core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding b...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 9; pp. 3131 - 3136 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.03.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc₂, improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. |
---|---|
AbstractList | The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta -sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc sub(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ..., improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. (ProQuest: ... denotes formulae/symbols omitted.) The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc₂, improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc 2 , improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc 2 , improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. |
Author | Powers, Evan T Wong, Chi-Huey Kelly, Jeffery W Hsu, Tsui-Ling Hanson, Sarah R Culyba, Elizabeth K |
Author_xml | – sequence: 1 fullname: Hanson, Sarah R – sequence: 2 fullname: Culyba, Elizabeth K – sequence: 3 fullname: Hsu, Tsui-Ling – sequence: 4 fullname: Wong, Chi-Huey – sequence: 5 fullname: Kelly, Jeffery W – sequence: 6 fullname: Powers, Evan T |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19204290$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxS1URNPCmROw4gCnbccfa68vSKjiS6rgAD1bjtebODh2ajuI_Pc4JDSlQvSylnZ-bzzz_E7QUYjBIvQUwxkGQc9XQecz6DFQXD_dAzTBIHHLmYQjNAEgou0ZYcfoJOcFAMiuh0foGEsCjEiYoJmJyTYluayNmevkBtvEsdGh-dx6F77boZn5jYmrFIt1oXGhsiE7o73fNFVjvU262NyM0Q8uzKp0aGyY62Dqz1z01HlXNo_Rw1H7bJ_sz1N09f7dt4uP7eWXD58u3l62hjNR2o4KbgDqEoIPAgjRAqZSdFIMhgsztR3pecc7jTEmHE-5MTBqOdpeCC2xoafoza7vaj1d2sHYOq_2apXcUqeNitqpvyvBzdUs_lCEd5jIvjZ4tW-Q4vXa5qKWLtctvQ42rrPiXErSg7wXZBwLIXu4FyRAMOt6XMGXd8BFXKdQ7aoMZsAx2ULPby94s9mfJ63A-Q4wKeac7HhAQG1Do7ahUYfQVEV3R2Fc0cXFrUPO_0f3ej_KtnC4hSupKKZYjWvvi_1Zbg39b7ICz3bAIpeYbggGjFHy25oXu_qoo9KzGld19bWaQgFzIJQy-gvbz_D2 |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1009232 crossref_primary_10_1016_j_pharmthera_2019_02_009 crossref_primary_10_1146_annurev_biochem_060614_034420 crossref_primary_10_1016_j_febslet_2009_07_014 crossref_primary_10_1021_ja106896t crossref_primary_10_1016_j_cyto_2015_11_019 crossref_primary_10_1021_jp203926r crossref_primary_10_1021_jp304116d crossref_primary_10_1016_j_bbamcr_2009_10_008 crossref_primary_10_1186_s13036_019_0215_y crossref_primary_10_1002_ange_202420596 crossref_primary_10_7554_eLife_43923 crossref_primary_10_1074_jbc_M117_788919 crossref_primary_10_1073_pnas_1309417110 crossref_primary_10_1021_bi101050h crossref_primary_10_1016_j_tibtech_2011_04_007 crossref_primary_10_1002_ange_201308126 crossref_primary_10_1016_j_ijbiomac_2020_07_290 crossref_primary_10_1186_s13568_019_0852_z crossref_primary_10_1002_2211_5463_13042 crossref_primary_10_1021_acschembio_5b01035 crossref_primary_10_1038_s42003_022_03302_2 crossref_primary_10_1093_glycob_cwv083 crossref_primary_10_1016_j_foodchem_2020_128270 crossref_primary_10_1016_j_ijbiomac_2023_125447 