RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain

Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosi...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 63; no. 2; pp. 216 - 228
Main Authors Tatsumi, Emiko, Yamanaka, Hiroki, Kobayashi, Kimiko, Yagi, Hideshi, Sakagami, Masafumi, Noguchi, Koichi
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosine 5′‐diphosphate (2Me‐SADP) induced mechanical hypersensitivity and p38 mitogen‐activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho‐associated coiled‐coil‐containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me‐SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury‐induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury‐induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me‐SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1‐positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015;63:216–228 Main Points ROCK inhibitor suppressed not only p38 MAPK phosphorylation, but also pain behavior induced by 2Me‐SADP and in a neuropathic pain model. ROCK in the spinal microglia is involved in p38 MAPK activation and the morphological changes in microglia.
AbstractList Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosine 5′‐diphosphate (2Me‐SADP) induced mechanical hypersensitivity and p38 mitogen‐activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho‐associated coiled‐coil‐containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me‐SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury‐induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury‐induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me‐SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1‐positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015;63:216–228 Main Points ROCK inhibitor suppressed not only p38 MAPK phosphorylation, but also pain behavior induced by 2Me‐SADP and in a neuropathic pain model. ROCK in the spinal microglia is involved in p38 MAPK activation and the morphological changes in microglia.
Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2-(methylthio)adenosine 5'-diphosphate (2Me-SADP) induced mechanical hypersensitivity and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me-SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury-induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury-induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me-SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1-positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015; 63:216-228 Main Points * ROCK inhibitor suppressed not only p38 MAPK phosphorylation, but also pain behavior induced by 2Me-SADP and in a neuropathic pain model. ROCK in the spinal microglia is involved in p38 MAPK activation and the morphological changes in microglia.
Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2-(methylthio)adenosine 5'-diphosphate (2Me-SADP) induced mechanical hypersensitivity and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me-SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury-induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury-induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me-SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1-positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment.
Author Noguchi, Koichi
Yagi, Hideshi
Sakagami, Masafumi
Yamanaka, Hiroki
Kobayashi, Kimiko
Tatsumi, Emiko
Author_xml – sequence: 1
  givenname: Emiko
  surname: Tatsumi
  fullname: Tatsumi, Emiko
  organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, 663-8501, Nishinomiya, Hyogo, Japan
– sequence: 2
  givenname: Hiroki
  surname: Yamanaka
  fullname: Yamanaka, Hiroki
  organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan
– sequence: 3
  givenname: Kimiko
  surname: Kobayashi
  fullname: Kobayashi, Kimiko
  organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan
– sequence: 4
  givenname: Hideshi
  surname: Yagi
  fullname: Yagi, Hideshi
  organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan
– sequence: 5
  givenname: Masafumi
  surname: Sakagami
  fullname: Sakagami, Masafumi
  organization: Department of Otolaryngology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan
– sequence: 6
  givenname: Koichi
  surname: Noguchi
  fullname: Noguchi, Koichi
  email: noguchi@hyo-med.ac.jp
  organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25130721$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEUhS1URH9gwwMgS2wQ0jS-4_F4vIwiGqqEtqpAEWwsj8dJXGbswZ4Q8hi8MU7TdsECsbKu9Z1zf84pOnLeGYReAzkHQvLRqrXqPM95wZ6hEyCiygBoeYROSCWKDAoBx-g0xjtCIBX8BTrOGVDCczhBv2_Xfjy6vZ7McK-G9VbtcGcaqwYTcU8r_Gl8M8NKD_anGqx3WLkGdz70a9_6ldWqxXqt3CrRjd-6OASjOuyX-Cb_CvkIKA5Gm37wIWLrcOytS5LO6uD3U-__nNkEv-9tdRrBupfo-VK10bx6eM_Ql4sPnycfs_n19HIynme6LDjLGHCjq1oIUrCGMWgI07RmhJqy4ko0da6FAk44QCVEXREqDKF1yYU2S8IpPUPvDr598D82Jg6ys1GbtlXO-E2UUBZ5Cawg5X-glDNGqqJI6Nu_0Du_CWnpe4rRiomKJ-r9gUp3iDGYpeyD7VTYSSByn6ncX0feZ5rgNw-Wmzpl84Q-hpgAOABb25rdP6zkdH45fjTNDhobB_PrSaPCd1nytI1cXE3l7Nv0anExX8g5_QMNprso
CODEN GLIAEJ
CitedBy_id crossref_primary_10_1186_s12974_017_0960_0
crossref_primary_10_1007_s13577_023_00911_9
crossref_primary_10_1089_scd_2016_0040
crossref_primary_10_1016_j_bbi_2015_11_007
crossref_primary_10_1007_s10753_018_0914_4
crossref_primary_10_1016_j_neuron_2018_11_009
crossref_primary_10_2174_1871527318666191002095456
crossref_primary_10_1186_s12974_019_1476_6
crossref_primary_10_1002_jnr_24409
crossref_primary_10_1007_s00213_021_05780_4
crossref_primary_10_1016_j_brainresbull_2021_09_013
crossref_primary_10_1016_j_neuroscience_2016_01_008
crossref_primary_10_1016_j_jpain_2023_07_024
crossref_primary_10_3390_ijms22073468
crossref_primary_10_1016_j_biopha_2022_113927
crossref_primary_10_1016_j_lfs_2020_117885
crossref_primary_10_1523_ENEURO_0311_20_2020
crossref_primary_10_1016_j_coph_2015_09_006
crossref_primary_10_1016_j_pharmthera_2018_03_008
crossref_primary_10_3390_ijms22063279
crossref_primary_10_1136_bmjopen_2015_010651
crossref_primary_10_1038_s41598_023_36808_8
crossref_primary_10_3389_fnagi_2021_768156
crossref_primary_10_3390_cancers12102798
crossref_primary_10_1080_01616412_2022_2129774
crossref_primary_10_1007_s12035_022_02925_0
crossref_primary_10_1016_j_neuropharm_2023_109818
crossref_primary_10_1111_cns_14211
crossref_primary_10_3390_ijms22136687
crossref_primary_10_1002_ejp_722
crossref_primary_10_1016_j_biopha_2023_114655
crossref_primary_10_1016_j_toxlet_2022_10_001
crossref_primary_10_1016_j_spinee_2020_08_011
crossref_primary_10_1016_j_neulet_2019_134379
crossref_primary_10_1016_j_sjpain_2015_06_004
crossref_primary_10_1016_j_bbi_2015_10_006
crossref_primary_10_1007_s11064_018_2578_8
crossref_primary_10_14348_molcells_2017_0011
crossref_primary_10_3390_molecules27061919
crossref_primary_10_1007_s11064_023_04025_4
crossref_primary_10_1016_j_jpain_2023_01_005
crossref_primary_10_1016_j_cellsig_2021_110205
crossref_primary_10_1080_14728222_2016_1214716
crossref_primary_10_1038_s41419_019_1425_4
crossref_primary_10_3389_fphys_2022_1037417
crossref_primary_10_1016_j_biopha_2023_114713
crossref_primary_10_1038_s41374_018_0022_y
crossref_primary_10_1111_bph_15641
crossref_primary_10_1590_acb370303
crossref_primary_10_1016_j_ejphar_2022_175211
crossref_primary_10_1515_mr_2023_0034
crossref_primary_10_3390_cells9010230
crossref_primary_10_1177_1744806916644929
crossref_primary_10_1016_j_neuroscience_2020_09_024
crossref_primary_10_4155_fmc_15_45
crossref_primary_10_4103_1673_5374_197147
crossref_primary_10_1002_dneu_22905
crossref_primary_10_1177_1744806920919568
crossref_primary_10_3389_fncel_2018_00134
crossref_primary_10_3389_fpain_2021_698157
crossref_primary_10_1016_j_brainresbull_2019_02_011
crossref_primary_10_1038_s41598_020_68770_0
crossref_primary_10_1007_s11302_017_9594_z
crossref_primary_10_1039_D3NA00149K
crossref_primary_10_1007_s11302_018_9616_5
crossref_primary_10_1016_j_phrs_2021_106045
crossref_primary_10_1002_glia_24097
crossref_primary_10_1002_wrna_1678
crossref_primary_10_1167_iovs_62_12_24
crossref_primary_10_3389_fnagi_2017_00094
crossref_primary_10_1007_s13311_021_01138_y
crossref_primary_10_1016_j_pbb_2019_172788
crossref_primary_10_1186_s12974_019_1603_4
crossref_primary_10_3390_biomedicines10061255
crossref_primary_10_1002_jcb_28972
crossref_primary_10_3390_ijms24032341
crossref_primary_10_3389_fnins_2020_00782
crossref_primary_10_3390_cells8060591
crossref_primary_10_1111_tra_12784
crossref_primary_10_17116_jnevro201811851143
crossref_primary_10_7759_cureus_16973
crossref_primary_10_1177_09727531211046367
crossref_primary_10_1002_jcp_26867
crossref_primary_10_1016_j_neubiorev_2021_09_018
crossref_primary_10_1016_j_neuroscience_2018_12_021
Cites_doi 10.1002/glia.22373
10.1016/j.cellsig.2008.09.016
10.1038/sj.emboj.7601637
10.1111/j.1460-9568.2007.05344.x
10.1016/j.pain.2010.10.005
10.1016/S0896-6273(00)81175-7
10.1523/JNEUROSCI.23-10-04017.2003
10.1016/j.neuint.2010.07.008
10.1002/glia.21053
10.1016/j.bcp.2004.02.038
10.1046/j.1460-9568.2003.02848.x
10.1080/09537100500163424
10.1016/j.cryobiol.2011.11.005
10.1128/MCB.17.3.1201
10.1002/glia.10151
10.1002/glia.20948
10.1002/glia.10308
10.1002/jnr.490350108
10.1002/cne.22588
10.1126/stke.2522004re14
10.1016/S0169-328X(01)00188-7
10.1016/S1734-1140(13)71049-1
10.1006/bbrc.1999.1409
10.1111/j.1538-7836.2004.00556.x
10.1016/S0304-3959(00)00276-1
10.1046/j.1460-9568.2003.03080.x
10.1002/cne.21066
10.1074/jbc.M009718200
10.1016/j.cardiores.2006.06.024
10.1038/35051599
10.1093/cvr/cvm020
10.1042/BST0330891
10.1016/S0014-4886(03)00343-1
10.1016/j.neuroscience.2004.10.022
10.1111/jsm.12134
10.1016/j.brainresrev.2008.12.011
10.1523/JNEUROSCI.5589-07.2008
10.1161/01.RES.0000089255.37804.72
10.1038/nm943
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
DOI 10.1002/glia.22745
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 228
ExternalDocumentID 3524692971
10_1002_glia_22745
25130721
GLIA22745
ark_67375_WNG_KZGNWFLW_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Grants‐in‐Aid for Scientific Research #24500416, 252910016
– fundername: Hyogo College of Medicine
– fundername: Grant‐in‐Aid for Graduate Students
– fundername: MEXT‐Supported Program for the Strategic Research Foundation at Private University, both in Japan 2009–2013
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c6475-517ec8b99045d551d05c3b503e687a9db2c9a170711899b8039e03b679cef0733
IEDL.DBID DR2
ISSN 0894-1491
IngestDate Fri Aug 16 12:15:21 EDT 2024
Fri Aug 16 01:22:15 EDT 2024
Thu Oct 10 22:05:54 EDT 2024
Fri Aug 23 03:36:30 EDT 2024
Sat Sep 28 08:06:24 EDT 2024
Sat Aug 24 01:07:37 EDT 2024
Wed Oct 30 09:56:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords chronic pain
peripheral nerve injury
P2 receptors
intracellular signaling cascade
glial activation
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6475-517ec8b99045d551d05c3b503e687a9db2c9a170711899b8039e03b679cef0733
Notes Grants-in-Aid for Scientific Research #24500416, 252910016
istex:22B412160860639B1EEDC1512122B4063363D458
Hyogo College of Medicine
MEXT-Supported Program for the Strategic Research Foundation at Private University, both in Japan 2009-2013
Grant-in-Aid for Graduate Students
ark:/67375/WNG-KZGNWFLW-L
ArticleID:GLIA22745
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25130721
PQID 1635385987
PQPubID 996331
PageCount 13
ParticipantIDs proquest_miscellaneous_1642615406
proquest_miscellaneous_1637550844
proquest_journals_1635385987
crossref_primary_10_1002_glia_22745
pubmed_primary_25130721
wiley_primary_10_1002_glia_22745_GLIA22745
istex_primary_ark_67375_WNG_KZGNWFLW_L
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. 2004. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45:89-95.
Zeidan A, Javadov S, Karmazyn M. 2006. Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res 72:101-111.
Lever I, Cunningham J, Grist J, Yip PK, Malcangio M. 2003. Release of BDNF and GABA in the dorsal horn of neuropathic rats. Eur J Neurosci 18:1169-1174.
Kozma R, Sarner S, Ahmed S, Lim L. 1997. Rho family GTPases and neuronal growth cone remodelling: Relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201-1211.
Hashimoto R, Nakamura Y, Kosako H, Amano M, Kaibuchi K, Inagaki M, Takeda M. 1999. Distribution of Rho-kinase in the bovine brain. Biochem Biophys Res Commun 263:575-579.
Okubo M, Yamanaka H, Kobayashi K, Noguchi K. 2010. Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia 58:599-610.
Decosterd I, Woolf CJ. 2000. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 87:149-158.
Yamanaka H, Obata K, Fukuoka T, Dai Y, Kobayashi K, Tokunaga A, Noguchi K. 2004. Tissue plasminogen activator in primary afferents induces dorsal horn excitability and pain response after peripheral nerve injury. Eur J Neurosci 19:93-102.
Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K. 2006. Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443-454.
Maeda M, Tsuda M, Tozaki-Saitoh H, Inoue K, Kiyama H. 2010. Nerve injury-activated microglia engulf myelinated axons in a P2Y12 signaling-dependent manner in the dorsal horn. Glia 58:1838-1846.
Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. 2003. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res 93:277-279.
Jin SX, Zhuang ZY, Woolf CJ, Ji RR. 2003. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23:4017-4022.
Tatsumi S, Mabuchi T, Katano T, Matsumura S, Abe T, Hidaka H, Suzuki M, Sasaki Y, Minami T, Ito S. 2005. Involvement of Rho-kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS). Neuroscience 131:491-498.
Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K. 2008. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 28:2892-2902.
Moers A, Nieswandt B, Massberg S, Wettschureck N, Grüner S, Konrad I, Schulte V, Aktas B, Gratacap MP, Simon MI, Gawaz M, Offermanns S. 2003. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9:1418-1422.
Ji RR, Strichartz G. 2004. Cell signaling and the genesis of neuropathic pain. Sci STKE 2004:reE14.
Lee SY, Kim B, Jeong HK, Min KJ, Liu T, Park JY, Joe EH, Jou I. 2010. Enhanced phosphatidylinositol 4-phosphate 5-kinase alpha expression and PI(4,5)P2 production in LPS-stimulated microglia. Neurochem Int 57:600-607.
Kalmar B, Greensmith L, Malcangio M, McMahon SB, Csermely P, Burnstock G. 2003. The effect of treatment with BRX-220, a co-inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury. Exp Neurol 184:636-647.
Malaval C, Laffargue M, Barbaras R, Rolland C, Peres C, Champagne E, Perret B, Tercé F, Collet X, Martinez LO. 2009. RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes. Cell Signal 21:120-127.
Schmidt A, Durgan J, Magalhaes A, Hall A. 2007. Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J 26:1624-1636.
Ji RR, Gereau RW, Malcangio M, Strichartz GR. 2009. MAP kinase and pain. Brain Res Rev 60:135-148.
Ohsawa M, Aasato M, Hayashi SS, Kamei J. 2011. RhoA/Rho kinase pathway contributes to the pathogenesis of thermal hyperalgesia in diabetic mice. Pain 152:114-122.
Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP. 2004. Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol 68:113-124.
Yamanaka H, Obata K, Kobayashi K, Dai Y, Fukuoka T, Noguchi K. 2007. Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain. Eur J Neurosci 25:1097-1111.
Hardy AR, Hill DJ, Poole AW. 2005. Evidence that the purinergic receptor P2Y12 potentiates platelet shape change by a Rho kinase-dependent mechanism. Platelets 16:415-429.
Toque HA, Nunes KP, Yao L, Liao JK, Webb RC, Caldwell RB, Caldwell RW. 2013. Activated Rho kinase mediates diabetes-induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: Possible involvement of p38 MAPK activation. J Sex Med 10:1502-1515.
Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB. 2001. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202-207.
Soulet C, Sauzeau V, Plantavid M, Herbert JM, Pacaud P, Payrastre B, Savi P. 2004. Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. J Thromb Haemost 2:135-146.
Newton RA, Bingham S, Case PC, Sanger GJ, Lawson SN. 2001. Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 95:1-8.
Hang LH, Yang JP, Shao DH, Chen Z, Wang H. 2013. Involvement of spinal PKA/CREB signaling pathway in the development of bone cancer pain. Pharmacol Rep 65:710-716.
Koistinaho M, Koistinaho J. 2002. Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40:175-183.
Hall A. 2005. Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5):891-895.
Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr. 2001. ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608-8615.
Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K, Maekawa M, Ishizaki T, Narumiya S. 2000. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26:431-441.
Noguchi K, De León M, Nahin RL, Senba E, Ruda MA. 1993. Quantification of axotomy-induced alteration of neuropeptide mRNAs in dorsal root ganglion neurons with special reference to neuropeptide Y mRNA and the effects of neonatal capsaicin treatment. J Neurosci Res 35:54-66.
Yamanaka H, Kobayashi K, Okubo M, Fukuoka T, Noguchi K. 2011. Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain. J Comp Neurol 519:1597-1615.
Zeidan A, Javadov S, Chakrabarti S, Karmazyn M. 2008. Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovasc Res 77:64-72.
Ichikawa H, Nakata N, Abo Y, Shirasawa S, Yokoyama T, Yoshie S, Yue F, Tomotsune D, Sasaki K. 2012. Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells. Cryobiology 64:12-22.
Kobayashi K, Yamanaka H, Yanamoto F, Okubo M, Noguchi K. 2012. Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury. Glia 60:1529-1539.
2012; 60
2010; 58
2009; 21
2006; 72
2010; 57
2005; 131
2000; 26
2013; 65
2011; 519
2009; 60
2000; 87
2004; 45
2004; 68
1999; 263
2001; 409
2003; 18
2008; 77
2004; 2
2011; 152
2003; 93
2006; 498
2001; 276
1993; 35
2013; 10
2004; 19
2002; 40
2008; 28
2003; 9
2005; 5
2003; 184
1997; 17
2004; 2004
2005; 16
2001; 95
2012; 64
2007; 25
2007; 26
2003; 23
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
Hall A (e_1_2_6_5_1) 2005; 5
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 519
  start-page: 1597
  year: 2011
  end-page: 1615
  article-title: Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain
  publication-title: J Comp Neurol
– volume: 60
  start-page: 1529
  year: 2012
  end-page: 1539
  article-title: Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury
  publication-title: Glia
– volume: 2004
  start-page: reE14
  year: 2004
  article-title: Cell signaling and the genesis of neuropathic pain
  publication-title: Sci STKE
– volume: 26
  start-page: 431
  year: 2000
  end-page: 441
  article-title: A critical role for a Rho‐associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons
  publication-title: Neuron
– volume: 152
  start-page: 114
  year: 2011
  end-page: 122
  article-title: RhoA/Rho kinase pathway contributes to the pathogenesis of thermal hyperalgesia in diabetic mice
  publication-title: Pain
– volume: 45
  start-page: 89
  year: 2004
  end-page: 95
  article-title: Activation of p38 mitogen‐activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury
  publication-title: Glia
– volume: 17
  start-page: 1201
  year: 1997
  end-page: 1211
  article-title: Rho family GTPases and neuronal growth cone remodelling: Relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid
  publication-title: Mol Cell Biol
– volume: 72
  start-page: 101
  year: 2006
  end-page: 111
  article-title: Essential role of Rho/ROCK‐dependent processes and actin dynamics in mediating leptin‐induced hypertrophy in rat neonatal ventricular myocytes
  publication-title: Cardiovasc Res
– volume: 60
  start-page: 135
  year: 2009
  end-page: 148
  article-title: MAP kinase and pain
  publication-title: Brain Res Rev
– volume: 276
  start-page: 8608
  year: 2001
  end-page: 8615
  article-title: ADP is the cognate ligand for the orphan G protein‐coupled receptor SP1999
  publication-title: J Biol Chem
– volume: 77
  start-page: 64
  year: 2008
  end-page: 72
  article-title: Leptin‐induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK‐dependent p38 MAPK translocation to nuclei
  publication-title: Cardiovasc Res
– volume: 5)
  start-page: 891
  year: 2005
  end-page: 895
  article-title: Rho GTPases and the control of cell behaviour
  publication-title: Biochem Soc Trans 33(Pt
– volume: 40
  start-page: 175
  year: 2002
  end-page: 183
  article-title: Role of p38 and p44/42 mitogen‐activated protein kinases in microglia
  publication-title: Glia
– volume: 35
  start-page: 54
  year: 1993
  end-page: 66
  article-title: Quantification of axotomy‐induced alteration of neuropeptide mRNAs in dorsal root ganglion neurons with special reference to neuropeptide Y mRNA and the effects of neonatal capsaicin treatment
  publication-title: J Neurosci Res
– volume: 64
  start-page: 12
  year: 2012
  end-page: 22
  article-title: Gene pathway analysis of the mechanism by which the Rho‐associated kinase inhibitor Y‐27632 inhibits apoptosis in isolated thawed human embryonic stem cells
  publication-title: Cryobiology
– volume: 263
  start-page: 575
  year: 1999
  end-page: 579
  article-title: Distribution of Rho‐kinase in the bovine brain
  publication-title: Biochem Biophys Res Commun
– volume: 498
  start-page: 443
  year: 2006
  end-page: 454
  article-title: Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord
  publication-title: J Comp Neurol
– volume: 10
  start-page: 1502
  year: 2013
  end-page: 1515
  article-title: Activated Rho kinase mediates diabetes‐induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: Possible involvement of p38 MAPK activation
  publication-title: J Sex Med
– volume: 18
  start-page: 1169
  year: 2003
  end-page: 1174
  article-title: Release of BDNF and GABA in the dorsal horn of neuropathic rats
  publication-title: Eur J Neurosci
– volume: 95
  start-page: 1
  year: 2001
  end-page: 8
  article-title: Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta‐1 subunit following partial sciatic nerve injury
  publication-title: Brain Res Mol Brain Res
– volume: 2
  start-page: 135
  year: 2004
  end-page: 146
  article-title: Gi‐dependent and ‐independent mechanisms downstream of the P2Y12 ADP‐receptor
  publication-title: J Thromb Haemost
– volume: 23
  start-page: 4017
  year: 2003
  end-page: 4022
  article-title: p38 mitogen‐activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain
  publication-title: J Neurosci
– volume: 57
  start-page: 600
  year: 2010
  end-page: 607
  article-title: Enhanced phosphatidylinositol 4‐phosphate 5‐kinase alpha expression and PI(4,5)P2 production in LPS‐stimulated microglia
  publication-title: Neurochem Int
– volume: 131
  start-page: 491
  year: 2005
  end-page: 498
  article-title: Involvement of Rho‐kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine‐rich C‐kinase substrate (MARCKS)
  publication-title: Neuroscience
– volume: 68
  start-page: 113
  year: 2004
  end-page: 124
  article-title: Cloning, pharmacological characterisation and distribution of the rat G‐protein‐coupled P2Y(13) receptor
  publication-title: Biochem Pharmacol
– volume: 25
  start-page: 1097
  year: 2007
  end-page: 1111
  article-title: Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain
  publication-title: Eur J Neurosci
– volume: 65
  start-page: 710
  year: 2013
  end-page: 716
  article-title: Involvement of spinal PKA/CREB signaling pathway in the development of bone cancer pain
  publication-title: Pharmacol Rep
– volume: 26
  start-page: 1624
  year: 2007
  end-page: 1636
  article-title: Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis
  publication-title: EMBO J
– volume: 58
  start-page: 599
  year: 2010
  end-page: 610
  article-title: Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain
  publication-title: Glia
– volume: 19
  start-page: 93
  year: 2004
  end-page: 102
  article-title: Tissue plasminogen activator in primary afferents induces dorsal horn excitability and pain response after peripheral nerve injury
  publication-title: Eur J Neurosci
– volume: 58
  start-page: 1838
  year: 2010
  end-page: 1846
  article-title: Nerve injury‐activated microglia engulf myelinated axons in a P2Y12 signaling‐dependent manner in the dorsal horn
  publication-title: Glia
– volume: 93
  start-page: 277
  year: 2003
  end-page: 279
  article-title: The obesity‐associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes
  publication-title: Circ Res
– volume: 21
  start-page: 120
  year: 2009
  end-page: 127
  article-title: RhoA/ROCK I signalling downstream of the P2Y13 ADP‐receptor controls HDL endocytosis in human hepatocytes
  publication-title: Cell Signal
– volume: 9
  start-page: 1418
  year: 2003
  end-page: 1422
  article-title: G13 is an essential mediator of platelet activation in hemostasis and thrombosis
  publication-title: Nat Med
– volume: 409
  start-page: 202
  year: 2001
  end-page: 207
  article-title: Identification of the platelet ADP receptor targeted by antithrombotic drugs
  publication-title: Nature
– volume: 87
  start-page: 149
  year: 2000
  end-page: 158
  article-title: Spared nerve injury: An animal model of persistent peripheral neuropathic pain
  publication-title: Pain
– volume: 16
  start-page: 415
  year: 2005
  end-page: 429
  article-title: Evidence that the purinergic receptor P2Y12 potentiates platelet shape change by a Rho kinase‐dependent mechanism
  publication-title: Platelets
– volume: 184
  start-page: 636
  year: 2003
  end-page: 647
  article-title: The effect of treatment with BRX‐220, a co‐inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury
  publication-title: Exp Neurol
– volume: 28
  start-page: 2892
  year: 2008
  end-page: 2902
  article-title: P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain
  publication-title: J Neurosci
– ident: e_1_2_6_17_1
  doi: 10.1002/glia.22373
– ident: e_1_2_6_23_1
  doi: 10.1016/j.cellsig.2008.09.016
– ident: e_1_2_6_30_1
  doi: 10.1038/sj.emboj.7601637
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1460-9568.2007.05344.x
– ident: e_1_2_6_27_1
  doi: 10.1016/j.pain.2010.10.005
– ident: e_1_2_6_2_1
  doi: 10.1016/S0896-6273(00)81175-7
– ident: e_1_2_6_13_1
  doi: 10.1523/JNEUROSCI.23-10-04017.2003
– ident: e_1_2_6_20_1
  doi: 10.1016/j.neuint.2010.07.008
– ident: e_1_2_6_22_1
  doi: 10.1002/glia.21053
– ident: e_1_2_6_4_1
  doi: 10.1016/j.bcp.2004.02.038
– ident: e_1_2_6_21_1
  doi: 10.1046/j.1460-9568.2003.02848.x
– ident: e_1_2_6_7_1
  doi: 10.1080/09537100500163424
– ident: e_1_2_6_10_1
  doi: 10.1016/j.cryobiol.2011.11.005
– ident: e_1_2_6_19_1
  doi: 10.1128/MCB.17.3.1201
– ident: e_1_2_6_18_1
  doi: 10.1002/glia.10151
– ident: e_1_2_6_28_1
  doi: 10.1002/glia.20948
– ident: e_1_2_6_34_1
  doi: 10.1002/glia.10308
– ident: e_1_2_6_26_1
  doi: 10.1002/jnr.490350108
– ident: e_1_2_6_35_1
  doi: 10.1002/cne.22588
– ident: e_1_2_6_12_1
  doi: 10.1126/stke.2522004re14
– ident: e_1_2_6_25_1
  doi: 10.1016/S0169-328X(01)00188-7
– ident: e_1_2_6_6_1
  doi: 10.1016/S1734-1140(13)71049-1
– ident: e_1_2_6_8_1
  doi: 10.1006/bbrc.1999.1409
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1538-7836.2004.00556.x
– ident: e_1_2_6_3_1
  doi: 10.1016/S0304-3959(00)00276-1
– ident: e_1_2_6_36_1
  doi: 10.1046/j.1460-9568.2003.03080.x
– ident: e_1_2_6_15_1
  doi: 10.1002/cne.21066
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.M009718200
– ident: e_1_2_6_39_1
  doi: 10.1016/j.cardiores.2006.06.024
– ident: e_1_2_6_9_1
  doi: 10.1038/35051599
– ident: e_1_2_6_38_1
  doi: 10.1093/cvr/cvm020
– volume: 5
  start-page: 891
  year: 2005
  ident: e_1_2_6_5_1
  article-title: Rho GTPases and the control of cell behaviour
  publication-title: Biochem Soc Trans 33(Pt
  doi: 10.1042/BST0330891
  contributor:
    fullname: Hall A
– ident: e_1_2_6_14_1
  doi: 10.1016/S0014-4886(03)00343-1
– ident: e_1_2_6_32_1
  doi: 10.1016/j.neuroscience.2004.10.022
– ident: e_1_2_6_33_1
  doi: 10.1111/jsm.12134
– ident: e_1_2_6_11_1
  doi: 10.1016/j.brainresrev.2008.12.011
– ident: e_1_2_6_16_1
  doi: 10.1523/JNEUROSCI.5589-07.2008
– ident: e_1_2_6_29_1
  doi: 10.1161/01.RES.0000089255.37804.72
– ident: e_1_2_6_24_1
  doi: 10.1038/nm943
SSID ssj0011497
Score 2.5098937
Snippet Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However,...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 216
SubjectTerms Adenosine Diphosphate - analogs & derivatives
Adenosine Diphosphate - toxicity
Animals
Calcium-Binding Proteins - metabolism
chronic pain
Disease Models, Animal
Enzyme Inhibitors - pharmacology
glial activation
Hyperalgesia - etiology
intracellular signaling cascade
Kinases
Male
Microfilament Proteins - metabolism
Microglia - drug effects
Microglia - metabolism
Microglia - pathology
Morphology
Neuralgia - pathology
P2 receptors
p38 Mitogen-Activated Protein Kinases - metabolism
Pain management
Pain Threshold - drug effects
Pain Threshold - physiology
peripheral nerve injury
Phosphorylation
Phosphorylation - drug effects
Purinergic P2Y Receptor Agonists - pharmacology
Purinergic P2Y Receptor Antagonists - pharmacology
Rats
Rats, Sprague-Dawley
Receptors, Purinergic P2Y - metabolism
rhoA GTP-Binding Protein - metabolism
Rodents
Signal Transduction - drug effects
Signal Transduction - physiology
Spinal Cord - drug effects
Spinal Cord - pathology
Spinal Cord Injuries - chemically induced
Spinal Cord Injuries - complications
Thionucleotides - toxicity
Title RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain
URI https://api.istex.fr/ark:/67375/WNG-KZGNWFLW-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.22745
https://www.ncbi.nlm.nih.gov/pubmed/25130721
https://www.proquest.com/docview/1635385987
https://search.proquest.com/docview/1637550844
https://search.proquest.com/docview/1642615406
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8cILX-MjMJARaA9IafPl2JF4qQbtoF2ZKqYOpMmyEweq0aRaW8H4L_iPubObTENoErxFiSNdYt_5d-e73xHyMi2UycuS-TriWJLDIj8DI-jjEWeodCmiHEMDh-P04Dh5f8JOtsjrphbG8UO0ATfUDGuvUcGVXnYvSUO_fJupTgROFVaYhzHHfK43k5Y7CnB-5mg-s8SH67DlJo26l69e2Y1u4I_98TeoeRW52q2nf5ucNkK7jJOzznqlO_nPP_gc__er7pBbG0xKe24R3SVbprpHdnoV-OPzC7pHbZaoDb_vkF-Tr3WvO_mwP6TYzPi7uqC2-AQQK13Egh72joYUiyVcqJeqqqDzGiazMbLUlRovaYFxbcxzn9O6pEfRpzDqhjEFC2wW2AKIziq6XGDTLjrHrEGUGe9ZBk7bSDkHEWbVfXLcf_tx_8DftHXw8zThzGchN7nQsA0mrADAVgQsjzULYpMKrrJCR3mmQg7YJwRnUIsgzkwQ65RnuSmxx-QDsl3VlXlEaMlEHiUiLHUJbq0I4H2mYhEkYLSzIBUeedFMr1w49g7peJojiVJL-6c9smdnvh2izs8w340zOR0P5PDzYDztj6Zy5JHdZmnIjaovJQBa2DRYJrhHnrePQUnx5EVVpl7bMRxcQZEk141BbxYAdOqRh27ZtQIBCI2RyM4jr-ziueZj5GD0rmevHv_L4CfkJkBB5vLRd8n26nxtngLcWulnVq1-AxrxI4E
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXvsZHYIARaA9IaRMnTpzHaNB29IOp2tTBixUnDqu2JtXaCsZ_wX_Mnd1mGkKT4C1KbMmxfeffne9-R8i7qMh0XpbcVSzGlBzO3ASUoItXnH6mSsFydA0MR1HvOPx0wk_WsTmYC2P5IRqHG0qG0dco4OiQbl-xhn47n2YtBlYVv022Qd4DLGDwYdywRwHSTyzRZxK68Ow37KSsfdX32nm0jVP7429g8zp2NYdP576tsLownIUYc3LWWi1VK__5B6Pjf__XA3JvDUtpavfRQ3JLV4_ITlqBST67pHvUBIoaD_wO-TU-rdP2-PN-n2I94-_ZJTX5JwBa6TwQdJge9inmS1hvL82qgs5qWM-NnqU223hBC3RtY6j7jNYlPWRffNb2AwpKWM-xChCdVnQxx7pddIaBgzhmfGdIOE0t5RyGMK0ek-POx6P9nruu7ODmURhzl_uxzoWCkzDkBWC2wuN5oLgX6EjEWVIolieZHwP88cEeVMILEu0FKoqTXJdYZvIJ2arqSj8jtOQiZ6HwS1WCZSs86M-zQHgh6O3Ei4RD3m7WV84tgYe0VM1M4qilmWmH7Jmlb5pkF2cY8hZzORl1Zf9rdzTpDCZy4JDdzd6Qa2lfSMC0cG7wRMQOedN8BjnFy5es0vXKtInBGhRheFMbNGgBQ0cOeWr3XTMgwKEBctk55L3ZPTf8jOwODlLz9PxfGr8md3pHw4EcHIz6L8hdQIbchqfvkq3lxUq_BPS1VK-MjP0GO20nmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qC-IX3-pLtOqK0g9C7pJNNtmAX0LrXetdz-OwXCvIklc96iWhd4fWf-E_dmZzSalIQb-FZAOT7M7sM7MzzwC89tIoS_JcmDH3qSRHcDNAI2jSEacdxbnkCYUGjkbewbH7_kScbMDbpham5odoA26kGdpek4JXad69JA398m0WdTg6VeIGbLmeY1FC1_6kJY9CoB_UPJ-Ba-K13ZKT8u7lu1e2oy36sz_-hjWvQle99_TuwOdG6jrl5KyzWsad5OcfhI7_-1l34fYalLKwXkX3YCMr7sN2WKBDPr9gu0ynier4-zb8mnwtw-7kw96AUTfj79EF09UnCFlZ5Uh2FI4HjKol6lgvi4qUzUuczcbKsrrWeMFSCmxTovuclTkb81Obd22HoQnOKuoBxGYFW1TUtYvNKW2QZKZ7moJTd1JOUIRZ8QCOe-8-7h2Y674OZuK5vjCF7WeJjHEfdEWKiC21ROLEwnIyT_pRkMY8CSLbR_BjozcYS8sJMsuJPT9IspyaTD6EzaIsssfAciET7ko7j3P0a6WF74vIkZaLVjuwPGnAq2Z6VVXTd6iaqJkrklrpP23Arp75dkh0fkYJb75Q01FfDT71R9PecKqGBuw0S0OtdX2hENHiriEC6Rvwsn2MWkpHL1GRlSs9xkdfULrudWPInUUE7RnwqF52rUCIQh1isjPgjV4813yM6g8PQ3315F8Gv4Cb4_2eGh6OBk_hFsJCUeem78Dm8nyVPUPotYyfaw37DaNEJko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RhoA%2FROCK+pathway+mediates+p38+MAPK+activation+and+morphological+changes+downstream+of+P2Y12%2F13+receptors+in+spinal+microglia+in+neuropathic+pain&rft.jtitle=Glia&rft.au=Tatsumi%2C+Emiko&rft.au=Yamanaka%2C+Hiroki&rft.au=Kobayashi%2C+Kimiko&rft.au=Yagi%2C+Hideshi&rft.date=2015-02-01&rft.eissn=1098-1136&rft.volume=63&rft.issue=2&rft.spage=216&rft.epage=228&rft_id=info:doi/10.1002%2Fglia.22745&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon