Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers

With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article pr...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 51; no. 1; pp. 228 - 241
Main Authors Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., Deriche, R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2010
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.
AbstractList With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.
With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This paper presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product based on Gaussian processes, between fibers which span a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects thereby avoiding the need for point parametrization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21 subject dataset.
With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.
With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.
With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor ana prioriknowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.
Author Kanterakis, E.
Verma, R.
Deriche, R.
Wassermann, D.
Bloy, L.
AuthorAffiliation b Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
a INRIA Sophia Antipolis - Mediterranée,Odyssée Project Team, 2004 Route des Lucioles, Sophia-Antipolis, 06902, France
c CS Department, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
AuthorAffiliation_xml – name: a INRIA Sophia Antipolis - Mediterranée,Odyssée Project Team, 2004 Route des Lucioles, Sophia-Antipolis, 06902, France
– name: c CS Department, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
– name: b Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
Author_xml – sequence: 1
  givenname: D.
  surname: Wassermann
  fullname: Wassermann, D.
  email: demian.wassermann@sophia.inria.fr
  organization: INRIA Sophia Antipolis–Mediterranée, Odyssée Project Team, 2004 Route des Lucioles, Sophia Antipolis, 06902, France
– sequence: 2
  givenname: L.
  surname: Bloy
  fullname: Bloy, L.
  email: bloy@uphs.upenn.edu
  organization: Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 3
  givenname: E.
  surname: Kanterakis
  fullname: Kanterakis, E.
  email: Efstathios.Kanterakis@uphs.upenn.edu
  organization: Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: R.
  surname: Verma
  fullname: Verma, R.
  email: ragini@uphs.upenn.edu
  organization: Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 5
  givenname: R.
  surname: Deriche
  fullname: Deriche, R.
  email: rachid.deriche@sophia.inria.fr
  organization: INRIA Sophia Antipolis–Mediterranée, Odyssée Project Team, 2004 Route des Lucioles, Sophia Antipolis, 06902, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20079439$$D View this record in MEDLINE/PubMed
https://inria.hal.science/inria-00496898$$DView record in HAL
BookMark eNqNkl1v0zAUhiM0xD7gLyBLXHCBWuzEcWwu0MoEG1Ilbti15dgnrbvUDnbSqT-E_4uzjg4qJHrjz_c89jnnPc9OnHeQZYjgKcGEvV9NHQzB27VawDTH6RiTKcb0WXZGsCgnoqzyk3FdFhNOiDjNzmNcYYwFofxFdppjXAlaiLPs562LQwdhYyMYdL-0PaC16nsIqLF1GnU7xLSzboGUM6gPSveoC75WtW1tv03qDi3AQVC99e4DmnVda_XDJiLfIIWu1RCjVW4M0xAjaoJaw70Pd6jx4R-PxpfZ80a1EV49zhfZ7ZfP369uJvNv11-vZvOJZrTqJ4XRusHY5IqxuiCioin5ihuRTrkpcl4xrQTmIGjNRa2gpKZSzFDSmIYQVVxkH3fcbqjXYDS4lF8ru5AqG7bSKyv_vnF2KRd-I3NOK1zgBHi3AywPwm5mc2ldsEqmtgjGBd-QpH77-FzwPwaIvVzbqKFtlQM_RFlRlpgM5_9XFgWjlJIyKd8cKFd-CC5VTZISVzktBRv_-frPRPdf_W2EJOA7gQ4-xgDNXkKwHD0nV_LJc3L0nMRkTO6piPtQbfuH_qeS2fYYwKcdAFKrNxaCjNqC02BsAN1L4-0xkMsDiG6tS0Zs72B7HOIXr44TQA
CitedBy_id crossref_primary_10_1016_j_clineuro_2014_06_009
crossref_primary_10_1007_s00701_012_1326_0
crossref_primary_10_1016_j_neuroimage_2010_07_038
crossref_primary_10_1109_TMI_2019_2932681
crossref_primary_10_7717_peerj_16408
crossref_primary_10_1118_1_4811155
crossref_primary_10_1038_s41537_022_00325_w
crossref_primary_10_3724_SP_J_1089_2022_19221
crossref_primary_10_1016_j_neuroimage_2016_11_027
crossref_primary_10_1016_j_neuroimage_2021_118706
crossref_primary_10_1109_TCDS_2021_3094555
crossref_primary_10_1007_s12021_020_09452_0
crossref_primary_10_1016_j_neuroimage_2010_11_056
crossref_primary_10_1016_j_neuroimage_2017_12_064
crossref_primary_10_1002_hbm_24579
crossref_primary_10_1016_j_media_2011_07_005
crossref_primary_10_1371_journal_pone_0133337
crossref_primary_10_1002_hbm_22835
crossref_primary_10_1016_j_media_2020_101761
crossref_primary_10_1016_j_neuroimage_2013_04_066
crossref_primary_10_1016_j_neuroimage_2017_10_058
crossref_primary_10_1016_j_media_2024_103101
crossref_primary_10_3389_fninf_2017_00073
crossref_primary_10_3389_fninf_2023_1266713
crossref_primary_10_1016_j_neuroimage_2014_04_018
crossref_primary_10_1016_j_neuroimage_2022_119550
crossref_primary_10_1016_j_neuroimage_2012_01_024
crossref_primary_10_1109_JPROC_2019_2913145
crossref_primary_10_1371_journal_pone_0083847
crossref_primary_10_3389_fpain_2022_840328
crossref_primary_10_1016_j_neuroimage_2018_05_044
crossref_primary_10_1016_j_neuroimage_2010_09_035
crossref_primary_10_1016_j_media_2014_04_005
crossref_primary_10_1109_TBME_2015_2391913
crossref_primary_10_1227_NEU_0000000000001183
crossref_primary_10_1186_1471_2342_12_10
crossref_primary_10_1007_s12021_020_09488_2
crossref_primary_10_1109_TMI_2023_3252269
crossref_primary_10_1111_jon_12854
crossref_primary_10_1214_20_AAP1618
crossref_primary_10_1007_s12021_016_9316_7
crossref_primary_10_1016_j_neuroimage_2014_04_048
crossref_primary_10_1016_j_neuroimage_2018_06_019
crossref_primary_10_4236_ojrad_2014_43034
crossref_primary_10_1016_j_neuroimage_2020_116703
crossref_primary_10_1016_j_neuroimage_2010_07_055
crossref_primary_10_1097_j_pain_0000000000002023
crossref_primary_10_1016_j_neuroimage_2012_02_071
crossref_primary_10_1016_j_media_2018_02_008
crossref_primary_10_1002_nbm_3902
crossref_primary_10_1007_s00429_015_1179_4
crossref_primary_10_1016_j_neuroimage_2010_07_050
crossref_primary_10_1016_j_neuroimage_2020_116673
crossref_primary_10_1073_pnas_2410341121
crossref_primary_10_1016_j_nicl_2016_11_023
crossref_primary_10_1093_cercor_bhad125
crossref_primary_10_1016_j_neuroimage_2014_08_021
crossref_primary_10_1016_j_nicl_2016_11_024
crossref_primary_10_1002_hbm_22854
crossref_primary_10_1089_brain_2021_0058
crossref_primary_10_1016_j_neuroimage_2020_117070
crossref_primary_10_1016_j_media_2021_102126
crossref_primary_10_1016_j_neuroimage_2018_06_027
crossref_primary_10_1007_s12021_011_9118_x
crossref_primary_10_1109_TMI_2016_2591080
crossref_primary_10_1016_j_media_2017_04_013
crossref_primary_10_1002_hbm_22528
crossref_primary_10_1097_RMR_0000000000000212
crossref_primary_10_1097_WCO_0b013e328355d544
crossref_primary_10_1016_j_compstruct_2019_111468
crossref_primary_10_1016_j_neuroimage_2017_06_083
crossref_primary_10_1016_j_neuroimage_2014_04_033
crossref_primary_10_1016_j_patcog_2019_06_002
crossref_primary_10_1117_1_JMI_5_1_011018
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1016_j_neuroimage_2010_10_028
crossref_primary_10_1371_journal_pone_0093344
crossref_primary_10_3389_fnins_2017_00754
Cites_doi 10.1002/mrm.20858
10.1145/331499.331504
10.1016/j.neuroimage.2007.07.053
10.1002/mrm.20898
10.1148/radiol.2301021640
10.1016/S1474-4422(08)70163-7
10.1109/TMI.2008.2004424
10.1016/j.neuroimage.2008.01.028
10.1016/j.neuroimage.2007.03.020
10.1016/j.neuroimage.2008.06.034
10.1016/j.mri.2006.07.009
10.1002/mrm.21277
10.1007/978-3-540-85990-1_109
10.1142/S0129065704001899
10.1148/radiology.217.3.r00nv43897
10.1002/mrm.20279
10.1016/j.neuroimage.2005.08.040
10.1016/j.neuroimage.2008.10.060
10.1016/j.neuroimage.2008.10.054
10.1006/jmrb.1996.0086
10.1137/1.9781611970128
10.54294/71u60v
10.1016/j.jpsychires.2005.05.005
10.1016/j.neuroimage.2007.02.049
10.1006/nimg.2001.1052
10.1007/BF03029116
10.1002/mrm.10415
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1002/env.785
10.1016/S0006-3495(94)80775-1
10.1016/j.neuroimage.2007.06.041
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright (c) 2010 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 15, 2010
Distributed under a Creative Commons Attribution 4.0 International License
2010 Elsevier Inc. All rights reserved. 2010
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright (c) 2010 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 15, 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2010 Elsevier Inc. All rights reserved. 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
1XC
5PM
DOI 10.1016/j.neuroimage.2010.01.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
ProQuest Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE


Engineering Research Database
MEDLINE - Academic
ProQuest One Psychology


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 241
ExternalDocumentID PMC2847030
oai_HAL_inria_00496898v1
3246197061
20079439
10_1016_j_neuroimage_2010_01_004
S1053811910000091
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01MH079938
– fundername: NIBIB NIH HHS
  grantid: T32 EB000814
– fundername: NIMH NIH HHS
  grantid: R01MH060722
– fundername: NIBIB NIH HHS
  grantid: T32-EB000814
– fundername: NIMH NIH HHS
  grantid: R01 MH060722
– fundername: NIMH NIH HHS
  grantid: R01 MH079938
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
1XC
5PM
ID FETCH-LOGICAL-c647t-3dccf00d2a66b3197409578d9cf08d32876ca908e94b89bae54d7a6d41fdf11a3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:33:22 EDT 2025
Wed Aug 27 07:32:06 EDT 2025
Fri Jul 11 04:00:32 EDT 2025
Thu Jul 10 23:07:41 EDT 2025
Wed Aug 13 06:10:47 EDT 2025
Mon Jul 21 05:48:50 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 02:14:35 EDT 2025
Fri Feb 23 02:20:29 EST 2024
Tue Aug 26 16:36:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diffusion MRI
Gaussian process
White matter fiber tracts
Clustering
white matter fibres
tractography
clustering
gaussian processes
white matter fibers
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright (c) 2010 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c647t-3dccf00d2a66b3197409578d9cf08d32876ca908e94b89bae54d7a6d41fdf11a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC2847030
ORCID 0000-0002-4643-8417
0000-0001-5194-6056
PMID 20079439
PQID 1507245960
PQPubID 2031077
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2847030
hal_primary_oai_HAL_inria_00496898v1
proquest_miscellaneous_746303602
proquest_miscellaneous_733644415
proquest_journals_1507245960
pubmed_primary_20079439
crossref_primary_10_1016_j_neuroimage_2010_01_004
crossref_citationtrail_10_1016_j_neuroimage_2010_01_004
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_01_004
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-15
PublicationDateYYYYMMDD 2010-05-15
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bib3) 2000; 44
Ciccarelli, Catani, Johansen-Berg, Clark, Thompson (bib6) 2008; 7
Rasmussen, Williams (bib32) 2006
Basser, Pierpaoli (bib1) 1996; 111
Maddah, Zollei, Grimson, Westin, Wells (bib23) 2008
Seeger (bib35) 2004; 14
Wiegell, Larsson, Wedeen (bib43) 2000; 217
Bürgel, Amunts, Hoemke, Mohlberg, Gilsbach, Zilles (bib5) 2006; 29
Maddah, Grimson, Warfield, Wells (bib22) 2008
Wassermann, D., Deriche, R., 2008. Simultaneous manifold learning and clustering: Grouping white matter fiber tracts using a volumetric white matter atlas. In: MICCAI Workshops.
Wahba, G., 1990. Spline Models for Observational Data. Soc Ind Math.
O'Donnell, Westin (bib26) 2007; 26
Kolmogorov (bib16) 1956
Kubicki, McCarley, Westin, Park, Maier, Kikinis, Jolesz, Shenton (bib17) 2007; 41
Wakana, Jiang, Nagae-Poetscher, van Zijl, Mori (bib40) 2004; 230
Basser, Mattiello, Le Bihan (bib2) 1994; 66
Qazi, Radmanesh, O'Donnell, Kindlmann, Peled, Whalen, Westin, Golby (bib31) 2009; 47
Yang, J., Shen, D., Davatzikos, C., Verma, R., 2008. Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features. In: MICCAI. Vol. 5242/2008. pp. 905–913.
Schmidt (bib34) 1908; 25
O'Donnell, L. J., May 2006. Cerebral white matter analysis using diffusion imaging. Ph.D. thesis, Massachusets Institute of Technology.
Corouge, Fletcher, Joshi, Gouttard, Gerig (bib7) 2006; 10
Descoteaux, Angelino, Fitzgibbons, Deriche (bib9) 2007; 58
MacKay (bib21) 1998
De Groot (bib8) 2004
Batchelor, Calamante, Tournier, Atkinson, Hill, Connelly (bib4) 2006; 55
Savadjiev, Campbell, Descoteaux, Deriche, Pike, Siddiqi (bib33) 2008; 41
O'Donnell, Westin, Golby (bib27) 2007
Tuch (bib37) 2004; 52
Lawes, Barrick, Murugam, Spierings, Evans, Song, Clark (bib18) 2008; 39
Descoteaux, Deriche, Knösche, Anwander (bib10) 2009; 28
Veltkamp (bib38) 2001
Ding, Gore, Anderson (bib11) 2003; 49
Hua, Zhang, Wakana, Jiang, Li, Reich, Calabresi, Pekar, van Zijl, Mori (bib13) 2008; 39
Jain, Murty, Flynn (bib14) 1999; 31
Mori, Crain, Chacko, Zijl (bib24) 1999; 45
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (bib41) 2007; 36
Koch, Norris, Hund-Georgiadis (bib15) 2002; 16
Leemans, Sijbers, Backer, Vandervliet, Parizel (bib19) 2006; 55
Peled, Friman, Jolesz, Westin (bib30) 2006; 24
Stein (bib36) 1999
Goodlett, Fletcher, Gilmore, Gerig (bib12) 2009; 45
Oh, Song, Lee, Kang, Park, Kang, Lee (bib28) 2007; 36
Lenglet, Campbell, Descoteaux, Haro, Savadjiev, Wassermann, Anwander, Deriche, Pike, Sapiro, Siddiqi, Thompson (bib20) 2009; 45
Paciorek, Schervish (bib29) 2006; 17
Williams, O., Fitzgibbon, A., 2007. Gaussian process implicit surfaces. In: Gaussian Proc. in Practice.
Batchelor (10.1016/j.neuroimage.2010.01.004_bib4) 2006; 55
Stein (10.1016/j.neuroimage.2010.01.004_bib36) 1999
Wiegell (10.1016/j.neuroimage.2010.01.004_bib43) 2000; 217
Ciccarelli (10.1016/j.neuroimage.2010.01.004_bib6) 2008; 7
O'Donnell (10.1016/j.neuroimage.2010.01.004_bib27) 2007
Oh (10.1016/j.neuroimage.2010.01.004_bib28) 2007; 36
Wakana (10.1016/j.neuroimage.2010.01.004_bib40) 2004; 230
Descoteaux (10.1016/j.neuroimage.2010.01.004_bib9) 2007; 58
O'Donnell (10.1016/j.neuroimage.2010.01.004_bib26) 2007; 26
Hua (10.1016/j.neuroimage.2010.01.004_bib13) 2008; 39
MacKay (10.1016/j.neuroimage.2010.01.004_bib21) 1998
Paciorek (10.1016/j.neuroimage.2010.01.004_bib29) 2006; 17
Wakana (10.1016/j.neuroimage.2010.01.004_bib41) 2007; 36
Basser (10.1016/j.neuroimage.2010.01.004_bib3) 2000; 44
Kubicki (10.1016/j.neuroimage.2010.01.004_bib17) 2007; 41
Bürgel (10.1016/j.neuroimage.2010.01.004_bib5) 2006; 29
Jain (10.1016/j.neuroimage.2010.01.004_bib14) 1999; 31
Goodlett (10.1016/j.neuroimage.2010.01.004_bib12) 2009; 45
Veltkamp (10.1016/j.neuroimage.2010.01.004_bib38) 2001
10.1016/j.neuroimage.2010.01.004_bib39
Lenglet (10.1016/j.neuroimage.2010.01.004_bib20) 2009; 45
De Groot (10.1016/j.neuroimage.2010.01.004_bib8) 2004
Maddah (10.1016/j.neuroimage.2010.01.004_bib23) 2008
Lawes (10.1016/j.neuroimage.2010.01.004_bib18) 2008; 39
Peled (10.1016/j.neuroimage.2010.01.004_bib30) 2006; 24
Rasmussen (10.1016/j.neuroimage.2010.01.004_bib32) 2006
Basser (10.1016/j.neuroimage.2010.01.004_bib1) 1996; 111
Seeger (10.1016/j.neuroimage.2010.01.004_bib35) 2004; 14
Leemans (10.1016/j.neuroimage.2010.01.004_bib19) 2006; 55
Ding (10.1016/j.neuroimage.2010.01.004_bib11) 2003; 49
Kolmogorov (10.1016/j.neuroimage.2010.01.004_bib16) 1956
Maddah (10.1016/j.neuroimage.2010.01.004_bib22) 2008
Schmidt (10.1016/j.neuroimage.2010.01.004_bib34) 1908; 25
10.1016/j.neuroimage.2010.01.004_bib42
Corouge (10.1016/j.neuroimage.2010.01.004_bib7) 2006; 10
Savadjiev (10.1016/j.neuroimage.2010.01.004_bib33) 2008; 41
Qazi (10.1016/j.neuroimage.2010.01.004_bib31) 2009; 47
10.1016/j.neuroimage.2010.01.004_bib44
Mori (10.1016/j.neuroimage.2010.01.004_bib24) 1999; 45
Tuch (10.1016/j.neuroimage.2010.01.004_bib37) 2004; 52
10.1016/j.neuroimage.2010.01.004_bib45
Descoteaux (10.1016/j.neuroimage.2010.01.004_bib10) 2009; 28
10.1016/j.neuroimage.2010.01.004_bib25
Basser (10.1016/j.neuroimage.2010.01.004_bib2) 1994; 66
Koch (10.1016/j.neuroimage.2010.01.004_bib15) 2002; 16
References_xml – volume: 45
  start-page: S111
  year: 2009
  end-page: S122
  ident: bib20
  article-title: Mathematical methods for diffusion MRI processing
  publication-title: NeuroImage
– volume: 24
  start-page: 1263
  year: 2006
  end-page: 1270
  ident: bib30
  article-title: Geometrically constrained two-tensor model for crossing tracts in DWI
  publication-title: Magn. Reson. Imaging
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  ident: bib2
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
– volume: 28
  start-page: 269
  year: 2009
  end-page: 286
  ident: bib10
  article-title: Deterministic and probabilistic tractography based on complex fiber orientation distributions
  publication-title: Trans. Med. Imag.
– volume: 36
  start-page: 606
  year: 2007
  end-page: 616
  ident: bib28
  article-title: Tractography-guided statistics (tgis) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa
  publication-title: NeuroImage
– volume: 17
  start-page: 483
  year: 2006
  end-page: 506
  ident: bib29
  article-title: Spatial modelling using a new class of nonstationary covariance functions
  publication-title: Environmetrics (London, Ont.)
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: bib35
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
– volume: 41
  start-page: 15
  year: 2007
  end-page: 30
  ident: bib17
  article-title: A review of diffusion tensor imaging studies in schizophrenia
  publication-title: J. Psych. Res.
– volume: 7
  start-page: 715
  year: 2008
  end-page: 727
  ident: bib6
  article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments
  publication-title: Lancet Neurol.
– volume: 217
  start-page: 897
  year: 2000
  end-page: 903
  ident: bib43
  article-title: Fiber crossing in human brain depicted with diffusion tensor MR imaging 1
  publication-title: Radiology
– reference: Williams, O., Fitzgibbon, A., 2007. Gaussian process implicit surfaces. In: Gaussian Proc. in Practice.
– start-page: 191
  year: 2008
  end-page: 202
  ident: bib22
  article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts
  publication-title: MIA
– reference: O'Donnell, L. J., May 2006. Cerebral white matter analysis using diffusion imaging. Ph.D. thesis, Massachusets Institute of Technology.
– reference: Wassermann, D., Deriche, R., 2008. Simultaneous manifold learning and clustering: Grouping white matter fiber tracts using a volumetric white matter atlas. In: MICCAI Workshops.
– volume: 55
  start-page: 1414
  year: 2006
  end-page: 1423
  ident: bib19
  article-title: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data
  publication-title: MRM
– reference: Wahba, G., 1990. Spline Models for Observational Data. Soc Ind Math.
– reference: Yang, J., Shen, D., Davatzikos, C., Verma, R., 2008. Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features. In: MICCAI. Vol. 5242/2008. pp. 905–913.
– volume: 26
  start-page: 1562
  year: 2007
  end-page: 1575
  ident: bib26
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE TMI
– volume: 41
  start-page: 58
  year: 2008
  end-page: 68
  ident: bib33
  article-title: Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI
  publication-title: NeuroImage
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  ident: bib24
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
– volume: 16
  start-page: 241
  year: 2002
  end-page: 250
  ident: bib15
  article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging
  publication-title: NeuroImage
– volume: 25
  start-page: 63
  year: 1908
  end-page: 77
  ident: bib34
  article-title: Über die auflösung linearer gleichungen mit unendlich vielen unbekannten
  publication-title: Rend. Circ. Mat. Palermo
– volume: 52
  start-page: 1358
  year: 2004
  end-page: 1372
  ident: bib37
  article-title: Q-ball imaging
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: bib41
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
– year: 1999
  ident: bib36
  publication-title: Statistical Interpolation of Spatial Data: Some Theory for Kriging
– start-page: 133
  year: 1998
  end-page: 165
  ident: bib21
  article-title: Introduction to gaussian processes
  publication-title: Neural Networks and Machine Learning. Vol. 168 of NATO ASI
– volume: 47
  start-page: T98
  year: 2009
  end-page: T106
  ident: bib31
  article-title: Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI
  publication-title: NeuroImage
– year: 2006
  ident: bib32
  publication-title: Gaussian Processes for Machine Learning
– year: 1956
  ident: bib16
  publication-title: Foundations of the Theory of Probability
– start-page: 188
  year: 2001
  end-page: 197
  ident: bib38
  publication-title: Shape matching: similarity measures and algorithms
– volume: 29
  start-page: 1092
  year: 2006
  end-page: 1105
  ident: bib5
  article-title: White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability
  publication-title: NeuroImage
– volume: 58
  start-page: 497
  year: 2007
  end-page: 510
  ident: bib9
  article-title: Regularized, fast and robust analytical q-ball imaging
  publication-title: MRM
– start-page: 161
  year: 2007
  end-page: 168
  ident: bib27
  publication-title: Tract-based morphometry
– volume: 111
  start-page: 209
  year: 1996
  end-page: 219
  ident: bib1
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magn. Res. B
– volume: 55
  start-page: 894
  year: 2006
  end-page: 903
  ident: bib4
  article-title: Quantification of the shape of fiber tracts
  publication-title: MRM
– volume: 44
  start-page: 625
  year: 2000
  end-page: 632
  ident: bib3
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
– volume: 10
  start-page: 786
  year: 2006
  end-page: 798
  ident: bib7
  article-title: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis
  publication-title: MIA
– volume: 39
  start-page: 62
  year: 2008
  end-page: 79
  ident: bib18
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: NeuroImage
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib14
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
– start-page: 105
  year: 2008
  end-page: 108
  ident: bib23
  publication-title: A mathematical framework for incorporating anatomical knowledge in DT-MRI analysis
– volume: 230
  start-page: 77
  year: 2004
  end-page: 87
  ident: bib40
  article-title: Fiber tract–based atlas of human white matter anatomy
  publication-title: Radiology
– volume: 49
  start-page: 716
  year: 2003
  end-page: 721
  ident: bib11
  article-title: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI
  publication-title: MRM
– volume: 39
  start-page: 336
  year: 2008
  end-page: 347
  ident: bib13
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification
  publication-title: NeuroImage
– year: 2004
  ident: bib8
  publication-title: Optimal Statistical Decisions
– volume: 45
  start-page: S133
  year: 2009
  end-page: S142
  ident: bib12
  article-title: Group analysis of dti fiber tract statistics with application to neurodevelopment
  publication-title: NeuroImage
– volume: 55
  start-page: 894
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.004_bib4
  article-title: Quantification of the shape of fiber tracts
  publication-title: MRM
  doi: 10.1002/mrm.20858
– ident: 10.1016/j.neuroimage.2010.01.004_bib44
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2010.01.004_bib14
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/331499.331504
– volume: 39
  start-page: 336
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.004_bib13
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.053
– volume: 55
  start-page: 1414
  issue: 6
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.004_bib19
  article-title: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data
  publication-title: MRM
  doi: 10.1002/mrm.20898
– volume: 230
  start-page: 77
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.004_bib40
  article-title: Fiber tract–based atlas of human white matter anatomy
  publication-title: Radiology
  doi: 10.1148/radiol.2301021640
– volume: 7
  start-page: 715
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.004_bib6
  article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70163-7
– volume: 28
  start-page: 269
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.004_bib10
  article-title: Deterministic and probabilistic tractography based on complex fiber orientation distributions
  publication-title: Trans. Med. Imag.
  doi: 10.1109/TMI.2008.2004424
– volume: 41
  start-page: 58
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.004_bib33
  article-title: Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.01.028
– start-page: 105
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.004_bib23
– volume: 36
  start-page: 606
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.004_bib28
  article-title: Tractography-guided statistics (tgis) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.03.020
– volume: 47
  start-page: T98
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.004_bib31
  article-title: Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.06.034
– ident: 10.1016/j.neuroimage.2010.01.004_bib25
– year: 2006
  ident: 10.1016/j.neuroimage.2010.01.004_bib32
– year: 2004
  ident: 10.1016/j.neuroimage.2010.01.004_bib8
– volume: 24
  start-page: 1263
  issue: 9
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.004_bib30
  article-title: Geometrically constrained two-tensor model for crossing tracts in DWI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.07.009
– volume: 58
  start-page: 497
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.004_bib9
  article-title: Regularized, fast and robust analytical q-ball imaging
  publication-title: MRM
  doi: 10.1002/mrm.21277
– start-page: 133
  year: 1998
  ident: 10.1016/j.neuroimage.2010.01.004_bib21
  article-title: Introduction to gaussian processes
– ident: 10.1016/j.neuroimage.2010.01.004_bib45
  doi: 10.1007/978-3-540-85990-1_109
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.004_bib26
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE TMI
– volume: 14
  start-page: 69
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.004_bib35
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 217
  start-page: 897
  issue: 3
  year: 2000
  ident: 10.1016/j.neuroimage.2010.01.004_bib43
  article-title: Fiber crossing in human brain depicted with diffusion tensor MR imaging 1
  publication-title: Radiology
  doi: 10.1148/radiology.217.3.r00nv43897
– volume: 10
  start-page: 786
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.004_bib7
  article-title: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis
  publication-title: MIA
– volume: 52
  start-page: 1358
  issue: 6
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.004_bib37
  article-title: Q-ball imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20279
– volume: 29
  start-page: 1092
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.004_bib5
  article-title: White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.040
– volume: 45
  start-page: S133
  issue: 1, Supplement 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.004_bib12
  article-title: Group analysis of dti fiber tract statistics with application to neurodevelopment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.060
– volume: 45
  start-page: S111
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.004_bib20
  article-title: Mathematical methods for diffusion MRI processing
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.054
– start-page: 188
  year: 2001
  ident: 10.1016/j.neuroimage.2010.01.004_bib38
– volume: 111
  start-page: 209
  issue: 3
  year: 1996
  ident: 10.1016/j.neuroimage.2010.01.004_bib1
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magn. Res. B
  doi: 10.1006/jmrb.1996.0086
– ident: 10.1016/j.neuroimage.2010.01.004_bib39
  doi: 10.1137/1.9781611970128
– ident: 10.1016/j.neuroimage.2010.01.004_bib42
  doi: 10.54294/71u60v
– volume: 41
  start-page: 15
  issue: 1-2
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.004_bib17
  article-title: A review of diffusion tensor imaging studies in schizophrenia
  publication-title: J. Psych. Res.
  doi: 10.1016/j.jpsychires.2005.05.005
– volume: 36
  start-page: 630
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.004_bib41
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 16
  start-page: 241
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2010.01.004_bib15
  article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1052
– start-page: 191
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.004_bib22
  article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts
  publication-title: MIA
– year: 1999
  ident: 10.1016/j.neuroimage.2010.01.004_bib36
– volume: 25
  start-page: 63
  year: 1908
  ident: 10.1016/j.neuroimage.2010.01.004_bib34
  article-title: Über die auflösung linearer gleichungen mit unendlich vielen unbekannten
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/BF03029116
– volume: 49
  start-page: 716
  year: 2003
  ident: 10.1016/j.neuroimage.2010.01.004_bib11
  article-title: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI
  publication-title: MRM
  doi: 10.1002/mrm.10415
– volume: 45
  start-page: 265
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2010.01.004_bib24
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 17
  start-page: 483
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.004_bib29
  article-title: Spatial modelling using a new class of nonstationary covariance functions
  publication-title: Environmetrics (London, Ont.)
  doi: 10.1002/env.785
– volume: 66
  start-page: 259
  issue: 1
  year: 1994
  ident: 10.1016/j.neuroimage.2010.01.004_bib2
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 39
  start-page: 62
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.004_bib18
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.06.041
– start-page: 161
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.004_bib27
– year: 1956
  ident: 10.1016/j.neuroimage.2010.01.004_bib16
– volume: 44
  start-page: 625
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2010.01.004_bib3
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
SSID ssj0009148
Score 2.37048
Snippet With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 228
SubjectTerms Adult
Algorithms
Anatomy, Artistic
Atlases as Topic
Automation
Bioengineering
Brain
Brain - anatomy & histology
Cluster Analysis
Clustering
Computer Simulation
Databases, Factual
Diffusion Magnetic Resonance Imaging - methods
Diffusion MRI
Female
Gaussian process
Humans
Image Processing, Computer-Assisted - methods
Imaging
Life Sciences
Male
Methods
Nerve Fibers, Myelinated
Neural Pathways - anatomy & histology
Normal Distribution
Organ Size
Probability
White matter fiber tracts
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVokRAXxDeBgnzoNZDEjmPDAa0QZYUoJ1bam-XYDl3UZgPZgPgh_F9mEifbharaa2wrlmY8frbfvCHk2DHvcstVzKyCA0oheayYSOLKeWazvHRpgrnDp5_FfME_LvNluHBrA61yjIl9oHZri3fkrxC4ZDwHwP22-R5j1Sh8XQ0lNA7ITZQuQ0pXsSy2orspH1LhchZL6BCYPAO_q9eLXF3Aqg0Er_RlEsq1XbE9HZwhT_J_EPovl_LS5nRyl9wJqJLOBje4R274-j65dRrezR-QP4u67RoMC6139Bc-HdCLXlmTVkgZofa8Q8UE2MeoqR3dYO4UxWIzg4z3b-jd0K-9RDVa8jWdXXr4puuKGvrBdC1mZNJmyD2g1cj7ogCMr_hp-5AsTt5_eTePQ0GG2ApebGLmrK2SxGVGiBLWbgGHQ1jxTsFX6RgcvoQ1KpFe8VKq0vicu8IIx9PKVWlq2CNyWK9r_4TQ0rBKZNaU3ErOcyfxUjNhxgOc8tK7iBSjHbQNauVYNONcj7S0b3prQY0W1EmqwYIRSaeRzaDYsccYNZpajxmpEEM1bCt7jH0zjQ2oZUAje44-Bs-aJopi3_PZJ72qIfxguxJSyZ9pRI5G19MhyLR6uyQiQqdmCA_45mNqv-5ajWqXHM_M13ThAnFMkkXk8eDL03TwIlsBZAVr7Hj5znx3W-rVWS9SjrAHNpCn10_8Gbk90jHS_Igcbn50_jmgvE35ol_KfwGJB1a-
  priority: 102
  providerName: ProQuest
Title Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910000091
https://dx.doi.org/10.1016/j.neuroimage.2010.01.004
https://www.ncbi.nlm.nih.gov/pubmed/20079439
https://www.proquest.com/docview/1507245960
https://www.proquest.com/docview/733644415
https://www.proquest.com/docview/746303602
https://inria.hal.science/inria-00496898
https://pubmed.ncbi.nlm.nih.gov/PMC2847030
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELf2ISFeEN8UxuSHvWaNY8eJ4alMG-VjFQIq9c1ybGcr2tKKtCBe-C_4f7lLnG6FCVXipZHinGrlzne_i-9-JuTAce9SK1TErYIEJctFpLiMo9J5bpO0cCzG3uHTkRyOxdtJOtkiR10vDJZVBt_f-vTGW4c7_fA2-_PptP8JkAGEG8g3GqCLHey7CVcSTHt38ObdcHTFvctE2xGX8ggFQkFPW-bV0EZOL2HxhjovdhiHU9tuiFLb51gu-TcW_bOk8lqMOrlL7gRwSQft_O-RLV_dJ7dOw_b5A_JrXNXLOXqH2jv6HXcQ6GVDsElLrByh9mKJxAkQzqipHF1gCxXFM2daNu8f8PScnjVM1ajQF3Rwbf-bzkpq6GuzrLExk87bFgRaduVfFPDxDX9aPyTjk-PPR8MonMsQWSmyRcSdtWUcu8RIWcASziBHhIXvFNzNHYccTFqj4twrUeSqMD4VLjPSCVa6kjHDH5Gdalb5J4QWhpcysaYQNhcidTl-24y58YCqfO5dj2SdHrQNpOV4dsaF7qrTvugrDWrUoI6ZBg32CFtJzlvijg1kVKdq3TWmgivVEF02kH25kl0z4A2lD8CyVhNFzu_h4L2eVuCFcFzJXOXfWI_sdaang6-pNUL6RKSQivYIXQ2Dl8CtH1P52bLWSHopMHX-xyNCIpyJkx553Nryajr4PVsBcgVtrFn52nzXR6rpecNVjugH4sjT_3o7z8jtrmiDpXtkZ_F16Z8DFlwU-2T78CeD32yS7Yd1D9dXx6MPH38Dgc5m3w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71IQEXxBtDgT2Uo8Frrx8LQihAS0qTCKFG6m1Z765pUOsYHFP1h_A3-I3M-JE0UFW59Jr1JBvNeObbnZlvCNk2gTWh5sINtIADSpxwVwSR52bGBtoPU8M87B0ejqL-mH86DA_XyJ-uFwbLKjufWDtqM9V4R_4SgYvPQwDcb4sfLk6NwuxqN0KjMYt9e3YKR7byzd4H0O9z39_dOXjfd9upAq6OeDxzA6N15nnGV1GUggHGcMIBszUCPk1MACeISCvhJVbwNBGpsiE3sYoMZ5nJGFMBfO862eTwj8ARbL7bGX3-sqD5ZbxpvgsDN2FMtLVDTUVZzVA5OQE_0ZaUsRdeOyDugoC4foSVmf_D3n-rN8-Fw91b5GaLY2mvMbzbZM3md8i1YZupv0t-j_OyKtARldbQU0xW0JOay5NmWKRC9XGFHA0QOanKDZ1htxbF8TYNcfgZPF3QbzUpNtrOK9o7l2qn04wq-lFVJfaA0qLpdqBZV2lGAYpf8KPlPTK-EmXdJxv5NLcPCU1VkEW-VinXCeehSfAa1QuUBQBnE2scEnd6kLrlR8cxHceyK4T7LhcalKhB6TEJGnQIm0sWDUfICjKiU7XsemDBa0sIZCvIvp7LtjipwT8rSm-DZc03ivTi_d5ATnJweLguokQkv5hDtjrTk61bK-XiJXQInS-DQ8Isk8rttCol8mtyPKVf8giPEDl5vkMeNLY83w5enQsAyaCNJStf2u_ySj45qmnREWhByHp0-cafkev9g-FADvZG-4_Jja4YhIVbZGP2s7JPAGPO0qfti03J16v2JX8BrYeVRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEO8uFPChHEPj2HkYhNCKsmzpQxxYaW_GsR26qM0GsqHqD-HP8OuYyWO3C1W1l17jOLE04_Fn-5tvCNmx3NnQCOlxI2GDEifCkzzyvcw6boIwtczH3OGj42g4Ep_G4XiN_OlyYZBW2cXEOlDbqcEz8l0ELoEIAXDvZi0t4vPe4F3xw8MKUnjT2pXTaFzkwF2cw_atfLu_B7Z-GQSDD1_eD722woBnIhHPPG6NyXzfBjqKUnDGGHY74MJWwtPEcthNREZLP3FSpIlMtQuFjXVkBctsxpjm8N11civmIcM5Fo_jheAvE00aXsi9hDHZsogablmtVTk5g4jRksvYK78tFXfF0rh-ghzN_wHwvzzOSwvj4C650yJa2m9c8B5Zc_l9snnU3tk_IL9HeVkVGJJKZ-k5XlvQs1rVk2ZIV6HmtEK1BlhDqc4tnWHeFsVCN42E-AW8XdBvtTw2etFr2r906U6nGdX0o65KzAalRZP3QLOOc0YBlF_x0_IhGd2IqR6RjXyauy1CU82zKDA6FSYRIrQJHqj6XDuAci5xtkfizg7KtErpWLDjVHWUuO9qYUGFFlQ-U2DBHmHznkWjFrJCH9mZWnXZsBC_FSxpK_R9M-_bIqYGCa3Yewc8az5QFBof9g_VJIfQh-0ySmTyi_XIdud6qg1wpVpMxx6h82YITXjfpHM3rUqFSpsC9-vXvCIixFB-0COPG1-eDwcP0SXAZbDGkpcvjXe5JZ-c1ALpCLlg8Xpy_cBfkE2IIOpw__jgKbndsUJYuE02Zj8r9wzA5ix9Xs9qSr7edBj5C58MmBc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+white+matter+fiber+clustering+and+tract+probability+map+generation%3A+Applications+of+a+Gaussian+process+framework+for+white+matter+fibers&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wassermann%2C+D.&rft.au=Bloy%2C+L.&rft.au=Kanterakis%2C+E.&rft.au=Verma%2C+R.&rft.date=2010-05-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=51&rft.issue=1&rft.spage=228&rft.epage=241&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.01.004&rft.externalDocID=S1053811910000091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon