Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology
Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to...
Saved in:
Published in | Cell Vol. 183; no. 4; pp. 1024 - 1042.e21 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.11.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
[Display omitted]
•SARS-CoV-2 RBD is immunodominant and accounts for 90% of serum neutralizing activity•RBD antibodies decline with a half-life of ∼50 days, but their avidity increases•Structural definition of a SARS-CoV-2 RBD antigenic map using monoclonal antibodies•ACE2-binding site dominates SARS-CoV-2 polyclonal neutralizing antibody responses
Serological analyses of ∼650 SARS-CoV-2-exposed individuals show that 90% of the serum or plasma neutralizing activity targets the virus receptor-binding domain, with structural insights revealing how distinct types of neutralizing antibodies targeting the ACE2-binding site dominate the immune response against SARS-CoV-2 spike. |
---|---|
AbstractList | Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. [Display omitted] •SARS-CoV-2 RBD is immunodominant and accounts for 90% of serum neutralizing activity•RBD antibodies decline with a half-life of ∼50 days, but their avidity increases•Structural definition of a SARS-CoV-2 RBD antigenic map using monoclonal antibodies•ACE2-binding site dominates SARS-CoV-2 polyclonal neutralizing antibody responses Serological analyses of ∼650 SARS-CoV-2-exposed individuals show that 90% of the serum or plasma neutralizing activity targets the virus receptor-binding domain, with structural insights revealing how distinct types of neutralizing antibodies targeting the ACE2-binding site dominate the immune response against SARS-CoV-2 spike. Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. • SARS-CoV-2 RBD is immunodominant and accounts for 90% of serum neutralizing activity • RBD antibodies decline with a half-life of ∼50 days, but their avidity increases • Structural definition of a SARS-CoV-2 RBD antigenic map using monoclonal antibodies • ACE2-binding site dominates SARS-CoV-2 polyclonal neutralizing antibody responses Serological analyses of ∼650 SARS-CoV-2-exposed individuals show that 90% of the serum or plasma neutralizing activity targets the virus receptor-binding domain, with structural insights revealing how distinct types of neutralizing antibodies targeting the ACE2-binding site dominate the immune response against SARS-CoV-2 spike. We report analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. |
Author | Snell, Gyorgy Hong, David Fink, Katja Virgin, Herbert W. Sprugasci, Nicole Bowen, John E. Czudnochowski, Nadine Rodriguez, Blanca Fernandez Sallusto, Federica Guarino, Barbara Riva, Agostino Ceschi, Alessandro Silacci-Fregni, Chiara De Marco, Anna Lepori, Valentino Park, Young-Jun Tarkowski, Maciej Lo Presti, Giorgia Nix, Jay C. Rosen, Laura E. Piumatti, Giovanni Biggiogero, Maira Elzi, Luigia Garzoni, Christian Lanzavecchia, Antonio Zatta, Fabrizia Veesler, David Jaconi, Stefano Acton, Oliver J. Beltramello, Martina Walls, Alexandra C. Tortorici, M. Alejandra Peter, Alessia Gupta, Sneha V. Havenar-Daughton, Colin Jovic, Sandra Pellanda, Alessandra Franzetti Bernasconi, Enos Ferrari, Paolo Minola, Andrea Albanese, Emiliano Cameroni, Elisabetta Pinto, Dora Jin, Feng Piccoli, Luca Corti, Davide Pizzuto, Matteo S. Bassi, Jessica Mele, Federico Smithey, Megan |
Author_xml | – sequence: 1 givenname: Luca surname: Piccoli fullname: Piccoli, Luca organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 2 givenname: Young-Jun surname: Park fullname: Park, Young-Jun organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 3 givenname: M. Alejandra surname: Tortorici fullname: Tortorici, M. Alejandra organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: Nadine surname: Czudnochowski fullname: Czudnochowski, Nadine organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 5 givenname: Alexandra C. surname: Walls fullname: Walls, Alexandra C. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 6 givenname: Martina surname: Beltramello fullname: Beltramello, Martina organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 7 givenname: Chiara surname: Silacci-Fregni fullname: Silacci-Fregni, Chiara organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 8 givenname: Dora surname: Pinto fullname: Pinto, Dora organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 9 givenname: Laura E. surname: Rosen fullname: Rosen, Laura E. organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 10 givenname: John E. surname: Bowen fullname: Bowen, John E. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 11 givenname: Oliver J. surname: Acton fullname: Acton, Oliver J. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 12 givenname: Stefano surname: Jaconi fullname: Jaconi, Stefano organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 13 givenname: Barbara surname: Guarino fullname: Guarino, Barbara organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 14 givenname: Andrea surname: Minola fullname: Minola, Andrea organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 15 givenname: Fabrizia surname: Zatta fullname: Zatta, Fabrizia organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 16 givenname: Nicole surname: Sprugasci fullname: Sprugasci, Nicole organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 17 givenname: Jessica surname: Bassi fullname: Bassi, Jessica organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 18 givenname: Alessia surname: Peter fullname: Peter, Alessia organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 19 givenname: Anna surname: De Marco fullname: De Marco, Anna organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 20 givenname: Jay C. surname: Nix fullname: Nix, Jay C. organization: Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 21 givenname: Federico surname: Mele fullname: Mele, Federico organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland – sequence: 22 givenname: Sandra surname: Jovic fullname: Jovic, Sandra organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland – sequence: 23 givenname: Blanca Fernandez surname: Rodriguez fullname: Rodriguez, Blanca Fernandez organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland – sequence: 24 givenname: Sneha V. surname: Gupta fullname: Gupta, Sneha V. organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 25 givenname: Feng surname: Jin fullname: Jin, Feng organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 26 givenname: Giovanni surname: Piumatti fullname: Piumatti, Giovanni organization: Division of Primary Care, Geneva University Hospitals, 1205 Geneva, Switzerland – sequence: 27 givenname: Giorgia surname: Lo Presti fullname: Lo Presti, Giorgia organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland – sequence: 28 givenname: Alessandra Franzetti surname: Pellanda fullname: Pellanda, Alessandra Franzetti organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland – sequence: 29 givenname: Maira surname: Biggiogero fullname: Biggiogero, Maira organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland – sequence: 30 givenname: Maciej surname: Tarkowski fullname: Tarkowski, Maciej organization: III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy – sequence: 31 givenname: Matteo S. surname: Pizzuto fullname: Pizzuto, Matteo S. organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 32 givenname: Elisabetta surname: Cameroni fullname: Cameroni, Elisabetta organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 33 givenname: Colin surname: Havenar-Daughton fullname: Havenar-Daughton, Colin organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 34 givenname: Megan surname: Smithey fullname: Smithey, Megan organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 35 givenname: David surname: Hong fullname: Hong, David organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 36 givenname: Valentino surname: Lepori fullname: Lepori, Valentino organization: Independent Physician, 6500 Bellinzona, Switzerland – sequence: 37 givenname: Emiliano surname: Albanese fullname: Albanese, Emiliano organization: Institute of Public Health, Università della Svizzera italiana, 6900 Lugano, Switzerland – sequence: 38 givenname: Alessandro surname: Ceschi fullname: Ceschi, Alessandro organization: Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland – sequence: 39 givenname: Enos surname: Bernasconi fullname: Bernasconi, Enos organization: Division of Infectious Diseases, Ente Ospedaliero Cantonale, Ospedale Civico and Ospedale Italiano, 6900 Lugano, Switzerland – sequence: 40 givenname: Luigia surname: Elzi fullname: Elzi, Luigia organization: Division of Infectious Diseases, Ente Ospedaliero Cantonale, Ospedale Regionale Bellinzona e Valli and Ospedale Regionale, 6600 Locarno, Switzerland – sequence: 41 givenname: Paolo surname: Ferrari fullname: Ferrari, Paolo organization: Department of Nephrology, Ospedale Civico Lugano, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland – sequence: 42 givenname: Christian surname: Garzoni fullname: Garzoni, Christian organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland – sequence: 43 givenname: Agostino surname: Riva fullname: Riva, Agostino organization: III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy – sequence: 44 givenname: Gyorgy surname: Snell fullname: Snell, Gyorgy organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 45 givenname: Federica surname: Sallusto fullname: Sallusto, Federica organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland – sequence: 46 givenname: Katja surname: Fink fullname: Fink, Katja organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 47 givenname: Herbert W. surname: Virgin fullname: Virgin, Herbert W. organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 48 givenname: Antonio surname: Lanzavecchia fullname: Lanzavecchia, Antonio organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 49 givenname: Davide surname: Corti fullname: Corti, Davide email: dcorti@vir.bio organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 50 givenname: David surname: Veesler fullname: Veesler, David email: dveesler@uw.edu organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32991844$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-02984796$$DView record in HAL https://www.osti.gov/servlets/purl/1846169$$D View this record in Osti.gov |
BookMark | eNqFUsGO0zAUjNAitrvwAxxQxIlLiuM4iS0hpFJgu1IBqQGulmO_tC6JnbWdSuUT-GoSdRfBHpaTZXlm_GbeXERnxhqIoucpmqcoLV7v5xLado4RRnPE5igrH0WzFLEyIWmJz6IZQgwntCjJeXTh_R4hRPM8fxKdZ5ixlBIyi359En2vzTb-DENwotU_p4swKr7uusFYZTtthAlxpQP42Jo47CCuFpsqWdrvCY6rXv-AeAMS-mBd8k4bNSm8t53QJq6PcRXcIMPgILkatAIVr_R2l2zA23YIehSswNnWbo9Po8eNaD08uz0vo28fP3xdrpL1l6vr5WKdyIKUIckKlUpCGc1VXTcFoVKSrCEsy0uFkchZKgjOcMMKwA0VJWR1TUROCqWgLjKWXUZvT7r9UHegJJjJOO-d7oQ7cis0__fF6B3f2gMvCSOYZqPAy5OA9UFzL8dk5E5aY0AGPsZapMX0S3IC7e5prxZr3gsfYHAcYUZJyYpDOuJf3U7l7M0APvBO-2m_woAdPMc5JhmmOS7_DyWkzAnNUDFCX_zt9c8gdwUYAfQEkM5676Dhox0x7WW0rlueIj51je_59AGfusYR42PXRiq-R71Tf5D05kSCccMHDW7KD4wEpd0Un7L6Ifpv0THuPg |
CitedBy_id | crossref_primary_10_1002_ange_202412294 crossref_primary_10_3389_fmed_2022_820151 crossref_primary_10_1016_j_micinf_2021_104843 crossref_primary_10_3389_fimmu_2022_942897 crossref_primary_10_1080_19420862_2023_2222874 crossref_primary_10_1126_scitranslmed_abi7826 crossref_primary_10_1007_s11596_021_2470_7 crossref_primary_10_1016_j_jinf_2021_05_026 crossref_primary_10_15252_embr_202154199 crossref_primary_10_1016_j_csbj_2024_05_037 crossref_primary_10_1371_journal_ppat_1011789 crossref_primary_10_1016_j_celrep_2022_110368 crossref_primary_10_1016_j_lanepe_2020_100013 crossref_primary_10_1371_journal_ppat_1010691 crossref_primary_10_1039_D2CP00843B crossref_primary_10_30895_2221_996X_2022_450 crossref_primary_10_1002_anbr_202400077 crossref_primary_10_1002_prot_26467 crossref_primary_10_1038_s41467_023_39199_6 crossref_primary_10_3390_vaccines12050539 crossref_primary_10_3390_vaccines11020451 crossref_primary_10_1021_acs_molpharmaceut_4c00165 crossref_primary_10_1016_j_nantod_2022_101499 crossref_primary_10_1038_s41392_024_02007_8 crossref_primary_10_1371_journal_ppat_1012624 crossref_primary_10_1080_19420862_2021_2021601 crossref_primary_10_1371_journal_ppat_1009453 crossref_primary_10_3389_fpls_2023_1202570 crossref_primary_10_1016_j_envres_2022_113047 crossref_primary_10_1073_pnas_2220948120 crossref_primary_10_3389_fimmu_2024_1374913 crossref_primary_10_1126_science_abq0203 crossref_primary_10_3389_fimmu_2023_1192395 crossref_primary_10_1016_j_vacun_2022_03_002 crossref_primary_10_1016_j_vaccine_2021_08_081 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1016_j_isci_2024_109330 crossref_primary_10_3390_vaccines11091411 crossref_primary_10_1007_s00430_022_00729_6 crossref_primary_10_1038_s41467_025_56114_3 crossref_primary_10_1073_pnas_2122769119 crossref_primary_10_7554_eLife_73490 crossref_primary_10_1126_science_abe3354 crossref_primary_10_1016_j_vacune_2024_02_010 crossref_primary_10_1126_scitranslmed_abn3715 crossref_primary_10_1002_prot_26497 crossref_primary_10_1007_s00284_024_03671_3 crossref_primary_10_1016_j_jbc_2021_101238 crossref_primary_10_1038_s41586_021_04385_3 crossref_primary_10_1038_s41590_021_01088_9 crossref_primary_10_1371_journal_ppat_1012845 crossref_primary_10_3389_fimmu_2021_637982 crossref_primary_10_1016_j_celrep_2022_111004 crossref_primary_10_1016_j_celrep_2022_110561 crossref_primary_10_1016_j_celrep_2023_112621 crossref_primary_10_2174_0113816128334441241108050528 crossref_primary_10_3390_ijms251910820 crossref_primary_10_1007_s00251_022_01284_3 crossref_primary_10_1016_j_xcrm_2021_100329 crossref_primary_10_1038_s41586_021_03530_2 crossref_primary_10_1002_btpr_3292 crossref_primary_10_3389_fmicb_2021_770727 crossref_primary_10_1016_j_cell_2021_05_005 crossref_primary_10_1038_s41598_022_06038_5 crossref_primary_10_1016_j_cell_2024_12_032 crossref_primary_10_1016_j_virs_2022_11_005 crossref_primary_10_1016_j_jiac_2024_08_024 crossref_primary_10_1002_prot_26422 crossref_primary_10_3390_v16020217 crossref_primary_10_1038_s41586_021_03817_4 crossref_primary_10_47360_1995_4484_2021_384_393 crossref_primary_10_1126_sciimmunol_abl5842 crossref_primary_10_1111_sji_13345 crossref_primary_10_3390_diagnostics12071629 crossref_primary_10_3390_ijms23042172 crossref_primary_10_1126_science_abq2679 crossref_primary_10_1016_j_jcvp_2022_100121 crossref_primary_10_1080_22221751_2021_1913973 crossref_primary_10_1038_s41541_023_00636_8 crossref_primary_10_3389_fimmu_2022_884879 crossref_primary_10_1016_j_celrep_2022_110336 crossref_primary_10_1126_sciadv_abo4100 crossref_primary_10_1016_j_jaci_2024_03_029 crossref_primary_10_1016_j_cell_2022_01_001 crossref_primary_10_1016_j_vaccine_2022_10_092 crossref_primary_10_1371_journal_pone_0281689 crossref_primary_10_1016_j_jviromet_2022_114597 crossref_primary_10_1126_science_abl8506 crossref_primary_10_1371_journal_pone_0314061 crossref_primary_10_4155_tde_2021_0075 crossref_primary_10_1016_j_celrep_2022_110348 crossref_primary_10_1186_s41232_023_00255_9 crossref_primary_10_1016_j_immuni_2022_03_019 crossref_primary_10_2139_ssrn_4001946 crossref_primary_10_1016_j_virusres_2021_198345 crossref_primary_10_1080_21645515_2022_2127292 crossref_primary_10_1016_j_heliyon_2024_e25539 crossref_primary_10_1016_j_xcrm_2023_100918 crossref_primary_10_3389_fimmu_2022_825256 crossref_primary_10_1038_s41467_021_27040_x crossref_primary_10_3389_fpubh_2022_915363 crossref_primary_10_1016_j_fmre_2021_02_001 crossref_primary_10_1016_j_cell_2021_05_031 crossref_primary_10_1016_j_virs_2022_10_006 crossref_primary_10_1021_acscentsci_2c01190 crossref_primary_10_1371_journal_pone_0291670 crossref_primary_10_1126_science_abf6840 crossref_primary_10_1016_j_biopha_2025_117936 crossref_primary_10_1016_j_virs_2022_02_005 crossref_primary_10_1016_j_virusres_2022_198688 crossref_primary_10_1038_s41586_021_03412_7 crossref_primary_10_1016_j_apsb_2023_01_010 crossref_primary_10_1111_imr_13431 crossref_primary_10_1021_acscentsci_4c00722 crossref_primary_10_1016_j_celrep_2023_112421 crossref_primary_10_2139_ssrn_3879083 crossref_primary_10_1016_j_vaccine_2024_04_036 crossref_primary_10_1038_s41421_022_00383_5 crossref_primary_10_1128_Spectrum_00965_21 crossref_primary_10_1126_science_abm8108 crossref_primary_10_1002_adhm_202102089 crossref_primary_10_1016_j_bbrc_2021_06_001 crossref_primary_10_1038_s41598_023_50450_4 crossref_primary_10_1002_mco2_79 crossref_primary_10_3390_jcm10153276 crossref_primary_10_1128_jvi_00109_25 crossref_primary_10_3389_fimmu_2023_1113175 crossref_primary_10_1016_j_immuni_2021_08_025 crossref_primary_10_1080_14647273_2023_2262757 crossref_primary_10_1007_s11427_022_2166_y crossref_primary_10_1371_journal_pcbi_1009380 crossref_primary_10_1002_JLB_5MR0821_464R crossref_primary_10_3390_microorganisms9122578 crossref_primary_10_1016_j_eclinm_2021_100843 crossref_primary_10_1038_s42003_025_07827_0 crossref_primary_10_1186_s12916_021_02228_6 crossref_primary_10_1038_s41467_024_50976_9 crossref_primary_10_3389_fimmu_2022_879946 crossref_primary_10_1080_19420862_2021_2002236 crossref_primary_10_1002_jmv_28122 crossref_primary_10_1016_j_ebiom_2024_105281 crossref_primary_10_1186_s12929_021_00784_w crossref_primary_10_1038_s41467_023_38965_w crossref_primary_10_3389_fimmu_2021_772511 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_1038_s41577_022_00813_1 crossref_primary_10_3389_fimmu_2021_761250 crossref_primary_10_1111_pbi_13970 crossref_primary_10_3389_fimmu_2021_647934 crossref_primary_10_1016_j_isci_2022_104914 crossref_primary_10_1038_s41467_021_24435_8 crossref_primary_10_3390_ijms231911325 crossref_primary_10_15789_2220_7619_IAF_1998 crossref_primary_10_3389_fmed_2023_1155727 crossref_primary_10_1093_clinchem_hvab051 crossref_primary_10_3389_fimmu_2021_730766 crossref_primary_10_1016_j_intimp_2021_108013 crossref_primary_10_3390_vaccines12070795 crossref_primary_10_1016_j_celrep_2022_111496 crossref_primary_10_1002_rmv_2464 crossref_primary_10_3390_v14020390 crossref_primary_10_1016_j_ymthe_2021_10_008 crossref_primary_10_4103_ijmr_ijmr_2591_22 crossref_primary_10_3390_nano11030807 crossref_primary_10_1080_14760584_2022_2081156 crossref_primary_10_1021_acs_analchem_2c01260 crossref_primary_10_1016_j_chom_2021_06_016 crossref_primary_10_1021_acs_jcim_2c00124 crossref_primary_10_1038_s41467_021_24963_3 crossref_primary_10_1371_journal_ppat_1011901 crossref_primary_10_1016_j_clim_2021_108814 crossref_primary_10_1016_j_xcrm_2023_101134 crossref_primary_10_3389_fimmu_2023_1231274 crossref_primary_10_1016_j_celrep_2022_111022 crossref_primary_10_1126_science_abm8143 crossref_primary_10_1016_j_isci_2024_109975 crossref_primary_10_3390_vaccines11111727 crossref_primary_10_1038_s41598_022_16533_4 crossref_primary_10_1021_acsinfecdis_4c00015 crossref_primary_10_26508_lsa_202201796 crossref_primary_10_3390_vaccines11111720 crossref_primary_10_3390_vaccines10040608 crossref_primary_10_3390_vaccines9101052 crossref_primary_10_1038_s41564_022_01198_6 crossref_primary_10_3390_v13081508 crossref_primary_10_1016_j_chom_2021_12_010 crossref_primary_10_1016_j_vacun_2022_11_002 crossref_primary_10_3390_v16060900 crossref_primary_10_1146_annurev_med_042420_113838 crossref_primary_10_1007_s40121_023_00769_2 crossref_primary_10_1016_j_celrep_2022_111276 crossref_primary_10_1038_s41598_023_43720_8 crossref_primary_10_3390_ijms23116078 crossref_primary_10_1038_s41541_022_00481_1 crossref_primary_10_1172_jci_insight_150012 crossref_primary_10_1016_j_sbi_2022_102385 crossref_primary_10_1016_j_sbi_2023_102664 crossref_primary_10_1038_s41586_023_05697_2 crossref_primary_10_3389_fimmu_2022_912336 crossref_primary_10_1016_j_compbiomed_2022_106212 crossref_primary_10_3389_fimmu_2022_1010105 crossref_primary_10_3389_fimmu_2024_1412873 crossref_primary_10_3389_fimmu_2023_1244556 crossref_primary_10_3389_fimmu_2022_844837 crossref_primary_10_1016_S1473_3099_22_00224_9 crossref_primary_10_1002_rmv_2231 crossref_primary_10_1038_s41591_022_01877_1 crossref_primary_10_1246_bcsj_20220179 crossref_primary_10_1093_ve_veac021 crossref_primary_10_1016_j_isci_2022_104959 crossref_primary_10_1016_j_cell_2021_07_025 crossref_primary_10_1016_j_virol_2023_109882 crossref_primary_10_1038_s41541_024_00982_1 crossref_primary_10_1038_s41467_024_49693_0 crossref_primary_10_3389_fimmu_2021_742941 crossref_primary_10_1016_j_chom_2021_06_009 crossref_primary_10_1172_JCI150613 crossref_primary_10_1038_s41541_023_00610_4 crossref_primary_10_1002_advs_202409919 crossref_primary_10_1016_j_talanta_2022_124200 crossref_primary_10_1016_j_antiviral_2023_105759 crossref_primary_10_1016_j_vaccine_2023_07_012 crossref_primary_10_1007_s40121_021_00475_x crossref_primary_10_1007_s12033_024_01240_4 crossref_primary_10_1111_tbed_14344 crossref_primary_10_1002_bies_202100087 crossref_primary_10_1007_s00508_021_01835_w crossref_primary_10_1038_s41467_021_23977_1 crossref_primary_10_3390_biomedicines10071538 crossref_primary_10_1038_s41564_021_00972_2 crossref_primary_10_3390_vaccines10020251 crossref_primary_10_1016_j_chom_2021_03_009 crossref_primary_10_1016_j_celrep_2021_109760 crossref_primary_10_1016_j_isci_2023_106323 crossref_primary_10_1038_s41392_022_01295_2 crossref_primary_10_1073_pnas_2204256119 crossref_primary_10_1016_j_chom_2021_03_002 crossref_primary_10_1126_science_abi7994 crossref_primary_10_1073_pnas_2106480118 crossref_primary_10_12688_wellcomeopenres_19414_1 crossref_primary_10_3390_vaccines9101130 crossref_primary_10_12688_wellcomeopenres_19414_2 crossref_primary_10_1002_cti2_1261 crossref_primary_10_1016_j_celrep_2022_111903 crossref_primary_10_1038_s41467_024_45404_x crossref_primary_10_1016_j_vaccine_2023_08_076 crossref_primary_10_1038_s41586_021_04117_7 crossref_primary_10_1186_s12985_021_01633_w crossref_primary_10_1016_j_bbrc_2020_11_041 crossref_primary_10_1172_JCI162192 crossref_primary_10_3389_fimmu_2024_1505719 crossref_primary_10_1016_j_ijbiomac_2022_04_096 crossref_primary_10_1128_spectrum_02982_23 crossref_primary_10_1016_j_smim_2023_101828 crossref_primary_10_3389_fimmu_2021_765211 crossref_primary_10_3390_ijms25158180 crossref_primary_10_1016_j_immuni_2023_10_007 crossref_primary_10_1186_s41232_022_00233_7 crossref_primary_10_2174_1566524021666211013121831 crossref_primary_10_1016_j_bpj_2021_11_009 crossref_primary_10_1016_j_isci_2023_106540 crossref_primary_10_1002_aic_17440 crossref_primary_10_1038_s41586_021_03471_w crossref_primary_10_1186_s13054_021_03662_x crossref_primary_10_1080_21645515_2024_2384192 crossref_primary_10_1126_sciimmunol_abn8590 crossref_primary_10_1016_j_celrep_2021_109784 crossref_primary_10_1097_RD9_0000000000000015 crossref_primary_10_1126_science_abg9175 crossref_primary_10_3390_molecules29112636 crossref_primary_10_1016_j_cell_2022_05_019 crossref_primary_10_1038_s41598_022_14294_8 crossref_primary_10_1371_journal_pone_0266417 crossref_primary_10_1016_j_isci_2022_104076 crossref_primary_10_7554_eLife_95708 crossref_primary_10_3390_ijms241814342 crossref_primary_10_3389_fmed_2022_825245 crossref_primary_10_3390_biom12121742 crossref_primary_10_3389_fimmu_2022_948431 crossref_primary_10_3390_v14071461 crossref_primary_10_3390_vaccines13010009 crossref_primary_10_3390_vaccines9091031 crossref_primary_10_1016_j_cell_2024_09_026 crossref_primary_10_3390_vaccines10010017 crossref_primary_10_1016_j_chom_2021_04_005 crossref_primary_10_3390_v14010061 crossref_primary_10_1126_science_abd9994 crossref_primary_10_1021_acsinfecdis_1c00433 crossref_primary_10_1038_s41564_021_00974_0 crossref_primary_10_3389_fimmu_2021_674021 crossref_primary_10_1097_FTD_0000000000000945 crossref_primary_10_1186_s12929_022_00853_8 crossref_primary_10_1016_j_isci_2023_106126 crossref_primary_10_1038_s41598_022_19073_z crossref_primary_10_1038_s41564_023_01505_9 crossref_primary_10_3389_fimmu_2022_888794 crossref_primary_10_1080_21645515_2022_2047582 crossref_primary_10_1128_spectrum_02314_22 crossref_primary_10_1126_science_abh2315 crossref_primary_10_3390_v15061297 crossref_primary_10_1038_s41598_022_09752_2 crossref_primary_10_1016_j_celrep_2024_114530 crossref_primary_10_3390_ijms23126394 crossref_primary_10_3390_v14010078 crossref_primary_10_1038_s41586_023_06487_6 crossref_primary_10_1371_journal_pone_0263328 crossref_primary_10_3390_v16010091 crossref_primary_10_3390_v13102009 crossref_primary_10_3390_biomedicines9101303 crossref_primary_10_1016_j_tim_2021_03_016 crossref_primary_10_1016_j_tim_2021_03_013 crossref_primary_10_1016_j_immuni_2023_11_004 crossref_primary_10_1016_j_ajmo_2024_100068 crossref_primary_10_3389_fmolb_2023_1288686 crossref_primary_10_1021_acs_jpcb_4c00241 crossref_primary_10_1002_jmv_27117 crossref_primary_10_1016_j_ajog_2022_04_009 crossref_primary_10_3390_v16010064 crossref_primary_10_1016_j_jvacx_2024_100443 crossref_primary_10_3390_vaccines9101101 crossref_primary_10_1186_s12951_025_03243_y crossref_primary_10_3389_fimmu_2023_1195299 crossref_primary_10_3390_biom11101494 crossref_primary_10_1186_s12985_023_02154_4 crossref_primary_10_3390_vaccines11010030 crossref_primary_10_3390_vaccines10122110 crossref_primary_10_3389_fchem_2021_816544 crossref_primary_10_1128_spectrum_03655_23 crossref_primary_10_1073_pnas_2109744118 crossref_primary_10_3390_vaccines10122119 crossref_primary_10_15252_emmm_202114544 crossref_primary_10_1016_j_chom_2021_04_015 crossref_primary_10_3390_v15020558 crossref_primary_10_1016_j_cell_2021_09_015 crossref_primary_10_1016_j_ymthe_2021_02_007 crossref_primary_10_1128_jvi_00558_22 crossref_primary_10_1038_s41590_024_02010_9 crossref_primary_10_3389_fimmu_2023_1158905 crossref_primary_10_3390_vaccines11010038 crossref_primary_10_1038_s41467_023_43420_x crossref_primary_10_1016_j_cell_2024_06_006 crossref_primary_10_1128_spectrum_00665_22 crossref_primary_10_1093_ofid_ofad154 crossref_primary_10_1126_sciimmunol_abg5021 crossref_primary_10_3390_microorganisms9081725 crossref_primary_10_1021_acsanm_1c03399 crossref_primary_10_3390_vaccines9111337 crossref_primary_10_1016_j_immuni_2022_06_005 crossref_primary_10_3390_vaccines10030465 crossref_primary_10_3389_fimmu_2021_724763 crossref_primary_10_1016_j_xcrm_2022_100528 crossref_primary_10_1016_j_jcv_2022_105080 crossref_primary_10_1016_j_cell_2024_07_052 crossref_primary_10_1016_j_ebiom_2023_104574 crossref_primary_10_1021_acs_jctc_1c00372 crossref_primary_10_1126_science_adc9127 crossref_primary_10_1016_j_ebiom_2022_104297 crossref_primary_10_1016_j_celrep_2024_114338 crossref_primary_10_36691_RJA16463 crossref_primary_10_1016_j_isci_2024_110484 crossref_primary_10_1039_D1SC01203G crossref_primary_10_3390_cells11223597 crossref_primary_10_1038_s41422_022_00612_2 crossref_primary_10_1093_bioadv_vbae137 crossref_primary_10_1140_epjp_s13360_024_04928_3 crossref_primary_10_1021_acscentsci_1c00216 crossref_primary_10_1016_S2666_5247_24_00025_9 crossref_primary_10_1002_anie_202107730 crossref_primary_10_3390_life14070791 crossref_primary_10_1016_j_xcrm_2021_100253 crossref_primary_10_1084_jem_20221786 crossref_primary_10_1038_s41541_023_00691_1 crossref_primary_10_1007_s00253_022_11988_x crossref_primary_10_2215_CJN_03700321 crossref_primary_10_1371_journal_pone_0253977 crossref_primary_10_3390_vaccines12080914 crossref_primary_10_1155_2021_9822706 crossref_primary_10_1016_j_celrep_2022_111512 crossref_primary_10_1080_19420862_2023_2212415 crossref_primary_10_1126_science_abq0839 crossref_primary_10_1038_s41467_022_28446_x crossref_primary_10_1038_s41467_021_26479_2 crossref_primary_10_1007_s11427_022_2215_6 crossref_primary_10_3389_fcimb_2024_1346349 crossref_primary_10_1038_s41598_021_96171_4 crossref_primary_10_1002_jmv_27722 crossref_primary_10_1016_S2666_5247_23_00011_3 crossref_primary_10_1016_j_celrep_2022_111528 crossref_primary_10_1093_cid_ciab607 crossref_primary_10_1038_s41573_023_00672_y crossref_primary_10_3389_fbioe_2023_1202126 crossref_primary_10_1016_j_jiph_2022_01_007 crossref_primary_10_1002_ijgo_14587 crossref_primary_10_3390_v13112202 crossref_primary_10_1371_journal_ppat_1010260 crossref_primary_10_1016_j_ebiom_2021_103729 crossref_primary_10_1111_all_15138 crossref_primary_10_3390_ijms23105601 crossref_primary_10_1038_s42003_022_03700_6 crossref_primary_10_1016_j_drup_2023_101008 crossref_primary_10_1016_j_meegid_2021_104815 crossref_primary_10_1016_j_chom_2021_02_003 crossref_primary_10_3389_fimmu_2023_1259386 crossref_primary_10_3390_molecules28124645 crossref_primary_10_1016_j_cell_2022_03_009 crossref_primary_10_1016_j_ebiom_2025_105619 crossref_primary_10_1016_j_jiac_2024_102604 crossref_primary_10_3389_fimmu_2021_742167 crossref_primary_10_1016_j_heliyon_2022_e09438 crossref_primary_10_1016_j_jcv_2021_104986 crossref_primary_10_1126_scitranslmed_abl9605 crossref_primary_10_1016_j_xcrm_2021_100296 crossref_primary_10_1371_journal_ppat_1010248 crossref_primary_10_1080_21645515_2022_2079346 crossref_primary_10_1126_science_abf4063 crossref_primary_10_3390_tropicalmed7050081 crossref_primary_10_1371_journal_pone_0252849 crossref_primary_10_3389_fimmu_2022_796481 crossref_primary_10_1038_s41541_024_00922_z crossref_primary_10_1016_S1473_3099_24_00423_7 crossref_primary_10_1038_s41422_021_00496_8 crossref_primary_10_1016_j_ebiom_2021_103700 crossref_primary_10_1038_s41591_021_01347_0 crossref_primary_10_1038_s41598_022_26803_w crossref_primary_10_3390_v14061232 crossref_primary_10_1016_j_isci_2022_105596 crossref_primary_10_1093_abt_tbac004 crossref_primary_10_1093_bib_bbae218 crossref_primary_10_3390_vaccines12030267 crossref_primary_10_1126_sciadv_add7221 crossref_primary_10_1126_sciadv_adf0661 crossref_primary_10_1016_j_virusres_2024_199378 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1093_nar_gkab921 crossref_primary_10_1016_j_intimp_2022_109285 crossref_primary_10_1134_S1068162021060133 crossref_primary_10_1371_journal_ppat_1012650 crossref_primary_10_1128_mbio_00067_24 crossref_primary_10_1007_s00430_023_00763_y crossref_primary_10_1002_eji_202350408 crossref_primary_10_1007_s00430_022_00753_6 crossref_primary_10_3389_fimmu_2023_1133225 crossref_primary_10_1080_21645515_2022_2055373 crossref_primary_10_1128_Spectrum_00261_21 crossref_primary_10_1371_journal_pone_0262657 crossref_primary_10_3390_plants11081093 crossref_primary_10_1186_s12934_021_01576_5 crossref_primary_10_1038_s41421_022_00497_w crossref_primary_10_3390_vaccines9121419 crossref_primary_10_1016_j_immuni_2021_03_023 crossref_primary_10_1093_biomethods_bpad030 crossref_primary_10_1128_JVI_00404_21 crossref_primary_10_1038_s41590_024_01951_5 crossref_primary_10_1038_s41385_022_00569_w crossref_primary_10_1016_j_compbiomed_2021_104692 crossref_primary_10_1002_pbc_29332 crossref_primary_10_1038_s41467_023_43638_9 crossref_primary_10_1038_s44298_023_00007_z crossref_primary_10_1134_S1063774523601168 crossref_primary_10_1126_science_abn8897 crossref_primary_10_3390_v15010070 crossref_primary_10_1126_science_abn8652 crossref_primary_10_1038_s41591_021_01285_x crossref_primary_10_1038_s41467_022_33985_4 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1073_pnas_2303455120 crossref_primary_10_1016_j_isci_2022_105507 crossref_primary_10_1016_j_bbi_2023_09_014 crossref_primary_10_3389_fcimb_2022_988604 crossref_primary_10_1016_j_addr_2021_01_014 crossref_primary_10_1038_s41586_021_04386_2 crossref_primary_10_3389_fimmu_2021_654165 crossref_primary_10_1016_j_xinn_2021_100116 crossref_primary_10_1016_j_heliyon_2024_e34577 crossref_primary_10_1038_s41586_024_08121_5 crossref_primary_10_3389_fmolb_2020_605236 crossref_primary_10_1038_s41586_021_03925_1 crossref_primary_10_1371_journal_pone_0291131 crossref_primary_10_1038_s41598_024_55852_6 crossref_primary_10_3390_pathogens11080837 crossref_primary_10_1021_acs_biochem_2c00132 crossref_primary_10_1093_ve_veac110 crossref_primary_10_1016_j_talanta_2022_123813 crossref_primary_10_34133_2022_9769803 crossref_primary_10_1002_btm2_10293 crossref_primary_10_1038_s41541_021_00410_8 crossref_primary_10_1016_j_bbrc_2023_04_002 crossref_primary_10_1016_j_nbt_2022_08_002 crossref_primary_10_1038_s41541_022_00471_3 crossref_primary_10_1016_j_jacig_2023_100083 crossref_primary_10_1016_j_isci_2022_105726 crossref_primary_10_1038_s41541_021_00369_6 crossref_primary_10_1126_scitranslmed_abi9915 crossref_primary_10_1038_s41541_024_00806_2 crossref_primary_10_1080_07391102_2021_1977702 crossref_primary_10_1002_mef2_90 crossref_primary_10_3389_fimmu_2021_656362 crossref_primary_10_1124_pharmrev_120_000285 crossref_primary_10_1371_journal_ppat_1012726 crossref_primary_10_1093_nar_gkad958 crossref_primary_10_3389_fimmu_2021_793191 crossref_primary_10_1093_infdis_jiac319 crossref_primary_10_1039_D1RA04134G crossref_primary_10_1038_s41598_023_31198_3 crossref_primary_10_1038_s42003_021_02852_1 crossref_primary_10_1002_pro_4575 crossref_primary_10_1038_s41467_024_47743_1 crossref_primary_10_1128_jvi_02184_21 crossref_primary_10_3389_fimmu_2023_1055457 crossref_primary_10_1021_acsinfecdis_2c00488 crossref_primary_10_1038_s41598_022_23923_1 crossref_primary_10_1126_science_abg8985 crossref_primary_10_1038_s41467_023_36295_5 crossref_primary_10_1016_j_biopha_2021_112282 crossref_primary_10_3389_fimmu_2022_834098 crossref_primary_10_1016_j_cmi_2021_02_014 crossref_primary_10_1038_s41422_021_00487_9 crossref_primary_10_3389_fimmu_2022_863831 crossref_primary_10_1038_s41563_023_01486_4 crossref_primary_10_1039_D2NR06630K crossref_primary_10_3389_fimmu_2022_904686 crossref_primary_10_1038_s41591_021_01294_w crossref_primary_10_1128_spectrum_01376_21 crossref_primary_10_1186_s13578_021_00723_0 crossref_primary_10_3390_vaccines12050467 crossref_primary_10_1073_pnas_2101918118 crossref_primary_10_1128_spectrum_01789_21 crossref_primary_10_1038_s41586_020_2852_1 crossref_primary_10_1016_j_celrep_2021_110156 crossref_primary_10_1016_j_vaccine_2023_04_020 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1016_j_lfs_2023_121374 crossref_primary_10_3389_fimmu_2023_1107803 crossref_primary_10_1021_acs_jmedchem_1c02000 crossref_primary_10_1126_sciadv_abq6207 crossref_primary_10_2139_ssrn_4182867 crossref_primary_10_1016_j_ebiom_2021_103544 crossref_primary_10_1128_mBio_02395_21 crossref_primary_10_3389_fimmu_2022_1125732 crossref_primary_10_1016_j_isci_2024_110470 crossref_primary_10_3390_ijms252212319 crossref_primary_10_1016_j_ymthe_2022_08_002 crossref_primary_10_3389_fmicb_2022_854630 crossref_primary_10_2144_fsoa_2022_0048 crossref_primary_10_1126_science_abj3321 crossref_primary_10_1021_acsomega_2c00844 crossref_primary_10_1016_j_celrep_2024_115036 crossref_primary_10_1016_j_epidem_2022_100583 crossref_primary_10_1002_anie_202412294 crossref_primary_10_1038_s42003_022_04160_8 crossref_primary_10_1016_j_immuni_2024_02_016 crossref_primary_10_1016_j_hsr_2023_100127 crossref_primary_10_3389_fimmu_2022_830710 crossref_primary_10_1038_s41423_021_00752_2 crossref_primary_10_1021_acs_jmedchem_4c00384 crossref_primary_10_1016_j_biotechadv_2022_107986 crossref_primary_10_1016_j_isci_2022_104431 crossref_primary_10_1021_acs_analchem_2c01993 crossref_primary_10_1080_14737159_2021_1913123 crossref_primary_10_1016_j_gendis_2021_11_007 crossref_primary_10_2139_ssrn_4145495 crossref_primary_10_1016_j_coviro_2021_08_010 crossref_primary_10_1038_s41467_022_32573_w crossref_primary_10_4049_jimmunol_2300282 crossref_primary_10_1134_S0006297924070083 crossref_primary_10_1128_jvi_01223_24 crossref_primary_10_1016_j_chom_2022_07_016 crossref_primary_10_1128_jvi_00488_22 crossref_primary_10_1128_Spectrum_01059_21 crossref_primary_10_1186_s43141_022_00368_7 crossref_primary_10_3389_fmicb_2022_1008420 crossref_primary_10_1371_journal_ppat_1010981 crossref_primary_10_1038_s41467_021_26602_3 crossref_primary_10_1128_spectrum_02050_23 crossref_primary_10_1016_j_celrep_2021_109814 crossref_primary_10_3389_fimmu_2023_1287388 crossref_primary_10_2139_ssrn_3961037 crossref_primary_10_5363_tits_26_9_79 crossref_primary_10_52586_5024 crossref_primary_10_1016_j_chom_2022_07_002 crossref_primary_10_1126_scitranslmed_abj7125 crossref_primary_10_3389_fimmu_2022_1041185 crossref_primary_10_1126_science_abf6950 crossref_primary_10_3390_covid1020041 crossref_primary_10_1016_j_nbt_2021_01_010 crossref_primary_10_1016_j_chom_2020_11_007 crossref_primary_10_3390_tropicalmed9030061 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_1016_j_jim_2021_113182 crossref_primary_10_1016_j_coviro_2023_101332 crossref_primary_10_1093_ve_veab069 crossref_primary_10_1038_s41586_023_06617_0 crossref_primary_10_3390_ijms23062928 crossref_primary_10_1080_22221751_2022_2149353 crossref_primary_10_1126_scitranslmed_abn1252 crossref_primary_10_1016_j_jmb_2022_167928 crossref_primary_10_1128_jvi_01070_23 crossref_primary_10_3390_v14050946 crossref_primary_10_1039_D1TB02521J crossref_primary_10_1186_s12967_023_03963_5 crossref_primary_10_1038_s41541_024_01043_3 crossref_primary_10_1016_j_kint_2021_12_029 crossref_primary_10_1080_08830185_2021_1925267 crossref_primary_10_3390_v13112177 crossref_primary_10_1007_s44307_024_00011_1 crossref_primary_10_1038_s41598_023_32021_9 crossref_primary_10_1146_annurev_immunol_101921_040450 crossref_primary_10_3390_v17030362 crossref_primary_10_1016_j_celrep_2021_109822 crossref_primary_10_1038_s41598_022_23482_5 crossref_primary_10_1016_j_jmgm_2021_108035 crossref_primary_10_1093_infdis_jiab255 crossref_primary_10_1128_spectrum_01190_23 crossref_primary_10_3389_fimmu_2023_1160065 crossref_primary_10_3389_fmicb_2022_845316 crossref_primary_10_1002_adhm_202303509 crossref_primary_10_1038_s41586_021_03807_6 crossref_primary_10_3390_vaccines9080850 crossref_primary_10_1016_j_jsb_2023_107996 crossref_primary_10_1073_pnas_2208425120 crossref_primary_10_1128_jvi_02049_24 crossref_primary_10_1128_jvi_01245_22 crossref_primary_10_1038_s41586_021_03402_9 crossref_primary_10_3390_v16020177 crossref_primary_10_1016_j_isci_2023_108256 crossref_primary_10_3390_microorganisms11030580 crossref_primary_10_3390_v13010134 crossref_primary_10_1016_j_ijmmb_2024_100615 crossref_primary_10_2142_biophysico_bppb_v20_0036 crossref_primary_10_1007_s11596_021_2453_8 crossref_primary_10_1016_j_ymthe_2022_12_017 crossref_primary_10_1038_s41598_021_89621_6 crossref_primary_10_3390_vaccines11040832 crossref_primary_10_1016_j_apsb_2022_09_011 crossref_primary_10_3390_molecules27248938 crossref_primary_10_1080_22221751_2021_1921621 crossref_primary_10_1111_imr_13115 crossref_primary_10_34133_2022_9781758 crossref_primary_10_1002_cpt_2207 crossref_primary_10_1002_14651858_CD014946 crossref_primary_10_1371_journal_ppat_1009704 crossref_primary_10_1016_j_jcvp_2022_100089 crossref_primary_10_1038_s41586_021_03324_6 crossref_primary_10_1016_j_celrep_2021_108915 crossref_primary_10_1080_19420862_2022_2072455 crossref_primary_10_1126_science_abl6251 crossref_primary_10_1002_anse_202300001 crossref_primary_10_1186_s43556_022_00074_3 crossref_primary_10_1126_scitranslmed_abi8452 crossref_primary_10_1186_s13073_021_00985_w crossref_primary_10_3389_fimmu_2022_993754 crossref_primary_10_1016_j_str_2024_08_005 crossref_primary_10_1172_jci_insight_151463 crossref_primary_10_1016_j_vacune_2023_04_003 crossref_primary_10_1021_acs_jmedchem_2c01642 crossref_primary_10_3390_v14020295 crossref_primary_10_1002_cti2_1306 crossref_primary_10_1126_sciimmunol_add5446 crossref_primary_10_3390_covid1010028 crossref_primary_10_1002_ange_202107730 crossref_primary_10_3390_vaccines11040849 crossref_primary_10_1016_j_jcvp_2023_100137 crossref_primary_10_1371_journal_pcbi_1010230 crossref_primary_10_1016_j_compbiomed_2024_108091 crossref_primary_10_1038_s41594_021_00596_4 crossref_primary_10_1016_j_immuni_2024_10_001 crossref_primary_10_3390_vaccines9080881 crossref_primary_10_2139_ssrn_3917167 crossref_primary_10_3390_diagnostics11122193 crossref_primary_10_4049_immunohorizons_2300034 crossref_primary_10_1016_j_coviro_2021_12_015 crossref_primary_10_1371_journal_pone_0268767 crossref_primary_10_1002_med_21941 crossref_primary_10_1038_s41467_020_20654_7 crossref_primary_10_1002_JLB_4COVA0121_084RR crossref_primary_10_3390_ijms23062977 crossref_primary_10_1016_j_isci_2023_108009 crossref_primary_10_1080_19420862_2021_1919285 crossref_primary_10_3389_fimmu_2021_758154 crossref_primary_10_1038_s43856_022_00174_9 crossref_primary_10_3390_diagnostics12081924 crossref_primary_10_3389_fimmu_2021_678570 crossref_primary_10_1038_s41598_023_49244_5 crossref_primary_10_1016_j_molcel_2021_11_024 crossref_primary_10_1128_mBio_00930_21 crossref_primary_10_1186_s12879_024_10117_5 crossref_primary_10_1038_s41467_023_35949_8 crossref_primary_10_1016_j_jmb_2024_168716 crossref_primary_10_1093_gerona_glab206 crossref_primary_10_3390_microorganisms11112683 crossref_primary_10_1038_s42003_022_03630_3 crossref_primary_10_3390_ijms23084341 crossref_primary_10_3390_microorganisms10030612 crossref_primary_10_1371_journal_pcbi_1009675 crossref_primary_10_3389_fpubh_2021_732787 crossref_primary_10_31857_S0023476123600830 crossref_primary_10_1021_acs_biochem_3c00596 crossref_primary_10_3389_fimmu_2022_1049867 crossref_primary_10_1111_all_15066 crossref_primary_10_1038_s41467_022_29288_3 crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_1016_j_cell_2021_03_029 crossref_primary_10_3390_v13112114 crossref_primary_10_1016_j_bbrc_2024_150120 crossref_primary_10_1016_S1473_3099_22_00311_5 crossref_primary_10_1038_s41467_023_40554_w crossref_primary_10_3389_fmicb_2024_1386891 crossref_primary_10_3390_vaccines11121836 crossref_primary_10_1016_j_jgg_2023_10_003 crossref_primary_10_3390_vaccines11121832 crossref_primary_10_1016_j_jcv_2022_105130 crossref_primary_10_3390_vaccines11040771 crossref_primary_10_1016_j_ebiom_2023_104878 crossref_primary_10_3390_cells11081274 crossref_primary_10_3390_v14040653 crossref_primary_10_1080_14760584_2021_1903879 crossref_primary_10_3389_fimmu_2022_912898 crossref_primary_10_1126_science_abh1139 crossref_primary_10_1371_journal_pone_0288557 crossref_primary_10_1590_1414_431x2024e13627 crossref_primary_10_3390_v14030617 crossref_primary_10_1016_j_antiviral_2022_105370 crossref_primary_10_3390_jcm10245882 crossref_primary_10_1002_rmv_2277 crossref_primary_10_3389_fimmu_2025_1550279 crossref_primary_10_3390_vaccines10122035 crossref_primary_10_1016_j_cell_2021_04_045 crossref_primary_10_1016_j_bj_2022_04_006 crossref_primary_10_1186_s13073_021_00910_1 crossref_primary_10_1038_s41467_022_32665_7 crossref_primary_10_1038_s41591_021_01542_z crossref_primary_10_1080_07391102_2023_2173297 crossref_primary_10_1172_JCI178880 crossref_primary_10_1128_JVI_00203_21 crossref_primary_10_3389_fmicb_2022_883597 crossref_primary_10_3390_microorganisms9030525 crossref_primary_10_2147_DDDT_S347297 crossref_primary_10_1016_j_csbj_2022_04_038 crossref_primary_10_1128_mbio_01206_23 crossref_primary_10_3389_fimmu_2021_752003 crossref_primary_10_3390_vaccines11061014 crossref_primary_10_3390_biomedicines11020517 crossref_primary_10_1038_s41541_022_00546_1 crossref_primary_10_1016_j_cell_2021_04_032 crossref_primary_10_3390_v15020408 crossref_primary_10_1080_19420862_2022_2040350 crossref_primary_10_3390_nu15112631 crossref_primary_10_1016_j_clinbiochem_2021_12_009 crossref_primary_10_1002_iid3_1353 crossref_primary_10_1371_journal_pone_0271074 crossref_primary_10_1007_s00705_023_05773_y crossref_primary_10_1016_j_celrep_2024_114645 crossref_primary_10_3390_biom12091170 crossref_primary_10_3389_fimmu_2021_752233 crossref_primary_10_1016_j_vaccine_2025_126787 crossref_primary_10_1016_j_heliyon_2021_e06836 crossref_primary_10_3389_fimmu_2020_610688 crossref_primary_10_1038_s41378_022_00460_5 crossref_primary_10_3390_vaccines9111241 crossref_primary_10_1128_mBio_00230_21 crossref_primary_10_1111_jcmm_17103 crossref_primary_10_1016_j_immuni_2022_10_019 crossref_primary_10_3390_vaccines12030318 crossref_primary_10_1038_s41541_023_00800_0 crossref_primary_10_3390_ijms23084376 crossref_primary_10_3389_fimmu_2021_691715 crossref_primary_10_1016_j_vacune_2022_10_018 crossref_primary_10_1038_s41598_021_01225_2 crossref_primary_10_1016_j_cca_2021_11_023 crossref_primary_10_1126_sciadv_abh1547 crossref_primary_10_3390_vaccines9060672 crossref_primary_10_1002_ajh_27119 crossref_primary_10_1371_journal_ppat_1012383 crossref_primary_10_3390_vaccines12040342 crossref_primary_10_1007_s15010_021_01705_7 crossref_primary_10_1038_s41467_024_51770_3 crossref_primary_10_3390_v15020426 crossref_primary_10_1016_j_cell_2020_10_043 crossref_primary_10_1080_14760584_2023_2211153 crossref_primary_10_34133_2021_9769586 crossref_primary_10_2139_ssrn_3963559 crossref_primary_10_1371_journal_pcbi_1012812 crossref_primary_10_1038_s41541_023_00724_9 crossref_primary_10_1016_j_vacun_2023_10_002 crossref_primary_10_3390_ijms24087292 crossref_primary_10_1038_s41586_022_05513_3 crossref_primary_10_1039_D3TB01866K crossref_primary_10_1016_j_cytogfr_2021_03_001 crossref_primary_10_1038_s41467_023_38457_x crossref_primary_10_1126_sciadv_adg2122 crossref_primary_10_1038_s41541_021_00393_6 crossref_primary_10_1016_j_cell_2020_10_051 crossref_primary_10_1038_s41598_022_10987_2 crossref_primary_10_1080_22221751_2022_2125348 crossref_primary_10_1016_j_immuni_2021_06_015 crossref_primary_10_1038_s41392_021_00796_w crossref_primary_10_1007_s12250_021_00409_4 crossref_primary_10_3390_biomedicines10123106 crossref_primary_10_1002_eji_202249823 crossref_primary_10_1038_s41541_022_00586_7 crossref_primary_10_1002_jmv_27801 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1172_JCI158190 crossref_primary_10_1038_s41580_021_00418_x crossref_primary_10_3390_biomedicines11112892 crossref_primary_10_1111_febs_16777 crossref_primary_10_1126_science_abh2644 crossref_primary_10_1016_j_smim_2021_101533 crossref_primary_10_3390_vaccines10030347 crossref_primary_10_1128_jvi_01137_23 crossref_primary_10_1016_j_cell_2021_01_037 crossref_primary_10_1016_j_celrep_2022_110770 crossref_primary_10_1080_22221751_2021_1925594 crossref_primary_10_1371_journal_ppat_1012599 crossref_primary_10_1016_j_eclinm_2022_101569 crossref_primary_10_1096_fj_202100986RR crossref_primary_10_1093_pnasnexus_pgac045 crossref_primary_10_1038_s42003_022_03262_7 crossref_primary_10_1097_TXD_0000000000001401 crossref_primary_10_4103_jfmpc_jfmpc_430_22 crossref_primary_10_1016_j_bbrc_2022_06_064 crossref_primary_10_1016_j_addr_2021_02_009 crossref_primary_10_1016_j_omtm_2025_101418 crossref_primary_10_1016_j_compbiomed_2023_107576 crossref_primary_10_1016_j_smim_2021_101545 crossref_primary_10_1126_scitranslmed_ado9026 crossref_primary_10_1126_scitranslmed_abd1525 crossref_primary_10_1128_mSphere_00507_21 crossref_primary_10_1111_imr_13091 crossref_primary_10_1016_j_cell_2021_01_007 crossref_primary_10_1080_21645515_2024_2394265 crossref_primary_10_1016_j_clim_2024_110164 crossref_primary_10_1080_22221751_2021_2008775 crossref_primary_10_1098_rsfs_2021_0019 crossref_primary_10_3389_fimmu_2021_710263 crossref_primary_10_1038_s42003_022_04170_6 crossref_primary_10_2196_58018 crossref_primary_10_1186_s12967_023_04095_6 crossref_primary_10_7554_eLife_95708_3 crossref_primary_10_3389_fmicb_2022_934993 crossref_primary_10_1016_j_clim_2022_108999 crossref_primary_10_1038_s41586_022_04980_y crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1016_j_bpj_2023_10_026 crossref_primary_10_1128_spectrum_04998_22 crossref_primary_10_1016_j_vaccine_2025_126961 crossref_primary_10_3389_fmicb_2023_1122868 crossref_primary_10_1016_j_virol_2022_06_010 crossref_primary_10_1016_j_vaccine_2024_126668 crossref_primary_10_1016_j_ijbiomac_2024_139254 crossref_primary_10_1038_s41541_022_00597_4 crossref_primary_10_1016_j_biopha_2021_111953 crossref_primary_10_1016_j_antiviral_2024_105987 crossref_primary_10_1016_j_bpj_2024_03_018 crossref_primary_10_1016_j_celrep_2022_110318 crossref_primary_10_1016_j_xcrm_2023_100955 crossref_primary_10_1016_j_jaci_2021_10_014 crossref_primary_10_3389_fimmu_2021_708184 crossref_primary_10_1111_imr_13089 crossref_primary_10_1038_s41467_024_55358_9 crossref_primary_10_3389_fimmu_2021_744242 crossref_primary_10_1002_advs_202100985 crossref_primary_10_1111_imr_13084 crossref_primary_10_3389_fmolb_2022_797132 crossref_primary_10_1111_irv_70076 crossref_primary_10_1038_s41421_021_00370_2 crossref_primary_10_1038_s41467_021_25997_3 crossref_primary_10_1039_D3LC00749A crossref_primary_10_1080_22221751_2023_2290841 crossref_primary_10_3390_v16030417 crossref_primary_10_1038_s41467_024_49656_5 crossref_primary_10_3390_antib13020041 crossref_primary_10_1038_s41564_021_01051_2 crossref_primary_10_1016_j_cell_2021_02_032 crossref_primary_10_1016_j_isci_2022_105016 crossref_primary_10_1016_j_isci_2022_105259 crossref_primary_10_1128_spectrum_02676_23 crossref_primary_10_1002_iid3_612 crossref_primary_10_1126_science_abn7760 crossref_primary_10_3389_fimmu_2022_952650 crossref_primary_10_1021_acscentsci_1c00361 crossref_primary_10_3390_diagnostics11101815 crossref_primary_10_2147_JIR_S394760 crossref_primary_10_3390_antib12040080 crossref_primary_10_1016_j_ymthe_2022_02_011 crossref_primary_10_1038_s41467_021_22045_y crossref_primary_10_1038_s41392_022_00910_6 crossref_primary_10_1038_s41586_024_07636_1 crossref_primary_10_3390_covid2080080 crossref_primary_10_1134_S0026893321030158 crossref_primary_10_3349_ymj_2024_0129 crossref_primary_10_23736_S0026_4806_21_07458_9 crossref_primary_10_1038_s41586_021_03792_w crossref_primary_10_1093_bib_bbac128 crossref_primary_10_1016_j_chom_2022_04_017 crossref_primary_10_1371_journal_pone_0250780 crossref_primary_10_3390_covid4080091 crossref_primary_10_3390_bioengineering10020148 crossref_primary_10_1016_j_csbj_2021_10_004 crossref_primary_10_1038_s41579_021_00573_0 crossref_primary_10_1038_s41598_021_99827_3 crossref_primary_10_1016_j_vaccine_2023_12_021 crossref_primary_10_1080_26895293_2021_1977186 crossref_primary_10_1186_s41231_021_00093_2 crossref_primary_10_17816_clinpract64677 crossref_primary_10_4049_jimmunol_2001369 crossref_primary_10_3390_v14092061 crossref_primary_10_1038_s41423_023_01095_w crossref_primary_10_3390_jdb9040058 crossref_primary_10_1038_s41392_022_00978_0 crossref_primary_10_1186_s12879_022_07141_8 crossref_primary_10_1038_s41586_021_03594_0 crossref_primary_10_1080_07391102_2022_2036640 crossref_primary_10_1126_scitranslmed_abj5305 crossref_primary_10_1016_j_celrep_2022_111831 crossref_primary_10_1038_s43856_024_00582_z crossref_primary_10_1371_journal_ppat_1010592 crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_2215_CJN_11820921 crossref_primary_10_1038_s41577_022_00809_x crossref_primary_10_3389_fmed_2022_768138 crossref_primary_10_1038_s41467_022_32262_8 crossref_primary_10_3389_fimmu_2021_701501 crossref_primary_10_3390_nu13041297 crossref_primary_10_3390_antib11010013 crossref_primary_10_1021_acschembio_1c00272 crossref_primary_10_1016_S2666_5247_21_00129_4 crossref_primary_10_1016_j_celrep_2021_110218 crossref_primary_10_1016_j_celrep_2022_110757 crossref_primary_10_1172_jci_insight_156372 crossref_primary_10_1016_j_jbc_2021_100745 crossref_primary_10_1016_j_virol_2024_110241 crossref_primary_10_1016_j_ymthe_2021_09_011 crossref_primary_10_1016_j_celrep_2024_114235 crossref_primary_10_1016_j_xcrm_2023_100991 |
Cites_doi | 10.1016/j.chom.2020.06.010 10.1126/science.abc2241 10.1038/nm1080 10.1126/science.abc5902 10.1016/j.ultramic.2013.06.004 10.1038/nmeth.4169 10.1073/pnas.0400937101 10.1107/S0021889807021206 10.1016/j.jmb.2011.11.010 10.1016/S0140-6736(20)31604-4 10.1038/ncomms9223 10.1038/nmeth.4347 10.1001/jama.2020.4783 10.1016/j.cell.2020.02.052 10.1073/pnas.1510199112 10.1016/j.str.2018.09.006 10.1038/s41586-020-2456-9 10.1371/journal.pmed.0030237 10.1038/s41586-020-2665-2 10.1002/gch2.1018 10.1038/s41586-020-2349-y 10.1126/science.abc7424 10.1038/nature06106 10.1093/bib/bbx108 10.1038/ncomms15092 10.1016/j.virusres.2014.11.021 10.1016/j.virol.2016.01.004 10.1172/JCI84428 10.1107/S0907444913000061 10.1126/science.abb7269 10.1016/bs.aivir.2019.08.002 10.1038/nature16988 10.1017/S0022172400062410 10.1001/jama.2020.10044 10.1038/s41587-020-0631-z 10.7554/eLife.17219 10.1038/s41591-020-0965-6 10.1126/science.1178258 10.1038/s41467-019-12137-1 10.1126/science.abb2762 10.1038/s41586-020-2180-5 10.1016/j.jim.2007.09.017 10.1017/S0950268800048019 10.1136/gut.24.7.615 10.1126/science.abb2507 10.1007/BF01968139 10.1038/nsmb.3293 10.1107/S2059798319011471 10.1016/j.cell.2015.04.016 10.3201/eid2206.160010 10.1038/nm.3443 10.1073/pnas.2004168117 10.1038/s41586-020-2179-y 10.1016/j.cell.2020.06.025 10.1038/s41598-018-34171-7 10.1038/s41564-020-0688-y 10.4049/jimmunol.2000583 10.1002/pro.3235 10.1016/j.cell.2020.07.012 10.1016/j.cell.2020.05.015 10.1056/NEJMoa1405858 10.1126/science.abc7520 10.1371/journal.ppat.1007236 10.1016/j.cell.2018.12.028 10.1016/0022-2836(70)90057-4 10.7554/eLife.42166 10.1080/22221751.2020.1756700 10.1126/science.abb9983 10.1107/S0907444909042073 10.1107/S0907444911001314 10.1126/science.aaf8505 10.1016/j.cell.2020.02.058 10.1038/s41467-017-00928-3 10.1016/j.jsb.2012.09.006 10.1107/S0907444910048675 10.1016/j.antiviral.2019.01.016 10.1073/pnas.1707304114 10.1016/j.jsb.2013.08.002 10.1016/j.molcel.2020.04.022 10.1128/JVI.02377-07 10.1126/science.abd0831 10.1073/pnas.1517719113 10.1107/S0907444909047337 10.1126/scitranslmed.aaf9418 10.1107/S0907444910007493 10.1016/j.cell.2020.03.045 10.1016/j.jsb.2005.03.010 10.1038/s41592-019-0580-y 10.1038/nmeth.3541 10.1126/science.1205669 10.1107/S205225251801463X 10.1002/jcc.20084 10.1038/nsmb.3115 10.1056/NEJMc070348 10.1080/22221751.2020.1729069 10.1038/s41467-020-15562-9 10.1073/pnas.1708727114 10.1126/science.abc6952 10.1038/s41467-020-16256-y 10.1038/s41586-020-2012-7 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License 2020 Elsevier Inc. 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2020 Elsevier Inc. 2020 Elsevier Inc. |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC OIOZB OTOTI 5PM |
DOI | 10.1016/j.cell.2020.09.037 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1042.e21 |
ExternalDocumentID | PMC7494283 1846169 oai_HAL_pasteur_02984796v1 32991844 10_1016_j_cell_2020_09_037 S0092867420312344 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM120553 – fundername: NIGMS NIH HHS grantid: P30 GM124169 – fundername: NIAID NIH HHS grantid: HHSN272201700059C – fundername: NIAID NIH HHS grantid: DP1 AI158186 – fundername: NIH HHS grantid: S10 OD023476 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YZZ ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAIKJ AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKBMS AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 1XC UMC 0SF ABVKL OIOZB OTOTI RCE VQA 5PM |
ID | FETCH-LOGICAL-c647t-36d1c48985dbbf648cc43f49357d20a591a4232f96e2f8a7e3bb4a546ddeb6393 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:17:32 EDT 2025 Thu Dec 05 06:24:06 EST 2024 Fri May 09 12:23:36 EDT 2025 Wed Jul 02 03:15:43 EDT 2025 Fri Jul 11 15:47:29 EDT 2025 Mon Jul 21 05:50:58 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 02:17:07 EDT 2025 Sun Apr 06 06:55:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 neutralizing antibodies SARS-CoV-2 coronaviruses immunity effector functions |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2020 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c647t-36d1c48985dbbf648cc43f49357d20a591a4232f96e2f8a7e3bb4a546ddeb6393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC7494283 Pasteur Institute USDOE Office of Science (SC) AC02-05CH11231; R01GM120553; DP1AI158186; HHSN272201700059C; P30 GM124169-01 National Institute of Allergy and Infectious Diseases (NIAID) Pew Biomedical Scholars National Institutes of Health (NIH) Investigators in the Pathogenesis of Infectious Disease National Institute of General Medical Sciences Lead Contact These authors contributed equally |
ORCID | 0000-0002-2260-2577 0000-0002-3041-7240 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867420312344 |
PMID | 32991844 |
PQID | 2447548306 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7494283 osti_scitechconnect_1846169 hal_primary_oai_HAL_pasteur_02984796v1 proquest_miscellaneous_2524328527 proquest_miscellaneous_2447548306 pubmed_primary_32991844 crossref_citationtrail_10_1016_j_cell_2020_09_037 crossref_primary_10_1016_j_cell_2020_09_037 elsevier_sciencedirect_doi_10_1016_j_cell_2020_09_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-12 |
PublicationDateYYYYMMDD | 2020-11-12 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – sequence: 0 name: Elsevier – name: Elsevier Inc – name: Elsevier |
References | Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib92) 2016; 531 Menachery, Yount, Sims, Debbink, Agnihothram, Gralinski, Graham, Scobey, Plante, Royal (bib59) 2016; 113 Scheres (bib74) 2012; 415 Ortiz, Lansing, Rutitzky, Kurtagic, Prod’homme, Choudhury, Washburn, Bhatnagar, Beneduce, Holte (bib63) 2016; 8 DiLillo, Tan, Palese, Ravetch (bib20) 2014; 20 Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib31) 2018; 27 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib38) 2020; 181 Traggiai, Becker, Subbarao, Kolesnikova, Uematsu, Gismondo, Murphy, Rappuoli, Lanzavecchia (bib90) 2004; 10 Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib110) 2018; 7 Hensley, Das, Bailey, Schmidt, Hickman, Jayaraman, Viswanathan, Raman, Sasisekharan, Bennink, Yewdell (bib35) 2009; 326 Ying, Prabakaran, Du, Shi, Feng, Wang, Wang, Li, Jiang, Dimitrov, Zhou (bib105) 2015; 6 Cardone, Heymann, Steven (bib12) 2013; 184 Folegatti, Ewer, Aley, Angus, Becker, Belij-Rammerstorfer, Bellamy, Bibi, Bittaye, Clutterbuck (bib28) 2020; 396 Frenz, Rämisch, Borst, Walls, Adolf-Bryfogle, Schief, Veesler, DiMaio (bib29) 2019; 27 Baum, Fulton, Wloga, Copin, Pascal, Russo, Giordano, Lanza, Negron, Ni (bib7) 2020; 369 Katoh, Rozewicki, Yamada (bib113) 2019; 20 Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib15) 2020; 369 Evans, Murshudov (bib27) 2013; 69 Joyce, Sankhala, Chen, Choe, Bai, Hajduczki, Yan, Sterling, Peterson, Green (bib41) 2020 Tan, Baldwin, Davis, Williamson, Potter, Carragher, Lyumkis (bib83) 2017; 14 Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib106) 2017; 8 Hoffmann, Kleine-Weber, Pöhlmann (bib37) 2020; 78 Stettler, Beltramello, Espinosa, Graham, Cassotta, Bianchi, Vanzetta, Minola, Jaconi, Mele (bib81) 2016; 353 Corti, Voss, Gamblin, Codoni, Macagno, Jarrossay, Vachieri, Pinna, Minola, Vanzetta (bib16) 2011; 333 Ke, Oton, Qu, Cortese, Zila, McKeane, Nakane, Zivanov, Neufeldt, Cerikan (bib44) 2020 Millet, Whittaker (bib60) 2015; 202 Callow (bib9) 1985; 95 Scheres (bib75) 2012; 180 Battye, Kontogiannis, Johnson, Powell, Leslie (bib6) 2011; 67 ter Meulen, van den Brink, Poon, Marissen, Leung, Cox, Cheung, Bakker, Bogaards, van Deventer (bib87) 2006; 3 Edridge, Kaczorowska, Hoste, Bakker, Klein, Jebbink, Matser, Kinsella, Rueda, Prins (bib24) 2020 Grifoni, Weiskopf, Ramirez, Mateus, Dan, Moderbacher, Rawlings, Sutherland, Premkumar, Jadi (bib32) 2020; 181 Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib45) 2018; 8 Zhou, Tsybovsky, Olia, Gorman, Rapp, Cerutti, Katsamba, Nazzari, Schon, Wang (bib109) 2020 Duan, Liu, Li, Zhang, Yu, Qu, Zhou, Chen, Meng, Hu (bib23) 2020; 117 Shen, Wang, Zhao, Yang, Li, Yuan, Wang, Li, Yang, Xing (bib79) 2020; 323 Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen (bib99) 2020; 181 Watanabe, Allen, Wrapp, McLellan, Crispin (bib100) 2020; 369 Agirre, Iglesias-Fernández, Rovira, Davies, Wilson, Cowtan (bib1) 2015; 22 Barnes, West, Huey-Tubman, Hoffmann, Sharaf, Hoffman, Koranda, Gristick, Gaebler, Muecksch (bib5) 2020; 182 Chen, McMullan, Faruqi, Murshudov, Short, Scheres, Henderson (bib14) 2013; 135 Lau, Wang, Mok, Zhang, Chu, Lee, Deng, Chen, Chan, Song (bib47) 2020; 9 Punjani, Rubinstein, Fleet, Brubaker (bib69) 2017; 14 Wang, Song, Barad, Cheng, Fraser, DiMaio (bib97) 2016; 5 Luchsinger, Ransegnola, Jin, Muecksch, Weisblum, Bao, George, Rodriguez, Tricoche, Schmidt (bib56) 2020 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib108) 2020; 579 Liu, Lin, Baine, Wajnberg, Gumprecht, Rahman, Rodriguez, Tandon, Bassily-Marcus, Bander (bib54) 2020 DiLillo, Palese, Wilson, Ravetch (bib21) 2016; 126 He, Chen, Mullarkey, Hamilton, Wong, Leon, Uccellini, Chromikova, Henry, Hoffman (bib34) 2017; 8 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib58) 2007; 40 Elbe, Buckland-Merrett (bib25) 2017; 1 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib46) 2020; 581 de Wit, Feldmann, Horne, Okumura, Cameroni, Haddock, Saturday, Scott, Gopal, Zambon (bib18) 2019; 163 Zivanov, Nakane, Scheres (bib111) 2019; 6 Wec, Wrapp, Herbert, Maurer, Haslwanter, Sakharkar, Jangra, Dieterle, Lilov, Huang (bib101) 2020; 369 Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib53) 2020 Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie (bib50) 2020; 182 Huo, Zhao, Ren, Zhou, Duyvesteyn, Ginn, Carrique, Malinauskas, Ruza, Shah (bib39) 2020; 28 Letko, Marzi, Munster (bib48) 2020; 5 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib96) 2020; 181 Gimson, Tedder, White, Eddleston, Williams (bib30) 1983; 24 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib102) 2020; 367 Guo, Guo, Duan, Chen, Wang, Lu, Li, Lu (bib33) 2020 Hessell, Hangartner, Hunter, Havenith, Beurskens, Bakker, Lanigan, Landucci, Forthal, Parren (bib36) 2007; 449 Alsoussi, Turner, Case, Zhao, Schmitz, Zhou, Chen, Lei, Rizk, McIntire (bib3) 2020; 205 Long, Tang, Shi, Li, Deng, Yuan, Hu, Xu, Zhang, Lv (bib55) 2020; 26 Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib13) 2010; 66 Cao, Liu, Zhang, Zhang, Richardus (bib11) 2007; 357 Prévost, Gasser, Beaudoin-Bussières, Richard, Duerr, Laumaea, Anand, Goyette, Ding, Medjahed (bib68) 2020 DiLillo, Ravetch (bib19) 2015; 161 Punjani, Zhang, Fleet (bib70) 2019 Li, Zhang, Hu, Tong, Zheng, Yang, Kong, Ren, Wei, Mei (bib49) 2020; 324 Drosten, Meyer, Müller, Corman, Al-Masri, Hossain, Madani, Sieberg, Bosch, Lattwein (bib22) 2014; 371 Emsley, Lohkamp, Scott, Cowtan (bib26) 2010; 66 Tan, Chia, Qin, Liu, Chen, Tiu, Hu, Chen, Young, Sia (bib84) 2020; 38 Callow, Parry, Sergeant, Tyrrell (bib10) 1990; 105 Song, Gui, Wang, Xiang (bib80) 2018; 14 Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib71) 2020; 584 Barad, Echols, Wang, Cheng, DiMaio, Adams, Fraser (bib4) 2015; 12 Tegunov, Cramer (bib86) 2019; 16 Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib107) 2020; 368 Ou, Liu, Lei, Li, Mi, Ren, Guo, Guo, Chen, Hu (bib64) 2020; 11 Tian, Li, Huang, Xia, Lu, Shi, Lu, Jiang, Yang, Wu, Ying (bib88) 2020; 9 Johnson, Bagci, Keith, Tang, Mollura, Zeitlin, Qin, Huzella, Bartos, Bohorova (bib40) 2016; 490 Kabsch (bib43) 2010; 66 Needleman, Wunsch (bib114) 1970; 48 Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib67) 2020; 583 Wu, Wang, Shen, Peng, Li, Zhao, Li, Li, Bi, Yang (bib103) 2020; 368 Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib82) 2005; 151 Walls, Tortorici, Frenz, Snijder, Li, Rey, DiMaio, Bosch, Veesler (bib93) 2016; 23 Ng, Faulkner, Cornish, Rosa, Harvey, Hussain, Ulferts, Earl, Wrobel, Benton (bib62) 2020 Ju, Zhang, Ge, Wang, Yu, Shan, Zhou, Song, Tang, Yu (bib42) 2020 Tang, Chen, Cox, Su, Callahan, Fridman, Zhang, Patel, Cejas, Swoyer (bib85) 2019; 10 Tiller, Meffre, Yurasov, Tsuiji, Nussenzweig, Wardemann (bib112) 2008; 329 Tortorici, Veesler (bib89) 2019; 105 Turoňová, Sikora, Schürmann, Hagen, Welsch, Blanc, von Bülow, Gecht, Bagola, Hörner (bib91) 2020 Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib65) 2017; 114 Alshukairi, Khalid, Ahmed, Dada, Bayumi, Malic, Althawadi, Ignacio, Alsalmi, Al-Abdely (bib2) 2016; 22 Walls, Tortorici, Snijder, Xiong, Bosch, Rey, Veesler (bib94) 2017; 114 Yan, Zhang, Li, Xia, Guo, Zhou (bib104) 2020; 367 Seow, Graham, Merrick, Acors, Steel, Hemmings, O’Bryne, Kouphou, Pickering, Galao (bib76) 2020 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib66) 2004; 25 Seydoux, Homad, MacCamy, Parks, Hurlburt, Jennewein, Akins, Stuart, Wan, Feng (bib77) 2020 Liebschner, Afonine, Baker, Bunkóczi, Chen, Croll, Hintze, Hung, Jain, McCoy (bib51) 2019; 75 Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib73) 2020; 369 Lindhardt, Gerstoft, Hofmann, Pallesen, Mathiesen, Dickmeiss, Ulrich (bib52) 1989; 8 Corti, Zhao, Pedotti, Simonelli, Agnihothram, Fett, Fernandez-Rodriguez, Foglierini, Agatic, Vanzetta (bib17) 2015; 112 Brouwer, Caniels, van der Straten, Snitselaar, Aldon, Bangaru, Torres, Okba, Claireaux, Kerster (bib8) 2020; 369 Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib95) 2019; 176 Murshudov, Skubák, Lebedev, Pannu, Steiner, Nicholls, Winn, Long, Vagin (bib61) 2011; 67 Lund, Alexopoulou, Sato, Karow, Adams, Gale, Iwasaki, Flavell (bib57) 2004; 101 Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach, Li (bib78) 2020; 581 Wang, Li, Drabek, Okba, van Haperen, Osterhaus, van Kuppeveld, Haagmans, Grosveld, Bosch (bib98) 2020; 11 Rockx, Corti, Donaldson, Sheahan, Stadler, Lanzavecchia, Baric (bib72) 2008; 82 Corti (10.1016/j.cell.2020.09.037_bib16) 2011; 333 Barnes (10.1016/j.cell.2020.09.037_bib5) 2020; 182 Pallesen (10.1016/j.cell.2020.09.037_bib65) 2017; 114 Seydoux (10.1016/j.cell.2020.09.037_bib77) 2020 Luchsinger (10.1016/j.cell.2020.09.037_bib56) 2020 Folegatti (10.1016/j.cell.2020.09.037_bib28) 2020; 396 Yan (10.1016/j.cell.2020.09.037_bib104) 2020; 367 Chen (10.1016/j.cell.2020.09.037_bib14) 2013; 135 Tegunov (10.1016/j.cell.2020.09.037_bib86) 2019; 16 Katoh (10.1016/j.cell.2020.09.037_bib113) 2019; 20 Cao (10.1016/j.cell.2020.09.037_bib11) 2007; 357 Tang (10.1016/j.cell.2020.09.037_bib85) 2019; 10 Pinto (10.1016/j.cell.2020.09.037_bib67) 2020; 583 Evans (10.1016/j.cell.2020.09.037_bib27) 2013; 69 Walls (10.1016/j.cell.2020.09.037_bib95) 2019; 176 Tian (10.1016/j.cell.2020.09.037_bib88) 2020; 9 Wang (10.1016/j.cell.2020.09.037_bib97) 2016; 5 DiLillo (10.1016/j.cell.2020.09.037_bib19) 2015; 161 Tortorici (10.1016/j.cell.2020.09.037_bib89) 2019; 105 Agirre (10.1016/j.cell.2020.09.037_bib1) 2015; 22 Yuan (10.1016/j.cell.2020.09.037_bib107) 2020; 368 Duan (10.1016/j.cell.2020.09.037_bib23) 2020; 117 Needleman (10.1016/j.cell.2020.09.037_bib114) 1970; 48 Hensley (10.1016/j.cell.2020.09.037_bib35) 2009; 326 Shen (10.1016/j.cell.2020.09.037_bib79) 2020; 323 He (10.1016/j.cell.2020.09.037_bib34) 2017; 8 Lau (10.1016/j.cell.2020.09.037_bib47) 2020; 9 Lund (10.1016/j.cell.2020.09.037_bib57) 2004; 101 Walls (10.1016/j.cell.2020.09.037_bib96) 2020; 181 Ou (10.1016/j.cell.2020.09.037_bib64) 2020; 11 Brouwer (10.1016/j.cell.2020.09.037_bib8) 2020; 369 Elbe (10.1016/j.cell.2020.09.037_bib25) 2017; 1 Li (10.1016/j.cell.2020.09.037_bib50) 2020; 182 DiLillo (10.1016/j.cell.2020.09.037_bib21) 2016; 126 Lan (10.1016/j.cell.2020.09.037_bib46) 2020; 581 Tiller (10.1016/j.cell.2020.09.037_bib112) 2008; 329 Wang (10.1016/j.cell.2020.09.037_bib99) 2020; 181 Seow (10.1016/j.cell.2020.09.037_bib76) 2020 Kirchdoerfer (10.1016/j.cell.2020.09.037_bib45) 2018; 8 Walls (10.1016/j.cell.2020.09.037_bib92) 2016; 531 Cardone (10.1016/j.cell.2020.09.037_bib12) 2013; 184 Tan (10.1016/j.cell.2020.09.037_bib83) 2017; 14 Wrapp (10.1016/j.cell.2020.09.037_bib102) 2020; 367 Prévost (10.1016/j.cell.2020.09.037_bib68) 2020 Goddard (10.1016/j.cell.2020.09.037_bib31) 2018; 27 Long (10.1016/j.cell.2020.09.037_bib55) 2020; 26 Ju (10.1016/j.cell.2020.09.037_bib42) 2020 Traggiai (10.1016/j.cell.2020.09.037_bib90) 2004; 10 Ke (10.1016/j.cell.2020.09.037_bib44) 2020 Ng (10.1016/j.cell.2020.09.037_bib62) 2020 Huo (10.1016/j.cell.2020.09.037_bib39) 2020; 28 Zhou (10.1016/j.cell.2020.09.037_bib108) 2020; 579 Liu (10.1016/j.cell.2020.09.037_bib54) 2020 Pettersen (10.1016/j.cell.2020.09.037_bib66) 2004; 25 Walls (10.1016/j.cell.2020.09.037_bib93) 2016; 23 Wang (10.1016/j.cell.2020.09.037_bib98) 2020; 11 Gimson (10.1016/j.cell.2020.09.037_bib30) 1983; 24 Watanabe (10.1016/j.cell.2020.09.037_bib100) 2020; 369 Millet (10.1016/j.cell.2020.09.037_bib60) 2015; 202 Zivanov (10.1016/j.cell.2020.09.037_bib111) 2019; 6 Alsoussi (10.1016/j.cell.2020.09.037_bib3) 2020; 205 Baum (10.1016/j.cell.2020.09.037_bib7) 2020; 369 Hessell (10.1016/j.cell.2020.09.037_bib36) 2007; 449 Battye (10.1016/j.cell.2020.09.037_bib6) 2011; 67 Edridge (10.1016/j.cell.2020.09.037_bib24) 2020 Hoffmann (10.1016/j.cell.2020.09.037_bib37) 2020; 78 Turoňová (10.1016/j.cell.2020.09.037_bib91) 2020 Drosten (10.1016/j.cell.2020.09.037_bib22) 2014; 371 Liu (10.1016/j.cell.2020.09.037_bib53) 2020 Ortiz (10.1016/j.cell.2020.09.037_bib63) 2016; 8 ter Meulen (10.1016/j.cell.2020.09.037_bib87) 2006; 3 Wu (10.1016/j.cell.2020.09.037_bib103) 2020; 368 Corti (10.1016/j.cell.2020.09.037_bib17) 2015; 112 Punjani (10.1016/j.cell.2020.09.037_bib69) 2017; 14 Zhou (10.1016/j.cell.2020.09.037_bib109) 2020 Menachery (10.1016/j.cell.2020.09.037_bib59) 2016; 113 Shang (10.1016/j.cell.2020.09.037_bib78) 2020; 581 Chi (10.1016/j.cell.2020.09.037_bib15) 2020; 369 Guo (10.1016/j.cell.2020.09.037_bib33) 2020 Alshukairi (10.1016/j.cell.2020.09.037_bib2) 2016; 22 Frenz (10.1016/j.cell.2020.09.037_bib29) 2019; 27 DiLillo (10.1016/j.cell.2020.09.037_bib20) 2014; 20 Johnson (10.1016/j.cell.2020.09.037_bib40) 2016; 490 Scheres (10.1016/j.cell.2020.09.037_bib74) 2012; 415 Lindhardt (10.1016/j.cell.2020.09.037_bib52) 1989; 8 Stettler (10.1016/j.cell.2020.09.037_bib81) 2016; 353 de Wit (10.1016/j.cell.2020.09.037_bib18) 2019; 163 Liebschner (10.1016/j.cell.2020.09.037_bib51) 2019; 75 Tan (10.1016/j.cell.2020.09.037_bib84) 2020; 38 Emsley (10.1016/j.cell.2020.09.037_bib26) 2010; 66 Zivanov (10.1016/j.cell.2020.09.037_bib110) 2018; 7 Hoffmann (10.1016/j.cell.2020.09.037_bib38) 2020; 181 Callow (10.1016/j.cell.2020.09.037_bib9) 1985; 95 Yuan (10.1016/j.cell.2020.09.037_bib106) 2017; 8 Ying (10.1016/j.cell.2020.09.037_bib105) 2015; 6 Li (10.1016/j.cell.2020.09.037_bib49) 2020; 324 Joyce (10.1016/j.cell.2020.09.037_bib41) 2020 Rockx (10.1016/j.cell.2020.09.037_bib72) 2008; 82 Wec (10.1016/j.cell.2020.09.037_bib101) 2020; 369 Letko (10.1016/j.cell.2020.09.037_bib48) 2020; 5 Walls (10.1016/j.cell.2020.09.037_bib94) 2017; 114 Song (10.1016/j.cell.2020.09.037_bib80) 2018; 14 Kabsch (10.1016/j.cell.2020.09.037_bib43) 2010; 66 Scheres (10.1016/j.cell.2020.09.037_bib75) 2012; 180 Punjani (10.1016/j.cell.2020.09.037_bib70) 2019 Rogers (10.1016/j.cell.2020.09.037_bib73) 2020; 369 Suloway (10.1016/j.cell.2020.09.037_bib82) 2005; 151 Murshudov (10.1016/j.cell.2020.09.037_bib61) 2011; 67 Callow (10.1016/j.cell.2020.09.037_bib10) 1990; 105 Grifoni (10.1016/j.cell.2020.09.037_bib32) 2020; 181 Robbiani (10.1016/j.cell.2020.09.037_bib71) 2020; 584 Barad (10.1016/j.cell.2020.09.037_bib4) 2015; 12 McCoy (10.1016/j.cell.2020.09.037_bib58) 2007; 40 Chen (10.1016/j.cell.2020.09.037_bib13) 2010; 66 |
References_xml | – volume: 490 start-page: 49 year: 2016 end-page: 58 ident: bib40 article-title: 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 publication-title: Virology – volume: 48 start-page: 443 year: 1970 end-page: 453 ident: bib114 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: Journal of Molecular Biology – volume: 20 start-page: 1160 year: 2019 end-page: 1166 ident: bib113 article-title: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization publication-title: Briefings in Bioinformatics – volume: 38 start-page: 1073 year: 2020 end-page: 1078 ident: bib84 article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction publication-title: Nature Biotechnology – volume: 369 start-page: 1014 year: 2020 end-page: 1018 ident: bib7 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: bib67 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib66 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – year: 2020 ident: bib44 article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions publication-title: Nature – volume: 105 start-page: 93 year: 2019 end-page: 116 ident: bib89 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: bib31 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 14 start-page: 793 year: 2017 end-page: 796 ident: bib83 article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting publication-title: Nat. Methods – volume: 126 start-page: 605 year: 2016 end-page: 610 ident: bib21 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. – year: 2020 ident: bib53 article-title: Potent Neutralizing Monoclonal Antibodies Directed to Multiple Epitopes on the SARS-CoV-2 Spike publication-title: bioRxiv – volume: 16 start-page: 1146 year: 2019 end-page: 1152 ident: bib86 article-title: Real-time cryo-electron microscopy data preprocessing with Warp publication-title: Nat. Methods – volume: 82 start-page: 3220 year: 2008 end-page: 3235 ident: bib72 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. – volume: 11 start-page: 2251 year: 2020 ident: bib98 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nature Communications – volume: 181 start-page: 894 year: 2020 end-page: 904.e9 ident: bib99 article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 publication-title: Cell – year: 2020 ident: bib77 article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual publication-title: bioRxiv – volume: 24 start-page: 615 year: 1983 end-page: 617 ident: bib30 article-title: Serological markers in fulminant hepatitis B publication-title: Gut – volume: 181 start-page: 1489 year: 2020 end-page: 1501.e15 ident: bib32 article-title: Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals publication-title: Cell – volume: 14 start-page: e1007236 year: 2018 ident: bib80 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. – volume: 357 start-page: 1162 year: 2007 end-page: 1163 ident: bib11 article-title: Disappearance of antibodies to SARS-associated coronavirus after recovery publication-title: N. Engl. J. Med. – year: 2020 ident: bib33 article-title: Long-Term Persistence of IgG Antibodies in SARS-CoV Infected Healthcare Workers publication-title: medRxiv – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib26 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: bib71 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 184 start-page: 226 year: 2013 end-page: 236 ident: bib12 article-title: One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions publication-title: J. Struct. Biol. – year: 2020 ident: bib56 article-title: Serological Analysis of New York City COVID19 Convalescent Plasma Donors publication-title: medRxiv – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: bib58 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. – volume: 7 start-page: e42166 year: 2018 ident: bib110 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife – year: 2020 ident: bib24 article-title: Coronavirus protective immunity is short-lasting publication-title: medRxiv – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: bib27 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib102 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 368 start-page: 1274 year: 2020 end-page: 1278 ident: bib103 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science – volume: 67 start-page: 271 year: 2011 end-page: 281 ident: bib6 article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bib96 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell – volume: 78 start-page: 779 year: 2020 end-page: 784.e5 ident: bib37 article-title: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells publication-title: Mol. Cell – volume: 202 start-page: 120 year: 2015 end-page: 134 ident: bib60 article-title: Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis publication-title: Virus Res. – volume: 135 start-page: 24 year: 2013 end-page: 35 ident: bib14 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy – volume: 353 start-page: 823 year: 2016 end-page: 826 ident: bib81 article-title: Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection publication-title: Science – volume: 105 start-page: 435 year: 1990 end-page: 446 ident: bib10 article-title: The time course of the immune response to experimental coronavirus infection of man publication-title: Epidemiol. Infect. – year: 2020 ident: bib76 article-title: Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection publication-title: medRxiv – volume: 26 start-page: 1200 year: 2020 end-page: 1204 ident: bib55 article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections publication-title: Nat. Med. – volume: 11 start-page: 1620 year: 2020 ident: bib64 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. – volume: 396 start-page: 467 year: 2020 end-page: 478 ident: bib28 article-title: Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial publication-title: Lancet – volume: 9 start-page: 382 year: 2020 end-page: 385 ident: bib88 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microbes Infect. – volume: 117 start-page: 9490 year: 2020 end-page: 9496 ident: bib23 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc. Natl. Acad. Sci. USA – volume: 113 start-page: 3048 year: 2016 end-page: 3053 ident: bib59 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: bib82 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. – start-page: eabd5223 year: 2020 ident: bib91 article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges publication-title: Science – volume: 415 start-page: 406 year: 2012 end-page: 418 ident: bib74 article-title: A Bayesian view on cryo-EM structure determination publication-title: J. Mol. Biol. – volume: 27 start-page: 134 year: 2019 end-page: 139.e3 ident: bib29 article-title: Automatically Fixing Errors in Glycoprotein Structures with Rosetta publication-title: Structure – volume: 8 start-page: 846 year: 2017 ident: bib34 article-title: Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice publication-title: Nat. Commun. – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: bib107 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 176 start-page: 1026 year: 2019 end-page: 1039.e15 ident: bib95 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell – volume: 112 start-page: 10473 year: 2015 end-page: 10478 ident: bib17 article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus publication-title: Proc. Natl. Acad. Sci. USA – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: bib78 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – year: 2020 ident: bib62 article-title: Pre-existing and de novohumoral immunity to SARS-CoV-2 in humans publication-title: bioRxiv – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: bib38 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell – volume: 369 start-page: 731 year: 2020 end-page: 736 ident: bib101 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science – volume: 6 start-page: 5 year: 2019 end-page: 17 ident: bib111 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: bib92 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature – volume: 22 start-page: 833 year: 2015 end-page: 834 ident: bib1 article-title: Privateer: software for the conformational validation of carbohydrate structures publication-title: Nat. Struct. Mol. Biol. – volume: 10 start-page: 4153 year: 2019 ident: bib85 article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein publication-title: Nat. Commun. – volume: 3 start-page: e237 year: 2006 ident: bib87 article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants publication-title: PLoS Med. – volume: 9 start-page: 837 year: 2020 end-page: 842 ident: bib47 article-title: Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction publication-title: Emerg. Microbes Infect. – volume: 5 start-page: e17219 year: 2016 ident: bib97 article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta publication-title: eLife – year: 2020 ident: bib109 article-title: A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike publication-title: bioRxiv – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib69 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 75 start-page: 861 year: 2019 end-page: 877 ident: bib51 article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix publication-title: Acta Crystallogr. D Struct. Biol. – volume: 329 start-page: 112 year: 2008 end-page: 124 ident: bib112 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J Immunol Methods – volume: 205 start-page: ji2000583 year: 2020 ident: bib3 article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection publication-title: J Immunol – volume: 67 start-page: 355 year: 2011 end-page: 367 ident: bib61 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 20 start-page: 143 year: 2014 end-page: 151 ident: bib20 article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo publication-title: Nat. Med. – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: bib15 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: bib65 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 333 start-page: 850 year: 2011 end-page: 856 ident: bib16 article-title: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins publication-title: Science – volume: 369 start-page: 956 year: 2020 end-page: 963 ident: bib73 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – volume: 371 start-page: 828 year: 2014 end-page: 835 ident: bib22 article-title: Transmission of MERS-coronavirus in household contacts publication-title: N. Engl. J. Med. – year: 2019 ident: bib70 article-title: Non-uniform refinement: Adaptive regularization improves single particle cryo-EM reconstruction publication-title: bioRxiv – volume: 114 start-page: 11157 year: 2017 end-page: 11162 ident: bib94 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. USA – year: 2020 ident: bib68 article-title: Cross-sectional evaluation of humoral responses against SARS-CoV-2 Spike publication-title: bioRxiv – volume: 369 start-page: 330 year: 2020 end-page: 333 ident: bib100 article-title: Site-specific glycan analysis of the SARS-CoV-2 spike publication-title: Science – volume: 182 start-page: 828 year: 2020 end-page: 842.16 ident: bib5 article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies publication-title: Cell – year: 2020 ident: bib41 article-title: A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein publication-title: bioRxiv – volume: 163 start-page: 70 year: 2019 end-page: 74 ident: bib18 article-title: Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset publication-title: Antiviral Res. – volume: 326 start-page: 734 year: 2009 end-page: 736 ident: bib35 article-title: Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift publication-title: Science – volume: 182 start-page: 1284 year: 2020 end-page: 1294.e9 ident: bib50 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell – volume: 5 start-page: 562 year: 2020 end-page: 569 ident: bib48 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. – volume: 23 start-page: 899 year: 2016 end-page: 905 ident: bib93 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. – volume: 10 start-page: 871 year: 2004 end-page: 875 ident: bib90 article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus publication-title: Nat. Med. – volume: 101 start-page: 5598 year: 2004 end-page: 5603 ident: bib57 article-title: Recognition of single-stranded RNA viruses by Toll-like receptor 7 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 365ra158 year: 2016 ident: bib63 article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors publication-title: Sci. Transl. Med. – volume: 6 start-page: 8223 year: 2015 ident: bib105 article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody publication-title: Nat. Commun. – volume: 8 start-page: 614 year: 1989 end-page: 619 ident: bib52 article-title: Antibodies against the major core protein p24 of human immunodeficiency virus: relation to immunological, clinical and prognostic findings publication-title: Eur. J. Clin. Microbiol. Infect. Dis. – volume: 8 start-page: 15701 year: 2018 ident: bib45 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. – volume: 8 start-page: 15092 year: 2017 ident: bib106 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bib13 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: bib46 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 28 start-page: 445 year: 2020 end-page: 454.e6 ident: bib39 article-title: Neutralization of SARS-CoV-2 by destruction of the prefusion Spike publication-title: Cell Host Microbe – year: 2020 ident: bib42 article-title: Potent human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: bioRxiv – volume: 369 start-page: 643 year: 2020 end-page: 650 ident: bib8 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: bib75 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 1 start-page: 33 year: 2017 end-page: 46 ident: bib25 article-title: Data, disease and diplomacy: GISAID’s innovative contribution to global health publication-title: Glob Chall – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: bib104 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib108 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – year: 2020 ident: bib54 article-title: Convalescent plasma treatment of severe COVID-19: A matched control study publication-title: medRxiv – volume: 12 start-page: 943 year: 2015 end-page: 946 ident: bib4 article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy publication-title: Nat. Methods – volume: 323 start-page: 1582 year: 2020 end-page: 1589 ident: bib79 article-title: Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma publication-title: JAMA – volume: 449 start-page: 101 year: 2007 end-page: 104 ident: bib36 article-title: Fc receptor but not complement binding is important in antibody protection against HIV publication-title: Nature – volume: 324 start-page: 460 year: 2020 end-page: 470 ident: bib49 article-title: Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial publication-title: JAMA – volume: 95 start-page: 173 year: 1985 end-page: 189 ident: bib9 article-title: Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection publication-title: J. Hyg. (Lond.) – volume: 22 start-page: 1113 year: 2016 end-page: 1115 ident: bib2 article-title: Antibody Response and Disease Severity in Healthcare Worker MERS Survivors publication-title: Emerg. Infect. Dis. – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: bib43 article-title: XDS publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 161 start-page: 1035 year: 2015 end-page: 1045 ident: bib19 article-title: Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect publication-title: Cell – volume: 28 start-page: 445 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib39 article-title: Neutralization of SARS-CoV-2 by destruction of the prefusion Spike publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.010 – volume: 368 start-page: 1274 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib103 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science doi: 10.1126/science.abc2241 – volume: 10 start-page: 871 year: 2004 ident: 10.1016/j.cell.2020.09.037_bib90 article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus publication-title: Nat. Med. doi: 10.1038/nm1080 – volume: 369 start-page: 643 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib8 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science doi: 10.1126/science.abc5902 – volume: 135 start-page: 24 year: 2013 ident: 10.1016/j.cell.2020.09.037_bib14 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.06.004 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.cell.2020.09.037_bib69 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 101 start-page: 5598 year: 2004 ident: 10.1016/j.cell.2020.09.037_bib57 article-title: Recognition of single-stranded RNA viruses by Toll-like receptor 7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400937101 – volume: 40 start-page: 658 year: 2007 ident: 10.1016/j.cell.2020.09.037_bib58 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807021206 – volume: 415 start-page: 406 year: 2012 ident: 10.1016/j.cell.2020.09.037_bib74 article-title: A Bayesian view on cryo-EM structure determination publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.11.010 – volume: 396 start-page: 467 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib28 article-title: Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(20)31604-4 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib54 article-title: Convalescent plasma treatment of severe COVID-19: A matched control study publication-title: medRxiv – volume: 6 start-page: 8223 year: 2015 ident: 10.1016/j.cell.2020.09.037_bib105 article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody publication-title: Nat. Commun. doi: 10.1038/ncomms9223 – volume: 14 start-page: 793 year: 2017 ident: 10.1016/j.cell.2020.09.037_bib83 article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting publication-title: Nat. Methods doi: 10.1038/nmeth.4347 – volume: 323 start-page: 1582 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib79 article-title: Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma publication-title: JAMA doi: 10.1001/jama.2020.4783 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib38 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 112 start-page: 10473 year: 2015 ident: 10.1016/j.cell.2020.09.037_bib17 article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1510199112 – volume: 27 start-page: 134 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib29 article-title: Automatically Fixing Errors in Glycoprotein Structures with Rosetta publication-title: Structure doi: 10.1016/j.str.2018.09.006 – year: 2019 ident: 10.1016/j.cell.2020.09.037_bib70 article-title: Non-uniform refinement: Adaptive regularization improves single particle cryo-EM reconstruction publication-title: bioRxiv – volume: 584 start-page: 437 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib71 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature doi: 10.1038/s41586-020-2456-9 – volume: 3 start-page: e237 year: 2006 ident: 10.1016/j.cell.2020.09.037_bib87 article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030237 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib44 article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions publication-title: Nature doi: 10.1038/s41586-020-2665-2 – volume: 1 start-page: 33 year: 2017 ident: 10.1016/j.cell.2020.09.037_bib25 article-title: Data, disease and diplomacy: GISAID’s innovative contribution to global health publication-title: Glob Chall doi: 10.1002/gch2.1018 – volume: 583 start-page: 290 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib67 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 369 start-page: 731 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib101 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science doi: 10.1126/science.abc7424 – volume: 449 start-page: 101 year: 2007 ident: 10.1016/j.cell.2020.09.037_bib36 article-title: Fc receptor but not complement binding is important in antibody protection against HIV publication-title: Nature doi: 10.1038/nature06106 – volume: 20 start-page: 1160 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib113 article-title: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbx108 – volume: 8 start-page: 15092 year: 2017 ident: 10.1016/j.cell.2020.09.037_bib106 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 202 start-page: 120 year: 2015 ident: 10.1016/j.cell.2020.09.037_bib60 article-title: Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis publication-title: Virus Res. doi: 10.1016/j.virusres.2014.11.021 – volume: 490 start-page: 49 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib40 article-title: 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 publication-title: Virology doi: 10.1016/j.virol.2016.01.004 – volume: 126 start-page: 605 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib21 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. doi: 10.1172/JCI84428 – volume: 69 start-page: 1204 year: 2013 ident: 10.1016/j.cell.2020.09.037_bib27 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444913000061 – volume: 368 start-page: 630 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib107 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 105 start-page: 93 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib89 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2019.08.002 – volume: 531 start-page: 114 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib92 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 95 start-page: 173 year: 1985 ident: 10.1016/j.cell.2020.09.037_bib9 article-title: Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection publication-title: J. Hyg. (Lond.) doi: 10.1017/S0022172400062410 – volume: 324 start-page: 460 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib49 article-title: Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial publication-title: JAMA doi: 10.1001/jama.2020.10044 – volume: 38 start-page: 1073 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib84 article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction publication-title: Nature Biotechnology doi: 10.1038/s41587-020-0631-z – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib53 article-title: Potent Neutralizing Monoclonal Antibodies Directed to Multiple Epitopes on the SARS-CoV-2 Spike publication-title: bioRxiv – volume: 5 start-page: e17219 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib97 article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta publication-title: eLife doi: 10.7554/eLife.17219 – volume: 26 start-page: 1200 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib55 article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – volume: 326 start-page: 734 year: 2009 ident: 10.1016/j.cell.2020.09.037_bib35 article-title: Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift publication-title: Science doi: 10.1126/science.1178258 – volume: 10 start-page: 4153 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib85 article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein publication-title: Nat. Commun. doi: 10.1038/s41467-019-12137-1 – volume: 367 start-page: 1444 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib104 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 581 start-page: 215 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib46 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 329 start-page: 112 year: 2008 ident: 10.1016/j.cell.2020.09.037_bib112 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J Immunol Methods doi: 10.1016/j.jim.2007.09.017 – volume: 105 start-page: 435 year: 1990 ident: 10.1016/j.cell.2020.09.037_bib10 article-title: The time course of the immune response to experimental coronavirus infection of man publication-title: Epidemiol. Infect. doi: 10.1017/S0950268800048019 – volume: 24 start-page: 615 year: 1983 ident: 10.1016/j.cell.2020.09.037_bib30 article-title: Serological markers in fulminant hepatitis B publication-title: Gut doi: 10.1136/gut.24.7.615 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib68 article-title: Cross-sectional evaluation of humoral responses against SARS-CoV-2 Spike publication-title: bioRxiv – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib102 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 8 start-page: 614 year: 1989 ident: 10.1016/j.cell.2020.09.037_bib52 article-title: Antibodies against the major core protein p24 of human immunodeficiency virus: relation to immunological, clinical and prognostic findings publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/BF01968139 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib77 article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual publication-title: bioRxiv – volume: 23 start-page: 899 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib93 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3293 – volume: 75 start-page: 861 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib51 article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798319011471 – volume: 161 start-page: 1035 year: 2015 ident: 10.1016/j.cell.2020.09.037_bib19 article-title: Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect publication-title: Cell doi: 10.1016/j.cell.2015.04.016 – volume: 22 start-page: 1113 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib2 article-title: Antibody Response and Disease Severity in Healthcare Worker MERS Survivors publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2206.160010 – volume: 20 start-page: 143 year: 2014 ident: 10.1016/j.cell.2020.09.037_bib20 article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo publication-title: Nat. Med. doi: 10.1038/nm.3443 – volume: 117 start-page: 9490 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib23 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2004168117 – volume: 581 start-page: 221 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib78 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 182 start-page: 828 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib5 article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 8 start-page: 15701 year: 2018 ident: 10.1016/j.cell.2020.09.037_bib45 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 5 start-page: 562 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib48 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib109 article-title: A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike publication-title: bioRxiv – volume: 205 start-page: ji2000583 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib3 article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection publication-title: J Immunol doi: 10.4049/jimmunol.2000583 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib24 article-title: Coronavirus protective immunity is short-lasting publication-title: medRxiv – volume: 27 start-page: 14 year: 2018 ident: 10.1016/j.cell.2020.09.037_bib31 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib33 article-title: Long-Term Persistence of IgG Antibodies in SARS-CoV Infected Healthcare Workers publication-title: medRxiv – volume: 182 start-page: 1284 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib50 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 181 start-page: 1489 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib32 article-title: Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals publication-title: Cell doi: 10.1016/j.cell.2020.05.015 – volume: 371 start-page: 828 year: 2014 ident: 10.1016/j.cell.2020.09.037_bib22 article-title: Transmission of MERS-coronavirus in household contacts publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1405858 – start-page: eabd5223 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib91 article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges publication-title: Science – volume: 369 start-page: 956 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib73 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science doi: 10.1126/science.abc7520 – volume: 14 start-page: e1007236 year: 2018 ident: 10.1016/j.cell.2020.09.037_bib80 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 176 start-page: 1026 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib95 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – volume: 48 start-page: 443 year: 1970 ident: 10.1016/j.cell.2020.09.037_bib114 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: Journal of Molecular Biology doi: 10.1016/0022-2836(70)90057-4 – volume: 7 start-page: e42166 year: 2018 ident: 10.1016/j.cell.2020.09.037_bib110 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife doi: 10.7554/eLife.42166 – volume: 9 start-page: 837 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib47 article-title: Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1756700 – volume: 369 start-page: 330 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib100 article-title: Site-specific glycan analysis of the SARS-CoV-2 spike publication-title: Science doi: 10.1126/science.abb9983 – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.cell.2020.09.037_bib13 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 67 start-page: 355 year: 2011 ident: 10.1016/j.cell.2020.09.037_bib61 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444911001314 – volume: 353 start-page: 823 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib81 article-title: Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection publication-title: Science doi: 10.1126/science.aaf8505 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib96 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 8 start-page: 846 year: 2017 ident: 10.1016/j.cell.2020.09.037_bib34 article-title: Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice publication-title: Nat. Commun. doi: 10.1038/s41467-017-00928-3 – volume: 180 start-page: 519 year: 2012 ident: 10.1016/j.cell.2020.09.037_bib75 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib42 article-title: Potent human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: bioRxiv – volume: 67 start-page: 271 year: 2011 ident: 10.1016/j.cell.2020.09.037_bib6 article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910048675 – volume: 163 start-page: 70 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib18 article-title: Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2019.01.016 – volume: 114 start-page: E7348 year: 2017 ident: 10.1016/j.cell.2020.09.037_bib65 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 184 start-page: 226 year: 2013 ident: 10.1016/j.cell.2020.09.037_bib12 article-title: One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.08.002 – volume: 78 start-page: 779 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib37 article-title: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.022 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib76 article-title: Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection publication-title: medRxiv – volume: 82 start-page: 3220 year: 2008 ident: 10.1016/j.cell.2020.09.037_bib72 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. doi: 10.1128/JVI.02377-07 – volume: 369 start-page: 1014 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib7 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science doi: 10.1126/science.abd0831 – volume: 113 start-page: 3048 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib59 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517719113 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib41 article-title: A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein publication-title: bioRxiv – volume: 66 start-page: 125 year: 2010 ident: 10.1016/j.cell.2020.09.037_bib43 article-title: XDS publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909047337 – volume: 8 start-page: 365ra158 year: 2016 ident: 10.1016/j.cell.2020.09.037_bib63 article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf9418 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.cell.2020.09.037_bib26 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 181 start-page: 894 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib99 article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 151 start-page: 41 year: 2005 ident: 10.1016/j.cell.2020.09.037_bib82 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 16 start-page: 1146 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib86 article-title: Real-time cryo-electron microscopy data preprocessing with Warp publication-title: Nat. Methods doi: 10.1038/s41592-019-0580-y – volume: 12 start-page: 943 year: 2015 ident: 10.1016/j.cell.2020.09.037_bib4 article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.3541 – volume: 333 start-page: 850 year: 2011 ident: 10.1016/j.cell.2020.09.037_bib16 article-title: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins publication-title: Science doi: 10.1126/science.1205669 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib56 article-title: Serological Analysis of New York City COVID19 Convalescent Plasma Donors publication-title: medRxiv – volume: 6 start-page: 5 year: 2019 ident: 10.1016/j.cell.2020.09.037_bib111 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ doi: 10.1107/S205225251801463X – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.cell.2020.09.037_bib66 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 22 start-page: 833 year: 2015 ident: 10.1016/j.cell.2020.09.037_bib1 article-title: Privateer: software for the conformational validation of carbohydrate structures publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3115 – volume: 357 start-page: 1162 year: 2007 ident: 10.1016/j.cell.2020.09.037_bib11 article-title: Disappearance of antibodies to SARS-associated coronavirus after recovery publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc070348 – volume: 9 start-page: 382 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib88 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1729069 – volume: 11 start-page: 1620 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib64 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – volume: 114 start-page: 11157 year: 2017 ident: 10.1016/j.cell.2020.09.037_bib94 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1708727114 – year: 2020 ident: 10.1016/j.cell.2020.09.037_bib62 article-title: Pre-existing and de novohumoral immunity to SARS-CoV-2 in humans publication-title: bioRxiv – volume: 369 start-page: 650 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib15 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6952 – volume: 11 start-page: 2251 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib98 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nature Communications doi: 10.1038/s41467-020-16256-y – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.cell.2020.09.037_bib108 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 |
SSID | ssj0008555 |
Score | 2.731564 |
Snippet | Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and... We report analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune... |
SourceID | pubmedcentral osti hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1024 |
SubjectTerms | Angiotensin-Converting Enzyme 2 Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - genetics Antibodies, Monoclonal - immunology Antibodies, Neutralizing - blood Antibodies, Neutralizing - chemistry Antibodies, Neutralizing - immunology Antibodies, Viral - blood Antibodies, Viral - chemistry Antibodies, Viral - immunology Antigen-Antibody Reactions BASIC BIOLOGICAL SCIENCES Betacoronavirus - immunology Betacoronavirus - isolation & purification Betacoronavirus - metabolism Binding Sites Biochemistry, Molecular Biology blood serum Coronavirus Infections - pathology Coronavirus Infections - virology coronaviruses COVID-19 COVID-19 infection effector functions Epitope Mapping - methods Epitopes - chemistry Epitopes - immunology half life Humans immunity Immunoglobulin A - blood Immunoglobulin A - immunology Immunoglobulin G - blood Immunoglobulin G - immunology Immunoglobulin M - blood Immunoglobulin M - immunology Kinetics Life Sciences Molecular Dynamics Simulation neutralizing antibodies nucleoproteins Pandemics Peptidyl-Dipeptidase A - chemistry Peptidyl-Dipeptidase A - metabolism Pneumonia, Viral - pathology Pneumonia, Viral - virology Protein Binding Protein Domains - immunology Protein Structure, Quaternary SARS-CoV-2 serology Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism therapeutics vaccine development |
Title | Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology |
URI | https://dx.doi.org/10.1016/j.cell.2020.09.037 https://www.ncbi.nlm.nih.gov/pubmed/32991844 https://www.proquest.com/docview/2447548306 https://www.proquest.com/docview/2524328527 https://pasteur.hal.science/pasteur-02984796 https://www.osti.gov/servlets/purl/1846169 https://pubmed.ncbi.nlm.nih.gov/PMC7494283 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKSkhcEG-WAjIS4oKsbvyMj9uFsiDaA6Fob5adOG2gTVZtF6n8BH41M3msWAR74Jhdxx5lHv4mmflMyEuDoMD4hHlVGibLEJiHrYHFqIT1Igbd0jUdHun5sfywUIsdMht6YbCsso_9XUxvo3X_y17_NPeWVYU9vpanGlI7sEsuJHKCCpm2TXyL_XU0TpXqTjGw4Pkwum-c6Wq88OU45Ih80nGdmn9tTjdOsUpy1IDX_Q2J_llQ-dsOdXCH3O6hJZ120t8lO7G-R252h01e3yc_Dz1yMZzQo7hqX2_8wAtfF_Q99ohAetpVxdAMUOglbWoK2JBm008ZmzVfGKfZsvoWKeDMuIREne1XbUMMfdOc-6qm4ZpmLRft6iKyd6uqiAXFIhKGHwg686YQmFphHpDjg7efZ3PWn8TAci3NFRO6SHKZ2lQVIZRapnkuRSmtUKbgE69s4vGDb2l15GXqTRQhSK-khuAJ2rbiIRnVTR0fE1pKDxg1wDSeyxxAs9JRSVNKoyfB-nxMkkEFLu9pyvG0jDM31KN9dag2h2pzE-tAbWPyen3PsiPp2DpaDZp1G6bmYBfZet8rMIP1AsjLPZ9-dEsP7ri6cMhlL43V35Mx2UVLwcmRiDfHiiWYHXJpnWg7Ji8GA3LgyriKr2OzunQcyRfBgid6yxjFpeCp4iDOo87o1hIJgBawiBwTs2GOGyJv_lNXpy2luJEWmfee_Oej2SW38Ap7NBP-lIzA3OIzAGtX4Xnrjb8A7d0-Cg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWIgQXxJuyPIwEXJC1jeNHfODQ3WVp2bYHuot68zqpw4ZHUvUBKj-Bv8MfZCZJK4qgB6Q9tklsyzP-_E0y85mQZxpJgXYBczLVTKRxzBxsDcx7GRoX-liVck39geqcircjOdohP1e1MJhWWWN_heklWtf_7NWzuTfJMqzxNTxSENqBX_JQiDqz8tgvv0HcNnvVPQQjP-f86PXJQYfVRwuwRAk9Z6EaB4mITCTHcZwqESWJCFNhQqnHvOWkCRx-wUyN8jyNnPZhHAsnhQI0gOGjAhPg_mVgHxrRoDvaX8N_JGV1bIIBqIHh1ZU6VVIZvo2HoJS3KnFV_a_d8NI5pmU2Cljmf6O-f2Zw_rYlHt0g12suS9vVdN0kOz6_Ra5Up1sub5MffYfiDx_owC_K9ynf8YfLx7SLRSkQD1dpOHQItHdGi5wCGaXD9rshOyjeM06Hk-yTp0Bs_WReTNl-Vlbg0MPii8tyGi_psBS_XUw9e7PIxn5MMWuF4ReJaj1RQMJyMHfI6YXY5y5p5EXu7xOaCgekOIZmHBcJsHSpvBQ6FVq1YuOSJglWJrBJrYuOx3N8tqsEuI8WzWbRbLZlLJitSV6un5lUqiBb75Yry9oN37awbW197gW4wboDFALvtHt24mD9L6YWxfOFNupr0CS76CnYOCr_JpgiBa1D8K4CZZrk6cqBLGAH9uJyXyxmlqPao4ggatxyj-Qi5JHkMJx7ldOtRxQCl4FORJPoDXfcGPLmlTw7LzXMtTAo9ffgP6fmCbnaOen3bK87ON4l1_AKFogG_CFpgOv5R8AU5_HjcmVScnbRUPAL5dF7MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Neutralizing+and+Immunodominant+Sites+on+the+SARS-CoV-2+Spike+Receptor-Binding+Domain+by+Structure-Guided+High-Resolution+Serology&rft.jtitle=Cell&rft.au=Piccoli%2C+Luca&rft.au=Park%2C+Young-Jun&rft.au=Tortorici%2C+M+Alejandra&rft.au=Czudnochowski%2C+Nadine&rft.date=2020-11-12&rft.issn=0092-8674&rft.volume=183&rft.issue=4+p.1024-1042.e21&rft.spage=1024&rft.epage=1042&rft_id=info:doi/10.1016%2Fj.cell.2020.09.037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |