005 end-page: 395 ident: bib4 article-title: The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care publication-title: Pain – volume: 97 start-page: 1485 year: 2007 end-page: 1494 ident: bib16 article-title: Agonist-dependent postsynaptic effects of opioids on miniature excitatory postsynaptic currents in cultured hippocampal neurons publication-title: J Neurophysiol – volume: 227 start-page: 437 year: 2013 end-page: 445 ident: bib50 article-title: Activation of protein kinase C is required for AMPA receptor GluR1 phosphorylation at serine 845 in the dorsal striatum following repeated cocaine administration publication-title: Psychopharmacology (Berl) – volume: 112 start-page: 631 year: 2003 end-page: 643 ident: bib52 article-title: Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory publication-title: Cell – volume: 82 start-page: 333 year: 2012 end-page: 343 ident: bib48 article-title: Differential modulation of drug-induced structural and functional plasticity of dendritic spines publication-title: Mol Pharmacol – volume: 1 start-page: 848 year: 2006 end-page: 858 ident: bib23 article-title: Morris water maze: Procedures for assessing spatial and related forms of learning and memory publication-title: Nat Protoc – volume: 126 start-page: 1053 year: 2004 end-page: 1062 ident: bib49 article-title: Phosphorylation of Ca2+/calmodulin-dependent protein kinase type ii and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (ampa) receptor in response to a threonine-devoid diet publication-title: Neuroscience – volume: 63 start-page: 200 year: 1995 end-page: 205 ident: bib1 article-title: Memory impairment induced by intraamygdala beta-endorphin is mediated by noradrenergic influences publication-title: Neurobiol Learn Mem – volume: 30 start-page: 15304 year: 2010 end-page: 15316 ident: bib19 article-title: Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits publication-title: J Neurosci – volume: 35 start-page: 375 year: 1982 end-page: 382 ident: bib7 article-title: Naloxone enhancement of memory processes: Effects of other opiate antagonists publication-title: Behav Neural Biol – volume: 27 start-page: 266 year: 1979 end-page: 275 ident: bib6 article-title: Naloxone enhancement of memory publication-title: Behav Neural Biol – volume: 316 start-page: 501 year: 2004 end-page: 511 ident: bib26 article-title: Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines publication-title: Biochem Biophys Res Commun – volume: 135 start-page: 535 year: 2008 end-page: 548 ident: bib36 article-title: Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity publication-title: Cell – volume: 35 start-page: 456 year: 2007 end-page: 469 ident: bib17 article-title: Distinct effects of individual opioids on the morphology of spines depend upon the internalization of mu opioid receptors publication-title: Mol Cell Neurosci – volume: 180 start-page: 107 year: 2007 end-page: 111 ident: bib42 article-title: Mu opioid receptor knockout mice in the Morris Water Maze: A learning or motivation deficit? publication-title: Behav Brain Res – volume: 13 start-page: 431 year: 2006 end-page: 440 ident: bib29 article-title: Retrieval induces hippocampal-dependent reconsolidation of spatial memory publication-title: Learn Mem – volume: 33 start-page: 2416 year: 2008 end-page: 2426 ident: bib57 article-title: Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear publication-title: Neuropsychopharmacology – volume: 23 start-page: 613 year: 2007 end-page: 643 ident: bib35 article-title: The cell biology of synaptic plasticity: AMPA receptor trafficking publication-title: Annu Rev Cell Dev Biol – volume: 32 start-page: 269 year: 2010 end-page: 277 ident: bib11 article-title: AMPA receptor trafficking and learning publication-title: Eur J Neurosci – volume: 278 start-page: 11 year: 2014 end-page: 19 ident: bib43 article-title: Loss of the mu opioid receptor induces strain-specific alterations in hippocampal neurogenesis and spatial learning publication-title: Neuroscience – volume: 46 start-page: 271 year: 2002 end-page: 279 ident: bib18 article-title: Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats publication-title: Synapse – volume: 103 start-page: 479 year: 2010 end-page: 489 ident: bib51 article-title: Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus publication-title: J Neurophysiol – volume: 17 start-page: 31 year: 1994 end-page: 108 ident: bib13 article-title: Cloned glutamate receptors publication-title: Annu Rev Neurosci – volume: 2012 start-page: 247150 year: 2012 ident: bib12 article-title: Synapses and dendritic spines as pathogenic targets in Alzheimerʼs disease publication-title: Neural Plast – volume: 35 start-page: 567 year: 1993 end-page: 576 ident: bib24 article-title: Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination publication-title: J Neurosci Res – volume: 281 start-page: 752 year: 2006 end-page: 758 ident: bib22 article-title: Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation publication-title: J Neurosci – volume: 25 start-page: 7342 year: 2005 end-page: 7351 ident: bib21 article-title: Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons publication-title: J Neurosci – volume: 32 start-page: 237 year: 2005 end-page: 249 ident: bib14 article-title: Phosphorylation of AMPA receptors: Mechanisms and synaptic plasticity publication-title: Mol Neurobiol – volume: 66 start-page: 199 year: 1979 end-page: 203 ident: bib5 article-title: Effect of naloxone and morphine on various forms of memory in the rat: Possible role of engogenous opiate mechanisms in memory consolidation publication-title: Psychopharmacology (Berl) – volume: 421 start-page: 115 year: 2001 end-page: 119 ident: bib2 article-title: Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice publication-title: Eur J Pharmacol – volume: 44 start-page: 5 year: 2004 end-page: 21 ident: bib38 article-title: LTP and LTD: An embarrassment of riches publication-title: Neuron – volume: 4 start-page: e4410 year: 2009 ident: bib44 article-title: Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task publication-title: PLoS One – volume: 25 start-page: 103 year: 2002 end-page: 126 ident: bib10 article-title: AMPA receptor trafficking and synaptic plasticity publication-title: Annu Rev Neurosci – volume: 102 start-page: 1725 year: 2005 end-page: 1730 ident: bib15 article-title: Mu-opioid receptors modulate the stability of dendritic spines publication-title: Proc Natl Acad Sci U S A – volume: 105 start-page: 101 year: 1991 end-page: 106 ident: bib3 article-title: Chronic opioids impair acquisition of both radial maze and Y-maze choice escape publication-title: Psychopharmacology (Berl) – volume: 191 start-page: 178 year: 2008 end-page: 183 ident: bib53 article-title: A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning publication-title: Behav Brain Res – volume: 246 start-page: 1033 year: 1988 end-page: 1039 ident: bib32 article-title: Acute and chronic opiate-regulation of adenylate cyclase in brain: Specific effects in locus coeruleus publication-title: J Pharmacol Exp Ther – volume: 21 start-page: 1151 year: 1998 end-page: 1162 ident: bib54 article-title: NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus publication-title: Neuron – volume: 34 start-page: 258 year: 2011 end-page: 268 ident: bib45 article-title: Routes, destinations and delays: Recent advances in AMPA receptor trafficking publication-title: Trends Neurosci – volume: 308 start-page: 512 year: 2004 end-page: 520 ident: bib41 article-title: Basal signaling activity of mu opioid receptor in mouse brain: Role in narcotic dependence publication-title: J Pharmacol Exp Ther – volume: 94 start-page: 21 year: 1988 end-page: 23 ident: bib9 article-title: Improved recognition memory in monkeys following naloxone administration publication-title: Psychopharmacology (Berl) – volume: 1 start-page: 180 year: 2001 end-page: 187 ident: bib31 article-title: Molecular mechanisms of memory acquisition, consolidation and retrieval publication-title: Curr Opin Neurobiol – volume: 15 start-page: 3328 year: 1995 end-page: 3341 ident: bib47 article-title: Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord publication-title: J Neurosci – volume: 319 start-page: 197 year: 1982 end-page: 205 ident: bib46 article-title: The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties publication-title: Naunyn-Schmiedeberg Arch Pharmacol – volume: 191 start-page: 178 year: 2008 ident: 10.1016/j.biopsych.2015.04.019_bib53 article-title: A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning publication-title: Behav Brain Res doi: 10.1016/j.bbr.2008.03.026 – volume: 105 start-page: 101 year: 1991 ident: 10.1016/j.biopsych.2015.04.019_bib3 article-title: Chronic opioids impair acquisition of both radial maze and Y-maze choice escape publication-title: Psychopharmacology (Berl) doi: 10.1007/BF02316870 – volume: 281 start-page: 752 year: 2006 ident: 10.1016/j.biopsych.2015.04.019_bib22 article-title: Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation publication-title: J Neurosci – volume: 35 start-page: 567 year: 1993 ident: 10.1016/j.biopsych.2015.04.019_bib24 article-title: Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination publication-title: J Neurosci Res doi: 10.1002/jnr.490350513 – volume: 27 start-page: 266 year: 1979 ident: 10.1016/j.biopsych.2015.04.019_bib6 article-title: Naloxone enhancement of memory publication-title: Behav Neural Biol doi: 10.1016/S0163-1047(79)92328-8 – volume: 46 start-page: 271 year: 2002 ident: 10.1016/j.biopsych.2015.04.019_bib18 article-title: Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats publication-title: Synapse doi: 10.1002/syn.10146 – volume: 2012 start-page: 247150 year: 2012 ident: 10.1016/j.biopsych.2015.04.019_bib12 article-title: Synapses and dendritic spines as pathogenic targets in Alzheimerʼs disease publication-title: Neural Plast doi: 10.1155/2012/247150 – volume: 1 start-page: 848 year: 2006 ident: 10.1016/j.biopsych.2015.04.019_bib23 article-title: Morris water maze: Procedures for assessing spatial and related forms of learning and memory publication-title: Nat Protoc doi: 10.1038/nprot.2006.116 – volume: 126 start-page: 1053 year: 2004 ident: 10.1016/j.biopsych.2015.04.019_bib49 article-title: Phosphorylation of Ca2+/calmodulin-dependent protein kinase type ii and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (ampa) receptor in response to a threonine-devoid diet publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.03.066 – volume: 316 start-page: 501 year: 2004 ident: 10.1016/j.biopsych.2015.04.019_bib26 article-title: Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2004.02.086 – volume: 25 start-page: 103 year: 2002 ident: 10.1016/j.biopsych.2015.04.019_bib10 article-title: AMPA receptor trafficking and synaptic plasticity publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.25.112701.142758 – volume: 34 start-page: 258 year: 2011 ident: 10.1016/j.biopsych.2015.04.019_bib45 article-title: Routes, destinations and delays: Recent advances in AMPA receptor trafficking publication-title: Trends Neurosci doi: 10.1016/j.tins.2011.02.004 – volume: 112 start-page: 631 year: 2003 ident: 10.1016/j.biopsych.2015.04.019_bib52 article-title: Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory publication-title: Cell doi: 10.1016/S0092-8674(03)00122-3 – volume: 66 start-page: 199 year: 1979 ident: 10.1016/j.biopsych.2015.04.019_bib5 article-title: Effect of naloxone and morphine on various forms of memory in the rat: Possible role of engogenous opiate mechanisms in memory consolidation publication-title: Psychopharmacology (Berl) doi: 10.1007/BF00427631 – volume: 33 start-page: 2416 year: 2008 ident: 10.1016/j.biopsych.2015.04.019_bib57 article-title: Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301642 – volume: 32 start-page: 269 year: 2010 ident: 10.1016/j.biopsych.2015.04.019_bib11 article-title: AMPA receptor trafficking and learning publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2010.07339.x – volume: 405 start-page: 955 year: 2000 ident: 10.1016/j.biopsych.2015.04.019_bib55 article-title: Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity publication-title: Nature doi: 10.1038/35016089 – volume: 117 start-page: 388 year: 2005 ident: 10.1016/j.biopsych.2015.04.019_bib4 article-title: The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care publication-title: Pain doi: 10.1016/j.pain.2005.06.022 – volume: 227 start-page: 437 year: 2013 ident: 10.1016/j.biopsych.2015.04.019_bib50 article-title: Activation of protein kinase C is required for AMPA receptor GluR1 phosphorylation at serine 845 in the dorsal striatum following repeated cocaine administration publication-title: Psychopharmacology (Berl) doi: 10.1007/s00213-013-2968-1 – volume: 17 start-page: 31 year: 1994 ident: 10.1016/j.biopsych.2015.04.019_bib13 article-title: Cloned glutamate receptors publication-title: Annu Rev Neurosci doi: 10.1146/annurev.ne.17.030194.000335 – volume: 77 start-page: 1590 year: 2001 ident: 10.1016/j.biopsych.2015.04.019_bib40 article-title: Inverse agonists and neutral antagonists at mu opioid receptor (MOR): Possible role of basal receptor signaling in narcotic dependence publication-title: J Neurochem doi: 10.1046/j.1471-4159.2001.00362.x – volume: 31 start-page: 16279 year: 2011 ident: 10.1016/j.biopsych.2015.04.019_bib20 article-title: Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3835-11.2011 – volume: 20 start-page: 89 year: 2000 ident: 10.1016/j.biopsych.2015.04.019_bib34 article-title: Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-01-00089.2000 – volume: 180 start-page: 107 year: 2007 ident: 10.1016/j.biopsych.2015.04.019_bib42 article-title: Mu opioid receptor knockout mice in the Morris Water Maze: A learning or motivation deficit? publication-title: Behav Brain Res doi: 10.1016/j.bbr.2007.02.021 – volume: 21 start-page: 1151 year: 1998 ident: 10.1016/j.biopsych.2015.04.019_bib54 article-title: NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus publication-title: Neuron doi: 10.1016/S0896-6273(00)80632-7 – volume: 4 start-page: e4410 year: 2009 ident: 10.1016/j.biopsych.2015.04.019_bib44 article-title: Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task publication-title: PLoS One doi: 10.1371/journal.pone.0004410 – volume: 82 start-page: 333 year: 2012 ident: 10.1016/j.biopsych.2015.04.019_bib48 article-title: Differential modulation of drug-induced structural and functional plasticity of dendritic spines publication-title: Mol Pharmacol doi: 10.1124/mol.112.078162 – volume: 13 start-page: 431 year: 2006 ident: 10.1016/j.biopsych.2015.04.019_bib29 article-title: Retrieval induces hippocampal-dependent reconsolidation of spatial memory publication-title: Learn Mem doi: 10.1101/lm.315206 – volume: 9 start-page: 929 year: 1992 ident: 10.1016/j.biopsych.2015.04.019_bib28 article-title: The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein publication-title: Neuron doi: 10.1016/0896-6273(92)90245-9 – volume: 44 start-page: 374 year: 1985 ident: 10.1016/j.biopsych.2015.04.019_bib8 article-title: Effects of opiate antagonists on spatial memory in young and aged rats publication-title: Behav Neural Biol doi: 10.1016/S0163-1047(85)90688-0 – volume: 44 start-page: 5 year: 2004 ident: 10.1016/j.biopsych.2015.04.019_bib38 article-title: LTP and LTD: An embarrassment of riches publication-title: Neuron doi: 10.1016/j.neuron.2004.09.012 – volume: 30 start-page: 15304 year: 2010 ident: 10.1016/j.biopsych.2015.04.019_bib19 article-title: Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4255-10.2010 – volume: 63 start-page: 200 year: 1995 ident: 10.1016/j.biopsych.2015.04.019_bib1 article-title: Memory impairment induced by intraamygdala beta-endorphin is mediated by noradrenergic influences publication-title: Neurobiol Learn Mem doi: 10.1006/nlme.1995.1021 – volume: 64 start-page: 381 year: 2009 ident: 10.1016/j.biopsych.2015.04.019_bib37 article-title: AMPA receptor incorporation into synapses during LTP: The role of lateral movement and exocytosis publication-title: Neuron doi: 10.1016/j.neuron.2009.08.035 – volume: 23 start-page: 613 year: 2007 ident: 10.1016/j.biopsych.2015.04.019_bib35 article-title: The cell biology of synaptic plasticity: AMPA receptor trafficking publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.23.090506.123516 – volume: 1 start-page: 180 year: 2001 ident: 10.1016/j.biopsych.2015.04.019_bib31 article-title: Molecular mechanisms of memory acquisition, consolidation and retrieval publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(00)00194-X – volume: 102 start-page: 1725 year: 2005 ident: 10.1016/j.biopsych.2015.04.019_bib15 article-title: Mu-opioid receptors modulate the stability of dendritic spines publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0406797102 – volume: 6 start-page: 136 year: 2003 ident: 10.1016/j.biopsych.2015.04.019_bib33 article-title: PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity publication-title: Nat Neurosci doi: 10.1038/nn997 – volume: 104 start-page: 11471 year: 2007 ident: 10.1016/j.biopsych.2015.04.019_bib56 article-title: Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0702308104 – volume: 308 start-page: 512 year: 2004 ident: 10.1016/j.biopsych.2015.04.019_bib41 article-title: Basal signaling activity of mu opioid receptor in mouse brain: Role in narcotic dependence publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.103.054049 – volume: 246 start-page: 1033 year: 1988 ident: 10.1016/j.biopsych.2015.04.019_bib32 article-title: Acute and chronic opiate-regulation of adenylate cyclase in brain: Specific effects in locus coeruleus publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(25)22179-6 – volume: 35 start-page: 1908 year: 2012 ident: 10.1016/j.biopsych.2015.04.019_bib39 article-title: AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2012.08165.x – volume: 25 start-page: 7342 year: 2005 ident: 10.1016/j.biopsych.2015.04.019_bib21 article-title: Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4603-04.2005 – volume: 421 start-page: 115 year: 2001 ident: 10.1016/j.biopsych.2015.04.019_bib2 article-title: Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(01)01009-3 – volume: 32 start-page: 237 year: 2005 ident: 10.1016/j.biopsych.2015.04.019_bib14 article-title: Phosphorylation of AMPA receptors: Mechanisms and synaptic plasticity publication-title: Mol Neurobiol doi: 10.1385/MN:32:3:237 – volume: 2 start-page: 37 year: 1999 ident: 10.1016/j.biopsych.2015.04.019_bib25 article-title: Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons publication-title: Nat Neurosci doi: 10.1038/4540 – volume: 15 start-page: 3328 year: 1995 ident: 10.1016/j.biopsych.2015.04.019_bib47 article-title: Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-05-03328.1995 – volume: 135 start-page: 535 year: 2008 ident: 10.1016/j.biopsych.2015.04.019_bib36 article-title: Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity publication-title: Cell doi: 10.1016/j.cell.2008.09.057 – volume: 86 start-page: 831 year: 1980 ident: 10.1016/j.biopsych.2015.04.019_bib27 article-title: Isolation and characterization of postsynaptic densities from various brain regions: Enrichment of different types of postsynaptic densities publication-title: J Cell Biol doi: 10.1083/jcb.86.3.831 – volume: 36 start-page: 567 year: 2002 ident: 10.1016/j.biopsych.2015.04.019_bib30 article-title: Behavioral and neural analysis of extinction publication-title: Neuron doi: 10.1016/S0896-6273(02)01064-4 – volume: 35 start-page: 375 year: 1982 ident: 10.1016/j.biopsych.2015.04.019_bib7 article-title: Naloxone enhancement of memory processes: Effects of other opiate antagonists publication-title: Behav Neural Biol doi: 10.1016/S0163-1047(82)91020-2 – volume: 97 start-page: 1485 year: 2007 ident: 10.1016/j.biopsych.2015.04.019_bib16 article-title: Agonist-dependent postsynaptic effects of opioids on miniature excitatory postsynaptic currents in cultured hippocampal neurons publication-title: J Neurophysiol doi: 10.1152/jn.00790.2006 – volume: 319 start-page: 197 year: 1982 ident: 10.1016/j.biopsych.2015.04.019_bib46 article-title: The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties publication-title: Naunyn-Schmiedeberg Arch Pharmacol doi: 10.1007/BF00495865 – volume: 103 start-page: 479 year: 2010 ident: 10.1016/j.biopsych.2015.04.019_bib51 article-title: Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus publication-title: J Neurophysiol doi: 10.1152/jn.00835.2009 – volume: 94 start-page: 21 year: 1988 ident: 10.1016/j.biopsych.2015.04.019_bib9 article-title: Improved recognition memory in monkeys following naloxone administration publication-title: Psychopharmacology (Berl) doi: 10.1007/BF00735874 – volume: 35 start-page: 456 year: 2007 ident: 10.1016/j.biopsych.2015.04.019_bib17 article-title: Distinct effects of individual opioids on the morphology of spines depend upon the internalization of mu opioid receptors publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2007.04.007 – volume: 278 start-page: 11 year: 2014 ident: 10.1016/j.biopsych.2015.04.019_bib43 article-title: Loss of the mu opioid receptor induces strain-specific alterations in hippocampal neurogenesis and spatial learning publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.07.039 – reference: 16385140 - Mol Neurobiol. 2005 Dec;32(3):237-49 – reference: 17592137 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11471-6 – reference: 16198201 - Pain. 2005 Oct;117(3):388-95 – reference: 10195178 - Nat Neurosci. 1999 Jan;2(1):37-43 – reference: 16093384 - J Neurosci. 2005 Aug 10;25(32):7342-51 – reference: 4084183 - Behav Neural Biol. 1985 Nov;44(3):374-85 – reference: 22596350 - Mol Pharmacol. 2012 Aug;82(2):333-43 – reference: 6125900 - Naunyn Schmiedebergs Arch Pharmacol. 1982 Jun;319(3):197-205 – reference: 17122315 - J Neurophysiol. 2007 Feb;97(2):1485-94 – reference: 19906877 - J Neurophysiol. 2010 Jan;103(1):479-89 – reference: 17506699 - Annu Rev Cell Dev Biol. 2007;23:613-43 – reference: 12536214 - Nat Neurosci. 2003 Feb;6(2):136-43 – reference: 19198656 - PLoS One. 2009;4(2):e4410 – reference: 14600246 - J Pharmacol Exp Ther. 2004 Feb;308(2):512-20 – reference: 20646058 - Eur J Neurosci. 2010 Jul;32(2):269-77 – reference: 22708602 - Eur J Neurosci. 2012 Jun;35(12):1908-16 – reference: 19914186 - Neuron. 2009 Nov 12;64(3):381-90 – reference: 12441048 - Neuron. 2002 Nov 14;36(4):567-84 – reference: 1745703 - Psychopharmacology (Berl). 1991;105(1):101-6 – reference: 18455244 - Behav Brain Res. 2008 Aug 22;191(2):178-83 – reference: 22474602 - Neural Plast. 2012;2012:247150 – reference: 3126524 - Psychopharmacology (Berl). 1988;94(1):21-3 – reference: 6299265 - Behav Neural Biol. 1982 Aug;35(4):375-82 – reference: 23334104 - Psychopharmacology (Berl). 2013 Jun;227(3):437-45 – reference: 12052905 - Annu Rev Neurosci. 2002;25:103-26 – reference: 2843624 - J Pharmacol Exp Ther. 1988 Sep;246(3):1033-9 – reference: 9856470 - Neuron. 1998 Nov;21(5):1151-62 – reference: 17406317 - Nat Protoc. 2006;1(2):848-58 – reference: 21068335 - J Neurosci. 2010 Nov 10;30(45):15304-16 – reference: 15207338 - Neuroscience. 2004;126(4):1053-62 – reference: 25086317 - Neuroscience. 2014 Oct 10;278:11-9 – reference: 15450156 - Neuron. 2004 Sep 30;44(1):5-21 – reference: 15020245 - Biochem Biophys Res Commun. 2004 Apr 2;316(2):501-11 – reference: 1419001 - Neuron. 1992 Nov;9(5):929-42 – reference: 17397942 - Behav Brain Res. 2007 Jun 4;180(1):107-11 – reference: 17513124 - Mol Cell Neurosci. 2007 Jul;35(3):456-69 – reference: 11413242 - J Neurochem. 2001 Jun;77(6):1590-600 – reference: 12628184 - Cell. 2003 Mar 7;112(5):631-43 – reference: 18046303 - Neuropsychopharmacology. 2008 Sep;33(10):2416-26 – reference: 16272153 - J Biol Chem. 2006 Jan 13;281(2):752-8 – reference: 10627585 - J Neurosci. 2000 Jan 1;20(1):89-102 – reference: 7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41 – reference: 18984164 - Cell. 2008 Oct 31;135(3):535-48 – reference: 518457 - Behav Neural Biol. 1979 Nov;27(3):266-75 – reference: 8210177 - Annu Rev Neurosci. 1994;17:31-108 – reference: 7410481 - J Cell Biol. 1980 Sep;86(3):831-45 – reference: 11399267 - Eur J Pharmacol. 2001 Jun 8;421(2):115-9 – reference: 8377226 - J Neurosci Res. 1993 Aug 1;35(5):567-76 – reference: 16882860 - Learn Mem. 2006 Jul-Aug;13(4):431-40 – reference: 11301237 - Curr Opin Neurobiol. 2001 Apr;11(2):180-7 – reference: 7663894 - Neurobiol Learn Mem. 1995 Mar;63(2):200-5 – reference: 119264 - Psychopharmacology (Berl). 1979 Nov;66(2):199-203 – reference: 10879537 - Nature. 2000 Jun 22;405(6789):955-9 – reference: 22072679 - J Neurosci. 2011 Nov 9;31(45):16279-91 – reference: 12373743 - Synapse. 2002 Dec 15;46(4):271-9 – reference: 15659552 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1725-30 – reference: 21420743 - Trends Neurosci. 2011 May;34(5):258-68 |
SSID | ssj0007221 |
Score | 2.3354068 |
Snippet | The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We... AbstractBackgroundThe opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 906 |
SubjectTerms | AMPA receptors Animals Cells, Cultured Extinction, Psychological - drug effects Extinction, Psychological - physiology GluA1 GluA1-S845 GluA1-S845A mutant Hippocampus - drug effects Hippocampus - metabolism Maze Learning - drug effects Maze Learning - physiology Mice, Inbred C57BL Mice, Transgenic Naltrexone Naltrexone - pharmacology Narcotic Antagonists - pharmacology Neuronal Plasticity - drug effects Neuronal Plasticity - physiology Phosphorylation - drug effects Post-Synaptic Density - drug effects Post-Synaptic Density - metabolism Psychiatric/Mental Health Rats, Sprague-Dawley Receptors, AMPA - genetics Receptors, AMPA - metabolism Receptors, Opioid, mu - genetics Receptors, Opioid, mu - metabolism Spatial memory Spatial Memory - drug effects Spatial Memory - physiology |
Title | Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322315003571 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322315003571 https://dx.doi.org/10.1016/j.biopsych.2015.04.019 https://www.ncbi.nlm.nih.gov/pubmed/26049209 https://www.proquest.com/docview/1790463195 https://pubmed.ncbi.nlm.nih.gov/PMC4630208 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi3hcEJRXeayMxDVbx3Hs-FiVrbqgVntgpb1ZTmLTrEpSNVmpvfDbGSdO2bJIIJB6aWrHrmc8M5a_-QahD2FiOLVEBjYSNGB5lgQ6j2xAhKE8YpzKNst1vuCzS_bpKr46QpM-F8bBKr3t72x6a639k5FfzdG6KFyOL7hX8G4Q0pAobvPIGRNOy0-__4R5CEp91TweuNa3soSvT9OiakHFDuIVt5SnjnHn9w7qbgD6K47ylmOaPkGPfUSJx92kn6IjUw7Q_a7G5G6AHk76km4D9GDub9Kfoe1Cr5qN2ValwVOddVzdpsaeb_Ur1mWOP5qV3tX4bNsUZZv_gNMdBovigOyuzXh-McYQeJo1nNzxxbKq18tqs-vgde0b5uYbHMdhjPPSXfvD4-focnr2ZTILfBWGIONMNIFhoZawsCyVNoXdnqcistJq8PtER4bEJiIJkznnJqO5K5ObGsqETTL4EIiuXqDjEv7MK4RJFGXS0iSxhkEYZ7WNbcqJ5WGohbbhEMX90qvMU5S7Shkr1WPRrlUvMuVEpghTILIhGu37rTuSjj_2EL1kVZ-CCkZTgR_5t56m9nu_VqGqqSLqjn4Okdz3PFDxvxr1fa9-CnTGXeqA7KobGE1IR_oWyniIXnbquF8DOKsySYmb84Gi7hs4bvHDX8pi2XKMwytd-dbX_zHnN-gRfOMdru4tOm42N-YdRHBNetJu0RN0b3z-ebb4AZ2pSEk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclZetexpZ9ZZ8a7NWLLMuy9RiyhmStQx9a6JuQbalxyZwQp5D89zvZsmnWwcYGfrJ8kqw73Z3Q3e8Q-uLHmlNDhGeCiHosz2JP5YHxSKQpDxinos5yTeZ8esW-X4fXR2jc5sLYsEqn-xudXmtr92boVnO4Lgqb4wvmFawbuDQkCG0e-bFFpwp76Hg0O5vOO4UcUeoK53HPEtxLFL79mharOq7YRnmFNeqpBd35vY166IP-Gkp5zzZNnqGnzqnEo2bez9GRLvvoUVNmct9HJ-O2qlsfPU7cZfoLtJur5Xajd6tS44nKGrhuXWEHuXqDVZnjb3qp9hU-3W2Lsk6BwOkeg1Kxsez2m1FyMcLge-o1HN7xxWJVrRerzb6JsKt7SPQPOJHDGLPS3vzD65foanJ6OZ56rhCDl3EWbT3NfCUYi1gqTAobPk-jwAijwPQTFWgS6oDETOSc64zmtlJuqimLTJzBQ8DBeoV6JfzMG4RJEGTC0Dg2moEnZ5QJTcqJ4b6vImX8AQrbpZeZQym3xTKWsg1Hu5Uty6RlmSRMAssGaNjRrRucjj9SRC1nZZuFCnpTgin5N0pdue1fSV9WVBL5QEQHSHSUB1L-V6N-bsVPgszYex3g3eoORouExX3zRThArxtx7NYAjqtMUGLnfCCo3QcWXvywpSwWNcw4dGkruL79jzl_QifTy-Rcns_mZ-_QE2jhTZjde9Tbbu70B3DotulHt2F_Aq5VSvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Naltrexone+Facilitates+Learning+and+Delays+Extinction+by+Increasing+AMPA+Receptor+Phosphorylation+and+Membrane+Insertion&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Kibaly%2C+Cherkaouia&rft.au=Kam%2C+Angel+Y+F&rft.au=Loh%2C+Horace+H&rft.au=Law%2C+Ping-Yee&rft.date=2016-06-01&rft.eissn=1873-2402&rft.volume=79&rft.issue=11&rft.spage=906&rft_id=info:doi/10.1016%2Fj.biopsych.2015.04.019&rft_id=info%3Apmid%2F26049209&rft.externalDocID=26049209 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322316X0008X%2Fcov150h.gif |