RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain
Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosi...
Saved in:
Published in | Glia Vol. 63; no. 2; pp. 216 - 228 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.02.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosine 5′‐diphosphate (2Me‐SADP) induced mechanical hypersensitivity and p38 mitogen‐activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho‐associated coiled‐coil‐containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me‐SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury‐induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury‐induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me‐SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1‐positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015;63:216–228
Main Points
ROCK inhibitor suppressed not only p38 MAPK phosphorylation, but also pain behavior induced by 2Me‐SADP and in a neuropathic pain model. ROCK in the spinal microglia is involved in p38 MAPK activation and the morphological changes in microglia. |
---|---|
AbstractList | Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosine 5′‐diphosphate (2Me‐SADP) induced mechanical hypersensitivity and p38 mitogen‐activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho‐associated coiled‐coil‐containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me‐SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury‐induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury‐induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me‐SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1‐positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015;63:216–228
Main Points
ROCK inhibitor suppressed not only p38 MAPK phosphorylation, but also pain behavior induced by 2Me‐SADP and in a neuropathic pain model. ROCK in the spinal microglia is involved in p38 MAPK activation and the morphological changes in microglia. Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2-(methylthio)adenosine 5'-diphosphate (2Me-SADP) induced mechanical hypersensitivity and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me-SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury-induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury-induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me-SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1-positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015; 63:216-228 Main Points * ROCK inhibitor suppressed not only p38 MAPK phosphorylation, but also pain behavior induced by 2Me-SADP and in a neuropathic pain model. ROCK in the spinal microglia is involved in p38 MAPK activation and the morphological changes in microglia. Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2-(methylthio)adenosine 5'-diphosphate (2Me-SADP) induced mechanical hypersensitivity and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me-SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury-induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury-induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me-SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1-positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. |
Author | Noguchi, Koichi Yagi, Hideshi Sakagami, Masafumi Yamanaka, Hiroki Kobayashi, Kimiko Tatsumi, Emiko |
Author_xml | – sequence: 1 givenname: Emiko surname: Tatsumi fullname: Tatsumi, Emiko organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, 663-8501, Nishinomiya, Hyogo, Japan – sequence: 2 givenname: Hiroki surname: Yamanaka fullname: Yamanaka, Hiroki organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan – sequence: 3 givenname: Kimiko surname: Kobayashi fullname: Kobayashi, Kimiko organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan – sequence: 4 givenname: Hideshi surname: Yagi fullname: Yagi, Hideshi organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan – sequence: 5 givenname: Masafumi surname: Sakagami fullname: Sakagami, Masafumi organization: Department of Otolaryngology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan – sequence: 6 givenname: Koichi surname: Noguchi fullname: Noguchi, Koichi email: noguchi@hyo-med.ac.jp organization: Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo, 663-8501, Nishinomiya, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25130721$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uEzEUhS1URH9gwwMgS2wQ0jS-4_F4vIwiGqqEtqpAEWwsj8dJXGbswZ4Q8hi8MU7TdsECsbKu9Z1zf84pOnLeGYReAzkHQvLRqrXqPM95wZ6hEyCiygBoeYROSCWKDAoBx-g0xjtCIBX8BTrOGVDCczhBv2_Xfjy6vZ7McK-G9VbtcGcaqwYTcU8r_Gl8M8NKD_anGqx3WLkGdz70a9_6ldWqxXqt3CrRjd-6OASjOuyX-Cb_CvkIKA5Gm37wIWLrcOytS5LO6uD3U-__nNkEv-9tdRrBupfo-VK10bx6eM_Ql4sPnycfs_n19HIynme6LDjLGHCjq1oIUrCGMWgI07RmhJqy4ko0da6FAk44QCVEXREqDKF1yYU2S8IpPUPvDr598D82Jg6ys1GbtlXO-E2UUBZ5Cawg5X-glDNGqqJI6Nu_0Du_CWnpe4rRiomKJ-r9gUp3iDGYpeyD7VTYSSByn6ncX0feZ5rgNw-Wmzpl84Q-hpgAOABb25rdP6zkdH45fjTNDhobB_PrSaPCd1nytI1cXE3l7Nv0anExX8g5_QMNprso |
CODEN | GLIAEJ |
CitedBy_id | crossref_primary_10_1186_s12974_017_0960_0 crossref_primary_10_1007_s13577_023_00911_9 crossref_primary_10_1089_scd_2016_0040 crossref_primary_10_1016_j_bbi_2015_11_007 crossref_primary_10_1007_s10753_018_0914_4 crossref_primary_10_1016_j_neuron_2018_11_009 crossref_primary_10_2174_1871527318666191002095456 crossref_primary_10_1186_s12974_019_1476_6 crossref_primary_10_1002_jnr_24409 crossref_primary_10_1007_s00213_021_05780_4 crossref_primary_10_1016_j_brainresbull_2021_09_013 crossref_primary_10_1016_j_neuroscience_2016_01_008 crossref_primary_10_1016_j_jpain_2023_07_024 crossref_primary_10_3390_ijms22073468 crossref_primary_10_1016_j_biopha_2022_113927 crossref_primary_10_1016_j_lfs_2020_117885 crossref_primary_10_1523_ENEURO_0311_20_2020 crossref_primary_10_1016_j_coph_2015_09_006 crossref_primary_10_1016_j_pharmthera_2018_03_008 crossref_primary_10_3390_ijms22063279 crossref_primary_10_1136_bmjopen_2015_010651 crossref_primary_10_1038_s41598_023_36808_8 crossref_primary_10_3389_fnagi_2021_768156 crossref_primary_10_3390_cancers12102798 crossref_primary_10_1080_01616412_2022_2129774 crossref_primary_10_1007_s12035_022_02925_0 crossref_primary_10_1016_j_neuropharm_2023_109818 crossref_primary_10_1111_cns_14211 crossref_primary_10_3390_ijms22136687 crossref_primary_10_1002_ejp_722 crossref_primary_10_1016_j_biopha_2023_114655 crossref_primary_10_1016_j_toxlet_2022_10_001 crossref_primary_10_1016_j_spinee_2020_08_011 crossref_primary_10_1016_j_neulet_2019_134379 crossref_primary_10_1016_j_sjpain_2015_06_004 crossref_primary_10_1016_j_bbi_2015_10_006 crossref_primary_10_1007_s11064_018_2578_8 crossref_primary_10_14348_molcells_2017_0011 crossref_primary_10_3390_molecules27061919 crossref_primary_10_1007_s11064_023_04025_4 crossref_primary_10_1016_j_jpain_2023_01_005 crossref_primary_10_1016_j_cellsig_2021_110205 crossref_primary_10_1080_14728222_2016_1214716 crossref_primary_10_1038_s41419_019_1425_4 crossref_primary_10_3389_fphys_2022_1037417 crossref_primary_10_1016_j_biopha_2023_114713 crossref_primary_10_1038_s41374_018_0022_y crossref_primary_10_1111_bph_15641 crossref_primary_10_1590_acb370303 crossref_primary_10_1016_j_ejphar_2022_175211 crossref_primary_10_1515_mr_2023_0034 crossref_primary_10_3390_cells9010230 crossref_primary_10_1177_1744806916644929 crossref_primary_10_1016_j_neuroscience_2020_09_024 crossref_primary_10_4155_fmc_15_45 crossref_primary_10_4103_1673_5374_197147 crossref_primary_10_1002_dneu_22905 crossref_primary_10_1177_1744806920919568 crossref_primary_10_3389_fncel_2018_00134 crossref_primary_10_3389_fpain_2021_698157 crossref_primary_10_1016_j_brainresbull_2019_02_011 crossref_primary_10_1038_s41598_020_68770_0 crossref_primary_10_1007_s11302_017_9594_z crossref_primary_10_1039_D3NA00149K crossref_primary_10_1007_s11302_018_9616_5 crossref_primary_10_1016_j_phrs_2021_106045 crossref_primary_10_1002_glia_24097 crossref_primary_10_1002_wrna_1678 crossref_primary_10_1167_iovs_62_12_24 crossref_primary_10_3389_fnagi_2017_00094 crossref_primary_10_1007_s13311_021_01138_y crossref_primary_10_1016_j_pbb_2019_172788 crossref_primary_10_1186_s12974_019_1603_4 crossref_primary_10_3390_biomedicines10061255 crossref_primary_10_1002_jcb_28972 crossref_primary_10_3390_ijms24032341 crossref_primary_10_3389_fnins_2020_00782 crossref_primary_10_3390_cells8060591 crossref_primary_10_1111_tra_12784 crossref_primary_10_17116_jnevro201811851143 crossref_primary_10_7759_cureus_16973 crossref_primary_10_1177_09727531211046367 crossref_primary_10_1002_jcp_26867 crossref_primary_10_1016_j_neubiorev_2021_09_018 crossref_primary_10_1016_j_neuroscience_2018_12_021 |
Cites_doi | 10.1002/glia.22373 10.1016/j.cellsig.2008.09.016 10.1038/sj.emboj.7601637 10.1111/j.1460-9568.2007.05344.x 10.1016/j.pain.2010.10.005 10.1016/S0896-6273(00)81175-7 10.1523/JNEUROSCI.23-10-04017.2003 10.1016/j.neuint.2010.07.008 10.1002/glia.21053 10.1016/j.bcp.2004.02.038 10.1046/j.1460-9568.2003.02848.x 10.1080/09537100500163424 10.1016/j.cryobiol.2011.11.005 10.1128/MCB.17.3.1201 10.1002/glia.10151 10.1002/glia.20948 10.1002/glia.10308 10.1002/jnr.490350108 10.1002/cne.22588 10.1126/stke.2522004re14 10.1016/S0169-328X(01)00188-7 10.1016/S1734-1140(13)71049-1 10.1006/bbrc.1999.1409 10.1111/j.1538-7836.2004.00556.x 10.1016/S0304-3959(00)00276-1 10.1046/j.1460-9568.2003.03080.x 10.1002/cne.21066 10.1074/jbc.M009718200 10.1016/j.cardiores.2006.06.024 10.1038/35051599 10.1093/cvr/cvm020 10.1042/BST0330891 10.1016/S0014-4886(03)00343-1 10.1016/j.neuroscience.2004.10.022 10.1111/jsm.12134 10.1016/j.brainresrev.2008.12.011 10.1523/JNEUROSCI.5589-07.2008 10.1161/01.RES.0000089255.37804.72 10.1038/nm943 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
DOI | 10.1002/glia.22745 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Neurosciences Abstracts MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-1136 |
EndPage | 228 |
ExternalDocumentID | 3524692971 10_1002_glia_22745 25130721 GLIA22745 ark_67375_WNG_KZGNWFLW_L |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Grants‐in‐Aid for Scientific Research #24500416, 252910016 – fundername: Hyogo College of Medicine – fundername: Grant‐in‐Aid for Graduate Students – fundername: MEXT‐Supported Program for the Strategic Research Foundation at Private University, both in Japan 2009–2013 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
ID | FETCH-LOGICAL-c6475-517ec8b99045d551d05c3b503e687a9db2c9a170711899b8039e03b679cef0733 |
IEDL.DBID | DR2 |
ISSN | 0894-1491 |
IngestDate | Fri Aug 16 12:15:21 EDT 2024 Fri Aug 16 01:22:15 EDT 2024 Thu Oct 10 22:05:54 EDT 2024 Fri Aug 23 03:36:30 EDT 2024 Sat Sep 28 08:06:24 EDT 2024 Sat Aug 24 01:07:37 EDT 2024 Wed Oct 30 09:56:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | chronic pain peripheral nerve injury P2 receptors intracellular signaling cascade glial activation |
Language | English |
License | 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6475-517ec8b99045d551d05c3b503e687a9db2c9a170711899b8039e03b679cef0733 |
Notes | Grants-in-Aid for Scientific Research #24500416, 252910016 istex:22B412160860639B1EEDC1512122B4063363D458 Hyogo College of Medicine MEXT-Supported Program for the Strategic Research Foundation at Private University, both in Japan 2009-2013 Grant-in-Aid for Graduate Students ark:/67375/WNG-KZGNWFLW-L ArticleID:GLIA22745 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25130721 |
PQID | 1635385987 |
PQPubID | 996331 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1642615406 proquest_miscellaneous_1637550844 proquest_journals_1635385987 crossref_primary_10_1002_glia_22745 pubmed_primary_25130721 wiley_primary_10_1002_glia_22745_GLIA22745 istex_primary_ark_67375_WNG_KZGNWFLW_L |
PublicationCentury | 2000 |
PublicationDate | February 2015 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Glia |
PublicationTitleAlternate | Glia |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. 2004. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45:89-95. Zeidan A, Javadov S, Karmazyn M. 2006. Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res 72:101-111. Lever I, Cunningham J, Grist J, Yip PK, Malcangio M. 2003. Release of BDNF and GABA in the dorsal horn of neuropathic rats. Eur J Neurosci 18:1169-1174. Kozma R, Sarner S, Ahmed S, Lim L. 1997. Rho family GTPases and neuronal growth cone remodelling: Relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201-1211. Hashimoto R, Nakamura Y, Kosako H, Amano M, Kaibuchi K, Inagaki M, Takeda M. 1999. Distribution of Rho-kinase in the bovine brain. Biochem Biophys Res Commun 263:575-579. Okubo M, Yamanaka H, Kobayashi K, Noguchi K. 2010. Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia 58:599-610. Decosterd I, Woolf CJ. 2000. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 87:149-158. Yamanaka H, Obata K, Fukuoka T, Dai Y, Kobayashi K, Tokunaga A, Noguchi K. 2004. Tissue plasminogen activator in primary afferents induces dorsal horn excitability and pain response after peripheral nerve injury. Eur J Neurosci 19:93-102. Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K. 2006. Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443-454. Maeda M, Tsuda M, Tozaki-Saitoh H, Inoue K, Kiyama H. 2010. Nerve injury-activated microglia engulf myelinated axons in a P2Y12 signaling-dependent manner in the dorsal horn. Glia 58:1838-1846. Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. 2003. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res 93:277-279. Jin SX, Zhuang ZY, Woolf CJ, Ji RR. 2003. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23:4017-4022. Tatsumi S, Mabuchi T, Katano T, Matsumura S, Abe T, Hidaka H, Suzuki M, Sasaki Y, Minami T, Ito S. 2005. Involvement of Rho-kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS). Neuroscience 131:491-498. Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K. 2008. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 28:2892-2902. Moers A, Nieswandt B, Massberg S, Wettschureck N, Grüner S, Konrad I, Schulte V, Aktas B, Gratacap MP, Simon MI, Gawaz M, Offermanns S. 2003. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9:1418-1422. Ji RR, Strichartz G. 2004. Cell signaling and the genesis of neuropathic pain. Sci STKE 2004:reE14. Lee SY, Kim B, Jeong HK, Min KJ, Liu T, Park JY, Joe EH, Jou I. 2010. Enhanced phosphatidylinositol 4-phosphate 5-kinase alpha expression and PI(4,5)P2 production in LPS-stimulated microglia. Neurochem Int 57:600-607. Kalmar B, Greensmith L, Malcangio M, McMahon SB, Csermely P, Burnstock G. 2003. The effect of treatment with BRX-220, a co-inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury. Exp Neurol 184:636-647. Malaval C, Laffargue M, Barbaras R, Rolland C, Peres C, Champagne E, Perret B, Tercé F, Collet X, Martinez LO. 2009. RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes. Cell Signal 21:120-127. Schmidt A, Durgan J, Magalhaes A, Hall A. 2007. Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J 26:1624-1636. Ji RR, Gereau RW, Malcangio M, Strichartz GR. 2009. MAP kinase and pain. Brain Res Rev 60:135-148. Ohsawa M, Aasato M, Hayashi SS, Kamei J. 2011. RhoA/Rho kinase pathway contributes to the pathogenesis of thermal hyperalgesia in diabetic mice. Pain 152:114-122. Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP. 2004. Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol 68:113-124. Yamanaka H, Obata K, Kobayashi K, Dai Y, Fukuoka T, Noguchi K. 2007. Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain. Eur J Neurosci 25:1097-1111. Hardy AR, Hill DJ, Poole AW. 2005. Evidence that the purinergic receptor P2Y12 potentiates platelet shape change by a Rho kinase-dependent mechanism. Platelets 16:415-429. Toque HA, Nunes KP, Yao L, Liao JK, Webb RC, Caldwell RB, Caldwell RW. 2013. Activated Rho kinase mediates diabetes-induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: Possible involvement of p38 MAPK activation. J Sex Med 10:1502-1515. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB. 2001. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202-207. Soulet C, Sauzeau V, Plantavid M, Herbert JM, Pacaud P, Payrastre B, Savi P. 2004. Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. J Thromb Haemost 2:135-146. Newton RA, Bingham S, Case PC, Sanger GJ, Lawson SN. 2001. Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 95:1-8. Hang LH, Yang JP, Shao DH, Chen Z, Wang H. 2013. Involvement of spinal PKA/CREB signaling pathway in the development of bone cancer pain. Pharmacol Rep 65:710-716. Koistinaho M, Koistinaho J. 2002. Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40:175-183. Hall A. 2005. Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5):891-895. Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr. 2001. ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608-8615. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K, Maekawa M, Ishizaki T, Narumiya S. 2000. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26:431-441. Noguchi K, De León M, Nahin RL, Senba E, Ruda MA. 1993. Quantification of axotomy-induced alteration of neuropeptide mRNAs in dorsal root ganglion neurons with special reference to neuropeptide Y mRNA and the effects of neonatal capsaicin treatment. J Neurosci Res 35:54-66. Yamanaka H, Kobayashi K, Okubo M, Fukuoka T, Noguchi K. 2011. Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain. J Comp Neurol 519:1597-1615. Zeidan A, Javadov S, Chakrabarti S, Karmazyn M. 2008. Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovasc Res 77:64-72. Ichikawa H, Nakata N, Abo Y, Shirasawa S, Yokoyama T, Yoshie S, Yue F, Tomotsune D, Sasaki K. 2012. Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells. Cryobiology 64:12-22. Kobayashi K, Yamanaka H, Yanamoto F, Okubo M, Noguchi K. 2012. Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury. Glia 60:1529-1539. 2012; 60 2010; 58 2009; 21 2006; 72 2010; 57 2005; 131 2000; 26 2013; 65 2011; 519 2009; 60 2000; 87 2004; 45 2004; 68 1999; 263 2001; 409 2003; 18 2008; 77 2004; 2 2011; 152 2003; 93 2006; 498 2001; 276 1993; 35 2013; 10 2004; 19 2002; 40 2008; 28 2003; 9 2005; 5 2003; 184 1997; 17 2004; 2004 2005; 16 2001; 95 2012; 64 2007; 25 2007; 26 2003; 23 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 Hall A (e_1_2_6_5_1) 2005; 5 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 519 start-page: 1597 year: 2011 end-page: 1615 article-title: Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain publication-title: J Comp Neurol – volume: 60 start-page: 1529 year: 2012 end-page: 1539 article-title: Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury publication-title: Glia – volume: 2004 start-page: reE14 year: 2004 article-title: Cell signaling and the genesis of neuropathic pain publication-title: Sci STKE – volume: 26 start-page: 431 year: 2000 end-page: 441 article-title: A critical role for a Rho‐associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons publication-title: Neuron – volume: 152 start-page: 114 year: 2011 end-page: 122 article-title: RhoA/Rho kinase pathway contributes to the pathogenesis of thermal hyperalgesia in diabetic mice publication-title: Pain – volume: 45 start-page: 89 year: 2004 end-page: 95 article-title: Activation of p38 mitogen‐activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury publication-title: Glia – volume: 17 start-page: 1201 year: 1997 end-page: 1211 article-title: Rho family GTPases and neuronal growth cone remodelling: Relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid publication-title: Mol Cell Biol – volume: 72 start-page: 101 year: 2006 end-page: 111 article-title: Essential role of Rho/ROCK‐dependent processes and actin dynamics in mediating leptin‐induced hypertrophy in rat neonatal ventricular myocytes publication-title: Cardiovasc Res – volume: 60 start-page: 135 year: 2009 end-page: 148 article-title: MAP kinase and pain publication-title: Brain Res Rev – volume: 276 start-page: 8608 year: 2001 end-page: 8615 article-title: ADP is the cognate ligand for the orphan G protein‐coupled receptor SP1999 publication-title: J Biol Chem – volume: 77 start-page: 64 year: 2008 end-page: 72 article-title: Leptin‐induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK‐dependent p38 MAPK translocation to nuclei publication-title: Cardiovasc Res – volume: 5) start-page: 891 year: 2005 end-page: 895 article-title: Rho GTPases and the control of cell behaviour publication-title: Biochem Soc Trans 33(Pt – volume: 40 start-page: 175 year: 2002 end-page: 183 article-title: Role of p38 and p44/42 mitogen‐activated protein kinases in microglia publication-title: Glia – volume: 35 start-page: 54 year: 1993 end-page: 66 article-title: Quantification of axotomy‐induced alteration of neuropeptide mRNAs in dorsal root ganglion neurons with special reference to neuropeptide Y mRNA and the effects of neonatal capsaicin treatment publication-title: J Neurosci Res – volume: 64 start-page: 12 year: 2012 end-page: 22 article-title: Gene pathway analysis of the mechanism by which the Rho‐associated kinase inhibitor Y‐27632 inhibits apoptosis in isolated thawed human embryonic stem cells publication-title: Cryobiology – volume: 263 start-page: 575 year: 1999 end-page: 579 article-title: Distribution of Rho‐kinase in the bovine brain publication-title: Biochem Biophys Res Commun – volume: 498 start-page: 443 year: 2006 end-page: 454 article-title: Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord publication-title: J Comp Neurol – volume: 10 start-page: 1502 year: 2013 end-page: 1515 article-title: Activated Rho kinase mediates diabetes‐induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: Possible involvement of p38 MAPK activation publication-title: J Sex Med – volume: 18 start-page: 1169 year: 2003 end-page: 1174 article-title: Release of BDNF and GABA in the dorsal horn of neuropathic rats publication-title: Eur J Neurosci – volume: 95 start-page: 1 year: 2001 end-page: 8 article-title: Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta‐1 subunit following partial sciatic nerve injury publication-title: Brain Res Mol Brain Res – volume: 2 start-page: 135 year: 2004 end-page: 146 article-title: Gi‐dependent and ‐independent mechanisms downstream of the P2Y12 ADP‐receptor publication-title: J Thromb Haemost – volume: 23 start-page: 4017 year: 2003 end-page: 4022 article-title: p38 mitogen‐activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain publication-title: J Neurosci – volume: 57 start-page: 600 year: 2010 end-page: 607 article-title: Enhanced phosphatidylinositol 4‐phosphate 5‐kinase alpha expression and PI(4,5)P2 production in LPS‐stimulated microglia publication-title: Neurochem Int – volume: 131 start-page: 491 year: 2005 end-page: 498 article-title: Involvement of Rho‐kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine‐rich C‐kinase substrate (MARCKS) publication-title: Neuroscience – volume: 68 start-page: 113 year: 2004 end-page: 124 article-title: Cloning, pharmacological characterisation and distribution of the rat G‐protein‐coupled P2Y(13) receptor publication-title: Biochem Pharmacol – volume: 25 start-page: 1097 year: 2007 end-page: 1111 article-title: Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain publication-title: Eur J Neurosci – volume: 65 start-page: 710 year: 2013 end-page: 716 article-title: Involvement of spinal PKA/CREB signaling pathway in the development of bone cancer pain publication-title: Pharmacol Rep – volume: 26 start-page: 1624 year: 2007 end-page: 1636 article-title: Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis publication-title: EMBO J – volume: 58 start-page: 599 year: 2010 end-page: 610 article-title: Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain publication-title: Glia – volume: 19 start-page: 93 year: 2004 end-page: 102 article-title: Tissue plasminogen activator in primary afferents induces dorsal horn excitability and pain response after peripheral nerve injury publication-title: Eur J Neurosci – volume: 58 start-page: 1838 year: 2010 end-page: 1846 article-title: Nerve injury‐activated microglia engulf myelinated axons in a P2Y12 signaling‐dependent manner in the dorsal horn publication-title: Glia – volume: 93 start-page: 277 year: 2003 end-page: 279 article-title: The obesity‐associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes publication-title: Circ Res – volume: 21 start-page: 120 year: 2009 end-page: 127 article-title: RhoA/ROCK I signalling downstream of the P2Y13 ADP‐receptor controls HDL endocytosis in human hepatocytes publication-title: Cell Signal – volume: 9 start-page: 1418 year: 2003 end-page: 1422 article-title: G13 is an essential mediator of platelet activation in hemostasis and thrombosis publication-title: Nat Med – volume: 409 start-page: 202 year: 2001 end-page: 207 article-title: Identification of the platelet ADP receptor targeted by antithrombotic drugs publication-title: Nature – volume: 87 start-page: 149 year: 2000 end-page: 158 article-title: Spared nerve injury: An animal model of persistent peripheral neuropathic pain publication-title: Pain – volume: 16 start-page: 415 year: 2005 end-page: 429 article-title: Evidence that the purinergic receptor P2Y12 potentiates platelet shape change by a Rho kinase‐dependent mechanism publication-title: Platelets – volume: 184 start-page: 636 year: 2003 end-page: 647 article-title: The effect of treatment with BRX‐220, a co‐inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury publication-title: Exp Neurol – volume: 28 start-page: 2892 year: 2008 end-page: 2902 article-title: P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain publication-title: J Neurosci – ident: e_1_2_6_17_1 doi: 10.1002/glia.22373 – ident: e_1_2_6_23_1 doi: 10.1016/j.cellsig.2008.09.016 – ident: e_1_2_6_30_1 doi: 10.1038/sj.emboj.7601637 – ident: e_1_2_6_37_1 doi: 10.1111/j.1460-9568.2007.05344.x – ident: e_1_2_6_27_1 doi: 10.1016/j.pain.2010.10.005 – ident: e_1_2_6_2_1 doi: 10.1016/S0896-6273(00)81175-7 – ident: e_1_2_6_13_1 doi: 10.1523/JNEUROSCI.23-10-04017.2003 – ident: e_1_2_6_20_1 doi: 10.1016/j.neuint.2010.07.008 – ident: e_1_2_6_22_1 doi: 10.1002/glia.21053 – ident: e_1_2_6_4_1 doi: 10.1016/j.bcp.2004.02.038 – ident: e_1_2_6_21_1 doi: 10.1046/j.1460-9568.2003.02848.x – ident: e_1_2_6_7_1 doi: 10.1080/09537100500163424 – ident: e_1_2_6_10_1 doi: 10.1016/j.cryobiol.2011.11.005 – ident: e_1_2_6_19_1 doi: 10.1128/MCB.17.3.1201 – ident: e_1_2_6_18_1 doi: 10.1002/glia.10151 – ident: e_1_2_6_28_1 doi: 10.1002/glia.20948 – ident: e_1_2_6_34_1 doi: 10.1002/glia.10308 – ident: e_1_2_6_26_1 doi: 10.1002/jnr.490350108 – ident: e_1_2_6_35_1 doi: 10.1002/cne.22588 – ident: e_1_2_6_12_1 doi: 10.1126/stke.2522004re14 – ident: e_1_2_6_25_1 doi: 10.1016/S0169-328X(01)00188-7 – ident: e_1_2_6_6_1 doi: 10.1016/S1734-1140(13)71049-1 – ident: e_1_2_6_8_1 doi: 10.1006/bbrc.1999.1409 – ident: e_1_2_6_31_1 doi: 10.1111/j.1538-7836.2004.00556.x – ident: e_1_2_6_3_1 doi: 10.1016/S0304-3959(00)00276-1 – ident: e_1_2_6_36_1 doi: 10.1046/j.1460-9568.2003.03080.x – ident: e_1_2_6_15_1 doi: 10.1002/cne.21066 – ident: e_1_2_6_40_1 doi: 10.1074/jbc.M009718200 – ident: e_1_2_6_39_1 doi: 10.1016/j.cardiores.2006.06.024 – ident: e_1_2_6_9_1 doi: 10.1038/35051599 – ident: e_1_2_6_38_1 doi: 10.1093/cvr/cvm020 – volume: 5 start-page: 891 year: 2005 ident: e_1_2_6_5_1 article-title: Rho GTPases and the control of cell behaviour publication-title: Biochem Soc Trans 33(Pt doi: 10.1042/BST0330891 contributor: fullname: Hall A – ident: e_1_2_6_14_1 doi: 10.1016/S0014-4886(03)00343-1 – ident: e_1_2_6_32_1 doi: 10.1016/j.neuroscience.2004.10.022 – ident: e_1_2_6_33_1 doi: 10.1111/jsm.12134 – ident: e_1_2_6_11_1 doi: 10.1016/j.brainresrev.2008.12.011 – ident: e_1_2_6_16_1 doi: 10.1523/JNEUROSCI.5589-07.2008 – ident: e_1_2_6_29_1 doi: 10.1161/01.RES.0000089255.37804.72 – ident: e_1_2_6_24_1 doi: 10.1038/nm943 |
SSID | ssj0011497 |
Score | 2.5098937 |
Snippet | Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However,... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 216 |
SubjectTerms | Adenosine Diphosphate - analogs & derivatives Adenosine Diphosphate - toxicity Animals Calcium-Binding Proteins - metabolism chronic pain Disease Models, Animal Enzyme Inhibitors - pharmacology glial activation Hyperalgesia - etiology intracellular signaling cascade Kinases Male Microfilament Proteins - metabolism Microglia - drug effects Microglia - metabolism Microglia - pathology Morphology Neuralgia - pathology P2 receptors p38 Mitogen-Activated Protein Kinases - metabolism Pain management Pain Threshold - drug effects Pain Threshold - physiology peripheral nerve injury Phosphorylation Phosphorylation - drug effects Purinergic P2Y Receptor Agonists - pharmacology Purinergic P2Y Receptor Antagonists - pharmacology Rats Rats, Sprague-Dawley Receptors, Purinergic P2Y - metabolism rhoA GTP-Binding Protein - metabolism Rodents Signal Transduction - drug effects Signal Transduction - physiology Spinal Cord - drug effects Spinal Cord - pathology Spinal Cord Injuries - chemically induced Spinal Cord Injuries - complications Thionucleotides - toxicity |
Title | RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain |
URI | https://api.istex.fr/ark:/67375/WNG-KZGNWFLW-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.22745 https://www.ncbi.nlm.nih.gov/pubmed/25130721 https://www.proquest.com/docview/1635385987 https://search.proquest.com/docview/1637550844 https://search.proquest.com/docview/1642615406 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8cILX-MjMJARaA9IafPl2JF4qQbtoF2ZKqYOpMmyEweq0aRaW8H4L_iPubObTENoErxFiSNdYt_5d-e73xHyMi2UycuS-TriWJLDIj8DI-jjEWeodCmiHEMDh-P04Dh5f8JOtsjrphbG8UO0ATfUDGuvUcGVXnYvSUO_fJupTgROFVaYhzHHfK43k5Y7CnB-5mg-s8SH67DlJo26l69e2Y1u4I_98TeoeRW52q2nf5ucNkK7jJOzznqlO_nPP_gc__er7pBbG0xKe24R3SVbprpHdnoV-OPzC7pHbZaoDb_vkF-Tr3WvO_mwP6TYzPi7uqC2-AQQK13Egh72joYUiyVcqJeqqqDzGiazMbLUlRovaYFxbcxzn9O6pEfRpzDqhjEFC2wW2AKIziq6XGDTLjrHrEGUGe9ZBk7bSDkHEWbVfXLcf_tx_8DftHXw8zThzGchN7nQsA0mrADAVgQsjzULYpMKrrJCR3mmQg7YJwRnUIsgzkwQ65RnuSmxx-QDsl3VlXlEaMlEHiUiLHUJbq0I4H2mYhEkYLSzIBUeedFMr1w49g7peJojiVJL-6c9smdnvh2izs8w340zOR0P5PDzYDztj6Zy5JHdZmnIjaovJQBa2DRYJrhHnrePQUnx5EVVpl7bMRxcQZEk141BbxYAdOqRh27ZtQIBCI2RyM4jr-ziueZj5GD0rmevHv_L4CfkJkBB5vLRd8n26nxtngLcWulnVq1-AxrxI4E |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXvsZHYIARaA9IaRMnTpzHaNB29IOp2tTBixUnDqu2JtXaCsZ_wX_Mnd1mGkKT4C1KbMmxfeffne9-R8i7qMh0XpbcVSzGlBzO3ASUoItXnH6mSsFydA0MR1HvOPx0wk_WsTmYC2P5IRqHG0qG0dco4OiQbl-xhn47n2YtBlYVv022Qd4DLGDwYdywRwHSTyzRZxK68Ow37KSsfdX32nm0jVP7429g8zp2NYdP576tsLownIUYc3LWWi1VK__5B6Pjf__XA3JvDUtpavfRQ3JLV4_ITlqBST67pHvUBIoaD_wO-TU-rdP2-PN-n2I94-_ZJTX5JwBa6TwQdJge9inmS1hvL82qgs5qWM-NnqU223hBC3RtY6j7jNYlPWRffNb2AwpKWM-xChCdVnQxx7pddIaBgzhmfGdIOE0t5RyGMK0ek-POx6P9nruu7ODmURhzl_uxzoWCkzDkBWC2wuN5oLgX6EjEWVIolieZHwP88cEeVMILEu0FKoqTXJdYZvIJ2arqSj8jtOQiZ6HwS1WCZSs86M-zQHgh6O3Ei4RD3m7WV84tgYe0VM1M4qilmWmH7Jmlb5pkF2cY8hZzORl1Zf9rdzTpDCZy4JDdzd6Qa2lfSMC0cG7wRMQOedN8BjnFy5es0vXKtInBGhRheFMbNGgBQ0cOeWr3XTMgwKEBctk55L3ZPTf8jOwODlLz9PxfGr8md3pHw4EcHIz6L8hdQIbchqfvkq3lxUq_BPS1VK-MjP0GO20nmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qC-IX3-pLtOqK0g9C7pJNNtmAX0LrXetdz-OwXCvIklc96iWhd4fWf-E_dmZzSalIQb-FZAOT7M7sM7MzzwC89tIoS_JcmDH3qSRHcDNAI2jSEacdxbnkCYUGjkbewbH7_kScbMDbpham5odoA26kGdpek4JXad69JA398m0WdTg6VeIGbLmeY1FC1_6kJY9CoB_UPJ-Ba-K13ZKT8u7lu1e2oy36sz_-hjWvQle99_TuwOdG6jrl5KyzWsad5OcfhI7_-1l34fYalLKwXkX3YCMr7sN2WKBDPr9gu0ynier4-zb8mnwtw-7kw96AUTfj79EF09UnCFlZ5Uh2FI4HjKol6lgvi4qUzUuczcbKsrrWeMFSCmxTovuclTkb81Obd22HoQnOKuoBxGYFW1TUtYvNKW2QZKZ7moJTd1JOUIRZ8QCOe-8-7h2Y674OZuK5vjCF7WeJjHEfdEWKiC21ROLEwnIyT_pRkMY8CSLbR_BjozcYS8sJMsuJPT9IspyaTD6EzaIsssfAciET7ko7j3P0a6WF74vIkZaLVjuwPGnAq2Z6VVXTd6iaqJkrklrpP23Arp75dkh0fkYJb75Q01FfDT71R9PecKqGBuw0S0OtdX2hENHiriEC6Rvwsn2MWkpHL1GRlSs9xkdfULrudWPInUUE7RnwqF52rUCIQh1isjPgjV4813yM6g8PQ3315F8Gv4Cb4_2eGh6OBk_hFsJCUeem78Dm8nyVPUPotYyfaw37DaNEJko |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RhoA%2FROCK+pathway+mediates+p38+MAPK+activation+and+morphological+changes+downstream+of+P2Y12%2F13+receptors+in+spinal+microglia+in+neuropathic+pain&rft.jtitle=Glia&rft.au=Tatsumi%2C+Emiko&rft.au=Yamanaka%2C+Hiroki&rft.au=Kobayashi%2C+Kimiko&rft.au=Yagi%2C+Hideshi&rft.date=2015-02-01&rft.eissn=1098-1136&rft.volume=63&rft.issue=2&rft.spage=216&rft.epage=228&rft_id=info:doi/10.1002%2Fglia.22745&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |