Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion

The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a...

Full description

Saved in:
Bibliographic Details
Published inBiological psychiatry (1969) Vol. 79; no. 11; pp. 906 - 916
Main Authors Kibaly, Cherkaouia, Kam, Angel Y.F., Loh, Horace H., Law, Ping-Yee
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity. To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser845 was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis. In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning. The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.
AbstractList The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity. To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser845 was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis. In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning. The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.
AbstractBackgroundThe opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity. MethodsTo measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser 845 was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis. ResultsIn vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning. ConclusionsThe beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.
The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity.BACKGROUNDThe opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity.To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser(845) was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis.METHODSTo measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser(845) was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis.In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning.RESULTSIn vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning.The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.CONCLUSIONSThe beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.
The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity. To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser(845) was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis. In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning. The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.
Author Law, Ping-Yee
Kibaly, Cherkaouia
Kam, Angel Y.F.
Loh, Horace H.
Author_xml – sequence: 1
  givenname: Cherkaouia
  surname: Kibaly
  fullname: Kibaly, Cherkaouia
  email: kibal001@umn.edu
– sequence: 2
  givenname: Angel Y.F.
  surname: Kam
  fullname: Kam, Angel Y.F.
– sequence: 3
  givenname: Horace H.
  surname: Loh
  fullname: Loh, Horace H.
– sequence: 4
  givenname: Ping-Yee
  surname: Law
  fullname: Law, Ping-Yee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26049209$$D View this record in MEDLINE/PubMed
BookMark eNqNkttuEzEQhi1URNPCK1R7yU2Wsdd7klBFVHqIlELF4dryemcbB8cO9qbKvj1e0lbQC4pkybL9zzfj-eeIHFhnkZATCikFWrxbpY12mzCoZcqA5inwFGj9gkxoVWZTxoEdkAkAFNOMseyQHIWwiseSMfqKHLICeM2gnpDdJ2l6j7tITy6k0kb3sseQLFB6q-1tIm2bfEQjh5Cc73ptVa-dTZohmVvlUYZRM7u-mSVfUOGmdz65WbqwWTo_GPlbOxKucd14GXPMbUA_Xr8mLztpAr6534_J94vzb2dX08Xny_nZbDFVBS_7KXIqa85L3tRdU1XQNmXW1Z3MGQWZIeSYQcXrtihQsZbRnDXIeNlVKi4oWHZMTvfczbZZY6vQ9l4asfF6Lf0gnNTi7xerl-LW3QleZMCgioC39wDvfm4x9GKtg0Jj4nfcNgha1hC1tM6j9OTPXI9JHtodBcVeoLwLwWP3KKEgRl_FSjz4KkZfBXARfY2B758EqtGo2MdYszbPh3_Yh2Ps9J1GL4LSaBW22qPqRev084jTJwhltNVKmh84YFi5rbfRR0FFYALE13H2xtGjOUCWl_TfgP-p4BdGjPAV
CitedBy_id crossref_primary_10_1097_HRP_0000000000000242
crossref_primary_10_3389_fphys_2022_823152
crossref_primary_10_1007_s00210_021_02086_2
crossref_primary_10_1097_FBP_0000000000000557
crossref_primary_10_1016_j_neuropharm_2017_08_030
crossref_primary_10_1016_j_physbeh_2020_113212
crossref_primary_10_1016_j_neuropharm_2018_08_031
crossref_primary_10_1096_fj_201800029R
crossref_primary_10_5812_ircmj_59814
crossref_primary_10_1038_s41583_018_0092_2
crossref_primary_10_1096_fj_201802351R
crossref_primary_10_1097_FBP_0000000000000769
crossref_primary_10_1124_molpharm_121_000429
crossref_primary_10_1101_cshperspect_a039602
crossref_primary_10_1016_j_neuroscience_2019_04_007
crossref_primary_10_1007_s10571_020_00970_8
crossref_primary_10_1016_j_neubiorev_2019_12_007
crossref_primary_10_3389_fnins_2019_00071
crossref_primary_10_1097_FBP_0000000000000449
crossref_primary_10_1038_srep38771
crossref_primary_10_2478_intox_2020_0012
crossref_primary_10_1186_s40035_022_00334_w
crossref_primary_10_3389_fncel_2021_685838
crossref_primary_10_1016_j_bbr_2020_112971
crossref_primary_10_1016_j_cellsig_2018_11_003
crossref_primary_10_1007_s10571_019_00752_x
crossref_primary_10_1016_j_peptides_2018_01_011
Cites_doi 10.1016/j.bbr.2008.03.026
10.1007/BF02316870
10.1002/jnr.490350513
10.1016/S0163-1047(79)92328-8
10.1002/syn.10146
10.1155/2012/247150
10.1038/nprot.2006.116
10.1016/j.neuroscience.2004.03.066
10.1016/j.bbrc.2004.02.086
10.1146/annurev.neuro.25.112701.142758
10.1016/j.tins.2011.02.004
10.1016/S0092-8674(03)00122-3
10.1007/BF00427631
10.1038/sj.npp.1301642
10.1111/j.1460-9568.2010.07339.x
10.1038/35016089
10.1016/j.pain.2005.06.022
10.1007/s00213-013-2968-1
10.1146/annurev.ne.17.030194.000335
10.1046/j.1471-4159.2001.00362.x
10.1523/JNEUROSCI.3835-11.2011
10.1523/JNEUROSCI.20-01-00089.2000
10.1016/j.bbr.2007.02.021
10.1016/S0896-6273(00)80632-7
10.1371/journal.pone.0004410
10.1124/mol.112.078162
10.1101/lm.315206
10.1016/0896-6273(92)90245-9
10.1016/S0163-1047(85)90688-0
10.1016/j.neuron.2004.09.012
10.1523/JNEUROSCI.4255-10.2010
10.1006/nlme.1995.1021
10.1016/j.neuron.2009.08.035
10.1146/annurev.cellbio.23.090506.123516
10.1016/S0959-4388(00)00194-X
10.1073/pnas.0406797102
10.1038/nn997
10.1073/pnas.0702308104
10.1124/jpet.103.054049
10.1016/S0022-3565(25)22179-6
10.1111/j.1460-9568.2012.08165.x
10.1523/JNEUROSCI.4603-04.2005
10.1016/S0014-2999(01)01009-3
10.1385/MN:32:3:237
10.1038/4540
10.1523/JNEUROSCI.15-05-03328.1995
10.1016/j.cell.2008.09.057
10.1083/jcb.86.3.831
10.1016/S0896-6273(02)01064-4
10.1016/S0163-1047(82)91020-2
10.1152/jn.00790.2006
10.1007/BF00495865
10.1152/jn.00835.2009
10.1007/BF00735874
10.1016/j.mcn.2007.04.007
10.1016/j.neuroscience.2014.07.039
ContentType Journal Article
Copyright 2016
Published by Elsevier Inc.
Copyright_xml – notice: 2016
– notice: Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.biopsych.2015.04.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1873-2402
EndPage 916
ExternalDocumentID PMC4630208
26049209
10_1016_j_biopsych_2015_04_019
S0006322315003571
1_s2_0_S0006322315003571
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA031442
– fundername: NIDA NIH HHS
  grantid: P50 DA011806
GroupedDBID ---
--K
--M
-DZ
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABCQX
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ACDAQ
ACGFO
ACIEU
ACIUM
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
L7B
M29
M2V
M39
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSN
SSZ
T5K
UNMZH
UPT
UV1
WH7
Z5R
ZCA
~G-
.GJ
3O-
53G
AAQXK
ABDPE
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HEG
HMK
HMO
HMQ
HVGLF
HZ~
H~9
R2-
SNS
UAP
WUQ
XJT
XOL
ZGI
ZKB
ZXP
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c647t-e41a94474b9fb880db73f9fa5210a3e05e30849d66ec2d2152be247f8cf8c0623
IEDL.DBID .~1
ISSN 0006-3223
1873-2402
IngestDate Thu Aug 21 14:00:33 EDT 2025
Fri Jul 11 03:28:14 EDT 2025
Mon Jul 21 06:04:49 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Sun Jul 06 05:08:13 EDT 2025
Fri Feb 23 02:15:04 EST 2024
Fri Aug 22 09:50:53 EDT 2025
Tue Aug 26 16:58:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords GluA1-S845A mutant
GluA1-S845
AMPA receptors
GluA1
Naltrexone
Spatial memory
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c647t-e41a94474b9fb880db73f9fa5210a3e05e30849d66ec2d2152be247f8cf8c0623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.biopsych.2015.04.019
PMID 26049209
PQID 1790463195
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4630208
proquest_miscellaneous_1790463195
pubmed_primary_26049209
crossref_primary_10_1016_j_biopsych_2015_04_019
crossref_citationtrail_10_1016_j_biopsych_2015_04_019
elsevier_sciencedirect_doi_10_1016_j_biopsych_2015_04_019
elsevier_clinicalkeyesjournals_1_s2_0_S0006322315003571
elsevier_clinicalkey_doi_10_1016_j_biopsych_2015_04_019
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biological psychiatry (1969)
PublicationTitleAlternate Biol Psychiatry
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Olmstead, Ouagazzal, Kieffer (bib44) 2009; 4
Duman, Tallman, Nestler (bib32) 1988; 246
Liao, Zhang, OʼBrien, Ehlers, Huganir (bib25) 1999; 2
Gallagher (bib7) 1982; 35
Gallagher, Bostock, King (bib8) 1985; 44
Chang, Verbich, McKinney (bib39) 2012; 35
Sun, Zhao, Wolf (bib21) 2005; 25
Henley, Barker, Glebov (bib45) 2011; 34
Kam, Liao, Loh, Law (bib19) 2010; 30
Keifer, Zheng (bib11) 2010; 32
Oh, Yang, Ahn, Youn, Choi, Wang, Choe (bib50) 2013; 227
Malinow, Malenka (bib10) 2002; 25
Yu, Lu (bib12) 2012; 2012
Wong, Howland, Robillard, Ge, Yu, Titterness (bib56) 2007; 104
Malenka, Bear (bib38) 2004; 44
Arvidsson, Riedl, Chakrabarti, Lee, Nakano, Dado (bib47) 1995; 15
Esteban, Shi, Wilson, Nuriya, Huganir, Malinow (bib33) 2003; 6
Lee, Barbarosie, Kameyama, Bear, Huganir (bib55) 2000; 405
Robinson, Gorny, Savage, Kolb (bib18) 2002; 46
Abel, Lattal (bib31) 2001; 1
Kamboj, Tookman, Jones, Curran (bib4) 2005; 117
Ukai, Watanabe, Kameyama (bib2) 2001; 421
Liao, Grigoriants, Wang, Wiens, Loh, Law (bib17) 2007; 35
Carlin, Grab, Cohen, Siekevitz (bib27) 1980; 86
Sharp, Ross, Koehnle, Gietzen (bib49) 2004; 126
Spain, Newsom (bib3) 1991; 105
Izquierdo (bib5) 1979; 66
Liao, Grigoriants, Loh, Law (bib16) 2007; 97
Myers, Davis (bib30) 2002; 36
Brewer, Torricelli, Evege, Price (bib24) 1993; 35
Crombag, Sutton, Takamiya, Lee, Holland, Gallagher, Huganir (bib53) 2008; 191
Shepherd, Huganir (bib35) 2007; 23
Wang, Arora, Yang, Parelkar, Zhang, Liu (bib14) 2005; 32
Cominski, Ansonoff, Turchin, Pintar (bib43) 2014; 278
Lubbers, van den Bos, Spruijt (bib42) 2007; 180
Xia, Portugal, Fakira, Melyan, Neve, Lee (bib20) 2011; 31
Miller, Zhang, Dummer, Cariveau, Loh, Law, Liao (bib48) 2012; 82
Wang, Raehal, Bilsky, Sadée (bib40) 2001; 77
Messing, Jensen, Martinez, Spiehler, Vasquez, Soumireu-Mourat (bib6) 1979; 27
Magnan, Paterson, Tavani, Kosterlitz (bib46) 1982; 319
Lee, Takamiya, He, Song, Huganir (bib51) 2010; 103
Oh, Derkach, Guire, Soderling (bib22) 2006; 281
Lin, Huganir, Liao (bib26) 2004; 316
Dalton, Wang, Floresco, Phillips (bib57) 2008; 33
Rossato, Bevilaqua, Medina, Izquierdo, Cammarota (bib29) 2006; 13
Liao, Lin, Law, Loh (bib15) 2005; 102
Makino, Malinow (bib37) 2009; 64
Lee, Takamiya, Han, Man, Kim, Rumbaugh (bib52) 2003; 112
Banke, Bowie, Lee, Huganir, Schousboe, Traynelis (bib34) 2000; 20
Introini-Collison, Ford, McGaugh (bib1) 1995; 63
Hollmann, Heinemann (bib13) 1994; 17
Wang, Edwards, Riley, Provance, Karcher, Li (bib36) 2008; 135
Aigner, Mishkin (bib9) 1988; 94
Vorhees, Williams (bib23) 2006; 1
Wang, Raehal, Lin, Lowery, Kieffer, Bilsky, Sadée (bib41) 2004; 308
Lee, Kameyama, Huganir, Bear (bib54) 1998; 21
Cho, Hunt, Kennedy (bib28) 1992; 9
Olmstead (10.1016/j.biopsych.2015.04.019_bib44) 2009; 4
Liao (10.1016/j.biopsych.2015.04.019_bib25) 1999; 2
Oh (10.1016/j.biopsych.2015.04.019_bib50) 2013; 227
Dalton (10.1016/j.biopsych.2015.04.019_bib57) 2008; 33
Lubbers (10.1016/j.biopsych.2015.04.019_bib42) 2007; 180
Esteban (10.1016/j.biopsych.2015.04.019_bib33) 2003; 6
Wang (10.1016/j.biopsych.2015.04.019_bib36) 2008; 135
Hollmann (10.1016/j.biopsych.2015.04.019_bib13) 1994; 17
Brewer (10.1016/j.biopsych.2015.04.019_bib24) 1993; 35
Malinow (10.1016/j.biopsych.2015.04.019_bib10) 2002; 25
Miller (10.1016/j.biopsych.2015.04.019_bib48) 2012; 82
Lee (10.1016/j.biopsych.2015.04.019_bib51) 2010; 103
Kam (10.1016/j.biopsych.2015.04.019_bib19) 2010; 30
Oh (10.1016/j.biopsych.2015.04.019_bib22) 2006; 281
Magnan (10.1016/j.biopsych.2015.04.019_bib46) 1982; 319
Wong (10.1016/j.biopsych.2015.04.019_bib56) 2007; 104
Henley (10.1016/j.biopsych.2015.04.019_bib45) 2011; 34
Messing (10.1016/j.biopsych.2015.04.019_bib6) 1979; 27
Lin (10.1016/j.biopsych.2015.04.019_bib26) 2004; 316
Wang (10.1016/j.biopsych.2015.04.019_bib41) 2004; 308
Arvidsson (10.1016/j.biopsych.2015.04.019_bib47) 1995; 15
Myers (10.1016/j.biopsych.2015.04.019_bib30) 2002; 36
Keifer (10.1016/j.biopsych.2015.04.019_bib11) 2010; 32
Aigner (10.1016/j.biopsych.2015.04.019_bib9) 1988; 94
Kamboj (10.1016/j.biopsych.2015.04.019_bib4) 2005; 117
Izquierdo (10.1016/j.biopsych.2015.04.019_bib5) 1979; 66
Carlin (10.1016/j.biopsych.2015.04.019_bib27) 1980; 86
Crombag (10.1016/j.biopsych.2015.04.019_bib53) 2008; 191
Sharp (10.1016/j.biopsych.2015.04.019_bib49) 2004; 126
Wang (10.1016/j.biopsych.2015.04.019_bib14) 2005; 32
Lee (10.1016/j.biopsych.2015.04.019_bib52) 2003; 112
Abel (10.1016/j.biopsych.2015.04.019_bib31) 2001; 1
Xia (10.1016/j.biopsych.2015.04.019_bib20) 2011; 31
Cho (10.1016/j.biopsych.2015.04.019_bib28) 1992; 9
Liao (10.1016/j.biopsych.2015.04.019_bib17) 2007; 35
Shepherd (10.1016/j.biopsych.2015.04.019_bib35) 2007; 23
Makino (10.1016/j.biopsych.2015.04.019_bib37) 2009; 64
Robinson (10.1016/j.biopsych.2015.04.019_bib18) 2002; 46
Gallagher (10.1016/j.biopsych.2015.04.019_bib7) 1982; 35
Gallagher (10.1016/j.biopsych.2015.04.019_bib8) 1985; 44
Lee (10.1016/j.biopsych.2015.04.019_bib54) 1998; 21
Duman (10.1016/j.biopsych.2015.04.019_bib32) 1988; 246
Wang (10.1016/j.biopsych.2015.04.019_bib40) 2001; 77
Malenka (10.1016/j.biopsych.2015.04.019_bib38) 2004; 44
Liao (10.1016/j.biopsych.2015.04.019_bib15) 2005; 102
Ukai (10.1016/j.biopsych.2015.04.019_bib2) 2001; 421
Chang (10.1016/j.biopsych.2015.04.019_bib39) 2012; 35
Introini-Collison (10.1016/j.biopsych.2015.04.019_bib1) 1995; 63
Liao (10.1016/j.biopsych.2015.04.019_bib16) 2007; 97
Banke (10.1016/j.biopsych.2015.04.019_bib34) 2000; 20
Spain (10.1016/j.biopsych.2015.04.019_bib3) 1991; 105
Yu (10.1016/j.biopsych.2015.04.019_bib12) 2012; 2012
Lee (10.1016/j.biopsych.2015.04.019_bib55) 2000; 405
Vorhees (10.1016/j.biopsych.2015.04.019_bib23) 2006; 1
Cominski (10.1016/j.biopsych.2015.04.019_bib43) 2014; 278
Sun (10.1016/j.biopsych.2015.04.019_bib21) 2005; 25
Rossato (10.1016/j.biopsych.2015.04.019_bib29) 2006; 13
12441048 - Neuron. 2002 Nov 14;36(4):567-84
12373743 - Synapse. 2002 Dec 15;46(4):271-9
1419001 - Neuron. 1992 Nov;9(5):929-42
10195178 - Nat Neurosci. 1999 Jan;2(1):37-43
21068335 - J Neurosci. 2010 Nov 10;30(45):15304-16
22708602 - Eur J Neurosci. 2012 Jun;35(12):1908-16
16272153 - J Biol Chem. 2006 Jan 13;281(2):752-8
22474602 - Neural Plast. 2012;2012:247150
18455244 - Behav Brain Res. 2008 Aug 22;191(2):178-83
7410481 - J Cell Biol. 1980 Sep;86(3):831-45
20646058 - Eur J Neurosci. 2010 Jul;32(2):269-77
21420743 - Trends Neurosci. 2011 May;34(5):258-68
518457 - Behav Neural Biol. 1979 Nov;27(3):266-75
3126524 - Psychopharmacology (Berl). 1988;94(1):21-3
119264 - Psychopharmacology (Berl). 1979 Nov;66(2):199-203
11301237 - Curr Opin Neurobiol. 2001 Apr;11(2):180-7
25086317 - Neuroscience. 2014 Oct 10;278:11-9
23334104 - Psychopharmacology (Berl). 2013 Jun;227(3):437-45
1745703 - Psychopharmacology (Berl). 1991;105(1):101-6
17513124 - Mol Cell Neurosci. 2007 Jul;35(3):456-69
15207338 - Neuroscience. 2004;126(4):1053-62
6125900 - Naunyn Schmiedebergs Arch Pharmacol. 1982 Jun;319(3):197-205
12628184 - Cell. 2003 Mar 7;112(5):631-43
19906877 - J Neurophysiol. 2010 Jan;103(1):479-89
16882860 - Learn Mem. 2006 Jul-Aug;13(4):431-40
16093384 - J Neurosci. 2005 Aug 10;25(32):7342-51
18046303 - Neuropsychopharmacology. 2008 Sep;33(10):2416-26
15020245 - Biochem Biophys Res Commun. 2004 Apr 2;316(2):501-11
12536214 - Nat Neurosci. 2003 Feb;6(2):136-43
14600246 - J Pharmacol Exp Ther. 2004 Feb;308(2):512-20
22596350 - Mol Pharmacol. 2012 Aug;82(2):333-43
10879537 - Nature. 2000 Jun 22;405(6789):955-9
19914186 - Neuron. 2009 Nov 12;64(3):381-90
17506699 - Annu Rev Cell Dev Biol. 2007;23:613-43
11413242 - J Neurochem. 2001 Jun;77(6):1590-600
17122315 - J Neurophysiol. 2007 Feb;97(2):1485-94
6299265 - Behav Neural Biol. 1982 Aug;35(4):375-82
7663894 - Neurobiol Learn Mem. 1995 Mar;63(2):200-5
12052905 - Annu Rev Neurosci. 2002;25:103-26
11399267 - Eur J Pharmacol. 2001 Jun 8;421(2):115-9
16385140 - Mol Neurobiol. 2005 Dec;32(3):237-49
8210177 - Annu Rev Neurosci. 1994;17:31-108
16198201 - Pain. 2005 Oct;117(3):388-95
22072679 - J Neurosci. 2011 Nov 9;31(45):16279-91
15659552 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1725-30
18984164 - Cell. 2008 Oct 31;135(3):535-48
19198656 - PLoS One. 2009;4(2):e4410
7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41
8377226 - J Neurosci Res. 1993 Aug 1;35(5):567-76
17397942 - Behav Brain Res. 2007 Jun 4;180(1):107-11
15450156 - Neuron. 2004 Sep 30;44(1):5-21
9856470 - Neuron. 1998 Nov;21(5):1151-62
2843624 - J Pharmacol Exp Ther. 1988 Sep;246(3):1033-9
10627585 - J Neurosci. 2000 Jan 1;20(1):89-102
17406317 - Nat Protoc. 2006;1(2):848-58
17592137 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11471-6
4084183 - Behav Neural Biol. 1985 Nov;44(3):374-85
References_xml – volume: 2
  start-page: 37
  year: 1999
  end-page: 43
  ident: bib25
  article-title: Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons
  publication-title: Nat Neurosci
– volume: 6
  start-page: 136
  year: 2003
  end-page: 143
  ident: bib33
  article-title: PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity
  publication-title: Nat Neurosci
– volume: 104
  start-page: 11471
  year: 2007
  end-page: 11476
  ident: bib56
  article-title: Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: 929
  year: 1992
  end-page: 942
  ident: bib28
  article-title: The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein
  publication-title: Neuron
– volume: 31
  start-page: 16279
  year: 2011
  end-page: 16291
  ident: bib20
  article-title: Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine
  publication-title: J Neurosci
– volume: 44
  start-page: 374
  year: 1985
  end-page: 385
  ident: bib8
  article-title: Effects of opiate antagonists on spatial memory in young and aged rats
  publication-title: Behav Neural Biol
– volume: 77
  start-page: 1590
  year: 2001
  end-page: 1600
  ident: bib40
  article-title: Inverse agonists and neutral antagonists at mu opioid receptor (MOR): Possible role of basal receptor signaling in narcotic dependence
  publication-title: J Neurochem
– volume: 405
  start-page: 955
  year: 2000
  end-page: 959
  ident: bib55
  article-title: Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity
  publication-title: Nature
– volume: 64
  start-page: 381
  year: 2009
  end-page: 390
  ident: bib37
  article-title: AMPA receptor incorporation into synapses during LTP: The role of lateral movement and exocytosis
  publication-title: Neuron
– volume: 86
  start-page: 831
  year: 1980
  end-page: 845
  ident: bib27
  article-title: Isolation and characterization of postsynaptic densities from various brain regions: Enrichment of different types of postsynaptic densities
  publication-title: J Cell Biol
– volume: 36
  start-page: 567
  year: 2002
  end-page: 584
  ident: bib30
  article-title: Behavioral and neural analysis of extinction
  publication-title: Neuron
– volume: 35
  start-page: 1908
  year: 2012
  end-page: 1916
  ident: bib39
  article-title: AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook
  publication-title: Eur J Neurosci
– volume: 20
  start-page: 89
  year: 2000
  end-page: 102
  ident: bib34
  article-title: Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase
  publication-title: J Neurosci
– volume: 117
  start-page: 388
  year: 2005
  end-page: 395
  ident: bib4
  article-title: The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care
  publication-title: Pain
– volume: 97
  start-page: 1485
  year: 2007
  end-page: 1494
  ident: bib16
  article-title: Agonist-dependent postsynaptic effects of opioids on miniature excitatory postsynaptic currents in cultured hippocampal neurons
  publication-title: J Neurophysiol
– volume: 227
  start-page: 437
  year: 2013
  end-page: 445
  ident: bib50
  article-title: Activation of protein kinase C is required for AMPA receptor GluR1 phosphorylation at serine 845 in the dorsal striatum following repeated cocaine administration
  publication-title: Psychopharmacology (Berl)
– volume: 112
  start-page: 631
  year: 2003
  end-page: 643
  ident: bib52
  article-title: Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory
  publication-title: Cell
– volume: 82
  start-page: 333
  year: 2012
  end-page: 343
  ident: bib48
  article-title: Differential modulation of drug-induced structural and functional plasticity of dendritic spines
  publication-title: Mol Pharmacol
– volume: 1
  start-page: 848
  year: 2006
  end-page: 858
  ident: bib23
  article-title: Morris water maze: Procedures for assessing spatial and related forms of learning and memory
  publication-title: Nat Protoc
– volume: 126
  start-page: 1053
  year: 2004
  end-page: 1062
  ident: bib49
  article-title: Phosphorylation of Ca2+/calmodulin-dependent protein kinase type ii and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (ampa) receptor in response to a threonine-devoid diet
  publication-title: Neuroscience
– volume: 63
  start-page: 200
  year: 1995
  end-page: 205
  ident: bib1
  article-title: Memory impairment induced by intraamygdala beta-endorphin is mediated by noradrenergic influences
  publication-title: Neurobiol Learn Mem
– volume: 30
  start-page: 15304
  year: 2010
  end-page: 15316
  ident: bib19
  article-title: Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits
  publication-title: J Neurosci
– volume: 35
  start-page: 375
  year: 1982
  end-page: 382
  ident: bib7
  article-title: Naloxone enhancement of memory processes: Effects of other opiate antagonists
  publication-title: Behav Neural Biol
– volume: 27
  start-page: 266
  year: 1979
  end-page: 275
  ident: bib6
  article-title: Naloxone enhancement of memory
  publication-title: Behav Neural Biol
– volume: 316
  start-page: 501
  year: 2004
  end-page: 511
  ident: bib26
  article-title: Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines
  publication-title: Biochem Biophys Res Commun
– volume: 135
  start-page: 535
  year: 2008
  end-page: 548
  ident: bib36
  article-title: Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity
  publication-title: Cell
– volume: 35
  start-page: 456
  year: 2007
  end-page: 469
  ident: bib17
  article-title: Distinct effects of individual opioids on the morphology of spines depend upon the internalization of mu opioid receptors
  publication-title: Mol Cell Neurosci
– volume: 180
  start-page: 107
  year: 2007
  end-page: 111
  ident: bib42
  article-title: Mu opioid receptor knockout mice in the Morris Water Maze: A learning or motivation deficit?
  publication-title: Behav Brain Res
– volume: 13
  start-page: 431
  year: 2006
  end-page: 440
  ident: bib29
  article-title: Retrieval induces hippocampal-dependent reconsolidation of spatial memory
  publication-title: Learn Mem
– volume: 33
  start-page: 2416
  year: 2008
  end-page: 2426
  ident: bib57
  article-title: Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear
  publication-title: Neuropsychopharmacology
– volume: 23
  start-page: 613
  year: 2007
  end-page: 643
  ident: bib35
  article-title: The cell biology of synaptic plasticity: AMPA receptor trafficking
  publication-title: Annu Rev Cell Dev Biol
– volume: 32
  start-page: 269
  year: 2010
  end-page: 277
  ident: bib11
  article-title: AMPA receptor trafficking and learning
  publication-title: Eur J Neurosci
– volume: 278
  start-page: 11
  year: 2014
  end-page: 19
  ident: bib43
  article-title: Loss of the mu opioid receptor induces strain-specific alterations in hippocampal neurogenesis and spatial learning
  publication-title: Neuroscience
– volume: 46
  start-page: 271
  year: 2002
  end-page: 279
  ident: bib18
  article-title: Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats
  publication-title: Synapse
– volume: 103
  start-page: 479
  year: 2010
  end-page: 489
  ident: bib51
  article-title: Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus
  publication-title: J Neurophysiol
– volume: 17
  start-page: 31
  year: 1994
  end-page: 108
  ident: bib13
  article-title: Cloned glutamate receptors
  publication-title: Annu Rev Neurosci
– volume: 2012
  start-page: 247150
  year: 2012
  ident: bib12
  article-title: Synapses and dendritic spines as pathogenic targets in Alzheimerʼs disease
  publication-title: Neural Plast
– volume: 35
  start-page: 567
  year: 1993
  end-page: 576
  ident: bib24
  article-title: Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination
  publication-title: J Neurosci Res
– volume: 281
  start-page: 752
  year: 2006
  end-page: 758
  ident: bib22
  article-title: Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation
  publication-title: J Neurosci
– volume: 25
  start-page: 7342
  year: 2005
  end-page: 7351
  ident: bib21
  article-title: Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons
  publication-title: J Neurosci
– volume: 32
  start-page: 237
  year: 2005
  end-page: 249
  ident: bib14
  article-title: Phosphorylation of AMPA receptors: Mechanisms and synaptic plasticity
  publication-title: Mol Neurobiol
– volume: 66
  start-page: 199
  year: 1979
  end-page: 203
  ident: bib5
  article-title: Effect of naloxone and morphine on various forms of memory in the rat: Possible role of engogenous opiate mechanisms in memory consolidation
  publication-title: Psychopharmacology (Berl)
– volume: 421
  start-page: 115
  year: 2001
  end-page: 119
  ident: bib2
  article-title: Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice
  publication-title: Eur J Pharmacol
– volume: 44
  start-page: 5
  year: 2004
  end-page: 21
  ident: bib38
  article-title: LTP and LTD: An embarrassment of riches
  publication-title: Neuron
– volume: 4
  start-page: e4410
  year: 2009
  ident: bib44
  article-title: Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task
  publication-title: PLoS One
– volume: 25
  start-page: 103
  year: 2002
  end-page: 126
  ident: bib10
  article-title: AMPA receptor trafficking and synaptic plasticity
  publication-title: Annu Rev Neurosci
– volume: 102
  start-page: 1725
  year: 2005
  end-page: 1730
  ident: bib15
  article-title: Mu-opioid receptors modulate the stability of dendritic spines
  publication-title: Proc Natl Acad Sci U S A
– volume: 105
  start-page: 101
  year: 1991
  end-page: 106
  ident: bib3
  article-title: Chronic opioids impair acquisition of both radial maze and Y-maze choice escape
  publication-title: Psychopharmacology (Berl)
– volume: 191
  start-page: 178
  year: 2008
  end-page: 183
  ident: bib53
  article-title: A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning
  publication-title: Behav Brain Res
– volume: 246
  start-page: 1033
  year: 1988
  end-page: 1039
  ident: bib32
  article-title: Acute and chronic opiate-regulation of adenylate cyclase in brain: Specific effects in locus coeruleus
  publication-title: J Pharmacol Exp Ther
– volume: 21
  start-page: 1151
  year: 1998
  end-page: 1162
  ident: bib54
  article-title: NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus
  publication-title: Neuron
– volume: 34
  start-page: 258
  year: 2011
  end-page: 268
  ident: bib45
  article-title: Routes, destinations and delays: Recent advances in AMPA receptor trafficking
  publication-title: Trends Neurosci
– volume: 308
  start-page: 512
  year: 2004
  end-page: 520
  ident: bib41
  article-title: Basal signaling activity of mu opioid receptor in mouse brain: Role in narcotic dependence
  publication-title: J Pharmacol Exp Ther
– volume: 94
  start-page: 21
  year: 1988
  end-page: 23
  ident: bib9
  article-title: Improved recognition memory in monkeys following naloxone administration
  publication-title: Psychopharmacology (Berl)
– volume: 1
  start-page: 180
  year: 2001
  end-page: 187
  ident: bib31
  article-title: Molecular mechanisms of memory acquisition, consolidation and retrieval
  publication-title: Curr Opin Neurobiol
– volume: 15
  start-page: 3328
  year: 1995
  end-page: 3341
  ident: bib47
  article-title: Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord
  publication-title: J Neurosci
– volume: 319
  start-page: 197
  year: 1982
  end-page: 205
  ident: bib46
  article-title: The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties
  publication-title: Naunyn-Schmiedeberg Arch Pharmacol
– volume: 191
  start-page: 178
  year: 2008
  ident: 10.1016/j.biopsych.2015.04.019_bib53
  article-title: A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2008.03.026
– volume: 105
  start-page: 101
  year: 1991
  ident: 10.1016/j.biopsych.2015.04.019_bib3
  article-title: Chronic opioids impair acquisition of both radial maze and Y-maze choice escape
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/BF02316870
– volume: 281
  start-page: 752
  year: 2006
  ident: 10.1016/j.biopsych.2015.04.019_bib22
  article-title: Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation
  publication-title: J Neurosci
– volume: 35
  start-page: 567
  year: 1993
  ident: 10.1016/j.biopsych.2015.04.019_bib24
  article-title: Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.490350513
– volume: 27
  start-page: 266
  year: 1979
  ident: 10.1016/j.biopsych.2015.04.019_bib6
  article-title: Naloxone enhancement of memory
  publication-title: Behav Neural Biol
  doi: 10.1016/S0163-1047(79)92328-8
– volume: 46
  start-page: 271
  year: 2002
  ident: 10.1016/j.biopsych.2015.04.019_bib18
  article-title: Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats
  publication-title: Synapse
  doi: 10.1002/syn.10146
– volume: 2012
  start-page: 247150
  year: 2012
  ident: 10.1016/j.biopsych.2015.04.019_bib12
  article-title: Synapses and dendritic spines as pathogenic targets in Alzheimerʼs disease
  publication-title: Neural Plast
  doi: 10.1155/2012/247150
– volume: 1
  start-page: 848
  year: 2006
  ident: 10.1016/j.biopsych.2015.04.019_bib23
  article-title: Morris water maze: Procedures for assessing spatial and related forms of learning and memory
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.116
– volume: 126
  start-page: 1053
  year: 2004
  ident: 10.1016/j.biopsych.2015.04.019_bib49
  article-title: Phosphorylation of Ca2+/calmodulin-dependent protein kinase type ii and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (ampa) receptor in response to a threonine-devoid diet
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.03.066
– volume: 316
  start-page: 501
  year: 2004
  ident: 10.1016/j.biopsych.2015.04.019_bib26
  article-title: Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2004.02.086
– volume: 25
  start-page: 103
  year: 2002
  ident: 10.1016/j.biopsych.2015.04.019_bib10
  article-title: AMPA receptor trafficking and synaptic plasticity
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.25.112701.142758
– volume: 34
  start-page: 258
  year: 2011
  ident: 10.1016/j.biopsych.2015.04.019_bib45
  article-title: Routes, destinations and delays: Recent advances in AMPA receptor trafficking
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2011.02.004
– volume: 112
  start-page: 631
  year: 2003
  ident: 10.1016/j.biopsych.2015.04.019_bib52
  article-title: Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00122-3
– volume: 66
  start-page: 199
  year: 1979
  ident: 10.1016/j.biopsych.2015.04.019_bib5
  article-title: Effect of naloxone and morphine on various forms of memory in the rat: Possible role of engogenous opiate mechanisms in memory consolidation
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/BF00427631
– volume: 33
  start-page: 2416
  year: 2008
  ident: 10.1016/j.biopsych.2015.04.019_bib57
  article-title: Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301642
– volume: 32
  start-page: 269
  year: 2010
  ident: 10.1016/j.biopsych.2015.04.019_bib11
  article-title: AMPA receptor trafficking and learning
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2010.07339.x
– volume: 405
  start-page: 955
  year: 2000
  ident: 10.1016/j.biopsych.2015.04.019_bib55
  article-title: Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity
  publication-title: Nature
  doi: 10.1038/35016089
– volume: 117
  start-page: 388
  year: 2005
  ident: 10.1016/j.biopsych.2015.04.019_bib4
  article-title: The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care
  publication-title: Pain
  doi: 10.1016/j.pain.2005.06.022
– volume: 227
  start-page: 437
  year: 2013
  ident: 10.1016/j.biopsych.2015.04.019_bib50
  article-title: Activation of protein kinase C is required for AMPA receptor GluR1 phosphorylation at serine 845 in the dorsal striatum following repeated cocaine administration
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/s00213-013-2968-1
– volume: 17
  start-page: 31
  year: 1994
  ident: 10.1016/j.biopsych.2015.04.019_bib13
  article-title: Cloned glutamate receptors
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.ne.17.030194.000335
– volume: 77
  start-page: 1590
  year: 2001
  ident: 10.1016/j.biopsych.2015.04.019_bib40
  article-title: Inverse agonists and neutral antagonists at mu opioid receptor (MOR): Possible role of basal receptor signaling in narcotic dependence
  publication-title: J Neurochem
  doi: 10.1046/j.1471-4159.2001.00362.x
– volume: 31
  start-page: 16279
  year: 2011
  ident: 10.1016/j.biopsych.2015.04.019_bib20
  article-title: Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3835-11.2011
– volume: 20
  start-page: 89
  year: 2000
  ident: 10.1016/j.biopsych.2015.04.019_bib34
  article-title: Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-01-00089.2000
– volume: 180
  start-page: 107
  year: 2007
  ident: 10.1016/j.biopsych.2015.04.019_bib42
  article-title: Mu opioid receptor knockout mice in the Morris Water Maze: A learning or motivation deficit?
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2007.02.021
– volume: 21
  start-page: 1151
  year: 1998
  ident: 10.1016/j.biopsych.2015.04.019_bib54
  article-title: NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80632-7
– volume: 4
  start-page: e4410
  year: 2009
  ident: 10.1016/j.biopsych.2015.04.019_bib44
  article-title: Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004410
– volume: 82
  start-page: 333
  year: 2012
  ident: 10.1016/j.biopsych.2015.04.019_bib48
  article-title: Differential modulation of drug-induced structural and functional plasticity of dendritic spines
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.112.078162
– volume: 13
  start-page: 431
  year: 2006
  ident: 10.1016/j.biopsych.2015.04.019_bib29
  article-title: Retrieval induces hippocampal-dependent reconsolidation of spatial memory
  publication-title: Learn Mem
  doi: 10.1101/lm.315206
– volume: 9
  start-page: 929
  year: 1992
  ident: 10.1016/j.biopsych.2015.04.019_bib28
  article-title: The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein
  publication-title: Neuron
  doi: 10.1016/0896-6273(92)90245-9
– volume: 44
  start-page: 374
  year: 1985
  ident: 10.1016/j.biopsych.2015.04.019_bib8
  article-title: Effects of opiate antagonists on spatial memory in young and aged rats
  publication-title: Behav Neural Biol
  doi: 10.1016/S0163-1047(85)90688-0
– volume: 44
  start-page: 5
  year: 2004
  ident: 10.1016/j.biopsych.2015.04.019_bib38
  article-title: LTP and LTD: An embarrassment of riches
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.09.012
– volume: 30
  start-page: 15304
  year: 2010
  ident: 10.1016/j.biopsych.2015.04.019_bib19
  article-title: Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4255-10.2010
– volume: 63
  start-page: 200
  year: 1995
  ident: 10.1016/j.biopsych.2015.04.019_bib1
  article-title: Memory impairment induced by intraamygdala beta-endorphin is mediated by noradrenergic influences
  publication-title: Neurobiol Learn Mem
  doi: 10.1006/nlme.1995.1021
– volume: 64
  start-page: 381
  year: 2009
  ident: 10.1016/j.biopsych.2015.04.019_bib37
  article-title: AMPA receptor incorporation into synapses during LTP: The role of lateral movement and exocytosis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.035
– volume: 23
  start-page: 613
  year: 2007
  ident: 10.1016/j.biopsych.2015.04.019_bib35
  article-title: The cell biology of synaptic plasticity: AMPA receptor trafficking
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.23.090506.123516
– volume: 1
  start-page: 180
  year: 2001
  ident: 10.1016/j.biopsych.2015.04.019_bib31
  article-title: Molecular mechanisms of memory acquisition, consolidation and retrieval
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(00)00194-X
– volume: 102
  start-page: 1725
  year: 2005
  ident: 10.1016/j.biopsych.2015.04.019_bib15
  article-title: Mu-opioid receptors modulate the stability of dendritic spines
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0406797102
– volume: 6
  start-page: 136
  year: 2003
  ident: 10.1016/j.biopsych.2015.04.019_bib33
  article-title: PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity
  publication-title: Nat Neurosci
  doi: 10.1038/nn997
– volume: 104
  start-page: 11471
  year: 2007
  ident: 10.1016/j.biopsych.2015.04.019_bib56
  article-title: Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0702308104
– volume: 308
  start-page: 512
  year: 2004
  ident: 10.1016/j.biopsych.2015.04.019_bib41
  article-title: Basal signaling activity of mu opioid receptor in mouse brain: Role in narcotic dependence
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.103.054049
– volume: 246
  start-page: 1033
  year: 1988
  ident: 10.1016/j.biopsych.2015.04.019_bib32
  article-title: Acute and chronic opiate-regulation of adenylate cyclase in brain: Specific effects in locus coeruleus
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(25)22179-6
– volume: 35
  start-page: 1908
  year: 2012
  ident: 10.1016/j.biopsych.2015.04.019_bib39
  article-title: AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2012.08165.x
– volume: 25
  start-page: 7342
  year: 2005
  ident: 10.1016/j.biopsych.2015.04.019_bib21
  article-title: Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4603-04.2005
– volume: 421
  start-page: 115
  year: 2001
  ident: 10.1016/j.biopsych.2015.04.019_bib2
  article-title: Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(01)01009-3
– volume: 32
  start-page: 237
  year: 2005
  ident: 10.1016/j.biopsych.2015.04.019_bib14
  article-title: Phosphorylation of AMPA receptors: Mechanisms and synaptic plasticity
  publication-title: Mol Neurobiol
  doi: 10.1385/MN:32:3:237
– volume: 2
  start-page: 37
  year: 1999
  ident: 10.1016/j.biopsych.2015.04.019_bib25
  article-title: Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons
  publication-title: Nat Neurosci
  doi: 10.1038/4540
– volume: 15
  start-page: 3328
  year: 1995
  ident: 10.1016/j.biopsych.2015.04.019_bib47
  article-title: Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-05-03328.1995
– volume: 135
  start-page: 535
  year: 2008
  ident: 10.1016/j.biopsych.2015.04.019_bib36
  article-title: Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.057
– volume: 86
  start-page: 831
  year: 1980
  ident: 10.1016/j.biopsych.2015.04.019_bib27
  article-title: Isolation and characterization of postsynaptic densities from various brain regions: Enrichment of different types of postsynaptic densities
  publication-title: J Cell Biol
  doi: 10.1083/jcb.86.3.831
– volume: 36
  start-page: 567
  year: 2002
  ident: 10.1016/j.biopsych.2015.04.019_bib30
  article-title: Behavioral and neural analysis of extinction
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01064-4
– volume: 35
  start-page: 375
  year: 1982
  ident: 10.1016/j.biopsych.2015.04.019_bib7
  article-title: Naloxone enhancement of memory processes: Effects of other opiate antagonists
  publication-title: Behav Neural Biol
  doi: 10.1016/S0163-1047(82)91020-2
– volume: 97
  start-page: 1485
  year: 2007
  ident: 10.1016/j.biopsych.2015.04.019_bib16
  article-title: Agonist-dependent postsynaptic effects of opioids on miniature excitatory postsynaptic currents in cultured hippocampal neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00790.2006
– volume: 319
  start-page: 197
  year: 1982
  ident: 10.1016/j.biopsych.2015.04.019_bib46
  article-title: The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties
  publication-title: Naunyn-Schmiedeberg Arch Pharmacol
  doi: 10.1007/BF00495865
– volume: 103
  start-page: 479
  year: 2010
  ident: 10.1016/j.biopsych.2015.04.019_bib51
  article-title: Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00835.2009
– volume: 94
  start-page: 21
  year: 1988
  ident: 10.1016/j.biopsych.2015.04.019_bib9
  article-title: Improved recognition memory in monkeys following naloxone administration
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/BF00735874
– volume: 35
  start-page: 456
  year: 2007
  ident: 10.1016/j.biopsych.2015.04.019_bib17
  article-title: Distinct effects of individual opioids on the morphology of spines depend upon the internalization of mu opioid receptors
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2007.04.007
– volume: 278
  start-page: 11
  year: 2014
  ident: 10.1016/j.biopsych.2015.04.019_bib43
  article-title: Loss of the mu opioid receptor induces strain-specific alterations in hippocampal neurogenesis and spatial learning
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.07.039
– reference: 16385140 - Mol Neurobiol. 2005 Dec;32(3):237-49
– reference: 17592137 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11471-6
– reference: 16198201 - Pain. 2005 Oct;117(3):388-95
– reference: 10195178 - Nat Neurosci. 1999 Jan;2(1):37-43
– reference: 16093384 - J Neurosci. 2005 Aug 10;25(32):7342-51
– reference: 4084183 - Behav Neural Biol. 1985 Nov;44(3):374-85
– reference: 22596350 - Mol Pharmacol. 2012 Aug;82(2):333-43
– reference: 6125900 - Naunyn Schmiedebergs Arch Pharmacol. 1982 Jun;319(3):197-205
– reference: 17122315 - J Neurophysiol. 2007 Feb;97(2):1485-94
– reference: 19906877 - J Neurophysiol. 2010 Jan;103(1):479-89
– reference: 17506699 - Annu Rev Cell Dev Biol. 2007;23:613-43
– reference: 12536214 - Nat Neurosci. 2003 Feb;6(2):136-43
– reference: 19198656 - PLoS One. 2009;4(2):e4410
– reference: 14600246 - J Pharmacol Exp Ther. 2004 Feb;308(2):512-20
– reference: 20646058 - Eur J Neurosci. 2010 Jul;32(2):269-77
– reference: 22708602 - Eur J Neurosci. 2012 Jun;35(12):1908-16
– reference: 19914186 - Neuron. 2009 Nov 12;64(3):381-90
– reference: 12441048 - Neuron. 2002 Nov 14;36(4):567-84
– reference: 1745703 - Psychopharmacology (Berl). 1991;105(1):101-6
– reference: 18455244 - Behav Brain Res. 2008 Aug 22;191(2):178-83
– reference: 22474602 - Neural Plast. 2012;2012:247150
– reference: 3126524 - Psychopharmacology (Berl). 1988;94(1):21-3
– reference: 6299265 - Behav Neural Biol. 1982 Aug;35(4):375-82
– reference: 23334104 - Psychopharmacology (Berl). 2013 Jun;227(3):437-45
– reference: 12052905 - Annu Rev Neurosci. 2002;25:103-26
– reference: 2843624 - J Pharmacol Exp Ther. 1988 Sep;246(3):1033-9
– reference: 9856470 - Neuron. 1998 Nov;21(5):1151-62
– reference: 17406317 - Nat Protoc. 2006;1(2):848-58
– reference: 21068335 - J Neurosci. 2010 Nov 10;30(45):15304-16
– reference: 15207338 - Neuroscience. 2004;126(4):1053-62
– reference: 25086317 - Neuroscience. 2014 Oct 10;278:11-9
– reference: 15450156 - Neuron. 2004 Sep 30;44(1):5-21
– reference: 15020245 - Biochem Biophys Res Commun. 2004 Apr 2;316(2):501-11
– reference: 1419001 - Neuron. 1992 Nov;9(5):929-42
– reference: 17397942 - Behav Brain Res. 2007 Jun 4;180(1):107-11
– reference: 17513124 - Mol Cell Neurosci. 2007 Jul;35(3):456-69
– reference: 11413242 - J Neurochem. 2001 Jun;77(6):1590-600
– reference: 12628184 - Cell. 2003 Mar 7;112(5):631-43
– reference: 18046303 - Neuropsychopharmacology. 2008 Sep;33(10):2416-26
– reference: 16272153 - J Biol Chem. 2006 Jan 13;281(2):752-8
– reference: 10627585 - J Neurosci. 2000 Jan 1;20(1):89-102
– reference: 7751913 - J Neurosci. 1995 May;15(5 Pt 1):3328-41
– reference: 18984164 - Cell. 2008 Oct 31;135(3):535-48
– reference: 518457 - Behav Neural Biol. 1979 Nov;27(3):266-75
– reference: 8210177 - Annu Rev Neurosci. 1994;17:31-108
– reference: 7410481 - J Cell Biol. 1980 Sep;86(3):831-45
– reference: 11399267 - Eur J Pharmacol. 2001 Jun 8;421(2):115-9
– reference: 8377226 - J Neurosci Res. 1993 Aug 1;35(5):567-76
– reference: 16882860 - Learn Mem. 2006 Jul-Aug;13(4):431-40
– reference: 11301237 - Curr Opin Neurobiol. 2001 Apr;11(2):180-7
– reference: 7663894 - Neurobiol Learn Mem. 1995 Mar;63(2):200-5
– reference: 119264 - Psychopharmacology (Berl). 1979 Nov;66(2):199-203
– reference: 10879537 - Nature. 2000 Jun 22;405(6789):955-9
– reference: 22072679 - J Neurosci. 2011 Nov 9;31(45):16279-91
– reference: 12373743 - Synapse. 2002 Dec 15;46(4):271-9
– reference: 15659552 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1725-30
– reference: 21420743 - Trends Neurosci. 2011 May;34(5):258-68
SSID ssj0007221
Score 2.3354068
Snippet The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We...
AbstractBackgroundThe opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 906
SubjectTerms AMPA receptors
Animals
Cells, Cultured
Extinction, Psychological - drug effects
Extinction, Psychological - physiology
GluA1
GluA1-S845
GluA1-S845A mutant
Hippocampus - drug effects
Hippocampus - metabolism
Maze Learning - drug effects
Maze Learning - physiology
Mice, Inbred C57BL
Mice, Transgenic
Naltrexone
Naltrexone - pharmacology
Narcotic Antagonists - pharmacology
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
Phosphorylation - drug effects
Post-Synaptic Density - drug effects
Post-Synaptic Density - metabolism
Psychiatric/Mental Health
Rats, Sprague-Dawley
Receptors, AMPA - genetics
Receptors, AMPA - metabolism
Receptors, Opioid, mu - genetics
Receptors, Opioid, mu - metabolism
Spatial memory
Spatial Memory - drug effects
Spatial Memory - physiology
Title Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006322315003571
https://www.clinicalkey.es/playcontent/1-s2.0-S0006322315003571
https://dx.doi.org/10.1016/j.biopsych.2015.04.019
https://www.ncbi.nlm.nih.gov/pubmed/26049209
https://www.proquest.com/docview/1790463195
https://pubmed.ncbi.nlm.nih.gov/PMC4630208
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi3hcEJRXeayMxDVbx3Hs-FiVrbqgVntgpb1ZTmLTrEpSNVmpvfDbGSdO2bJIIJB6aWrHrmc8M5a_-QahD2FiOLVEBjYSNGB5lgQ6j2xAhKE8YpzKNst1vuCzS_bpKr46QpM-F8bBKr3t72x6a639k5FfzdG6KFyOL7hX8G4Q0pAobvPIGRNOy0-__4R5CEp91TweuNa3soSvT9OiakHFDuIVt5SnjnHn9w7qbgD6K47ylmOaPkGPfUSJx92kn6IjUw7Q_a7G5G6AHk76km4D9GDub9Kfoe1Cr5qN2ValwVOddVzdpsaeb_Ur1mWOP5qV3tX4bNsUZZv_gNMdBovigOyuzXh-McYQeJo1nNzxxbKq18tqs-vgde0b5uYbHMdhjPPSXfvD4-focnr2ZTILfBWGIONMNIFhoZawsCyVNoXdnqcistJq8PtER4bEJiIJkznnJqO5K5ObGsqETTL4EIiuXqDjEv7MK4RJFGXS0iSxhkEYZ7WNbcqJ5WGohbbhEMX90qvMU5S7Shkr1WPRrlUvMuVEpghTILIhGu37rTuSjj_2EL1kVZ-CCkZTgR_5t56m9nu_VqGqqSLqjn4Okdz3PFDxvxr1fa9-CnTGXeqA7KobGE1IR_oWyniIXnbquF8DOKsySYmb84Gi7hs4bvHDX8pi2XKMwytd-dbX_zHnN-gRfOMdru4tOm42N-YdRHBNetJu0RN0b3z-ebb4AZ2pSEk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclZetexpZ9ZZ8a7NWLLMuy9RiyhmStQx9a6JuQbalxyZwQp5D89zvZsmnWwcYGfrJ8kqw73Z3Q3e8Q-uLHmlNDhGeCiHosz2JP5YHxSKQpDxinos5yTeZ8esW-X4fXR2jc5sLYsEqn-xudXmtr92boVnO4Lgqb4wvmFawbuDQkCG0e-bFFpwp76Hg0O5vOO4UcUeoK53HPEtxLFL79mharOq7YRnmFNeqpBd35vY166IP-Gkp5zzZNnqGnzqnEo2bez9GRLvvoUVNmct9HJ-O2qlsfPU7cZfoLtJur5Xajd6tS44nKGrhuXWEHuXqDVZnjb3qp9hU-3W2Lsk6BwOkeg1Kxsez2m1FyMcLge-o1HN7xxWJVrRerzb6JsKt7SPQPOJHDGLPS3vzD65foanJ6OZ56rhCDl3EWbT3NfCUYi1gqTAobPk-jwAijwPQTFWgS6oDETOSc64zmtlJuqimLTJzBQ8DBeoV6JfzMG4RJEGTC0Dg2moEnZ5QJTcqJ4b6vImX8AQrbpZeZQym3xTKWsg1Hu5Uty6RlmSRMAssGaNjRrRucjj9SRC1nZZuFCnpTgin5N0pdue1fSV9WVBL5QEQHSHSUB1L-V6N-bsVPgszYex3g3eoORouExX3zRThArxtx7NYAjqtMUGLnfCCo3QcWXvywpSwWNcw4dGkruL79jzl_QifTy-Rcns_mZ-_QE2jhTZjde9Tbbu70B3DotulHt2F_Aq5VSvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Naltrexone+Facilitates+Learning+and+Delays+Extinction+by+Increasing+AMPA+Receptor+Phosphorylation+and+Membrane+Insertion&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Kibaly%2C+Cherkaouia&rft.au=Kam%2C+Angel+Y+F&rft.au=Loh%2C+Horace+H&rft.au=Law%2C+Ping-Yee&rft.date=2016-06-01&rft.eissn=1873-2402&rft.volume=79&rft.issue=11&rft.spage=906&rft_id=info:doi/10.1016%2Fj.biopsych.2015.04.019&rft_id=info%3Apmid%2F26049209&rft.externalDocID=26049209
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322316X0008X%2Fcov150h.gif