crossref_primary_10_1105_tpc_111_083634 crossref_primary_10_1016_j_addr_2021_01_021 crossref_primary_10_1016_j_biombioe_2019_02_016 crossref_primary_10_3390_biom14030282 crossref_primary_10_1007_s10719_015_9601_y crossref_primary_10_1152_ajpgi_00343_2016 crossref_primary_10_1002_anie_201310777 crossref_primary_10_1021_acs_accounts_7b00195 crossref_primary_10_1515_biolog_2015_0073 crossref_primary_10_1016_j_cub_2014_11_049 crossref_primary_10_1126_science_1198461 crossref_primary_10_1016_j_virol_2018_10_005 crossref_primary_10_1021_jacs_8b11005 crossref_primary_10_1128_mBio_02604_20 crossref_primary_10_1194_jlr_M800343_JLR200 crossref_primary_10_1016_j_mam_2016_05_003 crossref_primary_10_1021_cb4004496 crossref_primary_10_1021_jacs_0c12448 crossref_primary_10_1128_JVI_01384_15 crossref_primary_10_1128_JVI_00874_20 crossref_primary_10_1016_j_chembiol_2015_06_017 crossref_primary_10_1128_JVI_01084_12 crossref_primary_10_1038_s41598_024_84495_w crossref_primary_10_1111_1462_2920_15468 crossref_primary_10_1016_j_jbiosc_2021_06_014 crossref_primary_10_1038_srep08926 crossref_primary_10_1016_j_jbc_2024_107169 crossref_primary_10_1002_anie_201308126 crossref_primary_10_1073_pnas_2000260117 crossref_primary_10_1073_pnas_2026608118 crossref_primary_10_1016_j_str_2015_06_015 crossref_primary_10_1021_jp410788r crossref_primary_10_1007_s11095_016_1880_x crossref_primary_10_1021_acs_jproteome_6b00175 crossref_primary_10_1021_jacs_6b02879 crossref_primary_10_1073_pnas_1015356107 crossref_primary_10_1371_journal_pcbi_1005094 crossref_primary_10_1021_acs_biochem_7b00392 crossref_primary_10_1021_cb3001827 crossref_primary_10_1021_acs_chemrev_9b00664 crossref_primary_10_1158_1078_0432_CCR_09_3331 crossref_primary_10_1002_pro_2682 crossref_primary_10_1042_BCJ20170111 crossref_primary_10_1016_j_csbj_2017_03_004 crossref_primary_10_1021_cr200113w crossref_primary_10_1016_j_bbamcr_2013_04_001 crossref_primary_10_1016_j_biochi_2015_01_014 crossref_primary_10_1016_j_enzmictec_2014_10_002 crossref_primary_10_1016_j_biochi_2011_08_020 crossref_primary_10_1021_acschembio_7b00794 crossref_primary_10_1021_ja301005f crossref_primary_10_1042_BJ20150846 crossref_primary_10_1007_s12551_023_01088_z crossref_primary_10_1073_pnas_1402518111 crossref_primary_10_1021_bi200218s crossref_primary_10_1002_ijch_202300162 crossref_primary_10_1021_acs_biochem_7b00483 crossref_primary_10_1021_acs_biochem_7b01055 crossref_primary_10_1016_j_bbagen_2014_03_016 crossref_primary_10_1039_C5SC02636A crossref_primary_10_1002_mas_21688 crossref_primary_10_1073_pnas_1819197116 crossref_primary_10_1126_science_1206657 crossref_primary_10_1073_pnas_0909696106 crossref_primary_10_1360_SSC_2025_0016 crossref_primary_10_1021_acs_jpcb_5b10022 crossref_primary_10_1007_s00253_013_5167_4 crossref_primary_10_1038_ncomms4099 crossref_primary_10_1002_ange_201310777 crossref_primary_10_1002_bip_22030 crossref_primary_10_1074_jbc_RA120_012796 crossref_primary_10_1021_ja4056678 crossref_primary_10_1039_C9MO00168A crossref_primary_10_1186_s13068_019_1609_2 crossref_primary_10_3390_ijms17060937 crossref_primary_10_1002_ejoc_201200468 crossref_primary_10_1002_pro_4726 crossref_primary_10_1021_acs_biochem_5b00299 crossref_primary_10_1096_fj_14_255414 crossref_primary_10_1080_15287394_2011_529065 crossref_primary_10_1093_protein_gzx007 crossref_primary_10_1039_b909990p crossref_primary_10_1371_journal_pcbi_1002946 crossref_primary_10_1515_hsz_2018_0458 crossref_primary_10_1093_glycob_cwac003 crossref_primary_10_1002_bit_26454 crossref_primary_10_1002_ijch_201800139 crossref_primary_10_1038_s41598_020_61427_y crossref_primary_10_1016_j_brainres_2018_05_022 crossref_primary_10_1016_j_tibs_2015_08_010 crossref_primary_10_1002_bip_22784 crossref_primary_10_1016_j_toxicon_2014_12_008 crossref_primary_10_1074_jbc_M117_814244 crossref_primary_10_1016_j_fgb_2013_09_004 crossref_primary_10_1016_j_bpc_2021_106711 crossref_primary_10_1007_s00253_012_4579_x crossref_primary_10_18632_genesandcancer_13 crossref_primary_10_1016_j_hoc_2020_07_003 crossref_primary_10_1016_j_ijbiomac_2025_140755 crossref_primary_10_1007_s00253_018_9162_7 crossref_primary_10_1002_biot_201300026 crossref_primary_10_1016_j_sbi_2011_08_005 crossref_primary_10_1073_pnas_2107440118 crossref_primary_10_1016_j_enzmictec_2022_110112 crossref_primary_10_1016_j_jprot_2021_104355 crossref_primary_10_1038_s41598_018_30770_6 crossref_primary_10_3390_ph17111542 crossref_primary_10_3389_fimmu_2022_864898 crossref_primary_10_1146_annurev_arplant_042817_040331 crossref_primary_10_1039_C6SC01814A crossref_primary_10_1002_chem_201504950 crossref_primary_10_1128_mBio_00297_19 crossref_primary_10_1099_jgv_0_001994 crossref_primary_10_1021_acsnano_4c00468 crossref_primary_10_1016_j_ceb_2011_04_012 crossref_primary_10_1038_s41598_017_12830_5 crossref_primary_10_1371_journal_pone_0061790 crossref_primary_10_1002_bit_22812 crossref_primary_10_1080_07391102_2022_2047109 crossref_primary_10_1093_jb_mvu065 crossref_primary_10_1021_acs_biochem_8b01050 crossref_primary_10_1021_ja306068g crossref_primary_10_1111_febs_14811 crossref_primary_10_1021_cb4008106 crossref_primary_10_1371_journal_pone_0066719 crossref_primary_10_1016_j_plantsci_2015_06_023 crossref_primary_10_2174_0929867325666181017160857 crossref_primary_10_1186_s13068_016_0580_4 crossref_primary_10_3389_fphar_2018_01568 crossref_primary_10_1016_j_cbpa_2017_08_012 crossref_primary_10_1021_acs_biochem_7b00195 crossref_primary_10_1016_j_tim_2017_03_001 crossref_primary_10_1371_journal_pone_0114454 crossref_primary_10_1038_nchembio_1651 crossref_primary_10_1016_j_ijms_2010_08_003 crossref_primary_10_1021_acs_jcim_7b00123 crossref_primary_10_1021_jacs_7b03868 crossref_primary_10_1007_s00018_015_2052_6 crossref_primary_10_1002_anie_202420596 crossref_primary_10_1021_acs_biochem_7b00875 crossref_primary_10_1021_jp508535f crossref_primary_10_1039_c2ob07135e crossref_primary_10_1039_C3PY01001E crossref_primary_10_1093_glycob_cwz068 crossref_primary_10_1016_j_mcpro_2024_100761 crossref_primary_10_1021_cb200277u crossref_primary_10_1128_AEM_02438_20 crossref_primary_10_1007_s10719_016_9661_7 crossref_primary_10_1021_jm5016582 crossref_primary_10_1073_pnas_1105880108 crossref_primary_10_1007_s10529_018_2526_3 crossref_primary_10_1002_chem_201103428 crossref_primary_10_3390_ijms23073742 crossref_primary_10_1038_nchembio_797 crossref_primary_10_1371_journal_pone_0135922 crossref_primary_10_1080_07388551_2022_2144117 |
Cites_doi | 10.1016/S1367-5931(99)00021-6 10.1016/j.str.2007.01.011 10.1016/S1074-5521(98)90159-4 10.1006/smim.2000.0217 10.1093/glycob/cwg075 10.1126/science.7544493 10.1016/S0021-9258(18)41689-4 10.4052/tigg.14.139 10.1093/glycob/3.2.97 10.1021/cr990368i 10.1021/bi971294c 10.1017/S0033583506004185 10.1016/S0969-2126(99)80181-6 10.1073/pnas.90.24.11613 10.1084/jem.177.5.1439 10.1146/annurev.iy.06.040188.002121 10.1126/science.1058899 10.1126/science.291.5512.2364 10.1111/j.1432-1033.1991.tb15995.x 10.1073/pnas.93.23.12759 10.1016/j.cell.2007.10.025 10.1093/glycob/cwh008 10.1016/j.tibs.2004.10.004 10.1021/ja010094s 10.1146/annurev.bi.54.070185.003215 10.1016/0022-2836(92)90561-W 10.1006/jmbi.2001.4819 10.1016/j.tibs.2006.01.003 10.1110/ps.041205405 10.1096/fasebj.9.14.7589985 10.1073/pnas.0704862104 10.1038/nchembio880 10.1002/pro.5560041020 10.1038/ng1581 10.1016/S0969-2126(99)80095-1 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 3, 2009 2009 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 3, 2009 – notice: 2009 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0810318105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic Virology and AIDS Abstracts AGRICOLA MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 3136 |
ExternalDocumentID | PMC2651298 1656515111 19204290 10_1073_pnas_0810318105 106_9_3131 40443281 US201301602334 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM044154 – fundername: NIGMS NIH HHS grantid: GM044154 – fundername: NIGMS NIH HHS grantid: R01 GM051105 – fundername: NIGMS NIH HHS grantid: GM51105 – fundername: NIGMS NIH HHS grantid: R37 GM044154 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c647t-5376c0010976d7022a70b97597dc67cbe5286565a111261b6cc0fa9fe877a91c3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:45:27 EDT 2025 Thu Jul 10 18:14:56 EDT 2025 Thu Jul 10 18:53:37 EDT 2025 Fri Jul 11 00:39:09 EDT 2025 Mon Jun 30 08:34:36 EDT 2025 Mon Jul 21 06:04:39 EDT 2025 Tue Jul 01 02:39:12 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Wed Nov 11 00:29:08 EST 2020 Thu May 30 15:50:01 EDT 2019 Thu May 29 08:42:56 EDT 2025 Wed Dec 27 19:20:34 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c647t-5376c0010976d7022a70b97597dc67cbe5286565a111261b6cc0fa9fe877a91c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: S.R.H., C.-H.W., J.W.K., and E.T.P. designed research; S.R.H., E.K.C., and E.T.P. performed research; T.-L.H. contributed new reagents/analytic tools; S.R.H., C.-H.W., J.W.K., and E.T.P. analyzed data; and S.R.H., J.W.K., and E.T.P. wrote the paper. Contributed by Chi-Huey Wong, October 15, 2008 |
OpenAccessLink | http://doi.org/10.1073/pnas.0810318105 |
PMID | 19204290 |
PQID | 201406121 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_106_9_3131_fulltext fao_agris_US201301602334 proquest_miscellaneous_20214581 proquest_miscellaneous_66992809 jstor_primary_40443281 pnas_primary_106_9_3131 proquest_journals_201406121 pubmed_primary_19204290 crossref_primary_10_1073_pnas_0810318105 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2651298 crossref_citationtrail_10_1073_pnas_0810318105 proquest_miscellaneous_46177980 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-03 |
PublicationDateYYYYMMDD | 2009-03-03 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 16780604 - Q Rev Biophys. 2005 Aug;38(3):245-88 3289571 - Annu Rev Immunol. 1988;6:381-405 7589985 - FASEB J. 1995 Nov;9(14):1436-44 1569556 - J Mol Biol. 1992 Apr 5;224(3):771-82 10508783 - Structure. 1999 Sep 15;7(9):1145-53 18022373 - Cell. 2007 Nov 16;131(4):809-21 15544952 - Trends Biochem Sci. 2004 Dec;29(12):656-63 2040275 - Eur J Biochem. 1991 May 23;198(1):131-9 8490246 - Glycobiology. 1993 Apr;3(2):97-130 7544493 - Science. 1995 Sep 1;269(5228):1273-8 16473013 - Trends Biochem Sci. 2006 Mar;31(3):156-63 8535251 - Protein Sci. 1995 Oct;4(10):2138-48 9710565 - Chem Biol. 1998 Aug;5(8):427-37 11269317 - Science. 2001 Mar 23;291(5512):2364-9 11841247 - Chem Rev. 2002 Feb;102(2):371-86 17355862 - Structure. 2007 Mar;15(3):267-73 8917491 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12759-61 15924140 - Nat Genet. 2005 Jul;37(7):692-700 17606910 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81 10764623 - Semin Immunol. 2000 Apr;12(2):149-57 7505442 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11613-7 11269314 - Science. 2001 Mar 23;291(5512):2344-50 15689503 - Protein Sci. 2005 Mar;14(3):602-16 3896128 - Annu Rev Biochem. 1985;54:631-64 9341233 - Biochemistry. 1997 Oct 28;36(43):13396-405 11502004 - J Mol Biol. 2001 Jul 27;310(5):955-63 11414857 - J Am Chem Soc. 2001 Jun 27;123(25):6187-8 17510649 - Nat Chem Biol. 2007 Jun;3(6):313-20 7683037 - J Exp Med. 1993 May 1;177(5):1439-50 14514716 - Glycobiology. 2004 Feb;14(2):103-14 12736198 - Glycobiology. 2003 Sep;13(9):77R-91R 1385399 - J Biol Chem. 1992 Nov 5;267(31):22428-34 10600722 - Curr Opin Chem Biol. 1999 Dec;3(6):643-9 10425673 - Structure. 1999 Jul 15;7(7):R155-60 |
References_xml | – ident: e_1_3_3_5_2 doi: 10.1016/S1367-5931(99)00021-6 – ident: e_1_3_3_27_2 doi: 10.1016/j.str.2007.01.011 – ident: e_1_3_3_30_2 doi: 10.1016/S1074-5521(98)90159-4 – ident: e_1_3_3_15_2 doi: 10.1006/smim.2000.0217 – ident: e_1_3_3_9_2 doi: 10.1093/glycob/cwg075 – ident: e_1_3_3_17_2 doi: 10.1126/science.7544493 – ident: e_1_3_3_19_2 doi: 10.1016/S0021-9258(18)41689-4 – ident: e_1_3_3_4_2 doi: 10.4052/tigg.14.139 – ident: e_1_3_3_1_2 doi: 10.1093/glycob/3.2.97 – ident: e_1_3_3_26_2 doi: 10.1021/cr990368i – ident: e_1_3_3_21_2 doi: 10.1021/bi971294c – ident: e_1_3_3_35_2 doi: 10.1017/S0033583506004185 – ident: e_1_3_3_18_2 doi: 10.1016/S0969-2126(99)80181-6 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.90.24.11613 – ident: e_1_3_3_34_2 doi: 10.1084/jem.177.5.1439 – ident: e_1_3_3_16_2 doi: 10.1146/annurev.iy.06.040188.002121 – ident: e_1_3_3_11_2 doi: 10.1126/science.1058899 – ident: e_1_3_3_2_2 doi: 10.1126/science.291.5512.2364 – ident: e_1_3_3_28_2 doi: 10.1111/j.1432-1033.1991.tb15995.x – ident: e_1_3_3_29_2 doi: 10.1073/pnas.93.23.12759 – ident: e_1_3_3_32_2 doi: 10.1016/j.cell.2007.10.025 – ident: e_1_3_3_7_2 doi: 10.1093/glycob/cwh008 – ident: e_1_3_3_10_2 doi: 10.1016/j.tibs.2004.10.004 – ident: e_1_3_3_8_2 doi: 10.1021/ja010094s – ident: e_1_3_3_12_2 doi: 10.1146/annurev.bi.54.070185.003215 – ident: e_1_3_3_24_2 doi: 10.1016/0022-2836(92)90561-W – ident: e_1_3_3_22_2 doi: 10.1006/jmbi.2001.4819 – ident: e_1_3_3_6_2 doi: 10.1016/j.tibs.2006.01.003 – ident: e_1_3_3_23_2 doi: 10.1110/ps.041205405 – ident: e_1_3_3_14_2 doi: 10.1096/fasebj.9.14.7589985 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.0704862104 – ident: e_1_3_3_13_2 doi: 10.1038/nchembio880 – ident: e_1_3_3_25_2 doi: 10.1002/pro.5560041020 – ident: e_1_3_3_33_2 doi: 10.1038/ng1581 – ident: e_1_3_3_3_2 doi: 10.1016/S0969-2126(99)80095-1 – reference: 10508783 - Structure. 1999 Sep 15;7(9):1145-53 – reference: 10600722 - Curr Opin Chem Biol. 1999 Dec;3(6):643-9 – reference: 8535251 - Protein Sci. 1995 Oct;4(10):2138-48 – reference: 17606910 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81 – reference: 11502004 - J Mol Biol. 2001 Jul 27;310(5):955-63 – reference: 11269314 - Science. 2001 Mar 23;291(5512):2344-50 – reference: 9341233 - Biochemistry. 1997 Oct 28;36(43):13396-405 – reference: 2040275 - Eur J Biochem. 1991 May 23;198(1):131-9 – reference: 7589985 - FASEB J. 1995 Nov;9(14):1436-44 – reference: 17355862 - Structure. 2007 Mar;15(3):267-73 – reference: 18022373 - Cell. 2007 Nov 16;131(4):809-21 – reference: 10425673 - Structure. 1999 Jul 15;7(7):R155-60 – reference: 3289571 - Annu Rev Immunol. 1988;6:381-405 – reference: 7544493 - Science. 1995 Sep 1;269(5228):1273-8 – reference: 7505442 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11613-7 – reference: 16473013 - Trends Biochem Sci. 2006 Mar;31(3):156-63 – reference: 8917491 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12759-61 – reference: 11269317 - Science. 2001 Mar 23;291(5512):2364-9 – reference: 16780604 - Q Rev Biophys. 2005 Aug;38(3):245-88 – reference: 15689503 - Protein Sci. 2005 Mar;14(3):602-16 – reference: 9710565 - Chem Biol. 1998 Aug;5(8):427-37 – reference: 12736198 - Glycobiology. 2003 Sep;13(9):77R-91R – reference: 11414857 - J Am Chem Soc. 2001 Jun 27;123(25):6187-8 – reference: 1569556 - J Mol Biol. 1992 Apr 5;224(3):771-82 – reference: 15544952 - Trends Biochem Sci. 2004 Dec;29(12):656-63 – reference: 8490246 - Glycobiology. 1993 Apr;3(2):97-130 – reference: 3896128 - Annu Rev Biochem. 1985;54:631-64 – reference: 17510649 - Nat Chem Biol. 2007 Jun;3(6):313-20 – reference: 11841247 - Chem Rev. 2002 Feb;102(2):371-86 – reference: 15924140 - Nat Genet. 2005 Jul;37(7):692-700 – reference: 10764623 - Semin Immunol. 2000 Apr;12(2):149-57 – reference: 14514716 - Glycobiology. 2004 Feb;14(2):103-14 – reference: 7683037 - J Exp Med. 1993 May 1;177(5):1439-50 – reference: 1385399 - J Biol Chem. 1992 Nov 5;267(31):22428-34 |
SSID | ssj0009580 |
Score | 2.3972423 |
Snippet | The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3131 |
SubjectTerms | adhesion Amino acids Animals Biochemistry Biological Sciences CD2 Antigens - chemistry CD2 Antigens - genetics CD2 Antigens - metabolism Cells Circular Dichroism energy Free energy Glycoproteins Glycoproteins - chemistry Glycoproteins - metabolism Glycosylation Humans Immune system Kinetics landscapes Models, Molecular Mutation - genetics Oligosaccharides Physical Sciences Polysaccharides Protein Folding Protein Stability Protein Structure, Tertiary Rats Renovations Surface areas Thermodynamics trisaccharides Trisaccharides - chemistry Trisaccharides - metabolism |
Title | core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability |
URI | https://www.jstor.org/stable/40443281 http://www.pnas.org/content/106/9/3131.abstract https://www.ncbi.nlm.nih.gov/pubmed/19204290 https://www.proquest.com/docview/201406121 https://www.proquest.com/docview/20214581 https://www.proquest.com/docview/46177980 https://www.proquest.com/docview/66992809 https://pubmed.ncbi.nlm.nih.gov/PMC2651298 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l5cIFUaDUlGUOHIoiB69jz7GKWlkohEokUm-j8dZEjZwKx4fwQ_i9vDfxeCkN28WKPG9Gjt_nt8xbhpD3OR5-40pmujnHMKPMTOy8Z-a5C45Y5vl-joXCn6csmnufrv3rweBHJ2up2sSj5PuDdSX_w1W4B3zFKtl_4GyzKNyA38BfuAKH4frXPMY2lMMNtspNsIJqmapNAPhqwQAHPxPsyZvVNlmrfgxLTGsE2kKxZrUdwhxQO9gtAtsyqDiUiiZkxQLRUOJOg8qe7QV_rxqlV-oUg6neUzxvK1RqsVEOzeHVtD3vOJK63kztRrcZi-NqtY1lL9es3YSNykpBq6yW5kSr205K8XixNKOqDlLrXQyu0rjcrmR2QFt6u3rqRjJbrANBPrwbubZrg9pwuzIX73X0tx79RTeAMMMDjQtZjsAOQmFmW36rBnXof_pFXM4nEzG7uJ4dkEcOuB8qYTTqNnMOd6VN9TPrllGB-_He8j1r5yCXa532ir10gfQhv-Z-em7H3pk9JU9qR4We71B3RAZZ8YwcaZ7Ss7pf-Yfn5BZgSBGGtAdDus6pLKiGIe3CkPZgSDswpDUMYWpKNQxpA8MXZH55MRtHZn2Gh5kwL9iY2C0oUfHXgKUBGIwysGIegBubJixI4szH0mjmSxtr2eyYJYmVS55nYRBIbifuMTks1kV2QmjIMacSDCqg9rLYl36a21KmMktZyLzYICP9rkVSN7jHc1ZWQiVaBK7ANy5a5hjkrJlwt-vtsp_0BJgn5A28RzH_6mC832Zg77qeQY4VR5slPMvzXCe0DfJSrdIuzQQXiFaD0D0jIq9TvgxyqoEhaolTCge3Q7Dln0HeNaOgDjDGJ4tsXSEJHj0Q_obCA58l4KG1n4Ixzp3Q4vgHFBDbB-UOGrAwN-hBtCHAZvX9kWK5UE3rgWvgWoSv_vhcp-RxKyBek8PNtyp7A4b_Jn6rvsKf7n8DTw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+core+trisaccharide+of+an+N-linked+glycoprotein+intrinsically+accelerates+folding+and+enhances+stability&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hanson%2C+Sarah+R&rft.au=Culyba%2C+Elizabeth+K&rft.au=Hsu%2C+Tsui-Ling&rft.au=Wong%2C+Chi-Huey&rft.date=2009-03-03&rft.issn=0027-8424&rft.volume=106&rft.issue=9+p.3131-3136&rft.spage=3131&rft.epage=3136&rft_id=info:doi/10.1073%2Fpnas.0810318105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F9.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F9.cover.gif |