Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 183; no. 4; pp. 1024 - 1042.e21
Main Authors Piccoli, Luca, Park, Young-Jun, Tortorici, M. Alejandra, Czudnochowski, Nadine, Walls, Alexandra C., Beltramello, Martina, Silacci-Fregni, Chiara, Pinto, Dora, Rosen, Laura E., Bowen, John E., Acton, Oliver J., Jaconi, Stefano, Guarino, Barbara, Minola, Andrea, Zatta, Fabrizia, Sprugasci, Nicole, Bassi, Jessica, Peter, Alessia, De Marco, Anna, Nix, Jay C., Mele, Federico, Jovic, Sandra, Rodriguez, Blanca Fernandez, Gupta, Sneha V., Jin, Feng, Piumatti, Giovanni, Lo Presti, Giorgia, Pellanda, Alessandra Franzetti, Biggiogero, Maira, Tarkowski, Maciej, Pizzuto, Matteo S., Cameroni, Elisabetta, Havenar-Daughton, Colin, Smithey, Megan, Hong, David, Lepori, Valentino, Albanese, Emiliano, Ceschi, Alessandro, Bernasconi, Enos, Elzi, Luigia, Ferrari, Paolo, Garzoni, Christian, Riva, Agostino, Snell, Gyorgy, Sallusto, Federica, Fink, Katja, Virgin, Herbert W., Lanzavecchia, Antonio, Corti, Davide, Veesler, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.11.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. [Display omitted] •SARS-CoV-2 RBD is immunodominant and accounts for 90% of serum neutralizing activity•RBD antibodies decline with a half-life of ∼50 days, but their avidity increases•Structural definition of a SARS-CoV-2 RBD antigenic map using monoclonal antibodies•ACE2-binding site dominates SARS-CoV-2 polyclonal neutralizing antibody responses Serological analyses of ∼650 SARS-CoV-2-exposed individuals show that 90% of the serum or plasma neutralizing activity targets the virus receptor-binding domain, with structural insights revealing how distinct types of neutralizing antibodies targeting the ACE2-binding site dominate the immune response against SARS-CoV-2 spike.
AbstractList Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. [Display omitted] •SARS-CoV-2 RBD is immunodominant and accounts for 90% of serum neutralizing activity•RBD antibodies decline with a half-life of ∼50 days, but their avidity increases•Structural definition of a SARS-CoV-2 RBD antigenic map using monoclonal antibodies•ACE2-binding site dominates SARS-CoV-2 polyclonal neutralizing antibody responses Serological analyses of ∼650 SARS-CoV-2-exposed individuals show that 90% of the serum or plasma neutralizing activity targets the virus receptor-binding domain, with structural insights revealing how distinct types of neutralizing antibodies targeting the ACE2-binding site dominate the immune response against SARS-CoV-2 spike.
Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics. • SARS-CoV-2 RBD is immunodominant and accounts for 90% of serum neutralizing activity • RBD antibodies decline with a half-life of ∼50 days, but their avidity increases • Structural definition of a SARS-CoV-2 RBD antigenic map using monoclonal antibodies • ACE2-binding site dominates SARS-CoV-2 polyclonal neutralizing antibody responses Serological analyses of ∼650 SARS-CoV-2-exposed individuals show that 90% of the serum or plasma neutralizing activity targets the virus receptor-binding domain, with structural insights revealing how distinct types of neutralizing antibodies targeting the ACE2-binding site dominate the immune response against SARS-CoV-2 spike.
We report analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
Author Snell, Gyorgy
Hong, David
Fink, Katja
Virgin, Herbert W.
Sprugasci, Nicole
Bowen, John E.
Czudnochowski, Nadine
Rodriguez, Blanca Fernandez
Sallusto, Federica
Guarino, Barbara
Riva, Agostino
Ceschi, Alessandro
Silacci-Fregni, Chiara
De Marco, Anna
Lepori, Valentino
Park, Young-Jun
Tarkowski, Maciej
Lo Presti, Giorgia
Nix, Jay C.
Rosen, Laura E.
Piumatti, Giovanni
Biggiogero, Maira
Elzi, Luigia
Garzoni, Christian
Lanzavecchia, Antonio
Zatta, Fabrizia
Veesler, David
Jaconi, Stefano
Acton, Oliver J.
Beltramello, Martina
Walls, Alexandra C.
Tortorici, M. Alejandra
Peter, Alessia
Gupta, Sneha V.
Havenar-Daughton, Colin
Jovic, Sandra
Pellanda, Alessandra Franzetti
Bernasconi, Enos
Ferrari, Paolo
Minola, Andrea
Albanese, Emiliano
Cameroni, Elisabetta
Pinto, Dora
Jin, Feng
Piccoli, Luca
Corti, Davide
Pizzuto, Matteo S.
Bassi, Jessica
Mele, Federico
Smithey, Megan
Author_xml – sequence: 1
  givenname: Luca
  surname: Piccoli
  fullname: Piccoli, Luca
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 2
  givenname: Young-Jun
  surname: Park
  fullname: Park, Young-Jun
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 3
  givenname: M. Alejandra
  surname: Tortorici
  fullname: Tortorici, M. Alejandra
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: Nadine
  surname: Czudnochowski
  fullname: Czudnochowski, Nadine
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 5
  givenname: Alexandra C.
  surname: Walls
  fullname: Walls, Alexandra C.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 6
  givenname: Martina
  surname: Beltramello
  fullname: Beltramello, Martina
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 7
  givenname: Chiara
  surname: Silacci-Fregni
  fullname: Silacci-Fregni, Chiara
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 8
  givenname: Dora
  surname: Pinto
  fullname: Pinto, Dora
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 9
  givenname: Laura E.
  surname: Rosen
  fullname: Rosen, Laura E.
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 10
  givenname: John E.
  surname: Bowen
  fullname: Bowen, John E.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 11
  givenname: Oliver J.
  surname: Acton
  fullname: Acton, Oliver J.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 12
  givenname: Stefano
  surname: Jaconi
  fullname: Jaconi, Stefano
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 13
  givenname: Barbara
  surname: Guarino
  fullname: Guarino, Barbara
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 14
  givenname: Andrea
  surname: Minola
  fullname: Minola, Andrea
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 15
  givenname: Fabrizia
  surname: Zatta
  fullname: Zatta, Fabrizia
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 16
  givenname: Nicole
  surname: Sprugasci
  fullname: Sprugasci, Nicole
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 17
  givenname: Jessica
  surname: Bassi
  fullname: Bassi, Jessica
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 18
  givenname: Alessia
  surname: Peter
  fullname: Peter, Alessia
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 19
  givenname: Anna
  surname: De Marco
  fullname: De Marco, Anna
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 20
  givenname: Jay C.
  surname: Nix
  fullname: Nix, Jay C.
  organization: Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 21
  givenname: Federico
  surname: Mele
  fullname: Mele, Federico
  organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
– sequence: 22
  givenname: Sandra
  surname: Jovic
  fullname: Jovic, Sandra
  organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
– sequence: 23
  givenname: Blanca Fernandez
  surname: Rodriguez
  fullname: Rodriguez, Blanca Fernandez
  organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
– sequence: 24
  givenname: Sneha V.
  surname: Gupta
  fullname: Gupta, Sneha V.
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 25
  givenname: Feng
  surname: Jin
  fullname: Jin, Feng
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 26
  givenname: Giovanni
  surname: Piumatti
  fullname: Piumatti, Giovanni
  organization: Division of Primary Care, Geneva University Hospitals, 1205 Geneva, Switzerland
– sequence: 27
  givenname: Giorgia
  surname: Lo Presti
  fullname: Lo Presti, Giorgia
  organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
– sequence: 28
  givenname: Alessandra Franzetti
  surname: Pellanda
  fullname: Pellanda, Alessandra Franzetti
  organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
– sequence: 29
  givenname: Maira
  surname: Biggiogero
  fullname: Biggiogero, Maira
  organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
– sequence: 30
  givenname: Maciej
  surname: Tarkowski
  fullname: Tarkowski, Maciej
  organization: III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
– sequence: 31
  givenname: Matteo S.
  surname: Pizzuto
  fullname: Pizzuto, Matteo S.
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 32
  givenname: Elisabetta
  surname: Cameroni
  fullname: Cameroni, Elisabetta
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 33
  givenname: Colin
  surname: Havenar-Daughton
  fullname: Havenar-Daughton, Colin
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 34
  givenname: Megan
  surname: Smithey
  fullname: Smithey, Megan
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 35
  givenname: David
  surname: Hong
  fullname: Hong, David
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 36
  givenname: Valentino
  surname: Lepori
  fullname: Lepori, Valentino
  organization: Independent Physician, 6500 Bellinzona, Switzerland
– sequence: 37
  givenname: Emiliano
  surname: Albanese
  fullname: Albanese, Emiliano
  organization: Institute of Public Health, Università della Svizzera italiana, 6900 Lugano, Switzerland
– sequence: 38
  givenname: Alessandro
  surname: Ceschi
  fullname: Ceschi, Alessandro
  organization: Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
– sequence: 39
  givenname: Enos
  surname: Bernasconi
  fullname: Bernasconi, Enos
  organization: Division of Infectious Diseases, Ente Ospedaliero Cantonale, Ospedale Civico and Ospedale Italiano, 6900 Lugano, Switzerland
– sequence: 40
  givenname: Luigia
  surname: Elzi
  fullname: Elzi, Luigia
  organization: Division of Infectious Diseases, Ente Ospedaliero Cantonale, Ospedale Regionale Bellinzona e Valli and Ospedale Regionale, 6600 Locarno, Switzerland
– sequence: 41
  givenname: Paolo
  surname: Ferrari
  fullname: Ferrari, Paolo
  organization: Department of Nephrology, Ospedale Civico Lugano, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
– sequence: 42
  givenname: Christian
  surname: Garzoni
  fullname: Garzoni, Christian
  organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
– sequence: 43
  givenname: Agostino
  surname: Riva
  fullname: Riva, Agostino
  organization: III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
– sequence: 44
  givenname: Gyorgy
  surname: Snell
  fullname: Snell, Gyorgy
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 45
  givenname: Federica
  surname: Sallusto
  fullname: Sallusto, Federica
  organization: Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
– sequence: 46
  givenname: Katja
  surname: Fink
  fullname: Fink, Katja
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 47
  givenname: Herbert W.
  surname: Virgin
  fullname: Virgin, Herbert W.
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 48
  givenname: Antonio
  surname: Lanzavecchia
  fullname: Lanzavecchia, Antonio
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 49
  givenname: Davide
  surname: Corti
  fullname: Corti, Davide
  email: dcorti@vir.bio
  organization: Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 50
  givenname: David
  surname: Veesler
  fullname: Veesler, David
  email: dveesler@uw.edu
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32991844$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-02984796$$DView record in HAL
https://www.osti.gov/servlets/purl/1846169$$D View this record in Osti.gov
BookMark eNqFUsGO0zAUjNAitrvwAxxQxIlLiuM4iS0hpFJgu1IBqQGulmO_tC6JnbWdSuUT-GoSdRfBHpaTZXlm_GbeXERnxhqIoucpmqcoLV7v5xLado4RRnPE5igrH0WzFLEyIWmJz6IZQgwntCjJeXTh_R4hRPM8fxKdZ5ixlBIyi359En2vzTb-DENwotU_p4swKr7uusFYZTtthAlxpQP42Jo47CCuFpsqWdrvCY6rXv-AeAMS-mBd8k4bNSm8t53QJq6PcRXcIMPgILkatAIVr_R2l2zA23YIehSswNnWbo9Po8eNaD08uz0vo28fP3xdrpL1l6vr5WKdyIKUIckKlUpCGc1VXTcFoVKSrCEsy0uFkchZKgjOcMMKwA0VJWR1TUROCqWgLjKWXUZvT7r9UHegJJjJOO-d7oQ7cis0__fF6B3f2gMvCSOYZqPAy5OA9UFzL8dk5E5aY0AGPsZapMX0S3IC7e5prxZr3gsfYHAcYUZJyYpDOuJf3U7l7M0APvBO-2m_woAdPMc5JhmmOS7_DyWkzAnNUDFCX_zt9c8gdwUYAfQEkM5676Dhox0x7WW0rlueIj51je_59AGfusYR42PXRiq-R71Tf5D05kSCccMHDW7KD4wEpd0Un7L6Ifpv0THuPg
CitedBy_id crossref_primary_10_1002_ange_202412294
crossref_primary_10_3389_fmed_2022_820151
crossref_primary_10_1016_j_micinf_2021_104843
crossref_primary_10_3389_fimmu_2022_942897
crossref_primary_10_1080_19420862_2023_2222874
crossref_primary_10_1126_scitranslmed_abi7826
crossref_primary_10_1007_s11596_021_2470_7
crossref_primary_10_1016_j_jinf_2021_05_026
crossref_primary_10_15252_embr_202154199
crossref_primary_10_1016_j_csbj_2024_05_037
crossref_primary_10_1371_journal_ppat_1011789
crossref_primary_10_1016_j_celrep_2022_110368
crossref_primary_10_1016_j_lanepe_2020_100013
crossref_primary_10_1371_journal_ppat_1010691
crossref_primary_10_1039_D2CP00843B
crossref_primary_10_30895_2221_996X_2022_450
crossref_primary_10_1002_anbr_202400077
crossref_primary_10_1002_prot_26467
crossref_primary_10_1038_s41467_023_39199_6
crossref_primary_10_3390_vaccines12050539
crossref_primary_10_3390_vaccines11020451
crossref_primary_10_1021_acs_molpharmaceut_4c00165
crossref_primary_10_1016_j_nantod_2022_101499
crossref_primary_10_1038_s41392_024_02007_8
crossref_primary_10_1371_journal_ppat_1012624
crossref_primary_10_1080_19420862_2021_2021601
crossref_primary_10_1371_journal_ppat_1009453
crossref_primary_10_3389_fpls_2023_1202570
crossref_primary_10_1016_j_envres_2022_113047
crossref_primary_10_1073_pnas_2220948120
crossref_primary_10_3389_fimmu_2024_1374913
crossref_primary_10_1126_science_abq0203
crossref_primary_10_3389_fimmu_2023_1192395
crossref_primary_10_1016_j_vacun_2022_03_002
crossref_primary_10_1016_j_vaccine_2021_08_081
crossref_primary_10_1038_s41590_022_01248_5
crossref_primary_10_1016_j_isci_2024_109330
crossref_primary_10_3390_vaccines11091411
crossref_primary_10_1007_s00430_022_00729_6
crossref_primary_10_1038_s41467_025_56114_3
crossref_primary_10_1073_pnas_2122769119
crossref_primary_10_7554_eLife_73490
crossref_primary_10_1126_science_abe3354
crossref_primary_10_1016_j_vacune_2024_02_010
crossref_primary_10_1126_scitranslmed_abn3715
crossref_primary_10_1002_prot_26497
crossref_primary_10_1007_s00284_024_03671_3
crossref_primary_10_1016_j_jbc_2021_101238
crossref_primary_10_1038_s41586_021_04385_3
crossref_primary_10_1038_s41590_021_01088_9
crossref_primary_10_1371_journal_ppat_1012845
crossref_primary_10_3389_fimmu_2021_637982
crossref_primary_10_1016_j_celrep_2022_111004
crossref_primary_10_1016_j_celrep_2022_110561
crossref_primary_10_1016_j_celrep_2023_112621
crossref_primary_10_2174_0113816128334441241108050528
crossref_primary_10_3390_ijms251910820
crossref_primary_10_1007_s00251_022_01284_3
crossref_primary_10_1016_j_xcrm_2021_100329
crossref_primary_10_1038_s41586_021_03530_2
crossref_primary_10_1002_btpr_3292
crossref_primary_10_3389_fmicb_2021_770727
crossref_primary_10_1016_j_cell_2021_05_005
crossref_primary_10_1038_s41598_022_06038_5
crossref_primary_10_1016_j_cell_2024_12_032
crossref_primary_10_1016_j_virs_2022_11_005
crossref_primary_10_1016_j_jiac_2024_08_024
crossref_primary_10_1002_prot_26422
crossref_primary_10_3390_v16020217
crossref_primary_10_1038_s41586_021_03817_4
crossref_primary_10_47360_1995_4484_2021_384_393
crossref_primary_10_1126_sciimmunol_abl5842
crossref_primary_10_1111_sji_13345
crossref_primary_10_3390_diagnostics12071629
crossref_primary_10_3390_ijms23042172
crossref_primary_10_1126_science_abq2679
crossref_primary_10_1016_j_jcvp_2022_100121
crossref_primary_10_1080_22221751_2021_1913973
crossref_primary_10_1038_s41541_023_00636_8
crossref_primary_10_3389_fimmu_2022_884879
crossref_primary_10_1016_j_celrep_2022_110336
crossref_primary_10_1126_sciadv_abo4100
crossref_primary_10_1016_j_jaci_2024_03_029
crossref_primary_10_1016_j_cell_2022_01_001
crossref_primary_10_1016_j_vaccine_2022_10_092
crossref_primary_10_1371_journal_pone_0281689
crossref_primary_10_1016_j_jviromet_2022_114597
crossref_primary_10_1126_science_abl8506
crossref_primary_10_1371_journal_pone_0314061
crossref_primary_10_4155_tde_2021_0075
crossref_primary_10_1016_j_celrep_2022_110348
crossref_primary_10_1186_s41232_023_00255_9
crossref_primary_10_1016_j_immuni_2022_03_019
crossref_primary_10_2139_ssrn_4001946
crossref_primary_10_1016_j_virusres_2021_198345
crossref_primary_10_1080_21645515_2022_2127292
crossref_primary_10_1016_j_heliyon_2024_e25539
crossref_primary_10_1016_j_xcrm_2023_100918
crossref_primary_10_3389_fimmu_2022_825256
crossref_primary_10_1038_s41467_021_27040_x
crossref_primary_10_3389_fpubh_2022_915363
crossref_primary_10_1016_j_fmre_2021_02_001
crossref_primary_10_1016_j_cell_2021_05_031
crossref_primary_10_1016_j_virs_2022_10_006
crossref_primary_10_1021_acscentsci_2c01190
crossref_primary_10_1371_journal_pone_0291670
crossref_primary_10_1126_science_abf6840
crossref_primary_10_1016_j_biopha_2025_117936
crossref_primary_10_1016_j_virs_2022_02_005
crossref_primary_10_1016_j_virusres_2022_198688
crossref_primary_10_1038_s41586_021_03412_7
crossref_primary_10_1016_j_apsb_2023_01_010
crossref_primary_10_1111_imr_13431
crossref_primary_10_1021_acscentsci_4c00722
crossref_primary_10_1016_j_celrep_2023_112421
crossref_primary_10_2139_ssrn_3879083
crossref_primary_10_1016_j_vaccine_2024_04_036
crossref_primary_10_1038_s41421_022_00383_5
crossref_primary_10_1128_Spectrum_00965_21
crossref_primary_10_1126_science_abm8108
crossref_primary_10_1002_adhm_202102089
crossref_primary_10_1016_j_bbrc_2021_06_001
crossref_primary_10_1038_s41598_023_50450_4
crossref_primary_10_1002_mco2_79
crossref_primary_10_3390_jcm10153276
crossref_primary_10_1128_jvi_00109_25
crossref_primary_10_3389_fimmu_2023_1113175
crossref_primary_10_1016_j_immuni_2021_08_025
crossref_primary_10_1080_14647273_2023_2262757
crossref_primary_10_1007_s11427_022_2166_y
crossref_primary_10_1371_journal_pcbi_1009380
crossref_primary_10_1002_JLB_5MR0821_464R
crossref_primary_10_3390_microorganisms9122578
crossref_primary_10_1016_j_eclinm_2021_100843
crossref_primary_10_1038_s42003_025_07827_0
crossref_primary_10_1186_s12916_021_02228_6
crossref_primary_10_1038_s41467_024_50976_9
crossref_primary_10_3389_fimmu_2022_879946
crossref_primary_10_1080_19420862_2021_2002236
crossref_primary_10_1002_jmv_28122
crossref_primary_10_1016_j_ebiom_2024_105281
crossref_primary_10_1186_s12929_021_00784_w
crossref_primary_10_1038_s41467_023_38965_w
crossref_primary_10_3389_fimmu_2021_772511
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_1038_s41577_022_00813_1
crossref_primary_10_3389_fimmu_2021_761250
crossref_primary_10_1111_pbi_13970
crossref_primary_10_3389_fimmu_2021_647934
crossref_primary_10_1016_j_isci_2022_104914
crossref_primary_10_1038_s41467_021_24435_8
crossref_primary_10_3390_ijms231911325
crossref_primary_10_15789_2220_7619_IAF_1998
crossref_primary_10_3389_fmed_2023_1155727
crossref_primary_10_1093_clinchem_hvab051
crossref_primary_10_3389_fimmu_2021_730766
crossref_primary_10_1016_j_intimp_2021_108013
crossref_primary_10_3390_vaccines12070795
crossref_primary_10_1016_j_celrep_2022_111496
crossref_primary_10_1002_rmv_2464
crossref_primary_10_3390_v14020390
crossref_primary_10_1016_j_ymthe_2021_10_008
crossref_primary_10_4103_ijmr_ijmr_2591_22
crossref_primary_10_3390_nano11030807
crossref_primary_10_1080_14760584_2022_2081156
crossref_primary_10_1021_acs_analchem_2c01260
crossref_primary_10_1016_j_chom_2021_06_016
crossref_primary_10_1021_acs_jcim_2c00124
crossref_primary_10_1038_s41467_021_24963_3
crossref_primary_10_1371_journal_ppat_1011901
crossref_primary_10_1016_j_clim_2021_108814
crossref_primary_10_1016_j_xcrm_2023_101134
crossref_primary_10_3389_fimmu_2023_1231274
crossref_primary_10_1016_j_celrep_2022_111022
crossref_primary_10_1126_science_abm8143
crossref_primary_10_1016_j_isci_2024_109975
crossref_primary_10_3390_vaccines11111727
crossref_primary_10_1038_s41598_022_16533_4
crossref_primary_10_1021_acsinfecdis_4c00015
crossref_primary_10_26508_lsa_202201796
crossref_primary_10_3390_vaccines11111720
crossref_primary_10_3390_vaccines10040608
crossref_primary_10_3390_vaccines9101052
crossref_primary_10_1038_s41564_022_01198_6
crossref_primary_10_3390_v13081508
crossref_primary_10_1016_j_chom_2021_12_010
crossref_primary_10_1016_j_vacun_2022_11_002
crossref_primary_10_3390_v16060900
crossref_primary_10_1146_annurev_med_042420_113838
crossref_primary_10_1007_s40121_023_00769_2
crossref_primary_10_1016_j_celrep_2022_111276
crossref_primary_10_1038_s41598_023_43720_8
crossref_primary_10_3390_ijms23116078
crossref_primary_10_1038_s41541_022_00481_1
crossref_primary_10_1172_jci_insight_150012
crossref_primary_10_1016_j_sbi_2022_102385
crossref_primary_10_1016_j_sbi_2023_102664
crossref_primary_10_1038_s41586_023_05697_2
crossref_primary_10_3389_fimmu_2022_912336
crossref_primary_10_1016_j_compbiomed_2022_106212
crossref_primary_10_3389_fimmu_2022_1010105
crossref_primary_10_3389_fimmu_2024_1412873
crossref_primary_10_3389_fimmu_2023_1244556
crossref_primary_10_3389_fimmu_2022_844837
crossref_primary_10_1016_S1473_3099_22_00224_9
crossref_primary_10_1002_rmv_2231
crossref_primary_10_1038_s41591_022_01877_1
crossref_primary_10_1246_bcsj_20220179
crossref_primary_10_1093_ve_veac021
crossref_primary_10_1016_j_isci_2022_104959
crossref_primary_10_1016_j_cell_2021_07_025
crossref_primary_10_1016_j_virol_2023_109882
crossref_primary_10_1038_s41541_024_00982_1
crossref_primary_10_1038_s41467_024_49693_0
crossref_primary_10_3389_fimmu_2021_742941
crossref_primary_10_1016_j_chom_2021_06_009
crossref_primary_10_1172_JCI150613
crossref_primary_10_1038_s41541_023_00610_4
crossref_primary_10_1002_advs_202409919
crossref_primary_10_1016_j_talanta_2022_124200
crossref_primary_10_1016_j_antiviral_2023_105759
crossref_primary_10_1016_j_vaccine_2023_07_012
crossref_primary_10_1007_s40121_021_00475_x
crossref_primary_10_1007_s12033_024_01240_4
crossref_primary_10_1111_tbed_14344
crossref_primary_10_1002_bies_202100087
crossref_primary_10_1007_s00508_021_01835_w
crossref_primary_10_1038_s41467_021_23977_1
crossref_primary_10_3390_biomedicines10071538
crossref_primary_10_1038_s41564_021_00972_2
crossref_primary_10_3390_vaccines10020251
crossref_primary_10_1016_j_chom_2021_03_009
crossref_primary_10_1016_j_celrep_2021_109760
crossref_primary_10_1016_j_isci_2023_106323
crossref_primary_10_1038_s41392_022_01295_2
crossref_primary_10_1073_pnas_2204256119
crossref_primary_10_1016_j_chom_2021_03_002
crossref_primary_10_1126_science_abi7994
crossref_primary_10_1073_pnas_2106480118
crossref_primary_10_12688_wellcomeopenres_19414_1
crossref_primary_10_3390_vaccines9101130
crossref_primary_10_12688_wellcomeopenres_19414_2
crossref_primary_10_1002_cti2_1261
crossref_primary_10_1016_j_celrep_2022_111903
crossref_primary_10_1038_s41467_024_45404_x
crossref_primary_10_1016_j_vaccine_2023_08_076
crossref_primary_10_1038_s41586_021_04117_7
crossref_primary_10_1186_s12985_021_01633_w
crossref_primary_10_1016_j_bbrc_2020_11_041
crossref_primary_10_1172_JCI162192
crossref_primary_10_3389_fimmu_2024_1505719
crossref_primary_10_1016_j_ijbiomac_2022_04_096
crossref_primary_10_1128_spectrum_02982_23
crossref_primary_10_1016_j_smim_2023_101828
crossref_primary_10_3389_fimmu_2021_765211
crossref_primary_10_3390_ijms25158180
crossref_primary_10_1016_j_immuni_2023_10_007
crossref_primary_10_1186_s41232_022_00233_7
crossref_primary_10_2174_1566524021666211013121831
crossref_primary_10_1016_j_bpj_2021_11_009
crossref_primary_10_1016_j_isci_2023_106540
crossref_primary_10_1002_aic_17440
crossref_primary_10_1038_s41586_021_03471_w
crossref_primary_10_1186_s13054_021_03662_x
crossref_primary_10_1080_21645515_2024_2384192
crossref_primary_10_1126_sciimmunol_abn8590
crossref_primary_10_1016_j_celrep_2021_109784
crossref_primary_10_1097_RD9_0000000000000015
crossref_primary_10_1126_science_abg9175
crossref_primary_10_3390_molecules29112636
crossref_primary_10_1016_j_cell_2022_05_019
crossref_primary_10_1038_s41598_022_14294_8
crossref_primary_10_1371_journal_pone_0266417
crossref_primary_10_1016_j_isci_2022_104076
crossref_primary_10_7554_eLife_95708
crossref_primary_10_3390_ijms241814342
crossref_primary_10_3389_fmed_2022_825245
crossref_primary_10_3390_biom12121742
crossref_primary_10_3389_fimmu_2022_948431
crossref_primary_10_3390_v14071461
crossref_primary_10_3390_vaccines13010009
crossref_primary_10_3390_vaccines9091031
crossref_primary_10_1016_j_cell_2024_09_026
crossref_primary_10_3390_vaccines10010017
crossref_primary_10_1016_j_chom_2021_04_005
crossref_primary_10_3390_v14010061
crossref_primary_10_1126_science_abd9994
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_1038_s41564_021_00974_0
crossref_primary_10_3389_fimmu_2021_674021
crossref_primary_10_1097_FTD_0000000000000945
crossref_primary_10_1186_s12929_022_00853_8
crossref_primary_10_1016_j_isci_2023_106126
crossref_primary_10_1038_s41598_022_19073_z
crossref_primary_10_1038_s41564_023_01505_9
crossref_primary_10_3389_fimmu_2022_888794
crossref_primary_10_1080_21645515_2022_2047582
crossref_primary_10_1128_spectrum_02314_22
crossref_primary_10_1126_science_abh2315
crossref_primary_10_3390_v15061297
crossref_primary_10_1038_s41598_022_09752_2
crossref_primary_10_1016_j_celrep_2024_114530
crossref_primary_10_3390_ijms23126394
crossref_primary_10_3390_v14010078
crossref_primary_10_1038_s41586_023_06487_6
crossref_primary_10_1371_journal_pone_0263328
crossref_primary_10_3390_v16010091
crossref_primary_10_3390_v13102009
crossref_primary_10_3390_biomedicines9101303
crossref_primary_10_1016_j_tim_2021_03_016
crossref_primary_10_1016_j_tim_2021_03_013
crossref_primary_10_1016_j_immuni_2023_11_004
crossref_primary_10_1016_j_ajmo_2024_100068
crossref_primary_10_3389_fmolb_2023_1288686
crossref_primary_10_1021_acs_jpcb_4c00241
crossref_primary_10_1002_jmv_27117
crossref_primary_10_1016_j_ajog_2022_04_009
crossref_primary_10_3390_v16010064
crossref_primary_10_1016_j_jvacx_2024_100443
crossref_primary_10_3390_vaccines9101101
crossref_primary_10_1186_s12951_025_03243_y
crossref_primary_10_3389_fimmu_2023_1195299
crossref_primary_10_3390_biom11101494
crossref_primary_10_1186_s12985_023_02154_4
crossref_primary_10_3390_vaccines11010030
crossref_primary_10_3390_vaccines10122110
crossref_primary_10_3389_fchem_2021_816544
crossref_primary_10_1128_spectrum_03655_23
crossref_primary_10_1073_pnas_2109744118
crossref_primary_10_3390_vaccines10122119
crossref_primary_10_15252_emmm_202114544
crossref_primary_10_1016_j_chom_2021_04_015
crossref_primary_10_3390_v15020558
crossref_primary_10_1016_j_cell_2021_09_015
crossref_primary_10_1016_j_ymthe_2021_02_007
crossref_primary_10_1128_jvi_00558_22
crossref_primary_10_1038_s41590_024_02010_9
crossref_primary_10_3389_fimmu_2023_1158905
crossref_primary_10_3390_vaccines11010038
crossref_primary_10_1038_s41467_023_43420_x
crossref_primary_10_1016_j_cell_2024_06_006
crossref_primary_10_1128_spectrum_00665_22
crossref_primary_10_1093_ofid_ofad154
crossref_primary_10_1126_sciimmunol_abg5021
crossref_primary_10_3390_microorganisms9081725
crossref_primary_10_1021_acsanm_1c03399
crossref_primary_10_3390_vaccines9111337
crossref_primary_10_1016_j_immuni_2022_06_005
crossref_primary_10_3390_vaccines10030465
crossref_primary_10_3389_fimmu_2021_724763
crossref_primary_10_1016_j_xcrm_2022_100528
crossref_primary_10_1016_j_jcv_2022_105080
crossref_primary_10_1016_j_cell_2024_07_052
crossref_primary_10_1016_j_ebiom_2023_104574
crossref_primary_10_1021_acs_jctc_1c00372
crossref_primary_10_1126_science_adc9127
crossref_primary_10_1016_j_ebiom_2022_104297
crossref_primary_10_1016_j_celrep_2024_114338
crossref_primary_10_36691_RJA16463
crossref_primary_10_1016_j_isci_2024_110484
crossref_primary_10_1039_D1SC01203G
crossref_primary_10_3390_cells11223597
crossref_primary_10_1038_s41422_022_00612_2
crossref_primary_10_1093_bioadv_vbae137
crossref_primary_10_1140_epjp_s13360_024_04928_3
crossref_primary_10_1021_acscentsci_1c00216
crossref_primary_10_1016_S2666_5247_24_00025_9
crossref_primary_10_1002_anie_202107730
crossref_primary_10_3390_life14070791
crossref_primary_10_1016_j_xcrm_2021_100253
crossref_primary_10_1084_jem_20221786
crossref_primary_10_1038_s41541_023_00691_1
crossref_primary_10_1007_s00253_022_11988_x
crossref_primary_10_2215_CJN_03700321
crossref_primary_10_1371_journal_pone_0253977
crossref_primary_10_3390_vaccines12080914
crossref_primary_10_1155_2021_9822706
crossref_primary_10_1016_j_celrep_2022_111512
crossref_primary_10_1080_19420862_2023_2212415
crossref_primary_10_1126_science_abq0839
crossref_primary_10_1038_s41467_022_28446_x
crossref_primary_10_1038_s41467_021_26479_2
crossref_primary_10_1007_s11427_022_2215_6
crossref_primary_10_3389_fcimb_2024_1346349
crossref_primary_10_1038_s41598_021_96171_4
crossref_primary_10_1002_jmv_27722
crossref_primary_10_1016_S2666_5247_23_00011_3
crossref_primary_10_1016_j_celrep_2022_111528
crossref_primary_10_1093_cid_ciab607
crossref_primary_10_1038_s41573_023_00672_y
crossref_primary_10_3389_fbioe_2023_1202126
crossref_primary_10_1016_j_jiph_2022_01_007
crossref_primary_10_1002_ijgo_14587
crossref_primary_10_3390_v13112202
crossref_primary_10_1371_journal_ppat_1010260
crossref_primary_10_1016_j_ebiom_2021_103729
crossref_primary_10_1111_all_15138
crossref_primary_10_3390_ijms23105601
crossref_primary_10_1038_s42003_022_03700_6
crossref_primary_10_1016_j_drup_2023_101008
crossref_primary_10_1016_j_meegid_2021_104815
crossref_primary_10_1016_j_chom_2021_02_003
crossref_primary_10_3389_fimmu_2023_1259386
crossref_primary_10_3390_molecules28124645
crossref_primary_10_1016_j_cell_2022_03_009
crossref_primary_10_1016_j_ebiom_2025_105619
crossref_primary_10_1016_j_jiac_2024_102604
crossref_primary_10_3389_fimmu_2021_742167
crossref_primary_10_1016_j_heliyon_2022_e09438
crossref_primary_10_1016_j_jcv_2021_104986
crossref_primary_10_1126_scitranslmed_abl9605
crossref_primary_10_1016_j_xcrm_2021_100296
crossref_primary_10_1371_journal_ppat_1010248
crossref_primary_10_1080_21645515_2022_2079346
crossref_primary_10_1126_science_abf4063
crossref_primary_10_3390_tropicalmed7050081
crossref_primary_10_1371_journal_pone_0252849
crossref_primary_10_3389_fimmu_2022_796481
crossref_primary_10_1038_s41541_024_00922_z
crossref_primary_10_1016_S1473_3099_24_00423_7
crossref_primary_10_1038_s41422_021_00496_8
crossref_primary_10_1016_j_ebiom_2021_103700
crossref_primary_10_1038_s41591_021_01347_0
crossref_primary_10_1038_s41598_022_26803_w
crossref_primary_10_3390_v14061232
crossref_primary_10_1016_j_isci_2022_105596
crossref_primary_10_1093_abt_tbac004
crossref_primary_10_1093_bib_bbae218
crossref_primary_10_3390_vaccines12030267
crossref_primary_10_1126_sciadv_add7221
crossref_primary_10_1126_sciadv_adf0661
crossref_primary_10_1016_j_virusres_2024_199378
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_1093_nar_gkab921
crossref_primary_10_1016_j_intimp_2022_109285
crossref_primary_10_1134_S1068162021060133
crossref_primary_10_1371_journal_ppat_1012650
crossref_primary_10_1128_mbio_00067_24
crossref_primary_10_1007_s00430_023_00763_y
crossref_primary_10_1002_eji_202350408
crossref_primary_10_1007_s00430_022_00753_6
crossref_primary_10_3389_fimmu_2023_1133225
crossref_primary_10_1080_21645515_2022_2055373
crossref_primary_10_1128_Spectrum_00261_21
crossref_primary_10_1371_journal_pone_0262657
crossref_primary_10_3390_plants11081093
crossref_primary_10_1186_s12934_021_01576_5
crossref_primary_10_1038_s41421_022_00497_w
crossref_primary_10_3390_vaccines9121419
crossref_primary_10_1016_j_immuni_2021_03_023
crossref_primary_10_1093_biomethods_bpad030
crossref_primary_10_1128_JVI_00404_21
crossref_primary_10_1038_s41590_024_01951_5
crossref_primary_10_1038_s41385_022_00569_w
crossref_primary_10_1016_j_compbiomed_2021_104692
crossref_primary_10_1002_pbc_29332
crossref_primary_10_1038_s41467_023_43638_9
crossref_primary_10_1038_s44298_023_00007_z
crossref_primary_10_1134_S1063774523601168
crossref_primary_10_1126_science_abn8897
crossref_primary_10_3390_v15010070
crossref_primary_10_1126_science_abn8652
crossref_primary_10_1038_s41591_021_01285_x
crossref_primary_10_1038_s41467_022_33985_4
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1073_pnas_2303455120
crossref_primary_10_1016_j_isci_2022_105507
crossref_primary_10_1016_j_bbi_2023_09_014
crossref_primary_10_3389_fcimb_2022_988604
crossref_primary_10_1016_j_addr_2021_01_014
crossref_primary_10_1038_s41586_021_04386_2
crossref_primary_10_3389_fimmu_2021_654165
crossref_primary_10_1016_j_xinn_2021_100116
crossref_primary_10_1016_j_heliyon_2024_e34577
crossref_primary_10_1038_s41586_024_08121_5
crossref_primary_10_3389_fmolb_2020_605236
crossref_primary_10_1038_s41586_021_03925_1
crossref_primary_10_1371_journal_pone_0291131
crossref_primary_10_1038_s41598_024_55852_6
crossref_primary_10_3390_pathogens11080837
crossref_primary_10_1021_acs_biochem_2c00132
crossref_primary_10_1093_ve_veac110
crossref_primary_10_1016_j_talanta_2022_123813
crossref_primary_10_34133_2022_9769803
crossref_primary_10_1002_btm2_10293
crossref_primary_10_1038_s41541_021_00410_8
crossref_primary_10_1016_j_bbrc_2023_04_002
crossref_primary_10_1016_j_nbt_2022_08_002
crossref_primary_10_1038_s41541_022_00471_3
crossref_primary_10_1016_j_jacig_2023_100083
crossref_primary_10_1016_j_isci_2022_105726
crossref_primary_10_1038_s41541_021_00369_6
crossref_primary_10_1126_scitranslmed_abi9915
crossref_primary_10_1038_s41541_024_00806_2
crossref_primary_10_1080_07391102_2021_1977702
crossref_primary_10_1002_mef2_90
crossref_primary_10_3389_fimmu_2021_656362
crossref_primary_10_1124_pharmrev_120_000285
crossref_primary_10_1371_journal_ppat_1012726
crossref_primary_10_1093_nar_gkad958
crossref_primary_10_3389_fimmu_2021_793191
crossref_primary_10_1093_infdis_jiac319
crossref_primary_10_1039_D1RA04134G
crossref_primary_10_1038_s41598_023_31198_3
crossref_primary_10_1038_s42003_021_02852_1
crossref_primary_10_1002_pro_4575
crossref_primary_10_1038_s41467_024_47743_1
crossref_primary_10_1128_jvi_02184_21
crossref_primary_10_3389_fimmu_2023_1055457
crossref_primary_10_1021_acsinfecdis_2c00488
crossref_primary_10_1038_s41598_022_23923_1
crossref_primary_10_1126_science_abg8985
crossref_primary_10_1038_s41467_023_36295_5
crossref_primary_10_1016_j_biopha_2021_112282
crossref_primary_10_3389_fimmu_2022_834098
crossref_primary_10_1016_j_cmi_2021_02_014
crossref_primary_10_1038_s41422_021_00487_9
crossref_primary_10_3389_fimmu_2022_863831
crossref_primary_10_1038_s41563_023_01486_4
crossref_primary_10_1039_D2NR06630K
crossref_primary_10_3389_fimmu_2022_904686
crossref_primary_10_1038_s41591_021_01294_w
crossref_primary_10_1128_spectrum_01376_21
crossref_primary_10_1186_s13578_021_00723_0
crossref_primary_10_3390_vaccines12050467
crossref_primary_10_1073_pnas_2101918118
crossref_primary_10_1128_spectrum_01789_21
crossref_primary_10_1038_s41586_020_2852_1
crossref_primary_10_1016_j_celrep_2021_110156
crossref_primary_10_1016_j_vaccine_2023_04_020
crossref_primary_10_1007_s40259_022_00529_7
crossref_primary_10_1016_j_lfs_2023_121374
crossref_primary_10_3389_fimmu_2023_1107803
crossref_primary_10_1021_acs_jmedchem_1c02000
crossref_primary_10_1126_sciadv_abq6207
crossref_primary_10_2139_ssrn_4182867
crossref_primary_10_1016_j_ebiom_2021_103544
crossref_primary_10_1128_mBio_02395_21
crossref_primary_10_3389_fimmu_2022_1125732
crossref_primary_10_1016_j_isci_2024_110470
crossref_primary_10_3390_ijms252212319
crossref_primary_10_1016_j_ymthe_2022_08_002
crossref_primary_10_3389_fmicb_2022_854630
crossref_primary_10_2144_fsoa_2022_0048
crossref_primary_10_1126_science_abj3321
crossref_primary_10_1021_acsomega_2c00844
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_1016_j_epidem_2022_100583
crossref_primary_10_1002_anie_202412294
crossref_primary_10_1038_s42003_022_04160_8
crossref_primary_10_1016_j_immuni_2024_02_016
crossref_primary_10_1016_j_hsr_2023_100127
crossref_primary_10_3389_fimmu_2022_830710
crossref_primary_10_1038_s41423_021_00752_2
crossref_primary_10_1021_acs_jmedchem_4c00384
crossref_primary_10_1016_j_biotechadv_2022_107986
crossref_primary_10_1016_j_isci_2022_104431
crossref_primary_10_1021_acs_analchem_2c01993
crossref_primary_10_1080_14737159_2021_1913123
crossref_primary_10_1016_j_gendis_2021_11_007
crossref_primary_10_2139_ssrn_4145495
crossref_primary_10_1016_j_coviro_2021_08_010
crossref_primary_10_1038_s41467_022_32573_w
crossref_primary_10_4049_jimmunol_2300282
crossref_primary_10_1134_S0006297924070083
crossref_primary_10_1128_jvi_01223_24
crossref_primary_10_1016_j_chom_2022_07_016
crossref_primary_10_1128_jvi_00488_22
crossref_primary_10_1128_Spectrum_01059_21
crossref_primary_10_1186_s43141_022_00368_7
crossref_primary_10_3389_fmicb_2022_1008420
crossref_primary_10_1371_journal_ppat_1010981
crossref_primary_10_1038_s41467_021_26602_3
crossref_primary_10_1128_spectrum_02050_23
crossref_primary_10_1016_j_celrep_2021_109814
crossref_primary_10_3389_fimmu_2023_1287388
crossref_primary_10_2139_ssrn_3961037
crossref_primary_10_5363_tits_26_9_79
crossref_primary_10_52586_5024
crossref_primary_10_1016_j_chom_2022_07_002
crossref_primary_10_1126_scitranslmed_abj7125
crossref_primary_10_3389_fimmu_2022_1041185
crossref_primary_10_1126_science_abf6950
crossref_primary_10_3390_covid1020041
crossref_primary_10_1016_j_nbt_2021_01_010
crossref_primary_10_1016_j_chom_2020_11_007
crossref_primary_10_3390_tropicalmed9030061
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_1016_j_jim_2021_113182
crossref_primary_10_1016_j_coviro_2023_101332
crossref_primary_10_1093_ve_veab069
crossref_primary_10_1038_s41586_023_06617_0
crossref_primary_10_3390_ijms23062928
crossref_primary_10_1080_22221751_2022_2149353
crossref_primary_10_1126_scitranslmed_abn1252
crossref_primary_10_1016_j_jmb_2022_167928
crossref_primary_10_1128_jvi_01070_23
crossref_primary_10_3390_v14050946
crossref_primary_10_1039_D1TB02521J
crossref_primary_10_1186_s12967_023_03963_5
crossref_primary_10_1038_s41541_024_01043_3
crossref_primary_10_1016_j_kint_2021_12_029
crossref_primary_10_1080_08830185_2021_1925267
crossref_primary_10_3390_v13112177
crossref_primary_10_1007_s44307_024_00011_1
crossref_primary_10_1038_s41598_023_32021_9
crossref_primary_10_1146_annurev_immunol_101921_040450
crossref_primary_10_3390_v17030362
crossref_primary_10_1016_j_celrep_2021_109822
crossref_primary_10_1038_s41598_022_23482_5
crossref_primary_10_1016_j_jmgm_2021_108035
crossref_primary_10_1093_infdis_jiab255
crossref_primary_10_1128_spectrum_01190_23
crossref_primary_10_3389_fimmu_2023_1160065
crossref_primary_10_3389_fmicb_2022_845316
crossref_primary_10_1002_adhm_202303509
crossref_primary_10_1038_s41586_021_03807_6
crossref_primary_10_3390_vaccines9080850
crossref_primary_10_1016_j_jsb_2023_107996
crossref_primary_10_1073_pnas_2208425120
crossref_primary_10_1128_jvi_02049_24
crossref_primary_10_1128_jvi_01245_22
crossref_primary_10_1038_s41586_021_03402_9
crossref_primary_10_3390_v16020177
crossref_primary_10_1016_j_isci_2023_108256
crossref_primary_10_3390_microorganisms11030580
crossref_primary_10_3390_v13010134
crossref_primary_10_1016_j_ijmmb_2024_100615
crossref_primary_10_2142_biophysico_bppb_v20_0036
crossref_primary_10_1007_s11596_021_2453_8
crossref_primary_10_1016_j_ymthe_2022_12_017
crossref_primary_10_1038_s41598_021_89621_6
crossref_primary_10_3390_vaccines11040832
crossref_primary_10_1016_j_apsb_2022_09_011
crossref_primary_10_3390_molecules27248938
crossref_primary_10_1080_22221751_2021_1921621
crossref_primary_10_1111_imr_13115
crossref_primary_10_34133_2022_9781758
crossref_primary_10_1002_cpt_2207
crossref_primary_10_1002_14651858_CD014946
crossref_primary_10_1371_journal_ppat_1009704
crossref_primary_10_1016_j_jcvp_2022_100089
crossref_primary_10_1038_s41586_021_03324_6
crossref_primary_10_1016_j_celrep_2021_108915
crossref_primary_10_1080_19420862_2022_2072455
crossref_primary_10_1126_science_abl6251
crossref_primary_10_1002_anse_202300001
crossref_primary_10_1186_s43556_022_00074_3
crossref_primary_10_1126_scitranslmed_abi8452
crossref_primary_10_1186_s13073_021_00985_w
crossref_primary_10_3389_fimmu_2022_993754
crossref_primary_10_1016_j_str_2024_08_005
crossref_primary_10_1172_jci_insight_151463
crossref_primary_10_1016_j_vacune_2023_04_003
crossref_primary_10_1021_acs_jmedchem_2c01642
crossref_primary_10_3390_v14020295
crossref_primary_10_1002_cti2_1306
crossref_primary_10_1126_sciimmunol_add5446
crossref_primary_10_3390_covid1010028
crossref_primary_10_1002_ange_202107730
crossref_primary_10_3390_vaccines11040849
crossref_primary_10_1016_j_jcvp_2023_100137
crossref_primary_10_1371_journal_pcbi_1010230
crossref_primary_10_1016_j_compbiomed_2024_108091
crossref_primary_10_1038_s41594_021_00596_4
crossref_primary_10_1016_j_immuni_2024_10_001
crossref_primary_10_3390_vaccines9080881
crossref_primary_10_2139_ssrn_3917167
crossref_primary_10_3390_diagnostics11122193
crossref_primary_10_4049_immunohorizons_2300034
crossref_primary_10_1016_j_coviro_2021_12_015
crossref_primary_10_1371_journal_pone_0268767
crossref_primary_10_1002_med_21941
crossref_primary_10_1038_s41467_020_20654_7
crossref_primary_10_1002_JLB_4COVA0121_084RR
crossref_primary_10_3390_ijms23062977
crossref_primary_10_1016_j_isci_2023_108009
crossref_primary_10_1080_19420862_2021_1919285
crossref_primary_10_3389_fimmu_2021_758154
crossref_primary_10_1038_s43856_022_00174_9
crossref_primary_10_3390_diagnostics12081924
crossref_primary_10_3389_fimmu_2021_678570
crossref_primary_10_1038_s41598_023_49244_5
crossref_primary_10_1016_j_molcel_2021_11_024
crossref_primary_10_1128_mBio_00930_21
crossref_primary_10_1186_s12879_024_10117_5
crossref_primary_10_1038_s41467_023_35949_8
crossref_primary_10_1016_j_jmb_2024_168716
crossref_primary_10_1093_gerona_glab206
crossref_primary_10_3390_microorganisms11112683
crossref_primary_10_1038_s42003_022_03630_3
crossref_primary_10_3390_ijms23084341
crossref_primary_10_3390_microorganisms10030612
crossref_primary_10_1371_journal_pcbi_1009675
crossref_primary_10_3389_fpubh_2021_732787
crossref_primary_10_31857_S0023476123600830
crossref_primary_10_1021_acs_biochem_3c00596
crossref_primary_10_3389_fimmu_2022_1049867
crossref_primary_10_1111_all_15066
crossref_primary_10_1038_s41467_022_29288_3
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_1016_j_cell_2021_03_029
crossref_primary_10_3390_v13112114
crossref_primary_10_1016_j_bbrc_2024_150120
crossref_primary_10_1016_S1473_3099_22_00311_5
crossref_primary_10_1038_s41467_023_40554_w
crossref_primary_10_3389_fmicb_2024_1386891
crossref_primary_10_3390_vaccines11121836
crossref_primary_10_1016_j_jgg_2023_10_003
crossref_primary_10_3390_vaccines11121832
crossref_primary_10_1016_j_jcv_2022_105130
crossref_primary_10_3390_vaccines11040771
crossref_primary_10_1016_j_ebiom_2023_104878
crossref_primary_10_3390_cells11081274
crossref_primary_10_3390_v14040653
crossref_primary_10_1080_14760584_2021_1903879
crossref_primary_10_3389_fimmu_2022_912898
crossref_primary_10_1126_science_abh1139
crossref_primary_10_1371_journal_pone_0288557
crossref_primary_10_1590_1414_431x2024e13627
crossref_primary_10_3390_v14030617
crossref_primary_10_1016_j_antiviral_2022_105370
crossref_primary_10_3390_jcm10245882
crossref_primary_10_1002_rmv_2277
crossref_primary_10_3389_fimmu_2025_1550279
crossref_primary_10_3390_vaccines10122035
crossref_primary_10_1016_j_cell_2021_04_045
crossref_primary_10_1016_j_bj_2022_04_006
crossref_primary_10_1186_s13073_021_00910_1
crossref_primary_10_1038_s41467_022_32665_7
crossref_primary_10_1038_s41591_021_01542_z
crossref_primary_10_1080_07391102_2023_2173297
crossref_primary_10_1172_JCI178880
crossref_primary_10_1128_JVI_00203_21
crossref_primary_10_3389_fmicb_2022_883597
crossref_primary_10_3390_microorganisms9030525
crossref_primary_10_2147_DDDT_S347297
crossref_primary_10_1016_j_csbj_2022_04_038
crossref_primary_10_1128_mbio_01206_23
crossref_primary_10_3389_fimmu_2021_752003
crossref_primary_10_3390_vaccines11061014
crossref_primary_10_3390_biomedicines11020517
crossref_primary_10_1038_s41541_022_00546_1
crossref_primary_10_1016_j_cell_2021_04_032
crossref_primary_10_3390_v15020408
crossref_primary_10_1080_19420862_2022_2040350
crossref_primary_10_3390_nu15112631
crossref_primary_10_1016_j_clinbiochem_2021_12_009
crossref_primary_10_1002_iid3_1353
crossref_primary_10_1371_journal_pone_0271074
crossref_primary_10_1007_s00705_023_05773_y
crossref_primary_10_1016_j_celrep_2024_114645
crossref_primary_10_3390_biom12091170
crossref_primary_10_3389_fimmu_2021_752233
crossref_primary_10_1016_j_vaccine_2025_126787
crossref_primary_10_1016_j_heliyon_2021_e06836
crossref_primary_10_3389_fimmu_2020_610688
crossref_primary_10_1038_s41378_022_00460_5
crossref_primary_10_3390_vaccines9111241
crossref_primary_10_1128_mBio_00230_21
crossref_primary_10_1111_jcmm_17103
crossref_primary_10_1016_j_immuni_2022_10_019
crossref_primary_10_3390_vaccines12030318
crossref_primary_10_1038_s41541_023_00800_0
crossref_primary_10_3390_ijms23084376
crossref_primary_10_3389_fimmu_2021_691715
crossref_primary_10_1016_j_vacune_2022_10_018
crossref_primary_10_1038_s41598_021_01225_2
crossref_primary_10_1016_j_cca_2021_11_023
crossref_primary_10_1126_sciadv_abh1547
crossref_primary_10_3390_vaccines9060672
crossref_primary_10_1002_ajh_27119
crossref_primary_10_1371_journal_ppat_1012383
crossref_primary_10_3390_vaccines12040342
crossref_primary_10_1007_s15010_021_01705_7
crossref_primary_10_1038_s41467_024_51770_3
crossref_primary_10_3390_v15020426
crossref_primary_10_1016_j_cell_2020_10_043
crossref_primary_10_1080_14760584_2023_2211153
crossref_primary_10_34133_2021_9769586
crossref_primary_10_2139_ssrn_3963559
crossref_primary_10_1371_journal_pcbi_1012812
crossref_primary_10_1038_s41541_023_00724_9
crossref_primary_10_1016_j_vacun_2023_10_002
crossref_primary_10_3390_ijms24087292
crossref_primary_10_1038_s41586_022_05513_3
crossref_primary_10_1039_D3TB01866K
crossref_primary_10_1016_j_cytogfr_2021_03_001
crossref_primary_10_1038_s41467_023_38457_x
crossref_primary_10_1126_sciadv_adg2122
crossref_primary_10_1038_s41541_021_00393_6
crossref_primary_10_1016_j_cell_2020_10_051
crossref_primary_10_1038_s41598_022_10987_2
crossref_primary_10_1080_22221751_2022_2125348
crossref_primary_10_1016_j_immuni_2021_06_015
crossref_primary_10_1038_s41392_021_00796_w
crossref_primary_10_1007_s12250_021_00409_4
crossref_primary_10_3390_biomedicines10123106
crossref_primary_10_1002_eji_202249823
crossref_primary_10_1038_s41541_022_00586_7
crossref_primary_10_1002_jmv_27801
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_1172_JCI158190
crossref_primary_10_1038_s41580_021_00418_x
crossref_primary_10_3390_biomedicines11112892
crossref_primary_10_1111_febs_16777
crossref_primary_10_1126_science_abh2644
crossref_primary_10_1016_j_smim_2021_101533
crossref_primary_10_3390_vaccines10030347
crossref_primary_10_1128_jvi_01137_23
crossref_primary_10_1016_j_cell_2021_01_037
crossref_primary_10_1016_j_celrep_2022_110770
crossref_primary_10_1080_22221751_2021_1925594
crossref_primary_10_1371_journal_ppat_1012599
crossref_primary_10_1016_j_eclinm_2022_101569
crossref_primary_10_1096_fj_202100986RR
crossref_primary_10_1093_pnasnexus_pgac045
crossref_primary_10_1038_s42003_022_03262_7
crossref_primary_10_1097_TXD_0000000000001401
crossref_primary_10_4103_jfmpc_jfmpc_430_22
crossref_primary_10_1016_j_bbrc_2022_06_064
crossref_primary_10_1016_j_addr_2021_02_009
crossref_primary_10_1016_j_omtm_2025_101418
crossref_primary_10_1016_j_compbiomed_2023_107576
crossref_primary_10_1016_j_smim_2021_101545
crossref_primary_10_1126_scitranslmed_ado9026
crossref_primary_10_1126_scitranslmed_abd1525
crossref_primary_10_1128_mSphere_00507_21
crossref_primary_10_1111_imr_13091
crossref_primary_10_1016_j_cell_2021_01_007
crossref_primary_10_1080_21645515_2024_2394265
crossref_primary_10_1016_j_clim_2024_110164
crossref_primary_10_1080_22221751_2021_2008775
crossref_primary_10_1098_rsfs_2021_0019
crossref_primary_10_3389_fimmu_2021_710263
crossref_primary_10_1038_s42003_022_04170_6
crossref_primary_10_2196_58018
crossref_primary_10_1186_s12967_023_04095_6
crossref_primary_10_7554_eLife_95708_3
crossref_primary_10_3389_fmicb_2022_934993
crossref_primary_10_1016_j_clim_2022_108999
crossref_primary_10_1038_s41586_022_04980_y
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1016_j_bpj_2023_10_026
crossref_primary_10_1128_spectrum_04998_22
crossref_primary_10_1016_j_vaccine_2025_126961
crossref_primary_10_3389_fmicb_2023_1122868
crossref_primary_10_1016_j_virol_2022_06_010
crossref_primary_10_1016_j_vaccine_2024_126668
crossref_primary_10_1016_j_ijbiomac_2024_139254
crossref_primary_10_1038_s41541_022_00597_4
crossref_primary_10_1016_j_biopha_2021_111953
crossref_primary_10_1016_j_antiviral_2024_105987
crossref_primary_10_1016_j_bpj_2024_03_018
crossref_primary_10_1016_j_celrep_2022_110318
crossref_primary_10_1016_j_xcrm_2023_100955
crossref_primary_10_1016_j_jaci_2021_10_014
crossref_primary_10_3389_fimmu_2021_708184
crossref_primary_10_1111_imr_13089
crossref_primary_10_1038_s41467_024_55358_9
crossref_primary_10_3389_fimmu_2021_744242
crossref_primary_10_1002_advs_202100985
crossref_primary_10_1111_imr_13084
crossref_primary_10_3389_fmolb_2022_797132
crossref_primary_10_1111_irv_70076
crossref_primary_10_1038_s41421_021_00370_2
crossref_primary_10_1038_s41467_021_25997_3
crossref_primary_10_1039_D3LC00749A
crossref_primary_10_1080_22221751_2023_2290841
crossref_primary_10_3390_v16030417
crossref_primary_10_1038_s41467_024_49656_5
crossref_primary_10_3390_antib13020041
crossref_primary_10_1038_s41564_021_01051_2
crossref_primary_10_1016_j_cell_2021_02_032
crossref_primary_10_1016_j_isci_2022_105016
crossref_primary_10_1016_j_isci_2022_105259
crossref_primary_10_1128_spectrum_02676_23
crossref_primary_10_1002_iid3_612
crossref_primary_10_1126_science_abn7760
crossref_primary_10_3389_fimmu_2022_952650
crossref_primary_10_1021_acscentsci_1c00361
crossref_primary_10_3390_diagnostics11101815
crossref_primary_10_2147_JIR_S394760
crossref_primary_10_3390_antib12040080
crossref_primary_10_1016_j_ymthe_2022_02_011
crossref_primary_10_1038_s41467_021_22045_y
crossref_primary_10_1038_s41392_022_00910_6
crossref_primary_10_1038_s41586_024_07636_1
crossref_primary_10_3390_covid2080080
crossref_primary_10_1134_S0026893321030158
crossref_primary_10_3349_ymj_2024_0129
crossref_primary_10_23736_S0026_4806_21_07458_9
crossref_primary_10_1038_s41586_021_03792_w
crossref_primary_10_1093_bib_bbac128
crossref_primary_10_1016_j_chom_2022_04_017
crossref_primary_10_1371_journal_pone_0250780
crossref_primary_10_3390_covid4080091
crossref_primary_10_3390_bioengineering10020148
crossref_primary_10_1016_j_csbj_2021_10_004
crossref_primary_10_1038_s41579_021_00573_0
crossref_primary_10_1038_s41598_021_99827_3
crossref_primary_10_1016_j_vaccine_2023_12_021
crossref_primary_10_1080_26895293_2021_1977186
crossref_primary_10_1186_s41231_021_00093_2
crossref_primary_10_17816_clinpract64677
crossref_primary_10_4049_jimmunol_2001369
crossref_primary_10_3390_v14092061
crossref_primary_10_1038_s41423_023_01095_w
crossref_primary_10_3390_jdb9040058
crossref_primary_10_1038_s41392_022_00978_0
crossref_primary_10_1186_s12879_022_07141_8
crossref_primary_10_1038_s41586_021_03594_0
crossref_primary_10_1080_07391102_2022_2036640
crossref_primary_10_1126_scitranslmed_abj5305
crossref_primary_10_1016_j_celrep_2022_111831
crossref_primary_10_1038_s43856_024_00582_z
crossref_primary_10_1371_journal_ppat_1010592
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_2215_CJN_11820921
crossref_primary_10_1038_s41577_022_00809_x
crossref_primary_10_3389_fmed_2022_768138
crossref_primary_10_1038_s41467_022_32262_8
crossref_primary_10_3389_fimmu_2021_701501
crossref_primary_10_3390_nu13041297
crossref_primary_10_3390_antib11010013
crossref_primary_10_1021_acschembio_1c00272
crossref_primary_10_1016_S2666_5247_21_00129_4
crossref_primary_10_1016_j_celrep_2021_110218
crossref_primary_10_1016_j_celrep_2022_110757
crossref_primary_10_1172_jci_insight_156372
crossref_primary_10_1016_j_jbc_2021_100745
crossref_primary_10_1016_j_virol_2024_110241
crossref_primary_10_1016_j_ymthe_2021_09_011
crossref_primary_10_1016_j_celrep_2024_114235
crossref_primary_10_1016_j_xcrm_2023_100991
Cites_doi 10.1016/j.chom.2020.06.010
10.1126/science.abc2241
10.1038/nm1080
10.1126/science.abc5902
10.1016/j.ultramic.2013.06.004
10.1038/nmeth.4169
10.1073/pnas.0400937101
10.1107/S0021889807021206
10.1016/j.jmb.2011.11.010
10.1016/S0140-6736(20)31604-4
10.1038/ncomms9223
10.1038/nmeth.4347
10.1001/jama.2020.4783
10.1016/j.cell.2020.02.052
10.1073/pnas.1510199112
10.1016/j.str.2018.09.006
10.1038/s41586-020-2456-9
10.1371/journal.pmed.0030237
10.1038/s41586-020-2665-2
10.1002/gch2.1018
10.1038/s41586-020-2349-y
10.1126/science.abc7424
10.1038/nature06106
10.1093/bib/bbx108
10.1038/ncomms15092
10.1016/j.virusres.2014.11.021
10.1016/j.virol.2016.01.004
10.1172/JCI84428
10.1107/S0907444913000061
10.1126/science.abb7269
10.1016/bs.aivir.2019.08.002
10.1038/nature16988
10.1017/S0022172400062410
10.1001/jama.2020.10044
10.1038/s41587-020-0631-z
10.7554/eLife.17219
10.1038/s41591-020-0965-6
10.1126/science.1178258
10.1038/s41467-019-12137-1
10.1126/science.abb2762
10.1038/s41586-020-2180-5
10.1016/j.jim.2007.09.017
10.1017/S0950268800048019
10.1136/gut.24.7.615
10.1126/science.abb2507
10.1007/BF01968139
10.1038/nsmb.3293
10.1107/S2059798319011471
10.1016/j.cell.2015.04.016
10.3201/eid2206.160010
10.1038/nm.3443
10.1073/pnas.2004168117
10.1038/s41586-020-2179-y
10.1016/j.cell.2020.06.025
10.1038/s41598-018-34171-7
10.1038/s41564-020-0688-y
10.4049/jimmunol.2000583
10.1002/pro.3235
10.1016/j.cell.2020.07.012
10.1016/j.cell.2020.05.015
10.1056/NEJMoa1405858
10.1126/science.abc7520
10.1371/journal.ppat.1007236
10.1016/j.cell.2018.12.028
10.1016/0022-2836(70)90057-4
10.7554/eLife.42166
10.1080/22221751.2020.1756700
10.1126/science.abb9983
10.1107/S0907444909042073
10.1107/S0907444911001314
10.1126/science.aaf8505
10.1016/j.cell.2020.02.058
10.1038/s41467-017-00928-3
10.1016/j.jsb.2012.09.006
10.1107/S0907444910048675
10.1016/j.antiviral.2019.01.016
10.1073/pnas.1707304114
10.1016/j.jsb.2013.08.002
10.1016/j.molcel.2020.04.022
10.1128/JVI.02377-07
10.1126/science.abd0831
10.1073/pnas.1517719113
10.1107/S0907444909047337
10.1126/scitranslmed.aaf9418
10.1107/S0907444910007493
10.1016/j.cell.2020.03.045
10.1016/j.jsb.2005.03.010
10.1038/s41592-019-0580-y
10.1038/nmeth.3541
10.1126/science.1205669
10.1107/S205225251801463X
10.1002/jcc.20084
10.1038/nsmb.3115
10.1056/NEJMc070348
10.1080/22221751.2020.1729069
10.1038/s41467-020-15562-9
10.1073/pnas.1708727114
10.1126/science.abc6952
10.1038/s41467-020-16256-y
10.1038/s41586-020-2012-7
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
2020 Elsevier Inc. 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2020 Elsevier Inc. 2020 Elsevier Inc.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
OIOZB
OTOTI
5PM
DOI 10.1016/j.cell.2020.09.037
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1042.e21
ExternalDocumentID PMC7494283
1846169
oai_HAL_pasteur_02984796v1
32991844
10_1016_j_cell_2020_09_037
S0092867420312344
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM120553
– fundername: NIGMS NIH HHS
  grantid: P30 GM124169
– fundername: NIAID NIH HHS
  grantid: HHSN272201700059C
– fundername: NIAID NIH HHS
  grantid: DP1 AI158186
– fundername: NIH HHS
  grantid: S10 OD023476
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAIKJ
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
1XC
UMC
0SF
ABVKL
OIOZB
OTOTI
RCE
VQA
5PM
ID FETCH-LOGICAL-c647t-36d1c48985dbbf648cc43f49357d20a591a4232f96e2f8a7e3bb4a546ddeb6393
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:17:32 EDT 2025
Thu Dec 05 06:24:06 EST 2024
Fri May 09 12:23:36 EDT 2025
Wed Jul 02 03:15:43 EDT 2025
Fri Jul 11 15:47:29 EDT 2025
Mon Jul 21 05:50:58 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 02:17:07 EDT 2025
Sun Apr 06 06:55:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
neutralizing antibodies
SARS-CoV-2
coronaviruses
immunity
effector functions
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c647t-36d1c48985dbbf648cc43f49357d20a591a4232f96e2f8a7e3bb4a546ddeb6393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC7494283
Pasteur Institute
USDOE Office of Science (SC)
AC02-05CH11231; R01GM120553; DP1AI158186; HHSN272201700059C; P30 GM124169-01
National Institute of Allergy and Infectious Diseases (NIAID)
Pew Biomedical Scholars
National Institutes of Health (NIH)
Investigators in the Pathogenesis of Infectious Disease
National Institute of General Medical Sciences
Lead Contact
These authors contributed equally
ORCID 0000-0002-2260-2577
0000-0002-3041-7240
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867420312344
PMID 32991844
PQID 2447548306
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7494283
osti_scitechconnect_1846169
hal_primary_oai_HAL_pasteur_02984796v1
proquest_miscellaneous_2524328527
proquest_miscellaneous_2447548306
pubmed_primary_32991844
crossref_citationtrail_10_1016_j_cell_2020_09_037
crossref_primary_10_1016_j_cell_2020_09_037
elsevier_sciencedirect_doi_10_1016_j_cell_2020_09_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-12
PublicationDateYYYYMMDD 2020-11-12
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – sequence: 0
  name: Elsevier
– name: Elsevier Inc
– name: Elsevier
References Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib92) 2016; 531
Menachery, Yount, Sims, Debbink, Agnihothram, Gralinski, Graham, Scobey, Plante, Royal (bib59) 2016; 113
Scheres (bib74) 2012; 415
Ortiz, Lansing, Rutitzky, Kurtagic, Prod’homme, Choudhury, Washburn, Bhatnagar, Beneduce, Holte (bib63) 2016; 8
DiLillo, Tan, Palese, Ravetch (bib20) 2014; 20
Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib31) 2018; 27
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib38) 2020; 181
Traggiai, Becker, Subbarao, Kolesnikova, Uematsu, Gismondo, Murphy, Rappuoli, Lanzavecchia (bib90) 2004; 10
Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib110) 2018; 7
Hensley, Das, Bailey, Schmidt, Hickman, Jayaraman, Viswanathan, Raman, Sasisekharan, Bennink, Yewdell (bib35) 2009; 326
Ying, Prabakaran, Du, Shi, Feng, Wang, Wang, Li, Jiang, Dimitrov, Zhou (bib105) 2015; 6
Cardone, Heymann, Steven (bib12) 2013; 184
Folegatti, Ewer, Aley, Angus, Becker, Belij-Rammerstorfer, Bellamy, Bibi, Bittaye, Clutterbuck (bib28) 2020; 396
Frenz, Rämisch, Borst, Walls, Adolf-Bryfogle, Schief, Veesler, DiMaio (bib29) 2019; 27
Baum, Fulton, Wloga, Copin, Pascal, Russo, Giordano, Lanza, Negron, Ni (bib7) 2020; 369
Katoh, Rozewicki, Yamada (bib113) 2019; 20
Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib15) 2020; 369
Evans, Murshudov (bib27) 2013; 69
Joyce, Sankhala, Chen, Choe, Bai, Hajduczki, Yan, Sterling, Peterson, Green (bib41) 2020
Tan, Baldwin, Davis, Williamson, Potter, Carragher, Lyumkis (bib83) 2017; 14
Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib106) 2017; 8
Hoffmann, Kleine-Weber, Pöhlmann (bib37) 2020; 78
Stettler, Beltramello, Espinosa, Graham, Cassotta, Bianchi, Vanzetta, Minola, Jaconi, Mele (bib81) 2016; 353
Corti, Voss, Gamblin, Codoni, Macagno, Jarrossay, Vachieri, Pinna, Minola, Vanzetta (bib16) 2011; 333
Ke, Oton, Qu, Cortese, Zila, McKeane, Nakane, Zivanov, Neufeldt, Cerikan (bib44) 2020
Millet, Whittaker (bib60) 2015; 202
Callow (bib9) 1985; 95
Scheres (bib75) 2012; 180
Battye, Kontogiannis, Johnson, Powell, Leslie (bib6) 2011; 67
ter Meulen, van den Brink, Poon, Marissen, Leung, Cox, Cheung, Bakker, Bogaards, van Deventer (bib87) 2006; 3
Edridge, Kaczorowska, Hoste, Bakker, Klein, Jebbink, Matser, Kinsella, Rueda, Prins (bib24) 2020
Grifoni, Weiskopf, Ramirez, Mateus, Dan, Moderbacher, Rawlings, Sutherland, Premkumar, Jadi (bib32) 2020; 181
Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib45) 2018; 8
Zhou, Tsybovsky, Olia, Gorman, Rapp, Cerutti, Katsamba, Nazzari, Schon, Wang (bib109) 2020
Duan, Liu, Li, Zhang, Yu, Qu, Zhou, Chen, Meng, Hu (bib23) 2020; 117
Shen, Wang, Zhao, Yang, Li, Yuan, Wang, Li, Yang, Xing (bib79) 2020; 323
Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen (bib99) 2020; 181
Watanabe, Allen, Wrapp, McLellan, Crispin (bib100) 2020; 369
Agirre, Iglesias-Fernández, Rovira, Davies, Wilson, Cowtan (bib1) 2015; 22
Barnes, West, Huey-Tubman, Hoffmann, Sharaf, Hoffman, Koranda, Gristick, Gaebler, Muecksch (bib5) 2020; 182
Chen, McMullan, Faruqi, Murshudov, Short, Scheres, Henderson (bib14) 2013; 135
Lau, Wang, Mok, Zhang, Chu, Lee, Deng, Chen, Chan, Song (bib47) 2020; 9
Punjani, Rubinstein, Fleet, Brubaker (bib69) 2017; 14
Wang, Song, Barad, Cheng, Fraser, DiMaio (bib97) 2016; 5
Luchsinger, Ransegnola, Jin, Muecksch, Weisblum, Bao, George, Rodriguez, Tricoche, Schmidt (bib56) 2020
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib108) 2020; 579
Liu, Lin, Baine, Wajnberg, Gumprecht, Rahman, Rodriguez, Tandon, Bassily-Marcus, Bander (bib54) 2020
DiLillo, Palese, Wilson, Ravetch (bib21) 2016; 126
He, Chen, Mullarkey, Hamilton, Wong, Leon, Uccellini, Chromikova, Henry, Hoffman (bib34) 2017; 8
McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib58) 2007; 40
Elbe, Buckland-Merrett (bib25) 2017; 1
Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib46) 2020; 581
de Wit, Feldmann, Horne, Okumura, Cameroni, Haddock, Saturday, Scott, Gopal, Zambon (bib18) 2019; 163
Zivanov, Nakane, Scheres (bib111) 2019; 6
Wec, Wrapp, Herbert, Maurer, Haslwanter, Sakharkar, Jangra, Dieterle, Lilov, Huang (bib101) 2020; 369
Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib53) 2020
Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie (bib50) 2020; 182
Huo, Zhao, Ren, Zhou, Duyvesteyn, Ginn, Carrique, Malinauskas, Ruza, Shah (bib39) 2020; 28
Letko, Marzi, Munster (bib48) 2020; 5
Walls, Park, Tortorici, Wall, McGuire, Veesler (bib96) 2020; 181
Gimson, Tedder, White, Eddleston, Williams (bib30) 1983; 24
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib102) 2020; 367
Guo, Guo, Duan, Chen, Wang, Lu, Li, Lu (bib33) 2020
Hessell, Hangartner, Hunter, Havenith, Beurskens, Bakker, Lanigan, Landucci, Forthal, Parren (bib36) 2007; 449
Alsoussi, Turner, Case, Zhao, Schmitz, Zhou, Chen, Lei, Rizk, McIntire (bib3) 2020; 205
Long, Tang, Shi, Li, Deng, Yuan, Hu, Xu, Zhang, Lv (bib55) 2020; 26
Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib13) 2010; 66
Cao, Liu, Zhang, Zhang, Richardus (bib11) 2007; 357
Prévost, Gasser, Beaudoin-Bussières, Richard, Duerr, Laumaea, Anand, Goyette, Ding, Medjahed (bib68) 2020
DiLillo, Ravetch (bib19) 2015; 161
Punjani, Zhang, Fleet (bib70) 2019
Li, Zhang, Hu, Tong, Zheng, Yang, Kong, Ren, Wei, Mei (bib49) 2020; 324
Drosten, Meyer, Müller, Corman, Al-Masri, Hossain, Madani, Sieberg, Bosch, Lattwein (bib22) 2014; 371
Emsley, Lohkamp, Scott, Cowtan (bib26) 2010; 66
Tan, Chia, Qin, Liu, Chen, Tiu, Hu, Chen, Young, Sia (bib84) 2020; 38
Callow, Parry, Sergeant, Tyrrell (bib10) 1990; 105
Song, Gui, Wang, Xiang (bib80) 2018; 14
Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib71) 2020; 584
Barad, Echols, Wang, Cheng, DiMaio, Adams, Fraser (bib4) 2015; 12
Tegunov, Cramer (bib86) 2019; 16
Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib107) 2020; 368
Ou, Liu, Lei, Li, Mi, Ren, Guo, Guo, Chen, Hu (bib64) 2020; 11
Tian, Li, Huang, Xia, Lu, Shi, Lu, Jiang, Yang, Wu, Ying (bib88) 2020; 9
Johnson, Bagci, Keith, Tang, Mollura, Zeitlin, Qin, Huzella, Bartos, Bohorova (bib40) 2016; 490
Kabsch (bib43) 2010; 66
Needleman, Wunsch (bib114) 1970; 48
Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib67) 2020; 583
Wu, Wang, Shen, Peng, Li, Zhao, Li, Li, Bi, Yang (bib103) 2020; 368
Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib82) 2005; 151
Walls, Tortorici, Frenz, Snijder, Li, Rey, DiMaio, Bosch, Veesler (bib93) 2016; 23
Ng, Faulkner, Cornish, Rosa, Harvey, Hussain, Ulferts, Earl, Wrobel, Benton (bib62) 2020
Ju, Zhang, Ge, Wang, Yu, Shan, Zhou, Song, Tang, Yu (bib42) 2020
Tang, Chen, Cox, Su, Callahan, Fridman, Zhang, Patel, Cejas, Swoyer (bib85) 2019; 10
Tiller, Meffre, Yurasov, Tsuiji, Nussenzweig, Wardemann (bib112) 2008; 329
Tortorici, Veesler (bib89) 2019; 105
Turoňová, Sikora, Schürmann, Hagen, Welsch, Blanc, von Bülow, Gecht, Bagola, Hörner (bib91) 2020
Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib65) 2017; 114
Alshukairi, Khalid, Ahmed, Dada, Bayumi, Malic, Althawadi, Ignacio, Alsalmi, Al-Abdely (bib2) 2016; 22
Walls, Tortorici, Snijder, Xiong, Bosch, Rey, Veesler (bib94) 2017; 114
Yan, Zhang, Li, Xia, Guo, Zhou (bib104) 2020; 367
Seow, Graham, Merrick, Acors, Steel, Hemmings, O’Bryne, Kouphou, Pickering, Galao (bib76) 2020
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib66) 2004; 25
Seydoux, Homad, MacCamy, Parks, Hurlburt, Jennewein, Akins, Stuart, Wan, Feng (bib77) 2020
Liebschner, Afonine, Baker, Bunkóczi, Chen, Croll, Hintze, Hung, Jain, McCoy (bib51) 2019; 75
Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib73) 2020; 369
Lindhardt, Gerstoft, Hofmann, Pallesen, Mathiesen, Dickmeiss, Ulrich (bib52) 1989; 8
Corti, Zhao, Pedotti, Simonelli, Agnihothram, Fett, Fernandez-Rodriguez, Foglierini, Agatic, Vanzetta (bib17) 2015; 112
Brouwer, Caniels, van der Straten, Snitselaar, Aldon, Bangaru, Torres, Okba, Claireaux, Kerster (bib8) 2020; 369
Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib95) 2019; 176
Murshudov, Skubák, Lebedev, Pannu, Steiner, Nicholls, Winn, Long, Vagin (bib61) 2011; 67
Lund, Alexopoulou, Sato, Karow, Adams, Gale, Iwasaki, Flavell (bib57) 2004; 101
Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach, Li (bib78) 2020; 581
Wang, Li, Drabek, Okba, van Haperen, Osterhaus, van Kuppeveld, Haagmans, Grosveld, Bosch (bib98) 2020; 11
Rockx, Corti, Donaldson, Sheahan, Stadler, Lanzavecchia, Baric (bib72) 2008; 82
Corti (10.1016/j.cell.2020.09.037_bib16) 2011; 333
Barnes (10.1016/j.cell.2020.09.037_bib5) 2020; 182
Pallesen (10.1016/j.cell.2020.09.037_bib65) 2017; 114
Seydoux (10.1016/j.cell.2020.09.037_bib77) 2020
Luchsinger (10.1016/j.cell.2020.09.037_bib56) 2020
Folegatti (10.1016/j.cell.2020.09.037_bib28) 2020; 396
Yan (10.1016/j.cell.2020.09.037_bib104) 2020; 367
Chen (10.1016/j.cell.2020.09.037_bib14) 2013; 135
Tegunov (10.1016/j.cell.2020.09.037_bib86) 2019; 16
Katoh (10.1016/j.cell.2020.09.037_bib113) 2019; 20
Cao (10.1016/j.cell.2020.09.037_bib11) 2007; 357
Tang (10.1016/j.cell.2020.09.037_bib85) 2019; 10
Pinto (10.1016/j.cell.2020.09.037_bib67) 2020; 583
Evans (10.1016/j.cell.2020.09.037_bib27) 2013; 69
Walls (10.1016/j.cell.2020.09.037_bib95) 2019; 176
Tian (10.1016/j.cell.2020.09.037_bib88) 2020; 9
Wang (10.1016/j.cell.2020.09.037_bib97) 2016; 5
DiLillo (10.1016/j.cell.2020.09.037_bib19) 2015; 161
Tortorici (10.1016/j.cell.2020.09.037_bib89) 2019; 105
Agirre (10.1016/j.cell.2020.09.037_bib1) 2015; 22
Yuan (10.1016/j.cell.2020.09.037_bib107) 2020; 368
Duan (10.1016/j.cell.2020.09.037_bib23) 2020; 117
Needleman (10.1016/j.cell.2020.09.037_bib114) 1970; 48
Hensley (10.1016/j.cell.2020.09.037_bib35) 2009; 326
Shen (10.1016/j.cell.2020.09.037_bib79) 2020; 323
He (10.1016/j.cell.2020.09.037_bib34) 2017; 8
Lau (10.1016/j.cell.2020.09.037_bib47) 2020; 9
Lund (10.1016/j.cell.2020.09.037_bib57) 2004; 101
Walls (10.1016/j.cell.2020.09.037_bib96) 2020; 181
Ou (10.1016/j.cell.2020.09.037_bib64) 2020; 11
Brouwer (10.1016/j.cell.2020.09.037_bib8) 2020; 369
Elbe (10.1016/j.cell.2020.09.037_bib25) 2017; 1
Li (10.1016/j.cell.2020.09.037_bib50) 2020; 182
DiLillo (10.1016/j.cell.2020.09.037_bib21) 2016; 126
Lan (10.1016/j.cell.2020.09.037_bib46) 2020; 581
Tiller (10.1016/j.cell.2020.09.037_bib112) 2008; 329
Wang (10.1016/j.cell.2020.09.037_bib99) 2020; 181
Seow (10.1016/j.cell.2020.09.037_bib76) 2020
Kirchdoerfer (10.1016/j.cell.2020.09.037_bib45) 2018; 8
Walls (10.1016/j.cell.2020.09.037_bib92) 2016; 531
Cardone (10.1016/j.cell.2020.09.037_bib12) 2013; 184
Tan (10.1016/j.cell.2020.09.037_bib83) 2017; 14
Wrapp (10.1016/j.cell.2020.09.037_bib102) 2020; 367
Prévost (10.1016/j.cell.2020.09.037_bib68) 2020
Goddard (10.1016/j.cell.2020.09.037_bib31) 2018; 27
Long (10.1016/j.cell.2020.09.037_bib55) 2020; 26
Ju (10.1016/j.cell.2020.09.037_bib42) 2020
Traggiai (10.1016/j.cell.2020.09.037_bib90) 2004; 10
Ke (10.1016/j.cell.2020.09.037_bib44) 2020
Ng (10.1016/j.cell.2020.09.037_bib62) 2020
Huo (10.1016/j.cell.2020.09.037_bib39) 2020; 28
Zhou (10.1016/j.cell.2020.09.037_bib108) 2020; 579
Liu (10.1016/j.cell.2020.09.037_bib54) 2020
Pettersen (10.1016/j.cell.2020.09.037_bib66) 2004; 25
Walls (10.1016/j.cell.2020.09.037_bib93) 2016; 23
Wang (10.1016/j.cell.2020.09.037_bib98) 2020; 11
Gimson (10.1016/j.cell.2020.09.037_bib30) 1983; 24
Watanabe (10.1016/j.cell.2020.09.037_bib100) 2020; 369
Millet (10.1016/j.cell.2020.09.037_bib60) 2015; 202
Zivanov (10.1016/j.cell.2020.09.037_bib111) 2019; 6
Alsoussi (10.1016/j.cell.2020.09.037_bib3) 2020; 205
Baum (10.1016/j.cell.2020.09.037_bib7) 2020; 369
Hessell (10.1016/j.cell.2020.09.037_bib36) 2007; 449
Battye (10.1016/j.cell.2020.09.037_bib6) 2011; 67
Edridge (10.1016/j.cell.2020.09.037_bib24) 2020
Hoffmann (10.1016/j.cell.2020.09.037_bib37) 2020; 78
Turoňová (10.1016/j.cell.2020.09.037_bib91) 2020
Drosten (10.1016/j.cell.2020.09.037_bib22) 2014; 371
Liu (10.1016/j.cell.2020.09.037_bib53) 2020
Ortiz (10.1016/j.cell.2020.09.037_bib63) 2016; 8
ter Meulen (10.1016/j.cell.2020.09.037_bib87) 2006; 3
Wu (10.1016/j.cell.2020.09.037_bib103) 2020; 368
Corti (10.1016/j.cell.2020.09.037_bib17) 2015; 112
Punjani (10.1016/j.cell.2020.09.037_bib69) 2017; 14
Zhou (10.1016/j.cell.2020.09.037_bib109) 2020
Menachery (10.1016/j.cell.2020.09.037_bib59) 2016; 113
Shang (10.1016/j.cell.2020.09.037_bib78) 2020; 581
Chi (10.1016/j.cell.2020.09.037_bib15) 2020; 369
Guo (10.1016/j.cell.2020.09.037_bib33) 2020
Alshukairi (10.1016/j.cell.2020.09.037_bib2) 2016; 22
Frenz (10.1016/j.cell.2020.09.037_bib29) 2019; 27
DiLillo (10.1016/j.cell.2020.09.037_bib20) 2014; 20
Johnson (10.1016/j.cell.2020.09.037_bib40) 2016; 490
Scheres (10.1016/j.cell.2020.09.037_bib74) 2012; 415
Lindhardt (10.1016/j.cell.2020.09.037_bib52) 1989; 8
Stettler (10.1016/j.cell.2020.09.037_bib81) 2016; 353
de Wit (10.1016/j.cell.2020.09.037_bib18) 2019; 163
Liebschner (10.1016/j.cell.2020.09.037_bib51) 2019; 75
Tan (10.1016/j.cell.2020.09.037_bib84) 2020; 38
Emsley (10.1016/j.cell.2020.09.037_bib26) 2010; 66
Zivanov (10.1016/j.cell.2020.09.037_bib110) 2018; 7
Hoffmann (10.1016/j.cell.2020.09.037_bib38) 2020; 181
Callow (10.1016/j.cell.2020.09.037_bib9) 1985; 95
Yuan (10.1016/j.cell.2020.09.037_bib106) 2017; 8
Ying (10.1016/j.cell.2020.09.037_bib105) 2015; 6
Li (10.1016/j.cell.2020.09.037_bib49) 2020; 324
Joyce (10.1016/j.cell.2020.09.037_bib41) 2020
Rockx (10.1016/j.cell.2020.09.037_bib72) 2008; 82
Wec (10.1016/j.cell.2020.09.037_bib101) 2020; 369
Letko (10.1016/j.cell.2020.09.037_bib48) 2020; 5
Walls (10.1016/j.cell.2020.09.037_bib94) 2017; 114
Song (10.1016/j.cell.2020.09.037_bib80) 2018; 14
Kabsch (10.1016/j.cell.2020.09.037_bib43) 2010; 66
Scheres (10.1016/j.cell.2020.09.037_bib75) 2012; 180
Punjani (10.1016/j.cell.2020.09.037_bib70) 2019
Rogers (10.1016/j.cell.2020.09.037_bib73) 2020; 369
Suloway (10.1016/j.cell.2020.09.037_bib82) 2005; 151
Murshudov (10.1016/j.cell.2020.09.037_bib61) 2011; 67
Callow (10.1016/j.cell.2020.09.037_bib10) 1990; 105
Grifoni (10.1016/j.cell.2020.09.037_bib32) 2020; 181
Robbiani (10.1016/j.cell.2020.09.037_bib71) 2020; 584
Barad (10.1016/j.cell.2020.09.037_bib4) 2015; 12
McCoy (10.1016/j.cell.2020.09.037_bib58) 2007; 40
Chen (10.1016/j.cell.2020.09.037_bib13) 2010; 66
References_xml – volume: 490
  start-page: 49
  year: 2016
  end-page: 58
  ident: bib40
  article-title: 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012
  publication-title: Virology
– volume: 48
  start-page: 443
  year: 1970
  end-page: 453
  ident: bib114
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: Journal of Molecular Biology
– volume: 20
  start-page: 1160
  year: 2019
  end-page: 1166
  ident: bib113
  article-title: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization
  publication-title: Briefings in Bioinformatics
– volume: 38
  start-page: 1073
  year: 2020
  end-page: 1078
  ident: bib84
  article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction
  publication-title: Nature Biotechnology
– volume: 369
  start-page: 1014
  year: 2020
  end-page: 1018
  ident: bib7
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: bib67
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib66
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– year: 2020
  ident: bib44
  article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions
  publication-title: Nature
– volume: 105
  start-page: 93
  year: 2019
  end-page: 116
  ident: bib89
  article-title: Structural insights into coronavirus entry
  publication-title: Adv. Virus Res.
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: bib31
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
– volume: 14
  start-page: 793
  year: 2017
  end-page: 796
  ident: bib83
  article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting
  publication-title: Nat. Methods
– volume: 126
  start-page: 605
  year: 2016
  end-page: 610
  ident: bib21
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
– year: 2020
  ident: bib53
  article-title: Potent Neutralizing Monoclonal Antibodies Directed to Multiple Epitopes on the SARS-CoV-2 Spike
  publication-title: bioRxiv
– volume: 16
  start-page: 1146
  year: 2019
  end-page: 1152
  ident: bib86
  article-title: Real-time cryo-electron microscopy data preprocessing with Warp
  publication-title: Nat. Methods
– volume: 82
  start-page: 3220
  year: 2008
  end-page: 3235
  ident: bib72
  article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge
  publication-title: J. Virol.
– volume: 11
  start-page: 2251
  year: 2020
  ident: bib98
  article-title: A human monoclonal antibody blocking SARS-CoV-2 infection
  publication-title: Nature Communications
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904.e9
  ident: bib99
  article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
  publication-title: Cell
– year: 2020
  ident: bib77
  article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual
  publication-title: bioRxiv
– volume: 24
  start-page: 615
  year: 1983
  end-page: 617
  ident: bib30
  article-title: Serological markers in fulminant hepatitis B
  publication-title: Gut
– volume: 181
  start-page: 1489
  year: 2020
  end-page: 1501.e15
  ident: bib32
  article-title: Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals
  publication-title: Cell
– volume: 14
  start-page: e1007236
  year: 2018
  ident: bib80
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
– volume: 357
  start-page: 1162
  year: 2007
  end-page: 1163
  ident: bib11
  article-title: Disappearance of antibodies to SARS-associated coronavirus after recovery
  publication-title: N. Engl. J. Med.
– year: 2020
  ident: bib33
  article-title: Long-Term Persistence of IgG Antibodies in SARS-CoV Infected Healthcare Workers
  publication-title: medRxiv
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib26
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 584
  start-page: 437
  year: 2020
  end-page: 442
  ident: bib71
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
– volume: 184
  start-page: 226
  year: 2013
  end-page: 236
  ident: bib12
  article-title: One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions
  publication-title: J. Struct. Biol.
– year: 2020
  ident: bib56
  article-title: Serological Analysis of New York City COVID19 Convalescent Plasma Donors
  publication-title: medRxiv
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: bib58
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Cryst.
– volume: 7
  start-page: e42166
  year: 2018
  ident: bib110
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
– year: 2020
  ident: bib24
  article-title: Coronavirus protective immunity is short-lasting
  publication-title: medRxiv
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  ident: bib27
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib102
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 368
  start-page: 1274
  year: 2020
  end-page: 1278
  ident: bib103
  article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2
  publication-title: Science
– volume: 67
  start-page: 271
  year: 2011
  end-page: 281
  ident: bib6
  article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: bib96
  article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell
– volume: 78
  start-page: 779
  year: 2020
  end-page: 784.e5
  ident: bib37
  article-title: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells
  publication-title: Mol. Cell
– volume: 202
  start-page: 120
  year: 2015
  end-page: 134
  ident: bib60
  article-title: Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis
  publication-title: Virus Res.
– volume: 135
  start-page: 24
  year: 2013
  end-page: 35
  ident: bib14
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
– volume: 353
  start-page: 823
  year: 2016
  end-page: 826
  ident: bib81
  article-title: Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection
  publication-title: Science
– volume: 105
  start-page: 435
  year: 1990
  end-page: 446
  ident: bib10
  article-title: The time course of the immune response to experimental coronavirus infection of man
  publication-title: Epidemiol. Infect.
– year: 2020
  ident: bib76
  article-title: Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection
  publication-title: medRxiv
– volume: 26
  start-page: 1200
  year: 2020
  end-page: 1204
  ident: bib55
  article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections
  publication-title: Nat. Med.
– volume: 11
  start-page: 1620
  year: 2020
  ident: bib64
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat. Commun.
– volume: 396
  start-page: 467
  year: 2020
  end-page: 478
  ident: bib28
  article-title: Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial
  publication-title: Lancet
– volume: 9
  start-page: 382
  year: 2020
  end-page: 385
  ident: bib88
  article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
  publication-title: Emerg. Microbes Infect.
– volume: 117
  start-page: 9490
  year: 2020
  end-page: 9496
  ident: bib23
  article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 113
  start-page: 3048
  year: 2016
  end-page: 3053
  ident: bib59
  article-title: SARS-like WIV1-CoV poised for human emergence
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 151
  start-page: 41
  year: 2005
  end-page: 60
  ident: bib82
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
– start-page: eabd5223
  year: 2020
  ident: bib91
  article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges
  publication-title: Science
– volume: 415
  start-page: 406
  year: 2012
  end-page: 418
  ident: bib74
  article-title: A Bayesian view on cryo-EM structure determination
  publication-title: J. Mol. Biol.
– volume: 27
  start-page: 134
  year: 2019
  end-page: 139.e3
  ident: bib29
  article-title: Automatically Fixing Errors in Glycoprotein Structures with Rosetta
  publication-title: Structure
– volume: 8
  start-page: 846
  year: 2017
  ident: bib34
  article-title: Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice
  publication-title: Nat. Commun.
– volume: 368
  start-page: 630
  year: 2020
  end-page: 633
  ident: bib107
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
– volume: 176
  start-page: 1026
  year: 2019
  end-page: 1039.e15
  ident: bib95
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
– volume: 112
  start-page: 10473
  year: 2015
  end-page: 10478
  ident: bib17
  article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 581
  start-page: 221
  year: 2020
  end-page: 224
  ident: bib78
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
– year: 2020
  ident: bib62
  article-title: Pre-existing and de novohumoral immunity to SARS-CoV-2 in humans
  publication-title: bioRxiv
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280.e8
  ident: bib38
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
– volume: 369
  start-page: 731
  year: 2020
  end-page: 736
  ident: bib101
  article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies
  publication-title: Science
– volume: 6
  start-page: 5
  year: 2019
  end-page: 17
  ident: bib111
  article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
  publication-title: IUCrJ
– volume: 531
  start-page: 114
  year: 2016
  end-page: 117
  ident: bib92
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
– volume: 22
  start-page: 833
  year: 2015
  end-page: 834
  ident: bib1
  article-title: Privateer: software for the conformational validation of carbohydrate structures
  publication-title: Nat. Struct. Mol. Biol.
– volume: 10
  start-page: 4153
  year: 2019
  ident: bib85
  article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
  publication-title: Nat. Commun.
– volume: 3
  start-page: e237
  year: 2006
  ident: bib87
  article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants
  publication-title: PLoS Med.
– volume: 9
  start-page: 837
  year: 2020
  end-page: 842
  ident: bib47
  article-title: Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction
  publication-title: Emerg. Microbes Infect.
– volume: 5
  start-page: e17219
  year: 2016
  ident: bib97
  article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
  publication-title: eLife
– year: 2020
  ident: bib109
  article-title: A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike
  publication-title: bioRxiv
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: bib69
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 75
  start-page: 861
  year: 2019
  end-page: 877
  ident: bib51
  article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
  publication-title: Acta Crystallogr. D Struct. Biol.
– volume: 329
  start-page: 112
  year: 2008
  end-page: 124
  ident: bib112
  article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning
  publication-title: J Immunol Methods
– volume: 205
  start-page: ji2000583
  year: 2020
  ident: bib3
  article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
  publication-title: J Immunol
– volume: 67
  start-page: 355
  year: 2011
  end-page: 367
  ident: bib61
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 20
  start-page: 143
  year: 2014
  end-page: 151
  ident: bib20
  article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo
  publication-title: Nat. Med.
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: bib15
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
– volume: 114
  start-page: E7348
  year: 2017
  end-page: E7357
  ident: bib65
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 333
  start-page: 850
  year: 2011
  end-page: 856
  ident: bib16
  article-title: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins
  publication-title: Science
– volume: 369
  start-page: 956
  year: 2020
  end-page: 963
  ident: bib73
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
– volume: 371
  start-page: 828
  year: 2014
  end-page: 835
  ident: bib22
  article-title: Transmission of MERS-coronavirus in household contacts
  publication-title: N. Engl. J. Med.
– year: 2019
  ident: bib70
  article-title: Non-uniform refinement: Adaptive regularization improves single particle cryo-EM reconstruction
  publication-title: bioRxiv
– volume: 114
  start-page: 11157
  year: 2017
  end-page: 11162
  ident: bib94
  article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2020
  ident: bib68
  article-title: Cross-sectional evaluation of humoral responses against SARS-CoV-2 Spike
  publication-title: bioRxiv
– volume: 369
  start-page: 330
  year: 2020
  end-page: 333
  ident: bib100
  article-title: Site-specific glycan analysis of the SARS-CoV-2 spike
  publication-title: Science
– volume: 182
  start-page: 828
  year: 2020
  end-page: 842.16
  ident: bib5
  article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies
  publication-title: Cell
– year: 2020
  ident: bib41
  article-title: A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein
  publication-title: bioRxiv
– volume: 163
  start-page: 70
  year: 2019
  end-page: 74
  ident: bib18
  article-title: Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset
  publication-title: Antiviral Res.
– volume: 326
  start-page: 734
  year: 2009
  end-page: 736
  ident: bib35
  article-title: Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift
  publication-title: Science
– volume: 182
  start-page: 1284
  year: 2020
  end-page: 1294.e9
  ident: bib50
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
– volume: 5
  start-page: 562
  year: 2020
  end-page: 569
  ident: bib48
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
– volume: 23
  start-page: 899
  year: 2016
  end-page: 905
  ident: bib93
  article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
  publication-title: Nat. Struct. Mol. Biol.
– volume: 10
  start-page: 871
  year: 2004
  end-page: 875
  ident: bib90
  article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus
  publication-title: Nat. Med.
– volume: 101
  start-page: 5598
  year: 2004
  end-page: 5603
  ident: bib57
  article-title: Recognition of single-stranded RNA viruses by Toll-like receptor 7
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 365ra158
  year: 2016
  ident: bib63
  article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors
  publication-title: Sci. Transl. Med.
– volume: 6
  start-page: 8223
  year: 2015
  ident: bib105
  article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody
  publication-title: Nat. Commun.
– volume: 8
  start-page: 614
  year: 1989
  end-page: 619
  ident: bib52
  article-title: Antibodies against the major core protein p24 of human immunodeficiency virus: relation to immunological, clinical and prognostic findings
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– volume: 8
  start-page: 15701
  year: 2018
  ident: bib45
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
– volume: 8
  start-page: 15092
  year: 2017
  ident: bib106
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: bib13
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: bib46
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 28
  start-page: 445
  year: 2020
  end-page: 454.e6
  ident: bib39
  article-title: Neutralization of SARS-CoV-2 by destruction of the prefusion Spike
  publication-title: Cell Host Microbe
– year: 2020
  ident: bib42
  article-title: Potent human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: bioRxiv
– volume: 369
  start-page: 643
  year: 2020
  end-page: 650
  ident: bib8
  article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability
  publication-title: Science
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  ident: bib75
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
– volume: 1
  start-page: 33
  year: 2017
  end-page: 46
  ident: bib25
  article-title: Data, disease and diplomacy: GISAID’s innovative contribution to global health
  publication-title: Glob Chall
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  ident: bib104
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib108
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– year: 2020
  ident: bib54
  article-title: Convalescent plasma treatment of severe COVID-19: A matched control study
  publication-title: medRxiv
– volume: 12
  start-page: 943
  year: 2015
  end-page: 946
  ident: bib4
  article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 323
  start-page: 1582
  year: 2020
  end-page: 1589
  ident: bib79
  article-title: Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma
  publication-title: JAMA
– volume: 449
  start-page: 101
  year: 2007
  end-page: 104
  ident: bib36
  article-title: Fc receptor but not complement binding is important in antibody protection against HIV
  publication-title: Nature
– volume: 324
  start-page: 460
  year: 2020
  end-page: 470
  ident: bib49
  article-title: Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial
  publication-title: JAMA
– volume: 95
  start-page: 173
  year: 1985
  end-page: 189
  ident: bib9
  article-title: Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection
  publication-title: J. Hyg. (Lond.)
– volume: 22
  start-page: 1113
  year: 2016
  end-page: 1115
  ident: bib2
  article-title: Antibody Response and Disease Severity in Healthcare Worker MERS Survivors
  publication-title: Emerg. Infect. Dis.
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  ident: bib43
  article-title: XDS
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 161
  start-page: 1035
  year: 2015
  end-page: 1045
  ident: bib19
  article-title: Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect
  publication-title: Cell
– volume: 28
  start-page: 445
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib39
  article-title: Neutralization of SARS-CoV-2 by destruction of the prefusion Spike
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.06.010
– volume: 368
  start-page: 1274
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib103
  article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2
  publication-title: Science
  doi: 10.1126/science.abc2241
– volume: 10
  start-page: 871
  year: 2004
  ident: 10.1016/j.cell.2020.09.037_bib90
  article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus
  publication-title: Nat. Med.
  doi: 10.1038/nm1080
– volume: 369
  start-page: 643
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib8
  article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability
  publication-title: Science
  doi: 10.1126/science.abc5902
– volume: 135
  start-page: 24
  year: 2013
  ident: 10.1016/j.cell.2020.09.037_bib14
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.06.004
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.cell.2020.09.037_bib69
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 101
  start-page: 5598
  year: 2004
  ident: 10.1016/j.cell.2020.09.037_bib57
  article-title: Recognition of single-stranded RNA viruses by Toll-like receptor 7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400937101
– volume: 40
  start-page: 658
  year: 2007
  ident: 10.1016/j.cell.2020.09.037_bib58
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889807021206
– volume: 415
  start-page: 406
  year: 2012
  ident: 10.1016/j.cell.2020.09.037_bib74
  article-title: A Bayesian view on cryo-EM structure determination
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.11.010
– volume: 396
  start-page: 467
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib28
  article-title: Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31604-4
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib54
  article-title: Convalescent plasma treatment of severe COVID-19: A matched control study
  publication-title: medRxiv
– volume: 6
  start-page: 8223
  year: 2015
  ident: 10.1016/j.cell.2020.09.037_bib105
  article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9223
– volume: 14
  start-page: 793
  year: 2017
  ident: 10.1016/j.cell.2020.09.037_bib83
  article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4347
– volume: 323
  start-page: 1582
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib79
  article-title: Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma
  publication-title: JAMA
  doi: 10.1001/jama.2020.4783
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib38
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 112
  start-page: 10473
  year: 2015
  ident: 10.1016/j.cell.2020.09.037_bib17
  article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1510199112
– volume: 27
  start-page: 134
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib29
  article-title: Automatically Fixing Errors in Glycoprotein Structures with Rosetta
  publication-title: Structure
  doi: 10.1016/j.str.2018.09.006
– year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib70
  article-title: Non-uniform refinement: Adaptive regularization improves single particle cryo-EM reconstruction
  publication-title: bioRxiv
– volume: 584
  start-page: 437
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib71
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
  doi: 10.1038/s41586-020-2456-9
– volume: 3
  start-page: e237
  year: 2006
  ident: 10.1016/j.cell.2020.09.037_bib87
  article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0030237
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib44
  article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions
  publication-title: Nature
  doi: 10.1038/s41586-020-2665-2
– volume: 1
  start-page: 33
  year: 2017
  ident: 10.1016/j.cell.2020.09.037_bib25
  article-title: Data, disease and diplomacy: GISAID’s innovative contribution to global health
  publication-title: Glob Chall
  doi: 10.1002/gch2.1018
– volume: 583
  start-page: 290
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib67
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 369
  start-page: 731
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib101
  article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies
  publication-title: Science
  doi: 10.1126/science.abc7424
– volume: 449
  start-page: 101
  year: 2007
  ident: 10.1016/j.cell.2020.09.037_bib36
  article-title: Fc receptor but not complement binding is important in antibody protection against HIV
  publication-title: Nature
  doi: 10.1038/nature06106
– volume: 20
  start-page: 1160
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib113
  article-title: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbx108
– volume: 8
  start-page: 15092
  year: 2017
  ident: 10.1016/j.cell.2020.09.037_bib106
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– volume: 202
  start-page: 120
  year: 2015
  ident: 10.1016/j.cell.2020.09.037_bib60
  article-title: Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.11.021
– volume: 490
  start-page: 49
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib40
  article-title: 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012
  publication-title: Virology
  doi: 10.1016/j.virol.2016.01.004
– volume: 126
  start-page: 605
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib21
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI84428
– volume: 69
  start-page: 1204
  year: 2013
  ident: 10.1016/j.cell.2020.09.037_bib27
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444913000061
– volume: 368
  start-page: 630
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib107
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 105
  start-page: 93
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib89
  article-title: Structural insights into coronavirus entry
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2019.08.002
– volume: 531
  start-page: 114
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib92
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
  doi: 10.1038/nature16988
– volume: 95
  start-page: 173
  year: 1985
  ident: 10.1016/j.cell.2020.09.037_bib9
  article-title: Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection
  publication-title: J. Hyg. (Lond.)
  doi: 10.1017/S0022172400062410
– volume: 324
  start-page: 460
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib49
  article-title: Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2020.10044
– volume: 38
  start-page: 1073
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib84
  article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-020-0631-z
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib53
  article-title: Potent Neutralizing Monoclonal Antibodies Directed to Multiple Epitopes on the SARS-CoV-2 Spike
  publication-title: bioRxiv
– volume: 5
  start-page: e17219
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib97
  article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
  publication-title: eLife
  doi: 10.7554/eLife.17219
– volume: 26
  start-page: 1200
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib55
  article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0965-6
– volume: 326
  start-page: 734
  year: 2009
  ident: 10.1016/j.cell.2020.09.037_bib35
  article-title: Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift
  publication-title: Science
  doi: 10.1126/science.1178258
– volume: 10
  start-page: 4153
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib85
  article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12137-1
– volume: 367
  start-page: 1444
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib104
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 581
  start-page: 215
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib46
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 329
  start-page: 112
  year: 2008
  ident: 10.1016/j.cell.2020.09.037_bib112
  article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2007.09.017
– volume: 105
  start-page: 435
  year: 1990
  ident: 10.1016/j.cell.2020.09.037_bib10
  article-title: The time course of the immune response to experimental coronavirus infection of man
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268800048019
– volume: 24
  start-page: 615
  year: 1983
  ident: 10.1016/j.cell.2020.09.037_bib30
  article-title: Serological markers in fulminant hepatitis B
  publication-title: Gut
  doi: 10.1136/gut.24.7.615
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib68
  article-title: Cross-sectional evaluation of humoral responses against SARS-CoV-2 Spike
  publication-title: bioRxiv
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib102
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 8
  start-page: 614
  year: 1989
  ident: 10.1016/j.cell.2020.09.037_bib52
  article-title: Antibodies against the major core protein p24 of human immunodeficiency virus: relation to immunological, clinical and prognostic findings
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/BF01968139
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib77
  article-title: Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual
  publication-title: bioRxiv
– volume: 23
  start-page: 899
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib93
  article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3293
– volume: 75
  start-page: 861
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib51
  article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798319011471
– volume: 161
  start-page: 1035
  year: 2015
  ident: 10.1016/j.cell.2020.09.037_bib19
  article-title: Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.016
– volume: 22
  start-page: 1113
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib2
  article-title: Antibody Response and Disease Severity in Healthcare Worker MERS Survivors
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2206.160010
– volume: 20
  start-page: 143
  year: 2014
  ident: 10.1016/j.cell.2020.09.037_bib20
  article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo
  publication-title: Nat. Med.
  doi: 10.1038/nm.3443
– volume: 117
  start-page: 9490
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib23
  article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2004168117
– volume: 581
  start-page: 221
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib78
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2179-y
– volume: 182
  start-page: 828
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib5
  article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.025
– volume: 8
  start-page: 15701
  year: 2018
  ident: 10.1016/j.cell.2020.09.037_bib45
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34171-7
– volume: 5
  start-page: 562
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib48
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib109
  article-title: A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike
  publication-title: bioRxiv
– volume: 205
  start-page: ji2000583
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib3
  article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2000583
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib24
  article-title: Coronavirus protective immunity is short-lasting
  publication-title: medRxiv
– volume: 27
  start-page: 14
  year: 2018
  ident: 10.1016/j.cell.2020.09.037_bib31
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib33
  article-title: Long-Term Persistence of IgG Antibodies in SARS-CoV Infected Healthcare Workers
  publication-title: medRxiv
– volume: 182
  start-page: 1284
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib50
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 181
  start-page: 1489
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib32
  article-title: Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.015
– volume: 371
  start-page: 828
  year: 2014
  ident: 10.1016/j.cell.2020.09.037_bib22
  article-title: Transmission of MERS-coronavirus in household contacts
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1405858
– start-page: eabd5223
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib91
  article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges
  publication-title: Science
– volume: 369
  start-page: 956
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib73
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
  doi: 10.1126/science.abc7520
– volume: 14
  start-page: e1007236
  year: 2018
  ident: 10.1016/j.cell.2020.09.037_bib80
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007236
– volume: 176
  start-page: 1026
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib95
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– volume: 48
  start-page: 443
  year: 1970
  ident: 10.1016/j.cell.2020.09.037_bib114
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(70)90057-4
– volume: 7
  start-page: e42166
  year: 2018
  ident: 10.1016/j.cell.2020.09.037_bib110
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  doi: 10.7554/eLife.42166
– volume: 9
  start-page: 837
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib47
  article-title: Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1756700
– volume: 369
  start-page: 330
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib100
  article-title: Site-specific glycan analysis of the SARS-CoV-2 spike
  publication-title: Science
  doi: 10.1126/science.abb9983
– volume: 66
  start-page: 12
  year: 2010
  ident: 10.1016/j.cell.2020.09.037_bib13
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909042073
– volume: 67
  start-page: 355
  year: 2011
  ident: 10.1016/j.cell.2020.09.037_bib61
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444911001314
– volume: 353
  start-page: 823
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib81
  article-title: Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection
  publication-title: Science
  doi: 10.1126/science.aaf8505
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib96
  article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 8
  start-page: 846
  year: 2017
  ident: 10.1016/j.cell.2020.09.037_bib34
  article-title: Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00928-3
– volume: 180
  start-page: 519
  year: 2012
  ident: 10.1016/j.cell.2020.09.037_bib75
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib42
  article-title: Potent human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: bioRxiv
– volume: 67
  start-page: 271
  year: 2011
  ident: 10.1016/j.cell.2020.09.037_bib6
  article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910048675
– volume: 163
  start-page: 70
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib18
  article-title: Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2019.01.016
– volume: 114
  start-page: E7348
  year: 2017
  ident: 10.1016/j.cell.2020.09.037_bib65
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– volume: 184
  start-page: 226
  year: 2013
  ident: 10.1016/j.cell.2020.09.037_bib12
  article-title: One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2013.08.002
– volume: 78
  start-page: 779
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib37
  article-title: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.022
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib76
  article-title: Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection
  publication-title: medRxiv
– volume: 82
  start-page: 3220
  year: 2008
  ident: 10.1016/j.cell.2020.09.037_bib72
  article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge
  publication-title: J. Virol.
  doi: 10.1128/JVI.02377-07
– volume: 369
  start-page: 1014
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib7
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
  doi: 10.1126/science.abd0831
– volume: 113
  start-page: 3048
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib59
  article-title: SARS-like WIV1-CoV poised for human emergence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1517719113
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib41
  article-title: A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein
  publication-title: bioRxiv
– volume: 66
  start-page: 125
  year: 2010
  ident: 10.1016/j.cell.2020.09.037_bib43
  article-title: XDS
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909047337
– volume: 8
  start-page: 365ra158
  year: 2016
  ident: 10.1016/j.cell.2020.09.037_bib63
  article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf9418
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.cell.2020.09.037_bib26
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 181
  start-page: 894
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib99
  article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 151
  start-page: 41
  year: 2005
  ident: 10.1016/j.cell.2020.09.037_bib82
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 16
  start-page: 1146
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib86
  article-title: Real-time cryo-electron microscopy data preprocessing with Warp
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0580-y
– volume: 12
  start-page: 943
  year: 2015
  ident: 10.1016/j.cell.2020.09.037_bib4
  article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3541
– volume: 333
  start-page: 850
  year: 2011
  ident: 10.1016/j.cell.2020.09.037_bib16
  article-title: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins
  publication-title: Science
  doi: 10.1126/science.1205669
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib56
  article-title: Serological Analysis of New York City COVID19 Convalescent Plasma Donors
  publication-title: medRxiv
– volume: 6
  start-page: 5
  year: 2019
  ident: 10.1016/j.cell.2020.09.037_bib111
  article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
  publication-title: IUCrJ
  doi: 10.1107/S205225251801463X
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.cell.2020.09.037_bib66
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 22
  start-page: 833
  year: 2015
  ident: 10.1016/j.cell.2020.09.037_bib1
  article-title: Privateer: software for the conformational validation of carbohydrate structures
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3115
– volume: 357
  start-page: 1162
  year: 2007
  ident: 10.1016/j.cell.2020.09.037_bib11
  article-title: Disappearance of antibodies to SARS-associated coronavirus after recovery
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc070348
– volume: 9
  start-page: 382
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib88
  article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1729069
– volume: 11
  start-page: 1620
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib64
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15562-9
– volume: 114
  start-page: 11157
  year: 2017
  ident: 10.1016/j.cell.2020.09.037_bib94
  article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1708727114
– year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib62
  article-title: Pre-existing and de novohumoral immunity to SARS-CoV-2 in humans
  publication-title: bioRxiv
– volume: 369
  start-page: 650
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib15
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 11
  start-page: 2251
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib98
  article-title: A human monoclonal antibody blocking SARS-CoV-2 infection
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-16256-y
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.cell.2020.09.037_bib108
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
SSID ssj0008555
Score 2.731564
Snippet Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and...
We report analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune...
SourceID pubmedcentral
osti
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1024
SubjectTerms Angiotensin-Converting Enzyme 2
Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - genetics
Antibodies, Monoclonal - immunology
Antibodies, Neutralizing - blood
Antibodies, Neutralizing - chemistry
Antibodies, Neutralizing - immunology
Antibodies, Viral - blood
Antibodies, Viral - chemistry
Antibodies, Viral - immunology
Antigen-Antibody Reactions
BASIC BIOLOGICAL SCIENCES
Betacoronavirus - immunology
Betacoronavirus - isolation & purification
Betacoronavirus - metabolism
Binding Sites
Biochemistry, Molecular Biology
blood serum
Coronavirus Infections - pathology
Coronavirus Infections - virology
coronaviruses
COVID-19
COVID-19 infection
effector functions
Epitope Mapping - methods
Epitopes - chemistry
Epitopes - immunology
half life
Humans
immunity
Immunoglobulin A - blood
Immunoglobulin A - immunology
Immunoglobulin G - blood
Immunoglobulin G - immunology
Immunoglobulin M - blood
Immunoglobulin M - immunology
Kinetics
Life Sciences
Molecular Dynamics Simulation
neutralizing antibodies
nucleoproteins
Pandemics
Peptidyl-Dipeptidase A - chemistry
Peptidyl-Dipeptidase A - metabolism
Pneumonia, Viral - pathology
Pneumonia, Viral - virology
Protein Binding
Protein Domains - immunology
Protein Structure, Quaternary
SARS-CoV-2
serology
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
therapeutics
vaccine development
Title Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology
URI https://dx.doi.org/10.1016/j.cell.2020.09.037
https://www.ncbi.nlm.nih.gov/pubmed/32991844
https://www.proquest.com/docview/2447548306
https://www.proquest.com/docview/2524328527
https://pasteur.hal.science/pasteur-02984796
https://www.osti.gov/servlets/purl/1846169
https://pubmed.ncbi.nlm.nih.gov/PMC7494283
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKSkhcEG-WAjIS4oKsbvyMj9uFsiDaA6Fob5adOG2gTVZtF6n8BH41M3msWAR74Jhdxx5lHv4mmflMyEuDoMD4hHlVGibLEJiHrYHFqIT1Igbd0jUdHun5sfywUIsdMht6YbCsso_9XUxvo3X_y17_NPeWVYU9vpanGlI7sEsuJHKCCpm2TXyL_XU0TpXqTjGw4Pkwum-c6Wq88OU45Ih80nGdmn9tTjdOsUpy1IDX_Q2J_llQ-dsOdXCH3O6hJZ120t8lO7G-R252h01e3yc_Dz1yMZzQo7hqX2_8wAtfF_Q99ohAetpVxdAMUOglbWoK2JBm008ZmzVfGKfZsvoWKeDMuIREne1XbUMMfdOc-6qm4ZpmLRft6iKyd6uqiAXFIhKGHwg686YQmFphHpDjg7efZ3PWn8TAci3NFRO6SHKZ2lQVIZRapnkuRSmtUKbgE69s4vGDb2l15GXqTRQhSK-khuAJ2rbiIRnVTR0fE1pKDxg1wDSeyxxAs9JRSVNKoyfB-nxMkkEFLu9pyvG0jDM31KN9dag2h2pzE-tAbWPyen3PsiPp2DpaDZp1G6bmYBfZet8rMIP1AsjLPZ9-dEsP7ri6cMhlL43V35Mx2UVLwcmRiDfHiiWYHXJpnWg7Ji8GA3LgyriKr2OzunQcyRfBgid6yxjFpeCp4iDOo87o1hIJgBawiBwTs2GOGyJv_lNXpy2luJEWmfee_Oej2SW38Ap7NBP-lIzA3OIzAGtX4Xnrjb8A7d0-Cg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWIgQXxJuyPIwEXJC1jeNHfODQ3WVp2bYHuot68zqpw4ZHUvUBKj-Bv8MfZCZJK4qgB6Q9tklsyzP-_E0y85mQZxpJgXYBczLVTKRxzBxsDcx7GRoX-liVck39geqcircjOdohP1e1MJhWWWN_heklWtf_7NWzuTfJMqzxNTxSENqBX_JQiDqz8tgvv0HcNnvVPQQjP-f86PXJQYfVRwuwRAk9Z6EaB4mITCTHcZwqESWJCFNhQqnHvOWkCRx-wUyN8jyNnPZhHAsnhQI0gOGjAhPg_mVgHxrRoDvaX8N_JGV1bIIBqIHh1ZU6VVIZvo2HoJS3KnFV_a_d8NI5pmU2Cljmf6O-f2Zw_rYlHt0g12suS9vVdN0kOz6_Ra5Up1sub5MffYfiDx_owC_K9ynf8YfLx7SLRSkQD1dpOHQItHdGi5wCGaXD9rshOyjeM06Hk-yTp0Bs_WReTNl-Vlbg0MPii8tyGi_psBS_XUw9e7PIxn5MMWuF4ReJaj1RQMJyMHfI6YXY5y5p5EXu7xOaCgekOIZmHBcJsHSpvBQ6FVq1YuOSJglWJrBJrYuOx3N8tqsEuI8WzWbRbLZlLJitSV6un5lUqiBb75Yry9oN37awbW197gW4wboDFALvtHt24mD9L6YWxfOFNupr0CS76CnYOCr_JpgiBa1D8K4CZZrk6cqBLGAH9uJyXyxmlqPao4ggatxyj-Qi5JHkMJx7ldOtRxQCl4FORJPoDXfcGPLmlTw7LzXMtTAo9ffgP6fmCbnaOen3bK87ON4l1_AKFogG_CFpgOv5R8AU5_HjcmVScnbRUPAL5dF7MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Neutralizing+and+Immunodominant+Sites+on+the+SARS-CoV-2+Spike+Receptor-Binding+Domain+by+Structure-Guided+High-Resolution+Serology&rft.jtitle=Cell&rft.au=Piccoli%2C+Luca&rft.au=Park%2C+Young-Jun&rft.au=Tortorici%2C+M+Alejandra&rft.au=Czudnochowski%2C+Nadine&rft.date=2020-11-12&rft.issn=0092-8674&rft.volume=183&rft.issue=4+p.1024-1042.e21&rft.spage=1024&rft.epage=1042&rft_id=info:doi/10.1016%2Fj.cell.2020.09.037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon