core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability

The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding b...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 9; pp. 3131 - 3136
Main Authors Hanson, Sarah R, Culyba, Elizabeth K, Hsu, Tsui-Ling, Wong, Chi-Huey, Kelly, Jeffery W, Powers, Evan T
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.03.2009
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc₂, improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
AbstractList The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta -sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc sub(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ..., improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway. (ProQuest: ... denotes formulae/symbols omitted.)
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc₂, improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc 2 , improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the β-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc 2 , improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
Author Powers, Evan T
Wong, Chi-Huey
Kelly, Jeffery W
Hsu, Tsui-Ling
Hanson, Sarah R
Culyba, Elizabeth K
Author_xml – sequence: 1
  fullname: Hanson, Sarah R
– sequence: 2
  fullname: Culyba, Elizabeth K
– sequence: 3
  fullname: Hsu, Tsui-Ling
– sequence: 4
  fullname: Wong, Chi-Huey
– sequence: 5
  fullname: Kelly, Jeffery W
– sequence: 6
  fullname: Powers, Evan T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19204290$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxS1URNPCmROw4gCnbccfa68vSKjiS6rgAD1bjtebODh2ajuI_Pc4JDSlQvSylnZ-bzzz_E7QUYjBIvQUwxkGQc9XQecz6DFQXD_dAzTBIHHLmYQjNAEgou0ZYcfoJOcFAMiuh0foGEsCjEiYoJmJyTYluayNmevkBtvEsdGh-dx6F77boZn5jYmrFIt1oXGhsiE7o73fNFVjvU262NyM0Q8uzKp0aGyY62Dqz1z01HlXNo_Rw1H7bJ_sz1N09f7dt4uP7eWXD58u3l62hjNR2o4KbgDqEoIPAgjRAqZSdFIMhgsztR3pecc7jTEmHE-5MTBqOdpeCC2xoafoza7vaj1d2sHYOq_2apXcUqeNitqpvyvBzdUs_lCEd5jIvjZ4tW-Q4vXa5qKWLtctvQ42rrPiXErSg7wXZBwLIXu4FyRAMOt6XMGXd8BFXKdQ7aoMZsAx2ULPby94s9mfJ63A-Q4wKeac7HhAQG1Do7ahUYfQVEV3R2Fc0cXFrUPO_0f3ej_KtnC4hSupKKZYjWvvi_1Zbg39b7ICz3bAIpeYbggGjFHy25oXu_qoo9KzGld19bWaQgFzIJQy-gvbz_D2
CitedBy_id crossref_primary_10_1371_journal_ppat_1009232
crossref_primary_10_1016_j_pharmthera_2019_02_009
crossref_primary_10_1146_annurev_biochem_060614_034420
crossref_primary_10_1016_j_febslet_2009_07_014
crossref_primary_10_1021_ja106896t
crossref_primary_10_1016_j_cyto_2015_11_019
crossref_primary_10_1021_jp203926r
crossref_primary_10_1021_jp304116d
crossref_primary_10_1016_j_bbamcr_2009_10_008
crossref_primary_10_1186_s13036_019_0215_y
crossref_primary_10_1002_ange_202420596
crossref_primary_10_7554_eLife_43923
crossref_primary_10_1074_jbc_M117_788919
crossref_primary_10_1073_pnas_1309417110
crossref_primary_10_1021_bi101050h
crossref_primary_10_1016_j_tibtech_2011_04_007
crossref_primary_10_1002_ange_201308126
crossref_primary_10_1016_j_ijbiomac_2020_07_290
crossref_primary_10_1186_s13568_019_0852_z
crossref_primary_10_1002_2211_5463_13042
crossref_primary_10_1021_acschembio_5b01035
crossref_primary_10_1038_s42003_022_03302_2
crossref_primary_10_1093_glycob_cwv083
crossref_primary_10_1016_j_foodchem_2020_128270
crossref_primary_10_1016_j_ijbiomac_2023_125447
crossref_primary_10_1105_tpc_111_083634
crossref_primary_10_1016_j_addr_2021_01_021
crossref_primary_10_1016_j_biombioe_2019_02_016
crossref_primary_10_3390_biom14030282
crossref_primary_10_1007_s10719_015_9601_y
crossref_primary_10_1152_ajpgi_00343_2016
crossref_primary_10_1002_anie_201310777
crossref_primary_10_1021_acs_accounts_7b00195
crossref_primary_10_1515_biolog_2015_0073
crossref_primary_10_1016_j_cub_2014_11_049
crossref_primary_10_1126_science_1198461
crossref_primary_10_1016_j_virol_2018_10_005
crossref_primary_10_1021_jacs_8b11005
crossref_primary_10_1128_mBio_02604_20
crossref_primary_10_1194_jlr_M800343_JLR200
crossref_primary_10_1016_j_mam_2016_05_003
crossref_primary_10_1021_cb4004496
crossref_primary_10_1021_jacs_0c12448
crossref_primary_10_1128_JVI_01384_15
crossref_primary_10_1128_JVI_00874_20
crossref_primary_10_1016_j_chembiol_2015_06_017
crossref_primary_10_1128_JVI_01084_12
crossref_primary_10_1038_s41598_024_84495_w
crossref_primary_10_1111_1462_2920_15468
crossref_primary_10_1016_j_jbiosc_2021_06_014
crossref_primary_10_1038_srep08926
crossref_primary_10_1016_j_jbc_2024_107169
crossref_primary_10_1002_anie_201308126
crossref_primary_10_1073_pnas_2000260117
crossref_primary_10_1073_pnas_2026608118
crossref_primary_10_1016_j_str_2015_06_015
crossref_primary_10_1021_jp410788r
crossref_primary_10_1007_s11095_016_1880_x
crossref_primary_10_1021_acs_jproteome_6b00175
crossref_primary_10_1021_jacs_6b02879
crossref_primary_10_1073_pnas_1015356107
crossref_primary_10_1371_journal_pcbi_1005094
crossref_primary_10_1021_acs_biochem_7b00392
crossref_primary_10_1021_cb3001827
crossref_primary_10_1021_acs_chemrev_9b00664
crossref_primary_10_1158_1078_0432_CCR_09_3331
crossref_primary_10_1002_pro_2682
crossref_primary_10_1042_BCJ20170111
crossref_primary_10_1016_j_csbj_2017_03_004
crossref_primary_10_1021_cr200113w
crossref_primary_10_1016_j_bbamcr_2013_04_001
crossref_primary_10_1016_j_biochi_2015_01_014
crossref_primary_10_1016_j_enzmictec_2014_10_002
crossref_primary_10_1016_j_biochi_2011_08_020
crossref_primary_10_1021_acschembio_7b00794
crossref_primary_10_1021_ja301005f
crossref_primary_10_1042_BJ20150846
crossref_primary_10_1007_s12551_023_01088_z
crossref_primary_10_1073_pnas_1402518111
crossref_primary_10_1021_bi200218s
crossref_primary_10_1002_ijch_202300162
crossref_primary_10_1021_acs_biochem_7b00483
crossref_primary_10_1021_acs_biochem_7b01055
crossref_primary_10_1016_j_bbagen_2014_03_016
crossref_primary_10_1039_C5SC02636A
crossref_primary_10_1002_mas_21688
crossref_primary_10_1073_pnas_1819197116
crossref_primary_10_1126_science_1206657
crossref_primary_10_1073_pnas_0909696106
crossref_primary_10_1360_SSC_2025_0016
crossref_primary_10_1021_acs_jpcb_5b10022
crossref_primary_10_1007_s00253_013_5167_4
crossref_primary_10_1038_ncomms4099
crossref_primary_10_1002_ange_201310777
crossref_primary_10_1002_bip_22030
crossref_primary_10_1074_jbc_RA120_012796
crossref_primary_10_1021_ja4056678
crossref_primary_10_1039_C9MO00168A
crossref_primary_10_1186_s13068_019_1609_2
crossref_primary_10_3390_ijms17060937
crossref_primary_10_1002_ejoc_201200468
crossref_primary_10_1002_pro_4726
crossref_primary_10_1021_acs_biochem_5b00299
crossref_primary_10_1096_fj_14_255414
crossref_primary_10_1080_15287394_2011_529065
crossref_primary_10_1093_protein_gzx007
crossref_primary_10_1039_b909990p
crossref_primary_10_1371_journal_pcbi_1002946
crossref_primary_10_1515_hsz_2018_0458
crossref_primary_10_1093_glycob_cwac003
crossref_primary_10_1002_bit_26454
crossref_primary_10_1002_ijch_201800139
crossref_primary_10_1038_s41598_020_61427_y
crossref_primary_10_1016_j_brainres_2018_05_022
crossref_primary_10_1016_j_tibs_2015_08_010
crossref_primary_10_1002_bip_22784
crossref_primary_10_1016_j_toxicon_2014_12_008
crossref_primary_10_1074_jbc_M117_814244
crossref_primary_10_1016_j_fgb_2013_09_004
crossref_primary_10_1016_j_bpc_2021_106711
crossref_primary_10_1007_s00253_012_4579_x
crossref_primary_10_18632_genesandcancer_13
crossref_primary_10_1016_j_hoc_2020_07_003
crossref_primary_10_1016_j_ijbiomac_2025_140755
crossref_primary_10_1007_s00253_018_9162_7
crossref_primary_10_1002_biot_201300026
crossref_primary_10_1016_j_sbi_2011_08_005
crossref_primary_10_1073_pnas_2107440118
crossref_primary_10_1016_j_enzmictec_2022_110112
crossref_primary_10_1016_j_jprot_2021_104355
crossref_primary_10_1038_s41598_018_30770_6
crossref_primary_10_3390_ph17111542
crossref_primary_10_3389_fimmu_2022_864898
crossref_primary_10_1146_annurev_arplant_042817_040331
crossref_primary_10_1039_C6SC01814A
crossref_primary_10_1002_chem_201504950
crossref_primary_10_1128_mBio_00297_19
crossref_primary_10_1099_jgv_0_001994
crossref_primary_10_1021_acsnano_4c00468
crossref_primary_10_1016_j_ceb_2011_04_012
crossref_primary_10_1038_s41598_017_12830_5
crossref_primary_10_1371_journal_pone_0061790
crossref_primary_10_1002_bit_22812
crossref_primary_10_1080_07391102_2022_2047109
crossref_primary_10_1093_jb_mvu065
crossref_primary_10_1021_acs_biochem_8b01050
crossref_primary_10_1021_ja306068g
crossref_primary_10_1111_febs_14811
crossref_primary_10_1021_cb4008106
crossref_primary_10_1371_journal_pone_0066719
crossref_primary_10_1016_j_plantsci_2015_06_023
crossref_primary_10_2174_0929867325666181017160857
crossref_primary_10_1186_s13068_016_0580_4
crossref_primary_10_3389_fphar_2018_01568
crossref_primary_10_1016_j_cbpa_2017_08_012
crossref_primary_10_1021_acs_biochem_7b00195
crossref_primary_10_1016_j_tim_2017_03_001
crossref_primary_10_1371_journal_pone_0114454
crossref_primary_10_1038_nchembio_1651
crossref_primary_10_1016_j_ijms_2010_08_003
crossref_primary_10_1021_acs_jcim_7b00123
crossref_primary_10_1021_jacs_7b03868
crossref_primary_10_1007_s00018_015_2052_6
crossref_primary_10_1002_anie_202420596
crossref_primary_10_1021_acs_biochem_7b00875
crossref_primary_10_1021_jp508535f
crossref_primary_10_1039_c2ob07135e
crossref_primary_10_1039_C3PY01001E
crossref_primary_10_1093_glycob_cwz068
crossref_primary_10_1016_j_mcpro_2024_100761
crossref_primary_10_1021_cb200277u
crossref_primary_10_1128_AEM_02438_20
crossref_primary_10_1007_s10719_016_9661_7
crossref_primary_10_1021_jm5016582
crossref_primary_10_1073_pnas_1105880108
crossref_primary_10_1007_s10529_018_2526_3
crossref_primary_10_1002_chem_201103428
crossref_primary_10_3390_ijms23073742
crossref_primary_10_1038_nchembio_797
crossref_primary_10_1371_journal_pone_0135922
crossref_primary_10_1080_07388551_2022_2144117
Cites_doi 10.1016/S1367-5931(99)00021-6
10.1016/j.str.2007.01.011
10.1016/S1074-5521(98)90159-4
10.1006/smim.2000.0217
10.1093/glycob/cwg075
10.1126/science.7544493
10.1016/S0021-9258(18)41689-4
10.4052/tigg.14.139
10.1093/glycob/3.2.97
10.1021/cr990368i
10.1021/bi971294c
10.1017/S0033583506004185
10.1016/S0969-2126(99)80181-6
10.1073/pnas.90.24.11613
10.1084/jem.177.5.1439
10.1146/annurev.iy.06.040188.002121
10.1126/science.1058899
10.1126/science.291.5512.2364
10.1111/j.1432-1033.1991.tb15995.x
10.1073/pnas.93.23.12759
10.1016/j.cell.2007.10.025
10.1093/glycob/cwh008
10.1016/j.tibs.2004.10.004
10.1021/ja010094s
10.1146/annurev.bi.54.070185.003215
10.1016/0022-2836(92)90561-W
10.1006/jmbi.2001.4819
10.1016/j.tibs.2006.01.003
10.1110/ps.041205405
10.1096/fasebj.9.14.7589985
10.1073/pnas.0704862104
10.1038/nchembio880
10.1002/pro.5560041020
10.1038/ng1581
10.1016/S0969-2126(99)80095-1
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 3, 2009
2009 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright National Academy of Sciences Mar 3, 2009
– notice: 2009 by The National Academy of Sciences of the USA
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0810318105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
Virology and AIDS Abstracts
AGRICOLA


MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 3136
ExternalDocumentID PMC2651298
1656515111
19204290
10_1073_pnas_0810318105
106_9_3131
40443281
US201301602334
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM044154
– fundername: NIGMS NIH HHS
  grantid: GM044154
– fundername: NIGMS NIH HHS
  grantid: R01 GM051105
– fundername: NIGMS NIH HHS
  grantid: GM51105
– fundername: NIGMS NIH HHS
  grantid: R37 GM044154
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c647t-5376c0010976d7022a70b97597dc67cbe5286565a111261b6cc0fa9fe877a91c3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:45:27 EDT 2025
Thu Jul 10 18:14:56 EDT 2025
Thu Jul 10 18:53:37 EDT 2025
Fri Jul 11 00:39:09 EDT 2025
Mon Jun 30 08:34:36 EDT 2025
Mon Jul 21 06:04:39 EDT 2025
Tue Jul 01 02:39:12 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Wed Nov 11 00:29:08 EST 2020
Thu May 30 15:50:01 EDT 2019
Thu May 29 08:42:56 EDT 2025
Wed Dec 27 19:20:34 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c647t-5376c0010976d7022a70b97597dc67cbe5286565a111261b6cc0fa9fe877a91c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: S.R.H., C.-H.W., J.W.K., and E.T.P. designed research; S.R.H., E.K.C., and E.T.P. performed research; T.-L.H. contributed new reagents/analytic tools; S.R.H., C.-H.W., J.W.K., and E.T.P. analyzed data; and S.R.H., J.W.K., and E.T.P. wrote the paper.
Contributed by Chi-Huey Wong, October 15, 2008
OpenAccessLink http://doi.org/10.1073/pnas.0810318105
PMID 19204290
PQID 201406121
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_106_9_3131_fulltext
fao_agris_US201301602334
proquest_miscellaneous_20214581
proquest_miscellaneous_66992809
jstor_primary_40443281
pnas_primary_106_9_3131
proquest_journals_201406121
pubmed_primary_19204290
crossref_primary_10_1073_pnas_0810318105
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2651298
crossref_citationtrail_10_1073_pnas_0810318105
proquest_miscellaneous_46177980
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-03
PublicationDateYYYYMMDD 2009-03-03
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
16780604 - Q Rev Biophys. 2005 Aug;38(3):245-88
3289571 - Annu Rev Immunol. 1988;6:381-405
7589985 - FASEB J. 1995 Nov;9(14):1436-44
1569556 - J Mol Biol. 1992 Apr 5;224(3):771-82
10508783 - Structure. 1999 Sep 15;7(9):1145-53
18022373 - Cell. 2007 Nov 16;131(4):809-21
15544952 - Trends Biochem Sci. 2004 Dec;29(12):656-63
2040275 - Eur J Biochem. 1991 May 23;198(1):131-9
8490246 - Glycobiology. 1993 Apr;3(2):97-130
7544493 - Science. 1995 Sep 1;269(5228):1273-8
16473013 - Trends Biochem Sci. 2006 Mar;31(3):156-63
8535251 - Protein Sci. 1995 Oct;4(10):2138-48
9710565 - Chem Biol. 1998 Aug;5(8):427-37
11269317 - Science. 2001 Mar 23;291(5512):2364-9
11841247 - Chem Rev. 2002 Feb;102(2):371-86
17355862 - Structure. 2007 Mar;15(3):267-73
8917491 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12759-61
15924140 - Nat Genet. 2005 Jul;37(7):692-700
17606910 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81
10764623 - Semin Immunol. 2000 Apr;12(2):149-57
7505442 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11613-7
11269314 - Science. 2001 Mar 23;291(5512):2344-50
15689503 - Protein Sci. 2005 Mar;14(3):602-16
3896128 - Annu Rev Biochem. 1985;54:631-64
9341233 - Biochemistry. 1997 Oct 28;36(43):13396-405
11502004 - J Mol Biol. 2001 Jul 27;310(5):955-63
11414857 - J Am Chem Soc. 2001 Jun 27;123(25):6187-8
17510649 - Nat Chem Biol. 2007 Jun;3(6):313-20
7683037 - J Exp Med. 1993 May 1;177(5):1439-50
14514716 - Glycobiology. 2004 Feb;14(2):103-14
12736198 - Glycobiology. 2003 Sep;13(9):77R-91R
1385399 - J Biol Chem. 1992 Nov 5;267(31):22428-34
10600722 - Curr Opin Chem Biol. 1999 Dec;3(6):643-9
10425673 - Structure. 1999 Jul 15;7(7):R155-60
References_xml – ident: e_1_3_3_5_2
  doi: 10.1016/S1367-5931(99)00021-6
– ident: e_1_3_3_27_2
  doi: 10.1016/j.str.2007.01.011
– ident: e_1_3_3_30_2
  doi: 10.1016/S1074-5521(98)90159-4
– ident: e_1_3_3_15_2
  doi: 10.1006/smim.2000.0217
– ident: e_1_3_3_9_2
  doi: 10.1093/glycob/cwg075
– ident: e_1_3_3_17_2
  doi: 10.1126/science.7544493
– ident: e_1_3_3_19_2
  doi: 10.1016/S0021-9258(18)41689-4
– ident: e_1_3_3_4_2
  doi: 10.4052/tigg.14.139
– ident: e_1_3_3_1_2
  doi: 10.1093/glycob/3.2.97
– ident: e_1_3_3_26_2
  doi: 10.1021/cr990368i
– ident: e_1_3_3_21_2
  doi: 10.1021/bi971294c
– ident: e_1_3_3_35_2
  doi: 10.1017/S0033583506004185
– ident: e_1_3_3_18_2
  doi: 10.1016/S0969-2126(99)80181-6
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.90.24.11613
– ident: e_1_3_3_34_2
  doi: 10.1084/jem.177.5.1439
– ident: e_1_3_3_16_2
  doi: 10.1146/annurev.iy.06.040188.002121
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1058899
– ident: e_1_3_3_2_2
  doi: 10.1126/science.291.5512.2364
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1432-1033.1991.tb15995.x
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.93.23.12759
– ident: e_1_3_3_32_2
  doi: 10.1016/j.cell.2007.10.025
– ident: e_1_3_3_7_2
  doi: 10.1093/glycob/cwh008
– ident: e_1_3_3_10_2
  doi: 10.1016/j.tibs.2004.10.004
– ident: e_1_3_3_8_2
  doi: 10.1021/ja010094s
– ident: e_1_3_3_12_2
  doi: 10.1146/annurev.bi.54.070185.003215
– ident: e_1_3_3_24_2
  doi: 10.1016/0022-2836(92)90561-W
– ident: e_1_3_3_22_2
  doi: 10.1006/jmbi.2001.4819
– ident: e_1_3_3_6_2
  doi: 10.1016/j.tibs.2006.01.003
– ident: e_1_3_3_23_2
  doi: 10.1110/ps.041205405
– ident: e_1_3_3_14_2
  doi: 10.1096/fasebj.9.14.7589985
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.0704862104
– ident: e_1_3_3_13_2
  doi: 10.1038/nchembio880
– ident: e_1_3_3_25_2
  doi: 10.1002/pro.5560041020
– ident: e_1_3_3_33_2
  doi: 10.1038/ng1581
– ident: e_1_3_3_3_2
  doi: 10.1016/S0969-2126(99)80095-1
– reference: 10508783 - Structure. 1999 Sep 15;7(9):1145-53
– reference: 10600722 - Curr Opin Chem Biol. 1999 Dec;3(6):643-9
– reference: 8535251 - Protein Sci. 1995 Oct;4(10):2138-48
– reference: 17606910 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81
– reference: 11502004 - J Mol Biol. 2001 Jul 27;310(5):955-63
– reference: 11269314 - Science. 2001 Mar 23;291(5512):2344-50
– reference: 9341233 - Biochemistry. 1997 Oct 28;36(43):13396-405
– reference: 2040275 - Eur J Biochem. 1991 May 23;198(1):131-9
– reference: 7589985 - FASEB J. 1995 Nov;9(14):1436-44
– reference: 17355862 - Structure. 2007 Mar;15(3):267-73
– reference: 18022373 - Cell. 2007 Nov 16;131(4):809-21
– reference: 10425673 - Structure. 1999 Jul 15;7(7):R155-60
– reference: 3289571 - Annu Rev Immunol. 1988;6:381-405
– reference: 7544493 - Science. 1995 Sep 1;269(5228):1273-8
– reference: 7505442 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11613-7
– reference: 16473013 - Trends Biochem Sci. 2006 Mar;31(3):156-63
– reference: 8917491 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12759-61
– reference: 11269317 - Science. 2001 Mar 23;291(5512):2364-9
– reference: 16780604 - Q Rev Biophys. 2005 Aug;38(3):245-88
– reference: 15689503 - Protein Sci. 2005 Mar;14(3):602-16
– reference: 9710565 - Chem Biol. 1998 Aug;5(8):427-37
– reference: 12736198 - Glycobiology. 2003 Sep;13(9):77R-91R
– reference: 11414857 - J Am Chem Soc. 2001 Jun 27;123(25):6187-8
– reference: 1569556 - J Mol Biol. 1992 Apr 5;224(3):771-82
– reference: 15544952 - Trends Biochem Sci. 2004 Dec;29(12):656-63
– reference: 8490246 - Glycobiology. 1993 Apr;3(2):97-130
– reference: 3896128 - Annu Rev Biochem. 1985;54:631-64
– reference: 17510649 - Nat Chem Biol. 2007 Jun;3(6):313-20
– reference: 11841247 - Chem Rev. 2002 Feb;102(2):371-86
– reference: 15924140 - Nat Genet. 2005 Jul;37(7):692-700
– reference: 10764623 - Semin Immunol. 2000 Apr;12(2):149-57
– reference: 14514716 - Glycobiology. 2004 Feb;14(2):103-14
– reference: 7683037 - J Exp Med. 1993 May 1;177(5):1439-50
– reference: 1385399 - J Biol Chem. 1992 Nov 5;267(31):22428-34
SSID ssj0009580
Score 2.3972423
Snippet The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3131
SubjectTerms adhesion
Amino acids
Animals
Biochemistry
Biological Sciences
CD2 Antigens - chemistry
CD2 Antigens - genetics
CD2 Antigens - metabolism
Cells
Circular Dichroism
energy
Free energy
Glycoproteins
Glycoproteins - chemistry
Glycoproteins - metabolism
Glycosylation
Humans
Immune system
Kinetics
landscapes
Models, Molecular
Mutation - genetics
Oligosaccharides
Physical Sciences
Polysaccharides
Protein Folding
Protein Stability
Protein Structure, Tertiary
Rats
Renovations
Surface areas
Thermodynamics
trisaccharides
Trisaccharides - chemistry
Trisaccharides - metabolism
Title core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability
URI https://www.jstor.org/stable/40443281
http://www.pnas.org/content/106/9/3131.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19204290
https://www.proquest.com/docview/201406121
https://www.proquest.com/docview/20214581
https://www.proquest.com/docview/46177980
https://www.proquest.com/docview/66992809
https://pubmed.ncbi.nlm.nih.gov/PMC2651298
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l5cIFUaDUlGUOHIoiB69jz7GKWlkohEokUm-j8dZEjZwKx4fwQ_i9vDfxeCkN28WKPG9Gjt_nt8xbhpD3OR5-40pmujnHMKPMTOy8Z-a5C45Y5vl-joXCn6csmnufrv3rweBHJ2up2sSj5PuDdSX_w1W4B3zFKtl_4GyzKNyA38BfuAKH4frXPMY2lMMNtspNsIJqmapNAPhqwQAHPxPsyZvVNlmrfgxLTGsE2kKxZrUdwhxQO9gtAtsyqDiUiiZkxQLRUOJOg8qe7QV_rxqlV-oUg6neUzxvK1RqsVEOzeHVtD3vOJK63kztRrcZi-NqtY1lL9es3YSNykpBq6yW5kSr205K8XixNKOqDlLrXQyu0rjcrmR2QFt6u3rqRjJbrANBPrwbubZrg9pwuzIX73X0tx79RTeAMMMDjQtZjsAOQmFmW36rBnXof_pFXM4nEzG7uJ4dkEcOuB8qYTTqNnMOd6VN9TPrllGB-_He8j1r5yCXa532ir10gfQhv-Z-em7H3pk9JU9qR4We71B3RAZZ8YwcaZ7Ss7pf-Yfn5BZgSBGGtAdDus6pLKiGIe3CkPZgSDswpDUMYWpKNQxpA8MXZH55MRtHZn2Gh5kwL9iY2C0oUfHXgKUBGIwysGIegBubJixI4szH0mjmSxtr2eyYJYmVS55nYRBIbifuMTks1kV2QmjIMacSDCqg9rLYl36a21KmMktZyLzYICP9rkVSN7jHc1ZWQiVaBK7ANy5a5hjkrJlwt-vtsp_0BJgn5A28RzH_6mC832Zg77qeQY4VR5slPMvzXCe0DfJSrdIuzQQXiFaD0D0jIq9TvgxyqoEhaolTCge3Q7Dln0HeNaOgDjDGJ4tsXSEJHj0Q_obCA58l4KG1n4Ixzp3Q4vgHFBDbB-UOGrAwN-hBtCHAZvX9kWK5UE3rgWvgWoSv_vhcp-RxKyBek8PNtyp7A4b_Jn6rvsKf7n8DTw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+core+trisaccharide+of+an+N-linked+glycoprotein+intrinsically+accelerates+folding+and+enhances+stability&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hanson%2C+Sarah+R&rft.au=Culyba%2C+Elizabeth+K&rft.au=Hsu%2C+Tsui-Ling&rft.au=Wong%2C+Chi-Huey&rft.date=2009-03-03&rft.issn=0027-8424&rft.volume=106&rft.issue=9+p.3131-3136&rft.spage=3131&rft.epage=3136&rft_id=info:doi/10.1073%2Fpnas.0810318105&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F9.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F9.cover.gif