Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers
With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article pr...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 51; no. 1; pp. 228 - 241 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2010
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance.
This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset. |
---|---|
AbstractList | With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset. With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This paper presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product based on Gaussian processes, between fibers which span a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects thereby avoiding the need for point parametrization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21 subject dataset. With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset. With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset.With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset. With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This article presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product between fibres. Such inner product operation, based on Gaussian processes, spans a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor ana prioriknowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects, thereby avoiding the need for point parameterization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21-subject dataset. |
Author | Kanterakis, E. Verma, R. Deriche, R. Wassermann, D. Bloy, L. |
AuthorAffiliation | b Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA a INRIA Sophia Antipolis - Mediterranée,Odyssée Project Team, 2004 Route des Lucioles, Sophia-Antipolis, 06902, France c CS Department, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina |
AuthorAffiliation_xml | – name: a INRIA Sophia Antipolis - Mediterranée,Odyssée Project Team, 2004 Route des Lucioles, Sophia-Antipolis, 06902, France – name: c CS Department, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina – name: b Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA |
Author_xml | – sequence: 1 givenname: D. surname: Wassermann fullname: Wassermann, D. email: demian.wassermann@sophia.inria.fr organization: INRIA Sophia Antipolis–Mediterranée, Odyssée Project Team, 2004 Route des Lucioles, Sophia Antipolis, 06902, France – sequence: 2 givenname: L. surname: Bloy fullname: Bloy, L. email: bloy@uphs.upenn.edu organization: Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 3 givenname: E. surname: Kanterakis fullname: Kanterakis, E. email: Efstathios.Kanterakis@uphs.upenn.edu organization: Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 4 givenname: R. surname: Verma fullname: Verma, R. email: ragini@uphs.upenn.edu organization: Section of Biomedical Image Analysis, Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 5 givenname: R. surname: Deriche fullname: Deriche, R. email: rachid.deriche@sophia.inria.fr organization: INRIA Sophia Antipolis–Mediterranée, Odyssée Project Team, 2004 Route des Lucioles, Sophia Antipolis, 06902, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20079439$$D View this record in MEDLINE/PubMed https://inria.hal.science/inria-00496898$$DView record in HAL |
BookMark | eNqNkl1v0zAUhiM0xD7gLyBLXHCBWuzEcWwu0MoEG1Ilbti15dgnrbvUDnbSqT-E_4uzjg4qJHrjz_c89jnnPc9OnHeQZYjgKcGEvV9NHQzB27VawDTH6RiTKcb0WXZGsCgnoqzyk3FdFhNOiDjNzmNcYYwFofxFdppjXAlaiLPs562LQwdhYyMYdL-0PaC16nsIqLF1GnU7xLSzboGUM6gPSveoC75WtW1tv03qDi3AQVC99e4DmnVda_XDJiLfIIWu1RCjVW4M0xAjaoJaw70Pd6jx4R-PxpfZ80a1EV49zhfZ7ZfP369uJvNv11-vZvOJZrTqJ4XRusHY5IqxuiCioin5ihuRTrkpcl4xrQTmIGjNRa2gpKZSzFDSmIYQVVxkH3fcbqjXYDS4lF8ru5AqG7bSKyv_vnF2KRd-I3NOK1zgBHi3AywPwm5mc2ldsEqmtgjGBd-QpH77-FzwPwaIvVzbqKFtlQM_RFlRlpgM5_9XFgWjlJIyKd8cKFd-CC5VTZISVzktBRv_-frPRPdf_W2EJOA7gQ4-xgDNXkKwHD0nV_LJc3L0nMRkTO6piPtQbfuH_qeS2fYYwKcdAFKrNxaCjNqC02BsAN1L4-0xkMsDiG6tS0Zs72B7HOIXr44TQA |
CitedBy_id | crossref_primary_10_1016_j_clineuro_2014_06_009 crossref_primary_10_1007_s00701_012_1326_0 crossref_primary_10_1016_j_neuroimage_2010_07_038 crossref_primary_10_1109_TMI_2019_2932681 crossref_primary_10_7717_peerj_16408 crossref_primary_10_1118_1_4811155 crossref_primary_10_1038_s41537_022_00325_w crossref_primary_10_3724_SP_J_1089_2022_19221 crossref_primary_10_1016_j_neuroimage_2016_11_027 crossref_primary_10_1016_j_neuroimage_2021_118706 crossref_primary_10_1109_TCDS_2021_3094555 crossref_primary_10_1007_s12021_020_09452_0 crossref_primary_10_1016_j_neuroimage_2010_11_056 crossref_primary_10_1016_j_neuroimage_2017_12_064 crossref_primary_10_1002_hbm_24579 crossref_primary_10_1016_j_media_2011_07_005 crossref_primary_10_1371_journal_pone_0133337 crossref_primary_10_1002_hbm_22835 crossref_primary_10_1016_j_media_2020_101761 crossref_primary_10_1016_j_neuroimage_2013_04_066 crossref_primary_10_1016_j_neuroimage_2017_10_058 crossref_primary_10_1016_j_media_2024_103101 crossref_primary_10_3389_fninf_2017_00073 crossref_primary_10_3389_fninf_2023_1266713 crossref_primary_10_1016_j_neuroimage_2014_04_018 crossref_primary_10_1016_j_neuroimage_2022_119550 crossref_primary_10_1016_j_neuroimage_2012_01_024 crossref_primary_10_1109_JPROC_2019_2913145 crossref_primary_10_1371_journal_pone_0083847 crossref_primary_10_3389_fpain_2022_840328 crossref_primary_10_1016_j_neuroimage_2018_05_044 crossref_primary_10_1016_j_neuroimage_2010_09_035 crossref_primary_10_1016_j_media_2014_04_005 crossref_primary_10_1109_TBME_2015_2391913 crossref_primary_10_1227_NEU_0000000000001183 crossref_primary_10_1186_1471_2342_12_10 crossref_primary_10_1007_s12021_020_09488_2 crossref_primary_10_1109_TMI_2023_3252269 crossref_primary_10_1111_jon_12854 crossref_primary_10_1214_20_AAP1618 crossref_primary_10_1007_s12021_016_9316_7 crossref_primary_10_1016_j_neuroimage_2014_04_048 crossref_primary_10_1016_j_neuroimage_2018_06_019 crossref_primary_10_4236_ojrad_2014_43034 crossref_primary_10_1016_j_neuroimage_2020_116703 crossref_primary_10_1016_j_neuroimage_2010_07_055 crossref_primary_10_1097_j_pain_0000000000002023 crossref_primary_10_1016_j_neuroimage_2012_02_071 crossref_primary_10_1016_j_media_2018_02_008 crossref_primary_10_1002_nbm_3902 crossref_primary_10_1007_s00429_015_1179_4 crossref_primary_10_1016_j_neuroimage_2010_07_050 crossref_primary_10_1016_j_neuroimage_2020_116673 crossref_primary_10_1073_pnas_2410341121 crossref_primary_10_1016_j_nicl_2016_11_023 crossref_primary_10_1093_cercor_bhad125 crossref_primary_10_1016_j_neuroimage_2014_08_021 crossref_primary_10_1016_j_nicl_2016_11_024 crossref_primary_10_1002_hbm_22854 crossref_primary_10_1089_brain_2021_0058 crossref_primary_10_1016_j_neuroimage_2020_117070 crossref_primary_10_1016_j_media_2021_102126 crossref_primary_10_1016_j_neuroimage_2018_06_027 crossref_primary_10_1007_s12021_011_9118_x crossref_primary_10_1109_TMI_2016_2591080 crossref_primary_10_1016_j_media_2017_04_013 crossref_primary_10_1002_hbm_22528 crossref_primary_10_1097_RMR_0000000000000212 crossref_primary_10_1097_WCO_0b013e328355d544 crossref_primary_10_1016_j_compstruct_2019_111468 crossref_primary_10_1016_j_neuroimage_2017_06_083 crossref_primary_10_1016_j_neuroimage_2014_04_033 crossref_primary_10_1016_j_patcog_2019_06_002 crossref_primary_10_1117_1_JMI_5_1_011018 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1016_j_neuroimage_2010_10_028 crossref_primary_10_1371_journal_pone_0093344 crossref_primary_10_3389_fnins_2017_00754 |
Cites_doi | 10.1002/mrm.20858 10.1145/331499.331504 10.1016/j.neuroimage.2007.07.053 10.1002/mrm.20898 10.1148/radiol.2301021640 10.1016/S1474-4422(08)70163-7 10.1109/TMI.2008.2004424 10.1016/j.neuroimage.2008.01.028 10.1016/j.neuroimage.2007.03.020 10.1016/j.neuroimage.2008.06.034 10.1016/j.mri.2006.07.009 10.1002/mrm.21277 10.1007/978-3-540-85990-1_109 10.1142/S0129065704001899 10.1148/radiology.217.3.r00nv43897 10.1002/mrm.20279 10.1016/j.neuroimage.2005.08.040 10.1016/j.neuroimage.2008.10.060 10.1016/j.neuroimage.2008.10.054 10.1006/jmrb.1996.0086 10.1137/1.9781611970128 10.54294/71u60v 10.1016/j.jpsychires.2005.05.005 10.1016/j.neuroimage.2007.02.049 10.1006/nimg.2001.1052 10.1007/BF03029116 10.1002/mrm.10415 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1002/env.785 10.1016/S0006-3495(94)80775-1 10.1016/j.neuroimage.2007.06.041 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. Copyright (c) 2010 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 15, 2010 Distributed under a Creative Commons Attribution 4.0 International License 2010 Elsevier Inc. All rights reserved. 2010 |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright (c) 2010 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 15, 2010 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2010 Elsevier Inc. All rights reserved. 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 1XC 5PM |
DOI | 10.1016/j.neuroimage.2010.01.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 241 |
ExternalDocumentID | PMC2847030 oai_HAL_inria_00496898v1 3246197061 20079439 10_1016_j_neuroimage_2010_01_004 S1053811910000091 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01MH079938 – fundername: NIBIB NIH HHS grantid: T32 EB000814 – fundername: NIMH NIH HHS grantid: R01MH060722 – fundername: NIBIB NIH HHS grantid: T32-EB000814 – fundername: NIMH NIH HHS grantid: R01 MH060722 – fundername: NIMH NIH HHS grantid: R01 MH079938 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 1XC 5PM |
ID | FETCH-LOGICAL-c647t-3dccf00d2a66b3197409578d9cf08d32876ca908e94b89bae54d7a6d41fdf11a3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:33:22 EDT 2025 Wed Aug 27 07:32:06 EDT 2025 Fri Jul 11 04:00:32 EDT 2025 Thu Jul 10 23:07:41 EDT 2025 Wed Aug 13 06:10:47 EDT 2025 Mon Jul 21 05:48:50 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 02:14:35 EDT 2025 Fri Feb 23 02:20:29 EST 2024 Tue Aug 26 16:36:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Diffusion MRI Gaussian process White matter fiber tracts Clustering white matter fibres tractography clustering gaussian processes white matter fibers |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright (c) 2010 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c647t-3dccf00d2a66b3197409578d9cf08d32876ca908e94b89bae54d7a6d41fdf11a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC2847030 |
ORCID | 0000-0002-4643-8417 0000-0001-5194-6056 |
PMID | 20079439 |
PQID | 1507245960 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2847030 hal_primary_oai_HAL_inria_00496898v1 proquest_miscellaneous_746303602 proquest_miscellaneous_733644415 proquest_journals_1507245960 pubmed_primary_20079439 crossref_primary_10_1016_j_neuroimage_2010_01_004 crossref_citationtrail_10_1016_j_neuroimage_2010_01_004 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_01_004 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-15 |
PublicationDateYYYYMMDD | 2010-05-15 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bib3) 2000; 44 Ciccarelli, Catani, Johansen-Berg, Clark, Thompson (bib6) 2008; 7 Rasmussen, Williams (bib32) 2006 Basser, Pierpaoli (bib1) 1996; 111 Maddah, Zollei, Grimson, Westin, Wells (bib23) 2008 Seeger (bib35) 2004; 14 Wiegell, Larsson, Wedeen (bib43) 2000; 217 Bürgel, Amunts, Hoemke, Mohlberg, Gilsbach, Zilles (bib5) 2006; 29 Maddah, Grimson, Warfield, Wells (bib22) 2008 Wassermann, D., Deriche, R., 2008. Simultaneous manifold learning and clustering: Grouping white matter fiber tracts using a volumetric white matter atlas. In: MICCAI Workshops. Wahba, G., 1990. Spline Models for Observational Data. Soc Ind Math. O'Donnell, Westin (bib26) 2007; 26 Kolmogorov (bib16) 1956 Kubicki, McCarley, Westin, Park, Maier, Kikinis, Jolesz, Shenton (bib17) 2007; 41 Wakana, Jiang, Nagae-Poetscher, van Zijl, Mori (bib40) 2004; 230 Basser, Mattiello, Le Bihan (bib2) 1994; 66 Qazi, Radmanesh, O'Donnell, Kindlmann, Peled, Whalen, Westin, Golby (bib31) 2009; 47 Yang, J., Shen, D., Davatzikos, C., Verma, R., 2008. Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features. In: MICCAI. Vol. 5242/2008. pp. 905–913. Schmidt (bib34) 1908; 25 O'Donnell, L. J., May 2006. Cerebral white matter analysis using diffusion imaging. Ph.D. thesis, Massachusets Institute of Technology. Corouge, Fletcher, Joshi, Gouttard, Gerig (bib7) 2006; 10 Descoteaux, Angelino, Fitzgibbons, Deriche (bib9) 2007; 58 MacKay (bib21) 1998 De Groot (bib8) 2004 Batchelor, Calamante, Tournier, Atkinson, Hill, Connelly (bib4) 2006; 55 Savadjiev, Campbell, Descoteaux, Deriche, Pike, Siddiqi (bib33) 2008; 41 O'Donnell, Westin, Golby (bib27) 2007 Tuch (bib37) 2004; 52 Lawes, Barrick, Murugam, Spierings, Evans, Song, Clark (bib18) 2008; 39 Descoteaux, Deriche, Knösche, Anwander (bib10) 2009; 28 Veltkamp (bib38) 2001 Ding, Gore, Anderson (bib11) 2003; 49 Hua, Zhang, Wakana, Jiang, Li, Reich, Calabresi, Pekar, van Zijl, Mori (bib13) 2008; 39 Jain, Murty, Flynn (bib14) 1999; 31 Mori, Crain, Chacko, Zijl (bib24) 1999; 45 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (bib41) 2007; 36 Koch, Norris, Hund-Georgiadis (bib15) 2002; 16 Leemans, Sijbers, Backer, Vandervliet, Parizel (bib19) 2006; 55 Peled, Friman, Jolesz, Westin (bib30) 2006; 24 Stein (bib36) 1999 Goodlett, Fletcher, Gilmore, Gerig (bib12) 2009; 45 Oh, Song, Lee, Kang, Park, Kang, Lee (bib28) 2007; 36 Lenglet, Campbell, Descoteaux, Haro, Savadjiev, Wassermann, Anwander, Deriche, Pike, Sapiro, Siddiqi, Thompson (bib20) 2009; 45 Paciorek, Schervish (bib29) 2006; 17 Williams, O., Fitzgibbon, A., 2007. Gaussian process implicit surfaces. In: Gaussian Proc. in Practice. Batchelor (10.1016/j.neuroimage.2010.01.004_bib4) 2006; 55 Stein (10.1016/j.neuroimage.2010.01.004_bib36) 1999 Wiegell (10.1016/j.neuroimage.2010.01.004_bib43) 2000; 217 Ciccarelli (10.1016/j.neuroimage.2010.01.004_bib6) 2008; 7 O'Donnell (10.1016/j.neuroimage.2010.01.004_bib27) 2007 Oh (10.1016/j.neuroimage.2010.01.004_bib28) 2007; 36 Wakana (10.1016/j.neuroimage.2010.01.004_bib40) 2004; 230 Descoteaux (10.1016/j.neuroimage.2010.01.004_bib9) 2007; 58 O'Donnell (10.1016/j.neuroimage.2010.01.004_bib26) 2007; 26 Hua (10.1016/j.neuroimage.2010.01.004_bib13) 2008; 39 MacKay (10.1016/j.neuroimage.2010.01.004_bib21) 1998 Paciorek (10.1016/j.neuroimage.2010.01.004_bib29) 2006; 17 Wakana (10.1016/j.neuroimage.2010.01.004_bib41) 2007; 36 Basser (10.1016/j.neuroimage.2010.01.004_bib3) 2000; 44 Kubicki (10.1016/j.neuroimage.2010.01.004_bib17) 2007; 41 Bürgel (10.1016/j.neuroimage.2010.01.004_bib5) 2006; 29 Jain (10.1016/j.neuroimage.2010.01.004_bib14) 1999; 31 Goodlett (10.1016/j.neuroimage.2010.01.004_bib12) 2009; 45 Veltkamp (10.1016/j.neuroimage.2010.01.004_bib38) 2001 10.1016/j.neuroimage.2010.01.004_bib39 Lenglet (10.1016/j.neuroimage.2010.01.004_bib20) 2009; 45 De Groot (10.1016/j.neuroimage.2010.01.004_bib8) 2004 Maddah (10.1016/j.neuroimage.2010.01.004_bib23) 2008 Lawes (10.1016/j.neuroimage.2010.01.004_bib18) 2008; 39 Peled (10.1016/j.neuroimage.2010.01.004_bib30) 2006; 24 Rasmussen (10.1016/j.neuroimage.2010.01.004_bib32) 2006 Basser (10.1016/j.neuroimage.2010.01.004_bib1) 1996; 111 Seeger (10.1016/j.neuroimage.2010.01.004_bib35) 2004; 14 Leemans (10.1016/j.neuroimage.2010.01.004_bib19) 2006; 55 Ding (10.1016/j.neuroimage.2010.01.004_bib11) 2003; 49 Kolmogorov (10.1016/j.neuroimage.2010.01.004_bib16) 1956 Maddah (10.1016/j.neuroimage.2010.01.004_bib22) 2008 Schmidt (10.1016/j.neuroimage.2010.01.004_bib34) 1908; 25 10.1016/j.neuroimage.2010.01.004_bib42 Corouge (10.1016/j.neuroimage.2010.01.004_bib7) 2006; 10 Savadjiev (10.1016/j.neuroimage.2010.01.004_bib33) 2008; 41 Qazi (10.1016/j.neuroimage.2010.01.004_bib31) 2009; 47 10.1016/j.neuroimage.2010.01.004_bib44 Mori (10.1016/j.neuroimage.2010.01.004_bib24) 1999; 45 Tuch (10.1016/j.neuroimage.2010.01.004_bib37) 2004; 52 10.1016/j.neuroimage.2010.01.004_bib45 Descoteaux (10.1016/j.neuroimage.2010.01.004_bib10) 2009; 28 10.1016/j.neuroimage.2010.01.004_bib25 Basser (10.1016/j.neuroimage.2010.01.004_bib2) 1994; 66 Koch (10.1016/j.neuroimage.2010.01.004_bib15) 2002; 16 |
References_xml | – volume: 45 start-page: S111 year: 2009 end-page: S122 ident: bib20 article-title: Mathematical methods for diffusion MRI processing publication-title: NeuroImage – volume: 24 start-page: 1263 year: 2006 end-page: 1270 ident: bib30 article-title: Geometrically constrained two-tensor model for crossing tracts in DWI publication-title: Magn. Reson. Imaging – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: bib2 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 28 start-page: 269 year: 2009 end-page: 286 ident: bib10 article-title: Deterministic and probabilistic tractography based on complex fiber orientation distributions publication-title: Trans. Med. Imag. – volume: 36 start-page: 606 year: 2007 end-page: 616 ident: bib28 article-title: Tractography-guided statistics (tgis) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa publication-title: NeuroImage – volume: 17 start-page: 483 year: 2006 end-page: 506 ident: bib29 article-title: Spatial modelling using a new class of nonstationary covariance functions publication-title: Environmetrics (London, Ont.) – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: bib35 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – volume: 41 start-page: 15 year: 2007 end-page: 30 ident: bib17 article-title: A review of diffusion tensor imaging studies in schizophrenia publication-title: J. Psych. Res. – volume: 7 start-page: 715 year: 2008 end-page: 727 ident: bib6 article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments publication-title: Lancet Neurol. – volume: 217 start-page: 897 year: 2000 end-page: 903 ident: bib43 article-title: Fiber crossing in human brain depicted with diffusion tensor MR imaging 1 publication-title: Radiology – reference: Williams, O., Fitzgibbon, A., 2007. Gaussian process implicit surfaces. In: Gaussian Proc. in Practice. – start-page: 191 year: 2008 end-page: 202 ident: bib22 article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts publication-title: MIA – reference: O'Donnell, L. J., May 2006. Cerebral white matter analysis using diffusion imaging. Ph.D. thesis, Massachusets Institute of Technology. – reference: Wassermann, D., Deriche, R., 2008. Simultaneous manifold learning and clustering: Grouping white matter fiber tracts using a volumetric white matter atlas. In: MICCAI Workshops. – volume: 55 start-page: 1414 year: 2006 end-page: 1423 ident: bib19 article-title: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data publication-title: MRM – reference: Wahba, G., 1990. Spline Models for Observational Data. Soc Ind Math. – reference: Yang, J., Shen, D., Davatzikos, C., Verma, R., 2008. Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features. In: MICCAI. Vol. 5242/2008. pp. 905–913. – volume: 26 start-page: 1562 year: 2007 end-page: 1575 ident: bib26 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE TMI – volume: 41 start-page: 58 year: 2008 end-page: 68 ident: bib33 article-title: Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI publication-title: NeuroImage – volume: 45 start-page: 265 year: 1999 end-page: 269 ident: bib24 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann. Neurol. – volume: 16 start-page: 241 year: 2002 end-page: 250 ident: bib15 article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging publication-title: NeuroImage – volume: 25 start-page: 63 year: 1908 end-page: 77 ident: bib34 article-title: Über die auflösung linearer gleichungen mit unendlich vielen unbekannten publication-title: Rend. Circ. Mat. Palermo – volume: 52 start-page: 1358 year: 2004 end-page: 1372 ident: bib37 article-title: Q-ball imaging publication-title: Magn. Reson. Med. – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: bib41 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage – year: 1999 ident: bib36 publication-title: Statistical Interpolation of Spatial Data: Some Theory for Kriging – start-page: 133 year: 1998 end-page: 165 ident: bib21 article-title: Introduction to gaussian processes publication-title: Neural Networks and Machine Learning. Vol. 168 of NATO ASI – volume: 47 start-page: T98 year: 2009 end-page: T106 ident: bib31 article-title: Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI publication-title: NeuroImage – year: 2006 ident: bib32 publication-title: Gaussian Processes for Machine Learning – year: 1956 ident: bib16 publication-title: Foundations of the Theory of Probability – start-page: 188 year: 2001 end-page: 197 ident: bib38 publication-title: Shape matching: similarity measures and algorithms – volume: 29 start-page: 1092 year: 2006 end-page: 1105 ident: bib5 article-title: White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability publication-title: NeuroImage – volume: 58 start-page: 497 year: 2007 end-page: 510 ident: bib9 article-title: Regularized, fast and robust analytical q-ball imaging publication-title: MRM – start-page: 161 year: 2007 end-page: 168 ident: bib27 publication-title: Tract-based morphometry – volume: 111 start-page: 209 year: 1996 end-page: 219 ident: bib1 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J. Magn. Res. B – volume: 55 start-page: 894 year: 2006 end-page: 903 ident: bib4 article-title: Quantification of the shape of fiber tracts publication-title: MRM – volume: 44 start-page: 625 year: 2000 end-page: 632 ident: bib3 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. – volume: 10 start-page: 786 year: 2006 end-page: 798 ident: bib7 article-title: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis publication-title: MIA – volume: 39 start-page: 62 year: 2008 end-page: 79 ident: bib18 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: NeuroImage – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib14 article-title: Data clustering: a review publication-title: ACM Computing Surveys (CSUR) – start-page: 105 year: 2008 end-page: 108 ident: bib23 publication-title: A mathematical framework for incorporating anatomical knowledge in DT-MRI analysis – volume: 230 start-page: 77 year: 2004 end-page: 87 ident: bib40 article-title: Fiber tract–based atlas of human white matter anatomy publication-title: Radiology – volume: 49 start-page: 716 year: 2003 end-page: 721 ident: bib11 article-title: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI publication-title: MRM – volume: 39 start-page: 336 year: 2008 end-page: 347 ident: bib13 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification publication-title: NeuroImage – year: 2004 ident: bib8 publication-title: Optimal Statistical Decisions – volume: 45 start-page: S133 year: 2009 end-page: S142 ident: bib12 article-title: Group analysis of dti fiber tract statistics with application to neurodevelopment publication-title: NeuroImage – volume: 55 start-page: 894 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2010.01.004_bib4 article-title: Quantification of the shape of fiber tracts publication-title: MRM doi: 10.1002/mrm.20858 – ident: 10.1016/j.neuroimage.2010.01.004_bib44 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2010.01.004_bib14 article-title: Data clustering: a review publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/331499.331504 – volume: 39 start-page: 336 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2010.01.004_bib13 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.053 – volume: 55 start-page: 1414 issue: 6 year: 2006 ident: 10.1016/j.neuroimage.2010.01.004_bib19 article-title: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data publication-title: MRM doi: 10.1002/mrm.20898 – volume: 230 start-page: 77 year: 2004 ident: 10.1016/j.neuroimage.2010.01.004_bib40 article-title: Fiber tract–based atlas of human white matter anatomy publication-title: Radiology doi: 10.1148/radiol.2301021640 – volume: 7 start-page: 715 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2010.01.004_bib6 article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70163-7 – volume: 28 start-page: 269 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2010.01.004_bib10 article-title: Deterministic and probabilistic tractography based on complex fiber orientation distributions publication-title: Trans. Med. Imag. doi: 10.1109/TMI.2008.2004424 – volume: 41 start-page: 58 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2010.01.004_bib33 article-title: Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.01.028 – start-page: 105 year: 2008 ident: 10.1016/j.neuroimage.2010.01.004_bib23 – volume: 36 start-page: 606 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2010.01.004_bib28 article-title: Tractography-guided statistics (tgis) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.03.020 – volume: 47 start-page: T98 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2010.01.004_bib31 article-title: Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.06.034 – ident: 10.1016/j.neuroimage.2010.01.004_bib25 – year: 2006 ident: 10.1016/j.neuroimage.2010.01.004_bib32 – year: 2004 ident: 10.1016/j.neuroimage.2010.01.004_bib8 – volume: 24 start-page: 1263 issue: 9 year: 2006 ident: 10.1016/j.neuroimage.2010.01.004_bib30 article-title: Geometrically constrained two-tensor model for crossing tracts in DWI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.07.009 – volume: 58 start-page: 497 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2010.01.004_bib9 article-title: Regularized, fast and robust analytical q-ball imaging publication-title: MRM doi: 10.1002/mrm.21277 – start-page: 133 year: 1998 ident: 10.1016/j.neuroimage.2010.01.004_bib21 article-title: Introduction to gaussian processes – ident: 10.1016/j.neuroimage.2010.01.004_bib45 doi: 10.1007/978-3-540-85990-1_109 – volume: 26 start-page: 1562 issue: 11 year: 2007 ident: 10.1016/j.neuroimage.2010.01.004_bib26 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE TMI – volume: 14 start-page: 69 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2010.01.004_bib35 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 217 start-page: 897 issue: 3 year: 2000 ident: 10.1016/j.neuroimage.2010.01.004_bib43 article-title: Fiber crossing in human brain depicted with diffusion tensor MR imaging 1 publication-title: Radiology doi: 10.1148/radiology.217.3.r00nv43897 – volume: 10 start-page: 786 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2010.01.004_bib7 article-title: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis publication-title: MIA – volume: 52 start-page: 1358 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2010.01.004_bib37 article-title: Q-ball imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20279 – volume: 29 start-page: 1092 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2010.01.004_bib5 article-title: White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.040 – volume: 45 start-page: S133 issue: 1, Supplement 1 year: 2009 ident: 10.1016/j.neuroimage.2010.01.004_bib12 article-title: Group analysis of dti fiber tract statistics with application to neurodevelopment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.060 – volume: 45 start-page: S111 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2010.01.004_bib20 article-title: Mathematical methods for diffusion MRI processing publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.054 – start-page: 188 year: 2001 ident: 10.1016/j.neuroimage.2010.01.004_bib38 – volume: 111 start-page: 209 issue: 3 year: 1996 ident: 10.1016/j.neuroimage.2010.01.004_bib1 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J. Magn. Res. B doi: 10.1006/jmrb.1996.0086 – ident: 10.1016/j.neuroimage.2010.01.004_bib39 doi: 10.1137/1.9781611970128 – ident: 10.1016/j.neuroimage.2010.01.004_bib42 doi: 10.54294/71u60v – volume: 41 start-page: 15 issue: 1-2 year: 2007 ident: 10.1016/j.neuroimage.2010.01.004_bib17 article-title: A review of diffusion tensor imaging studies in schizophrenia publication-title: J. Psych. Res. doi: 10.1016/j.jpsychires.2005.05.005 – volume: 36 start-page: 630 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2010.01.004_bib41 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 16 start-page: 241 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2010.01.004_bib15 article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging publication-title: NeuroImage doi: 10.1006/nimg.2001.1052 – start-page: 191 year: 2008 ident: 10.1016/j.neuroimage.2010.01.004_bib22 article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts publication-title: MIA – year: 1999 ident: 10.1016/j.neuroimage.2010.01.004_bib36 – volume: 25 start-page: 63 year: 1908 ident: 10.1016/j.neuroimage.2010.01.004_bib34 article-title: Über die auflösung linearer gleichungen mit unendlich vielen unbekannten publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/BF03029116 – volume: 49 start-page: 716 year: 2003 ident: 10.1016/j.neuroimage.2010.01.004_bib11 article-title: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI publication-title: MRM doi: 10.1002/mrm.10415 – volume: 45 start-page: 265 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2010.01.004_bib24 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann. Neurol. doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 17 start-page: 483 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2010.01.004_bib29 article-title: Spatial modelling using a new class of nonstationary covariance functions publication-title: Environmetrics (London, Ont.) doi: 10.1002/env.785 – volume: 66 start-page: 259 issue: 1 year: 1994 ident: 10.1016/j.neuroimage.2010.01.004_bib2 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 39 start-page: 62 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2010.01.004_bib18 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.06.041 – start-page: 161 year: 2007 ident: 10.1016/j.neuroimage.2010.01.004_bib27 – year: 1956 ident: 10.1016/j.neuroimage.2010.01.004_bib16 – volume: 44 start-page: 625 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2010.01.004_bib3 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O |
SSID | ssj0009148 |
Score | 2.37048 |
Snippet | With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 228 |
SubjectTerms | Adult Algorithms Anatomy, Artistic Atlases as Topic Automation Bioengineering Brain Brain - anatomy & histology Cluster Analysis Clustering Computer Simulation Databases, Factual Diffusion Magnetic Resonance Imaging - methods Diffusion MRI Female Gaussian process Humans Image Processing, Computer-Assisted - methods Imaging Life Sciences Male Methods Nerve Fibers, Myelinated Neural Pathways - anatomy & histology Normal Distribution Organ Size Probability White matter fiber tracts |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVokRAXxDeBgnzoNZDEjmPDAa0QZYUoJ1bam-XYDl3UZgPZgPgh_F9mEifbharaa2wrlmY8frbfvCHk2DHvcstVzKyCA0oheayYSOLKeWazvHRpgrnDp5_FfME_LvNluHBrA61yjIl9oHZri3fkrxC4ZDwHwP22-R5j1Sh8XQ0lNA7ITZQuQ0pXsSy2orspH1LhchZL6BCYPAO_q9eLXF3Aqg0Er_RlEsq1XbE9HZwhT_J_EPovl_LS5nRyl9wJqJLOBje4R274-j65dRrezR-QP4u67RoMC6139Bc-HdCLXlmTVkgZofa8Q8UE2MeoqR3dYO4UxWIzg4z3b-jd0K-9RDVa8jWdXXr4puuKGvrBdC1mZNJmyD2g1cj7ogCMr_hp-5AsTt5_eTePQ0GG2ApebGLmrK2SxGVGiBLWbgGHQ1jxTsFX6RgcvoQ1KpFe8VKq0vicu8IIx9PKVWlq2CNyWK9r_4TQ0rBKZNaU3ErOcyfxUjNhxgOc8tK7iBSjHbQNauVYNONcj7S0b3prQY0W1EmqwYIRSaeRzaDYsccYNZpajxmpEEM1bCt7jH0zjQ2oZUAje44-Bs-aJopi3_PZJ72qIfxguxJSyZ9pRI5G19MhyLR6uyQiQqdmCA_45mNqv-5ajWqXHM_M13ThAnFMkkXk8eDL03TwIlsBZAVr7Hj5znx3W-rVWS9SjrAHNpCn10_8Gbk90jHS_Igcbn50_jmgvE35ol_KfwGJB1a- priority: 102 providerName: ProQuest |
Title | Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910000091 https://dx.doi.org/10.1016/j.neuroimage.2010.01.004 https://www.ncbi.nlm.nih.gov/pubmed/20079439 https://www.proquest.com/docview/1507245960 https://www.proquest.com/docview/733644415 https://www.proquest.com/docview/746303602 https://inria.hal.science/inria-00496898 https://pubmed.ncbi.nlm.nih.gov/PMC2847030 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELf2ISFeEN8UxuSHvWaNY8eJ4alMG-VjFQIq9c1ybGcr2tKKtCBe-C_4f7lLnG6FCVXipZHinGrlzne_i-9-JuTAce9SK1TErYIEJctFpLiMo9J5bpO0cCzG3uHTkRyOxdtJOtkiR10vDJZVBt_f-vTGW4c7_fA2-_PptP8JkAGEG8g3GqCLHey7CVcSTHt38ObdcHTFvctE2xGX8ggFQkFPW-bV0EZOL2HxhjovdhiHU9tuiFLb51gu-TcW_bOk8lqMOrlL7gRwSQft_O-RLV_dJ7dOw_b5A_JrXNXLOXqH2jv6HXcQ6GVDsElLrByh9mKJxAkQzqipHF1gCxXFM2daNu8f8PScnjVM1ajQF3Rwbf-bzkpq6GuzrLExk87bFgRaduVfFPDxDX9aPyTjk-PPR8MonMsQWSmyRcSdtWUcu8RIWcASziBHhIXvFNzNHYccTFqj4twrUeSqMD4VLjPSCVa6kjHDH5Gdalb5J4QWhpcysaYQNhcidTl-24y58YCqfO5dj2SdHrQNpOV4dsaF7qrTvugrDWrUoI6ZBg32CFtJzlvijg1kVKdq3TWmgivVEF02kH25kl0z4A2lD8CyVhNFzu_h4L2eVuCFcFzJXOXfWI_sdaang6-pNUL6RKSQivYIXQ2Dl8CtH1P52bLWSHopMHX-xyNCIpyJkx553Nryajr4PVsBcgVtrFn52nzXR6rpecNVjugH4sjT_3o7z8jtrmiDpXtkZ_F16Z8DFlwU-2T78CeD32yS7Yd1D9dXx6MPH38Dgc5m3w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71IQEXxBtDgT2Uo8Frrx8LQihAS0qTCKFG6m1Z765pUOsYHFP1h_A3-I3M-JE0UFW59Jr1JBvNeObbnZlvCNk2gTWh5sINtIADSpxwVwSR52bGBtoPU8M87B0ejqL-mH86DA_XyJ-uFwbLKjufWDtqM9V4R_4SgYvPQwDcb4sfLk6NwuxqN0KjMYt9e3YKR7byzd4H0O9z39_dOXjfd9upAq6OeDxzA6N15nnGV1GUggHGcMIBszUCPk1MACeISCvhJVbwNBGpsiE3sYoMZ5nJGFMBfO862eTwj8ARbL7bGX3-sqD5ZbxpvgsDN2FMtLVDTUVZzVA5OQE_0ZaUsRdeOyDugoC4foSVmf_D3n-rN8-Fw91b5GaLY2mvMbzbZM3md8i1YZupv0t-j_OyKtARldbQU0xW0JOay5NmWKRC9XGFHA0QOanKDZ1htxbF8TYNcfgZPF3QbzUpNtrOK9o7l2qn04wq-lFVJfaA0qLpdqBZV2lGAYpf8KPlPTK-EmXdJxv5NLcPCU1VkEW-VinXCeehSfAa1QuUBQBnE2scEnd6kLrlR8cxHceyK4T7LhcalKhB6TEJGnQIm0sWDUfICjKiU7XsemDBa0sIZCvIvp7LtjipwT8rSm-DZc03ivTi_d5ATnJweLguokQkv5hDtjrTk61bK-XiJXQInS-DQ8Isk8rttCol8mtyPKVf8giPEDl5vkMeNLY83w5enQsAyaCNJStf2u_ySj45qmnREWhByHp0-cafkev9g-FADvZG-4_Jja4YhIVbZGP2s7JPAGPO0qfti03J16v2JX8BrYeVRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEO8uFPChHEPj2HkYhNCKsmzpQxxYaW_GsR26qM0GsqHqD-HP8OuYyWO3C1W1l17jOLE04_Fn-5tvCNmx3NnQCOlxI2GDEifCkzzyvcw6boIwtczH3OGj42g4Ep_G4XiN_OlyYZBW2cXEOlDbqcEz8l0ELoEIAXDvZi0t4vPe4F3xw8MKUnjT2pXTaFzkwF2cw_atfLu_B7Z-GQSDD1_eD722woBnIhHPPG6NyXzfBjqKUnDGGHY74MJWwtPEcthNREZLP3FSpIlMtQuFjXVkBctsxpjm8N11civmIcM5Fo_jheAvE00aXsi9hDHZsogablmtVTk5g4jRksvYK78tFXfF0rh-ghzN_wHwvzzOSwvj4C650yJa2m9c8B5Zc_l9snnU3tk_IL9HeVkVGJJKZ-k5XlvQs1rVk2ZIV6HmtEK1BlhDqc4tnWHeFsVCN42E-AW8XdBvtTw2etFr2r906U6nGdX0o65KzAalRZP3QLOOc0YBlF_x0_IhGd2IqR6RjXyauy1CU82zKDA6FSYRIrQJHqj6XDuAci5xtkfizg7KtErpWLDjVHWUuO9qYUGFFlQ-U2DBHmHznkWjFrJCH9mZWnXZsBC_FSxpK_R9M-_bIqYGCa3Yewc8az5QFBof9g_VJIfQh-0ySmTyi_XIdud6qg1wpVpMxx6h82YITXjfpHM3rUqFSpsC9-vXvCIixFB-0COPG1-eDwcP0SXAZbDGkpcvjXe5JZ-c1ALpCLlg8Xpy_cBfkE2IIOpw__jgKbndsUJYuE02Zj8r9wzA5ix9Xs9qSr7edBj5C58MmBc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+white+matter+fiber+clustering+and+tract+probability+map+generation%3A+Applications+of+a+Gaussian+process+framework+for+white+matter+fibers&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wassermann%2C+D.&rft.au=Bloy%2C+L.&rft.au=Kanterakis%2C+E.&rft.au=Verma%2C+R.&rft.date=2010-05-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=51&rft.issue=1&rft.spage=228&rft.epage=241&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.01.004&rft.externalDocID=S1053811910000091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |