Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species
1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient-limited grassland ecosystems. This overyielding has been attributed to vertical niche differentiation among species below-ground, allowing for comp...
Saved in:
Published in | The Journal of ecology Vol. 98; no. 5; pp. 1117 - 1127 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2010
Blackwell Publishing Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient-limited grassland ecosystems. This overyielding has been attributed to vertical niche differentiation among species below-ground, allowing for complementarity in resource capture. However, a rigorous test of this longstanding hypothesis is lacking because roots of different species could not be distinguished in diverse communities. 2. Here, we present the first application of a DNA-based technique that quantifies species abundances in multispecies root samples. We were thus able to compare root distributions in monocultures of two grasses and two forbs with root distributions in four-species mixtures. In order to investigate if vertical niche differentiation is driven by soil nutrient depletion, the topsoil layer of the communities were either nutrient-rich or -poor. 3. Immediately in the first year, 40% more root biomass was produced in mixtures than expected from the monocultures, together with significant below-ground complementarity effects, probably preceding above-ground overyielding. This below-ground overyielding appeared not to be the result of vertical niche differentiation, as rooting depth of the community tended to decrease, rather than increase in mixtures compared to monocultures. Roots thus tended to clump in the very dense topsoil layer rather than segregate over the whole profile in mixtures. The below-ground overyielding was mainly driven by enhanced root investments of one species, Anthoxanthum odoratum, in the densely rooted topsoil layer without retarding the growth of the other species. 4. Synthesis. Conventional ecological mechanisms, such as competition for nutrients, do not seem to be able to explain the increased root investments of A. odoratum in mixtures compared to monocultures, with apparently little effect on the root growth of the other species. Instead, the observed root responses are consistent with species-specific root recognition responses. From a community perspective, the observed early below-ground overyielding may initiate the recently reported increased soil organic matter, mineralization and N availability and thus may ultimately be responsible for the higher productivity at high plant species diversity. |
---|---|
AbstractList | 1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient-limited grassland ecosystems. This overyielding has been attributed to vertical niche differentiation among species below-ground, allowing for complementarity in resource capture. However, a rigorous test of this longstanding hypothesis is lacking because roots of different species could not be distinguished in diverse communities. 2. Here, we present the first application of a DNA-based technique that quantifies species abundances in multispecies root samples. We were thus able to compare root distributions in monocultures of two grasses and two forbs with root distributions in four-species mixtures. In order to investigate if vertical niche differentiation is driven by soil nutrient depletion, the topsoil layer of the communities were either nutrient-rich or -poor. 3. Immediately in the first year, 40% more root biomass was produced in mixtures than expected from the monocultures, together with significant below-ground complementarity effects, probably preceding above-ground overyielding. This below-ground overyielding appeared not to be the result of vertical niche differentiation, as rooting depth of the community tended to decrease, rather than increase in mixtures compared to monocultures. Roots thus tended to clump in the very dense topsoil layer rather than segregate over the whole profile in mixtures. The below-ground overyielding was mainly driven by enhanced root investments of one species, Anthoxanthum odoratum, in the densely rooted topsoil layer without retarding the growth of the other species. 4. Synthesis. Conventional ecological mechanisms, such as competition for nutrients, do not seem to be able to explain the increased root investments of A. odoratum in mixtures compared to monocultures, with apparently little effect on the root growth of the other species. Instead, the observed root responses are consistent with species-specific root recognition responses. From a community perspective, the observed early below-ground overyielding may initiate the recently reported increased soil organic matter, mineralization and N availability and thus may ultimately be responsible for the higher productivity at high plant species diversity. Summary 1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient‐limited grassland ecosystems. This overyielding has been attributed to vertical niche differentiation among species below‐ground, allowing for complementarity in resource capture. However, a rigorous test of this longstanding hypothesis is lacking because roots of different species could not be distinguished in diverse communities. 2. Here, we present the first application of a DNA‐based technique that quantifies species abundances in multispecies root samples. We were thus able to compare root distributions in monocultures of two grasses and two forbs with root distributions in four‐species mixtures. In order to investigate if vertical niche differentiation is driven by soil nutrient depletion, the topsoil layer of the communities were either nutrient‐rich or ‐poor. 3. Immediately in the first year, 40% more root biomass was produced in mixtures than expected from the monocultures, together with significant below‐ground complementarity effects, probably preceding above‐ground overyielding. This below‐ground overyielding appeared not to be the result of vertical niche differentiation, as rooting depth of the community tended to decrease, rather than increase in mixtures compared to monocultures. Roots thus tended to clump in the very dense topsoil layer rather than segregate over the whole profile in mixtures. The below‐ground overyielding was mainly driven by enhanced root investments of one species, Anthoxanthum odoratum, in the densely rooted topsoil layer without retarding the growth of the other species. 4. Synthesis. Conventional ecological mechanisms, such as competition for nutrients, do not seem to be able to explain the increased root investments of A. odoratum in mixtures compared to monocultures, with apparently little effect on the root growth of the other species. Instead, the observed root responses are consistent with species‐specific root recognition responses. From a community perspective, the observed early below‐ground overyielding may initiate the recently reported increased soil organic matter, mineralization and N availability and thus may ultimately be responsible for the higher productivity at high plant species diversity. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient-limited grassland ecosystems. This overyielding has been attributed to vertical niche differentiation among species below-ground, allowing for complementarity in resource capture. However, a rigorous test of this longstanding hypothesis is lacking because roots of different species could not be distinguished in diverse communities. Here, we present the first application of a DNA-based technique that quantifies species abundances in multispecies root samples. We were thus able to compare root distributions in monocultures of two grasses and two forbs with root distributions in four-species mixtures. In order to investigate if vertical niche differentiation is driven by soil nutrient depletion, the topsoil layer of the communities were either nutrient-rich or -poor. Immediately in the first year, 40% more root biomass was produced in mixtures than expected from the monocultures, together with significant below-ground complementarity effects, probably preceding above-ground overyielding. This below-ground overyielding appeared not to be the result of vertical niche differentiation, as rooting depth of the community tended to decrease, rather than increase in mixtures compared to monocultures. Roots thus tended to clump in the very dense topsoil layer rather than segregate over the whole profile in mixtures. The below-ground overyielding was mainly driven by enhanced root investments of one species, Anthoxanthum odoratum, in the densely rooted topsoil layer without retarding the growth of the other species. Conventional ecological mechanisms, such as competition for nutrients, do not seem to be able to explain the increased root investments of A. odoratum in mixtures compared to monocultures, with apparently little effect on the root growth of the other species. Instead, the observed root responses are consistent with species-specific root recognition responses. From a community perspective, the observed early below-ground overyielding may initiate the recently reported increased soil organic matter, mineralization and N availability and thus may ultimately be responsible for the higher productivity at high plant species diversity. 1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient‐limited grassland ecosystems. This overyielding has been attributed to vertical niche differentiation among species below‐ground, allowing for complementarity in resource capture. However, a rigorous test of this longstanding hypothesis is lacking because roots of different species could not be distinguished in diverse communities. 2. Here, we present the first application of a DNA‐based technique that quantifies species abundances in multispecies root samples. We were thus able to compare root distributions in monocultures of two grasses and two forbs with root distributions in four‐species mixtures. In order to investigate if vertical niche differentiation is driven by soil nutrient depletion, the topsoil layer of the communities were either nutrient‐rich or ‐poor. 3. Immediately in the first year, 40% more root biomass was produced in mixtures than expected from the monocultures, together with significant below‐ground complementarity effects, probably preceding above‐ground overyielding. This below‐ground overyielding appeared not to be the result of vertical niche differentiation, as rooting depth of the community tended to decrease, rather than increase in mixtures compared to monocultures. Roots thus tended to clump in the very dense topsoil layer rather than segregate over the whole profile in mixtures. The below‐ground overyielding was mainly driven by enhanced root investments of one species, Anthoxanthum odoratum , in the densely rooted topsoil layer without retarding the growth of the other species. 4. Synthesis . Conventional ecological mechanisms, such as competition for nutrients, do not seem to be able to explain the increased root investments of A. odoratum in mixtures compared to monocultures, with apparently little effect on the root growth of the other species. Instead, the observed root responses are consistent with species‐specific root recognition responses. From a community perspective, the observed early below‐ground overyielding may initiate the recently reported increased soil organic matter, mineralization and N availability and thus may ultimately be responsible for the higher productivity at high plant species diversity. Summary1.Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient-limited grassland ecosystems. This overyielding has been attributed to vertical niche differentiation among species below-ground, allowing for complementarity in resource capture. However, a rigorous test of this longstanding hypothesis is lacking because roots of different species could not be distinguished in diverse communities.2.Here, we present the first application of a DNA-based technique that quantifies species abundances in multispecies root samples. We were thus able to compare root distributions in monocultures of two grasses and two forbs with root distributions in four-species mixtures. In order to investigate if vertical niche differentiation is driven by soil nutrient depletion, the topsoil layer of the communities were either nutrient-rich or -poor.3.Immediately in the first year, 40% more root biomass was produced in mixtures than expected from the monocultures, together with significant below-ground complementarity effects, probably preceding above-ground overyielding. This below-ground overyielding appeared not to be the result of vertical niche differentiation, as rooting depth of the community tended to decrease, rather than increase in mixtures compared to monocultures. Roots thus tended to clump in the very dense topsoil layer rather than segregate over the whole profile in mixtures. The below-ground overyielding was mainly driven by enhanced root investments of one species, Anthoxanthum odoratum, in the densely rooted topsoil layer without retarding the growth of the other species.4. |
Author | Joop Ouborg, N van der Weerden, Gerard M Wagemaker, Cornelis A.M Smit-Tiekstra, Annemiek E Mommer, Liesje van Ruijven, Jasper Bögemann, Gerard M Berendse, Frank de Caluwe, Hannie de Kroon, Hans |
Author_xml | – sequence: 1 fullname: Mommer, Liesje – sequence: 2 fullname: van Ruijven, Jasper – sequence: 3 fullname: de Caluwe, Hannie – sequence: 4 fullname: Smit-Tiekstra, Annemiek E – sequence: 5 fullname: Wagemaker, Cornelis A.M – sequence: 6 fullname: Joop Ouborg, N – sequence: 7 fullname: Bögemann, Gerard M – sequence: 8 fullname: van der Weerden, Gerard M – sequence: 9 fullname: Berendse, Frank – sequence: 10 fullname: de Kroon, Hans |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23202942$$DView record in Pascal Francis |
BookMark | eNqNUtuO0zAQjdAi0V34BISFhHhKsZ2LnZVAQtVy00o8QJ8t25kUV6ld7GTbfgG_zWRbFmmfmhfHmXPOzJycy-zCBw9ZRhidM3zereesqKuci7Kac4pfKROUz_dPstlD4SKbUcp5TkshnmWXKa0ppbWo6Cz7s_R34HrnV8RAH3b5KobRtyRtwTpIRBu8aW-BOE80MS607g5icsOBwH4L0W3AD9dYGiANJHQEq4Ozuife2V9AWtd1EBHj9OACamwC9lpFnVKv_zd6nj3tdJ_gxem8ypafbn4uvuS33z9_XXy8zW1dCp4bpkEzzYVpRNfWVdFwrqvaWAmGcc6YNDWTdSeMlMayGkQLTEjKwFArRFtcZddH3Z1egce1wSuvo3VJBe1U70zU8aB2Y1S-n47taJIqmpI2HMlvj-RtDL9H3FdtXLLQ4yIQxqREVeEQXJyDLGVTiaJE5OtHyHUYo0cPlCgL2UjRUAS9OYF0Qmu7iH8EJ96i-9O0vOCUN-XU9sMRZ2NIKUKnrBvufR-idr1iVE2hUWs1ZUNN2VBTaNR9aNQeBeQjgX89zqC-PznrejiczVPfbhbTG_JfHvnrNIT4wJ-Mb2g9efDqWO90UHoVcf_lD1QqKJMoWrHiL3Xm8Q8 |
CODEN | JECOAB |
CitedBy_id | crossref_primary_10_3389_fpls_2015_00215 crossref_primary_10_1080_15230430_2020_1859720 crossref_primary_10_1128_microbiolspec_FUNK_0013_2016 crossref_primary_10_1371_journal_pone_0166349 crossref_primary_10_1038_s41598_017_01632_4 crossref_primary_10_1007_s11356_023_28119_2 crossref_primary_10_1111_1365_2745_12259 crossref_primary_10_1111_nph_16370 crossref_primary_10_1016_j_baae_2017_06_002 crossref_primary_10_1080_11956860_2017_1403242 crossref_primary_10_1111_j_1744_697X_2012_00242_x crossref_primary_10_1111_grs_12078 crossref_primary_10_2139_ssrn_4095688 crossref_primary_10_1111_nph_17572 crossref_primary_10_3389_fpls_2016_00538 crossref_primary_10_1111_nph_15036 crossref_primary_10_1002_ece3_5058 crossref_primary_10_1007_s11676_022_01514_0 crossref_primary_10_1002_ece3_3794 crossref_primary_10_1007_s11104_016_2843_z crossref_primary_10_1016_j_agrformet_2022_108953 crossref_primary_10_1007_s11104_019_03951_z crossref_primary_10_1079_PAVSNNR202116021 crossref_primary_10_1111_oik_08113 crossref_primary_10_1111_1365_2435_14744 crossref_primary_10_1614_WS_D_11_00150_1 crossref_primary_10_1016_j_foreco_2011_10_033 crossref_primary_10_1093_jpe_rtw096 crossref_primary_10_1111_oik_01502 crossref_primary_10_1007_s11104_022_05366_9 crossref_primary_10_1111_1365_2745_12830 crossref_primary_10_1111_oik_08827 crossref_primary_10_1111_1365_2745_12032 crossref_primary_10_1007_s11104_018_3812_5 crossref_primary_10_1007_s11104_021_04841_z crossref_primary_10_1093_aob_mcs082 crossref_primary_10_1111_1365_2435_12466 crossref_primary_10_1111_ele_12652 crossref_primary_10_1007_s10021_020_00538_z crossref_primary_10_1111_nph_18645 crossref_primary_10_1093_jpe_rtad016 crossref_primary_10_1111_1365_2745_12947 crossref_primary_10_1002_fes3_282 crossref_primary_10_1146_annurev_ecolsys_102710_145006 crossref_primary_10_1002_ecy_2905 crossref_primary_10_1093_aobpla_plv059 crossref_primary_10_1002_ecy_2588 crossref_primary_10_1093_aobpla_plv053 crossref_primary_10_1007_s11258_021_01155_z crossref_primary_10_1038_s41598_019_48060_0 crossref_primary_10_1016_j_agrformet_2024_110257 crossref_primary_10_1371_journal_pone_0024506 crossref_primary_10_1016_j_geoderma_2024_117125 crossref_primary_10_3390_environments10050080 crossref_primary_10_3390_ijerph192417058 crossref_primary_10_1016_j_agee_2022_108106 crossref_primary_10_3389_fpls_2018_00098 crossref_primary_10_1007_s11104_019_04369_3 crossref_primary_10_1590_s1806_92902017001200003 crossref_primary_10_1016_j_agee_2019_02_014 crossref_primary_10_1016_j_agee_2016_06_035 crossref_primary_10_1016_j_tplants_2016_01_009 crossref_primary_10_1111_j_1469_8137_2012_04247_x crossref_primary_10_1007_s11104_013_1694_0 crossref_primary_10_1111_ele_12071 crossref_primary_10_1111_jen_12119 crossref_primary_10_1111_oik_06529 crossref_primary_10_1016_j_agee_2024_109144 crossref_primary_10_1016_j_eja_2025_127559 crossref_primary_10_3732_ajb_1000439 crossref_primary_10_1111_1365_2745_13372 crossref_primary_10_1002_csc2_21315 crossref_primary_10_1111_1365_2745_12280 crossref_primary_10_3389_fpls_2015_00313 crossref_primary_10_3724_SP_J_1258_2012_01184 crossref_primary_10_1111_mec_13232 crossref_primary_10_1111_geb_12488 crossref_primary_10_1111_gfs_12605 crossref_primary_10_1371_journal_pone_0033996 crossref_primary_10_1007_s00442_012_2259_2 crossref_primary_10_1002_glr2_12064 crossref_primary_10_1111_1365_2745_12877 crossref_primary_10_1111_pce_13999 crossref_primary_10_1111_1365_2664_12041 crossref_primary_10_1111_oik_07777 crossref_primary_10_1007_s11104_010_0560_6 crossref_primary_10_1016_j_anbehav_2014_11_010 crossref_primary_10_3390_agronomy12102471 crossref_primary_10_1016_j_scitotenv_2020_139810 crossref_primary_10_1007_s11104_017_3282_1 crossref_primary_10_1890_13_2107_1 crossref_primary_10_1016_j_sajb_2020_06_008 crossref_primary_10_1007_s11104_012_1584_x crossref_primary_10_1016_j_eja_2024_127160 crossref_primary_10_1016_j_baae_2018_01_001 crossref_primary_10_1111_jvs_12971 crossref_primary_10_3390_ani11123494 crossref_primary_10_1007_s11104_014_2352_x crossref_primary_10_1007_s11104_020_04626_w crossref_primary_10_1111_1365_2435_13517 crossref_primary_10_1016_j_fcr_2017_07_016 crossref_primary_10_1016_j_geoderma_2023_116409 crossref_primary_10_1093_aob_mcu191 crossref_primary_10_1007_s11104_014_2048_2 crossref_primary_10_3934_agrfood_2019_3_547 crossref_primary_10_1007_s11104_023_06240_y crossref_primary_10_3389_fpls_2016_00944 crossref_primary_10_1007_s11104_019_04032_x crossref_primary_10_1093_jpe_rtw111 crossref_primary_10_1890_13_1192_1 crossref_primary_10_1007_s11104_011_0882_z crossref_primary_10_3390_f12091192 crossref_primary_10_1111_j_1365_294X_2011_05390_x crossref_primary_10_1016_j_tplants_2021_07_014 crossref_primary_10_1007_s11104_017_3402_y crossref_primary_10_1111_1365_2435_12390 crossref_primary_10_7554_eLife_41228 crossref_primary_10_1016_j_soilbio_2023_109107 crossref_primary_10_1111_oik_08886 crossref_primary_10_1093_jpe_rtaa044 crossref_primary_10_1111_gfs_12578 crossref_primary_10_3390_biology11060870 crossref_primary_10_1111_oik_08877 crossref_primary_10_1111_1365_2745_12087 crossref_primary_10_3390_agronomy11071333 crossref_primary_10_1038_srep44641 crossref_primary_10_1093_aobpla_plz033 crossref_primary_10_1007_s11104_023_06261_7 crossref_primary_10_1890_11_1942_1 crossref_primary_10_1098_rspb_2012_0285 crossref_primary_10_1111_nph_18370 crossref_primary_10_1093_aobpla_plv109 crossref_primary_10_1093_treephys_tpz086 crossref_primary_10_3389_fpls_2022_869418 crossref_primary_10_1111_jac_12602 crossref_primary_10_1590_0103_8478cr20210242 crossref_primary_10_1016_j_ecoleng_2019_105685 crossref_primary_10_1111_1365_2435_12732 crossref_primary_10_1016_j_soilbio_2015_12_006 crossref_primary_10_1016_j_ecoleng_2019_05_018 crossref_primary_10_3390_agriculture11030206 crossref_primary_10_1086_667611 crossref_primary_10_3390_agronomy13030614 crossref_primary_10_1016_j_eja_2022_126504 crossref_primary_10_1016_j_semcdb_2019_03_009 crossref_primary_10_1111_1365_2745_12667 crossref_primary_10_1890_11_1439_1 crossref_primary_10_3390_f14112193 crossref_primary_10_1111_j_1574_6941_2011_01214_x crossref_primary_10_3117_plantroot_9_85 crossref_primary_10_1016_j_ejsobi_2018_01_006 crossref_primary_10_1038_srep03194 crossref_primary_10_1111_1365_2435_12508 crossref_primary_10_1111_2041_210X_12771 crossref_primary_10_1007_s10021_015_9869_6 crossref_primary_10_1111_gfs_12124 crossref_primary_10_3897_rio_4_e23688 crossref_primary_10_1007_s11104_018_3618_5 crossref_primary_10_1371_journal_pone_0055805 crossref_primary_10_1007_s11104_016_2853_x crossref_primary_10_1007_s11104_011_0962_0 crossref_primary_10_1111_j_1469_8137_2011_03952_x crossref_primary_10_5194_bg_11_4493_2014 crossref_primary_10_1007_s11104_017_3472_x crossref_primary_10_1007_s11104_021_05017_5 crossref_primary_10_1371_journal_pone_0187496 crossref_primary_10_1111_1365_2435_12367 crossref_primary_10_1111_1365_2435_13455 crossref_primary_10_1111_1365_2435_12002 crossref_primary_10_1111_oik_04190 crossref_primary_10_1016_j_tree_2018_10_013 crossref_primary_10_1111_1365_2745_13535 crossref_primary_10_1111_pce_14247 crossref_primary_10_1111_nph_12765 crossref_primary_10_1007_s11104_018_3694_6 crossref_primary_10_1016_j_flora_2025_152676 crossref_primary_10_1038_s41598_021_82162_y crossref_primary_10_1016_j_ecoleng_2018_12_015 crossref_primary_10_1080_17550874_2012_723763 crossref_primary_10_1111_nph_13179 crossref_primary_10_1111_j_1365_2435_2011_01916_x crossref_primary_10_1016_j_ecoleng_2018_07_031 crossref_primary_10_1007_s11104_018_3764_9 crossref_primary_10_1111_1365_2435_12010 crossref_primary_10_1111_gcb_16405 crossref_primary_10_1111_1365_2745_13324 crossref_primary_10_1111_jvs_12442 crossref_primary_10_1111_j_1365_2745_2011_01906_x crossref_primary_10_1007_s00442_014_2983_x crossref_primary_10_1007_s11104_011_0752_8 crossref_primary_10_1111_j_1365_2494_2011_00799_x crossref_primary_10_1890_12_1399_1 crossref_primary_10_1007_s11104_012_1405_2 crossref_primary_10_1146_annurev_ecolsys_051120_030619 crossref_primary_10_1007_s00442_019_04476_z crossref_primary_10_1007_s10457_016_0012_2 crossref_primary_10_1111_nph_13394 crossref_primary_10_1111_1755_0998_13278 crossref_primary_10_3390_plants12010139 crossref_primary_10_1007_s11104_024_07096_6 crossref_primary_10_1111_jvs_12571 crossref_primary_10_1093_aob_mcs296 crossref_primary_10_1007_s11104_021_05083_9 crossref_primary_10_1093_aob_mcz004 crossref_primary_10_1111_1365_2435_12948 crossref_primary_10_1111_1365_2435_12945 |
Cites_doi | 10.2307/1941601 10.1111/j.1365-2486.2008.01697.x 10.1146/annurev.phyto.40.030402.110010 10.1046/j.1365-2435.2002.00611.x 10.1146/annurev.arplant.57.032905.105159 10.1016/j.ppees.2004.11.002 10.1111/j.1461-0248.2004.00607.x 10.1890/02-0287 10.1073/pnas.0306602101 10.1073/pnas.0407524102 10.1023/A:1015822003011 10.1073/pnas.0709069104 10.1111/j.1469-8137.2007.02211.x 10.2307/1935052 10.2307/2259721 10.1007/s00442-005-0256-4 10.1098/rsbl.2007.0232 10.1111/j.1365-2745.2006.01124.x 10.1007/BF00346491 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2 10.1073/pnas.0704591104 10.1890/0012-9658(1997)078[1785:HSBPMA]2.0.CO;2 10.1111/j.1755-0998.2008.02130.x 10.1890/06-0502 10.1890/08-0802.1 10.1890/04-0922 10.1890/08-0867.1 10.1073/pnas.88.3.874 10.1111/j.1600-0706.2008.17119.x 10.1126/science.1060391 10.1071/PP99173_CO 10.1016/S0929-1393(02)00137-3 10.1890/0012-9658(2001)082[3285:MOPSCR]2.0.CO;2 10.1007/s00442-005-0010-y 10.1126/science.1150726 10.1111/j.1365-2745.2007.01210.x 10.1038/415068a 10.1007/s11104-005-2612-x 10.1093/jpe/rtm006 10.1111/j.1365-2745.2008.01453.x 10.1038/35083573 10.1890/0012-9658(1998)079[2267:EONPAR]2.0.CO;2 10.1016/j.geoderma.2004.11.018 10.1038/35012241 10.1023/A:1006587813950 10.1023/A:1020565523615 10.1111/j.1574-6941.2009.00654.x 10.1111/j.1461-0248.2007.01139.x 10.2307/1933500 10.1038/nature08251 10.1023/A:1004891807664 10.1111/j.1461-0248.2006.00949.x 10.1073/pnas.0306604101 10.1126/science.1083245 |
ContentType | Journal Article |
Copyright | 2010 British Ecological Society 2010 The Authors. Journal compilation © 2010 British Ecological Society 2015 INIST-CNRS Copyright Blackwell Publishing Ltd. Sep 2010 Wageningen University & Research |
Copyright_xml | – notice: 2010 British Ecological Society – notice: 2010 The Authors. Journal compilation © 2010 British Ecological Society – notice: 2015 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Sep 2010 – notice: Wageningen University & Research |
DBID | FBQ AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7U6 7S9 L.6 QVL |
DOI | 10.1111/j.1365-2745.2010.01702.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef AGRICOLA Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 1127 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_394092 2108851811 23202942 10_1111_j_1365_2745_2010_01702_x JEC1702 40929060 US201301874551 |
Genre | article Feature |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEFU ABEML ABHUG ABJNI ABLJU ABPFR ABPLY ABPPZ ABPTK ABPVW ABTAH ABTLG ABWRO ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFDAS AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFXHP AFZJQ AGJLS AGUYK AIAGR AIHXQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI CWIXF D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AAYCA ABAWQ ABPQH ABSQW ABXSQ ACHIC ACHJO ADMHG AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME OIG AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7U6 7S9 L.6 02 08R 0R 31 3N ABHAC ABUFD ADACO AS B4K F20 GA HZ IA KM NEJ NF P4A PQEST QVL RIG UNR WT X XHC Y3 |
ID | FETCH-LOGICAL-c6472-b1aea1a27b97fd653922a56bc8eb122118b6186f7b88bc16e7de17801eb0c77d3 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Feb 05 18:08:18 EST 2021 Fri Jul 11 10:58:45 EDT 2025 Fri Jul 11 06:54:12 EDT 2025 Fri Jul 25 10:49:29 EDT 2025 Mon Jul 21 09:15:47 EDT 2025 Tue Jul 01 03:13:33 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Wed Jan 22 16:45:40 EST 2025 Thu Jul 03 21:12:13 EDT 2025 Wed Dec 27 19:19:48 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Grassland Community structure niche differentiation Root Plant community Interaction root interactions Ecology nutrient depletion Biodiversity root ecology Depletion species interactions Ecological niche Nutrient Ecosystem functioning Differentiation determinants of plant community diversity and structure Ecological abundance Interspecific relation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6472-b1aea1a27b97fd653922a56bc8eb122118b6186f7b88bc16e7de17801eb0c77d3 |
Notes | http://dx.doi.org/10.1111/j.1365-2745.2010.01702.x SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2745.2010.01702.x |
PQID | 743898790 |
PQPubID | 37508 |
PageCount | 11 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_394092 proquest_miscellaneous_755122272 proquest_miscellaneous_754895734 proquest_journals_743898790 pascalfrancis_primary_23202942 crossref_citationtrail_10_1111_j_1365_2745_2010_01702_x crossref_primary_10_1111_j_1365_2745_2010_01702_x wiley_primary_10_1111_j_1365_2745_2010_01702_x_JEC1702 jstor_primary_40929060 fao_agris_US201301874551 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | September 2010 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2002; 16 2007; 104 2004; 7 1981; 48 2008; 8 2008; 1 2009; 118 2007; 77 2001; 294 2009; 97 2005; 143 2002; 83 1991; 88 2005; 102 2007b; 176 2002; 40 2009; 90 2000; 405 2005; 75 2006; 280 1961; 42 2007; 3 2003; 84 1998; 12 2001; 412 1994; 75 2004; 101 2009; 68 2000; 27 2006; 94 2006; 57 2006; 9 2007a; 95 2008; 14 2002; 415 1983; 71 2002; 81 2008; 11 2001; 82 2002; 160 1976; 57 2000; 224 2005; 126 1997; 78 2003; 24 2005; 7 2009; 461 2003; 301 2007; 318 2006; 147 1998; 79 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 De Kroon H. (e_1_2_7_29_1) 2007; 318 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 48 start-page: 334 year: 1981 end-page: 341 article-title: Competition between plant‐populations with different rooting depths 2. Pot experiments publication-title: Oecologia – volume: 12 start-page: 223 year: 1998 end-page: 234 article-title: Density‐dependent habitat selection in plants publication-title: Evolutionary Ecology – volume: 79 start-page: 2267 year: 1998 end-page: 2280 article-title: Effects of nutrient patches and root systems on the clonal plasticity of a rhizomatous grass publication-title: Ecology – volume: 16 start-page: 198 year: 2002 end-page: 203 article-title: Root life spans of four grass species from habitats differing in nutrient availability publication-title: Functional Ecology – volume: 3 start-page: 435 year: 2007 end-page: 438 article-title: Kin recognition in an annual plant publication-title: Biology Letters – volume: 294 start-page: 843 year: 2001 end-page: 845 article-title: Diversity and productivity in a long‐term grassland experiment publication-title: Science – volume: 40 year: 2002 end-page: 348 article-title: Microbial populations responsible for specific soil suppressiveness to plant pathogens publication-title: Annual Review of Phytopathology – volume: 101 start-page: 10101 year: 2004 end-page: 10106 article-title: Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 104 start-page: 18123 year: 2007 end-page: 18128 article-title: Impacts of plant diversity on biomass production increase through time because of species complementarity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 405 start-page: 234 year: 2000 end-page: 242 article-title: Consequences of changing biodiversity publication-title: Nature – volume: 301 start-page: 1377 year: 2003 end-page: 1380 article-title: Allelopathy and exotic plant invasion: from molecules and genes to species interactions publication-title: Science – volume: 84 start-page: 2313 year: 2003 end-page: 2321 article-title: Defining a plant’s belowground zone of influence publication-title: Ecology – volume: 7 start-page: 27 year: 2005 end-page: 49 article-title: Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth publication-title: Perspectives in Plant Ecology Evolution and Systematics – volume: 160 start-page: 235 year: 2002 end-page: 247 article-title: Intra‐plant versus inter‐plant root competition in beans: avoidance, resource matching or tragedy of the commons publication-title: Plant Ecology – volume: 95 start-page: 252 year: 2007a end-page: 260 article-title: Challenging the tragedy of the commons in root competition: confounding effects of neighbour presence and substrate volume publication-title: Journal of Ecology – volume: 415 start-page: 68 year: 2002 end-page: 71 article-title: Resource‐based niches provide a basis for plant species diversity and dominance in arctic tundra publication-title: Nature – volume: 57 start-page: 233 year: 2006 end-page: 266 article-title: The role of root exudates in rhizosphere interactions with plants and other organisms publication-title: Annual Review of Plant Biology – volume: 102 start-page: 695 year: 2005 end-page: 700 article-title: Diversity‐productivity relationships: Initial effects, long‐term patterns, and underlying mechanisms publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 77 start-page: 147 year: 2007 end-page: 162 article-title: Microbe‐mediated plant‐soil feedback causes historical contingency effects in plant community assembly publication-title: Ecological monographs – volume: 318 start-page: 1562 year: 2007 end-page: 1563 article-title: Ecology – How do roots interact? publication-title: Science – volume: 82 start-page: 3285 year: 2001 end-page: 3294 article-title: Mechanisms of plant species coexistence: roles of rhizosphere bacteria and root fungal pathogens publication-title: Ecology – volume: 143 start-page: 598 year: 2005 end-page: 606 article-title: Niche differences in phenology and rooting depth promote coexistence with a dominant C‐4 bunchgrass publication-title: Oecologia – volume: 461 start-page: 254 year: 2009 end-page: 257 article-title: The importance of niches for the maintenance of species diversity publication-title: Nature – volume: 71 start-page: 379 year: 1983 end-page: 390 article-title: Interspecific competition and niche differentiation between and in a natural hayfield publication-title: Journal of Ecology – volume: 97 start-page: 48 year: 2009 end-page: 56 article-title: Linkages between plant functional composition, fine root processes and potential soil N mineralization rates publication-title: Journal of Ecology – volume: 1 start-page: 33 year: 2008 end-page: 41 article-title: Complementarity among species in horizontal versus vertical rooting space publication-title: Journal of Plant Ecology – volume: 90 start-page: 1389 year: 2009 end-page: 1399 article-title: Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness publication-title: Ecology – volume: 78 start-page: 1785 year: 1997 end-page: 1795 article-title: How soil‐borne pathogens may affect plan competition publication-title: Ecology – volume: 68 start-page: 1 year: 2009 end-page: 13 article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere publication-title: Fems Microbiology Ecology – volume: 176 start-page: 644 year: 2007b end-page: 654 article-title: Effects of physical connection and genetic identity of neighbouring ramets on root‐placement patterns in two clonal species publication-title: New Phytologist – volume: 42 start-page: 710 year: 1961 end-page: 717 article-title: Influence of interspecific competition and other factors on distribution of barnacle Chthamalus stellatus publication-title: Ecology – volume: 8 start-page: 947 year: 2008 end-page: 953 article-title: Unravelling belowground plant distributions: a real time PCR method for quantifying species proportions in mixed root samples publication-title: Molecular Ecology Notes – volume: 118 start-page: 101 year: 2009 end-page: 106 article-title: Long‐term persistence of a positive plant diversity‐productivity relationship in the absence of legumes publication-title: Oikos – volume: 27 start-page: 595 year: 2000 end-page: 607 article-title: The role of biomass allocation in the growth response of plants to different levels of light CO , nutrients and water: a quantitative review publication-title: Australian Journal of Plant Physiology – volume: 94 start-page: 725 year: 2006 end-page: 739 article-title: Root competition: beyond resource depletion publication-title: Journal of Ecology – volume: 83 start-page: 1713 year: 2002 end-page: 1726 article-title: Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease publication-title: Ecology – volume: 104 start-page: 11192 year: 2007 end-page: 11196 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus‐deficient soils publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 90 start-page: 1520 year: 2009 end-page: 1530 article-title: Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs publication-title: Ecology – volume: 412 start-page: 72 year: 2001 end-page: 76 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature – volume: 75 start-page: 3 year: 2005 end-page: 35 article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge publication-title: Ecological monographs – volume: 9 start-page: 1005 year: 2006 end-page: 1014 article-title: Plant‐soil feedbacks and invasive spread publication-title: Ecology Letters – volume: 14 start-page: 2937 year: 2008 end-page: 2949 article-title: Plant diversity positively affects short‐term soil carbon storage in experimental grasslands publication-title: Global Change Biology – volume: 24 start-page: 101 year: 2003 end-page: 111 article-title: No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities publication-title: Applied Soil Ecology – volume: 81 start-page: 509 year: 2002 end-page: 520 article-title: Effects of above‐ground plant species composition and diversity on the diversity of soil‐borne microorganisms publication-title: Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology – volume: 126 start-page: 129 year: 2005 end-page: 140 article-title: Mapping the global distribution of deep roots in relation to climate and soil characteristics publication-title: Geoderma – volume: 147 start-page: 280 year: 2006 end-page: 290 article-title: Root distribution and interactions between intercropped species publication-title: Oecologia – volume: 7 start-page: 574 year: 2004 end-page: 583 article-title: Biodiversity effects increase linearly with biotope space publication-title: Ecology Letters – volume: 11 start-page: 296 year: 2008 end-page: 310 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecology Letters – volume: 224 start-page: 217 year: 2000 end-page: 230 article-title: Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems publication-title: Plant and Soil – volume: 280 start-page: 101 year: 2006 end-page: 114 article-title: Aggregative root placement: a feature during interspecific competition in inland sand‐dune habitats publication-title: Plant and Soil – volume: 88 start-page: 874 year: 1991 end-page: 876 article-title: Root communication among desert shrubs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 75 start-page: 1965 year: 1994 end-page: 1977 article-title: Feedback between plants and their soil communities in an old field community publication-title: Ecology – volume: 57 start-page: 1281 year: 1976 end-page: 1288 article-title: Underground niche separation in successional plants publication-title: Ecology – volume: 101 start-page: 3863 year: 2004 end-page: 3867 article-title: Physiologically mediated self/non‐self discrimination in roots publication-title: Proceedings of the National Academy of Sciences of the United States of America – ident: e_1_2_7_10_1 doi: 10.2307/1941601 – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-2486.2008.01697.x – ident: e_1_2_7_54_1 doi: 10.1146/annurev.phyto.40.030402.110010 – ident: e_1_2_7_52_1 doi: 10.1046/j.1365-2435.2002.00611.x – ident: e_1_2_7_3_1 doi: 10.1146/annurev.arplant.57.032905.105159 – ident: e_1_2_7_5_1 doi: 10.1016/j.ppees.2004.11.002 – ident: e_1_2_7_15_1 doi: 10.1111/j.1461-0248.2004.00607.x – ident: e_1_2_7_12_1 doi: 10.1890/02-0287 – ident: e_1_2_7_42_1 doi: 10.1073/pnas.0306602101 – ident: e_1_2_7_43_1 doi: 10.1073/pnas.0407524102 – ident: e_1_2_7_36_1 doi: 10.1023/A:1015822003011 – ident: e_1_2_7_11_1 doi: 10.1073/pnas.0709069104 – ident: e_1_2_7_48_1 doi: 10.1111/j.1469-8137.2007.02211.x – ident: e_1_2_7_40_1 doi: 10.2307/1935052 – ident: e_1_2_7_7_1 doi: 10.2307/2259721 – ident: e_1_2_7_32_1 doi: 10.1007/s00442-005-0256-4 – ident: e_1_2_7_16_1 doi: 10.1098/rsbl.2007.0232 – ident: e_1_2_7_45_1 doi: 10.1111/j.1365-2745.2006.01124.x – ident: e_1_2_7_6_1 doi: 10.1007/BF00346491 – ident: e_1_2_7_38_1 doi: 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2 – ident: e_1_2_7_33_1 doi: 10.1073/pnas.0704591104 – ident: e_1_2_7_53_1 doi: 10.1890/0012-9658(1997)078[1785:HSBPMA]2.0.CO;2 – ident: e_1_2_7_39_1 doi: 10.1111/j.1755-0998.2008.02130.x – ident: e_1_2_7_27_1 doi: 10.1890/06-0502 – ident: e_1_2_7_19_1 doi: 10.1890/08-0802.1 – ident: e_1_2_7_25_1 doi: 10.1890/04-0922 – ident: e_1_2_7_9_1 doi: 10.1890/08-0867.1 – ident: e_1_2_7_35_1 doi: 10.1073/pnas.88.3.874 – ident: e_1_2_7_44_1 doi: 10.1111/j.1600-0706.2008.17119.x – ident: e_1_2_7_51_1 doi: 10.1126/science.1060391 – ident: e_1_2_7_41_1 doi: 10.1071/PP99173_CO – ident: e_1_2_7_21_1 doi: 10.1016/S0929-1393(02)00137-3 – ident: e_1_2_7_55_1 doi: 10.1890/0012-9658(2001)082[3285:MOPSCR]2.0.CO;2 – ident: e_1_2_7_17_1 doi: 10.1007/s00442-005-0010-y – volume: 318 start-page: 1562 year: 2007 ident: e_1_2_7_29_1 article-title: Ecology – How do roots interact? publication-title: Science doi: 10.1126/science.1150726 – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-2745.2007.01210.x – ident: e_1_2_7_37_1 doi: 10.1038/415068a – ident: e_1_2_7_4_1 doi: 10.1007/s11104-005-2612-x – ident: e_1_2_7_18_1 doi: 10.1093/jpe/rtm006 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2745.2008.01453.x – ident: e_1_2_7_34_1 doi: 10.1038/35083573 – ident: e_1_2_7_26_1 doi: 10.1890/0012-9658(1998)079[2267:EONPAR]2.0.CO;2 – ident: e_1_2_7_46_1 doi: 10.1016/j.geoderma.2004.11.018 – ident: e_1_2_7_13_1 doi: 10.1038/35012241 – ident: e_1_2_7_22_1 doi: 10.1023/A:1006587813950 – ident: e_1_2_7_28_1 doi: 10.1023/A:1020565523615 – ident: e_1_2_7_8_1 doi: 10.1111/j.1574-6941.2009.00654.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1461-0248.2007.01139.x – ident: e_1_2_7_14_1 doi: 10.2307/1933500 – ident: e_1_2_7_30_1 doi: 10.1038/nature08251 – ident: e_1_2_7_49_1 doi: 10.1023/A:1004891807664 – ident: e_1_2_7_31_1 doi: 10.1111/j.1461-0248.2006.00949.x – ident: e_1_2_7_23_1 doi: 10.1073/pnas.0306604101 – ident: e_1_2_7_2_1 doi: 10.1126/science.1083245 |
SSID | ssj0006750 |
Score | 2.4461384 |
Snippet | 1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in... Summary 1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in... 1. Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in... Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in nutrient-limited... Summary1.Plant diversity has profound effects on primary production. Plant diversity has been shown to correlate with increased primary production in... |
SourceID | wageningen proquest pascalfrancis crossref wiley jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1117 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Anthoxanthum odoratum Biodiversity Biological and medical sciences biomass complementarity Deoxyribonucleic acid Determinants of plant community diversity and structure DNA Ecology ecosystem functioning ecosystems Flowers & plants forbs Fundamental and applied biological sciences. Psychology General aspects Grasses Grasslands Human ecology interspecific competition microbial communities Mineralization Monoculture niche differentiation Niches nutrient depletion nutrients Organic matter pathogens Plant diversity Plant ecology Plant growth Plant roots Plant species Plants Primary production primary productivity productivity rhizosphere root competition root ecology root growth root interactions rooting Roots Soil ecology soil feedbacks Soil nutrients Soil organic matter Soils Species Species diversity species interactions Topsoil |
Title | Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species |
URI | https://www.jstor.org/stable/40929060 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2745.2010.01702.x https://www.proquest.com/docview/743898790 https://www.proquest.com/docview/754895734 https://www.proquest.com/docview/755122272 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F394092 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagolIvPApVQ6HygWuqxHk45gbVVlUlOAAr9WbZiV2tunLQJstSTly58Rv5Jcw4jyUIoQpx2kixk-zo88znZGY-Ql7kRaEhColQFYkN00zbUOi8DKuyKCH6aSDJ-Grgzdv8fJ5eXGaXff4T1sJ0_SHGF264Mry_xgWudDNd5F09VZr1GVoxllYhn8QTyI_ebTtJAS-OhsbhUcr5NKnnjxeaRKq7VtVDyiLmT6oGTGg77YsJOd3bgB9wvjBqynd9wDp7QK6Hv9rlqVyfrFt9Un75rQvk_7HFQ3K_57X0VQfER-SOcftkt1O6vNkn917XwELhYHfm22TfPCbf5u6TWWA1PNVmWW9-fP2OJSauolj9CRt4qjSWqQAq6cJRRfWiroYsErpVJngJp4Avt7S21ItLg8mowwxXOqi_tB3-qFdWolcr2DBgQudwoydkfjb7cHoe9sIQYYnd7kMdK6NixbgW3FbYXJcxleW6LCDyMNjSFhplACzXgMQyzg2vTMwhFhsdlZxXyQHZcbUzh4QmttIx1xkrC5Hy1AqbqNgKFhlR5FVVBYQPIJBl3zUdxTuW8pfdE9heou0l2l5628vPAYnHmR-7ziG3mHMIOJPqChy8nL9n-FkZRROB1gbkwINvvBZszLFVfxSQ4wkaxwHAlSMmUhaQowGesndQjeSoel9wAdPpeBY8C34uUs7UaxgC61RkPEn_NgT4ImMc7pFscS8dymA1EjuX9-iVm_VKuiX-gJtpZCLw8QOSe1Tf2j7yYnaKR0__deIR2evSPzBJ8BnZaVdr8xxYZauPvb_4CTENaNE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagUNELj0LVUCg-cE2VOA_H3KDaailtD9CVerPsxK5WXTloHyzlxJUbv5FfwoyT7BKEUIU4baTESXb0efyNMzMfIS_zotCwColQFYkN00zbUOi8DKuyKGH100CScWvg9CwfjtLji-yilQPCWpimP8Rqww1nhvfXOMFxQ7o_y5uCqjRrU7RirK0CQnkHBb59fPV-3UsKmHHUtQ6PUs77aT1_vFNvrbptVd0lLWIGpZqBEW2jftGjp1tL8ATOl0b1Ga9fso4ekEn3Z5tMlauDxVwflF9-6wP5n6zxkNxvqS193WDxEbll3DbZbMQur7fJ3Tc1EFE42Bz4TtnXj8m3kftkxlgQT7WZ1MsfX79jlYmrKBaAQgxPlcZKFQAmHTuqqB7XVZdIQtfiBK_gFFDmOa0t9frSYDPqMMmVdgIw8waC1Isr0cspxAyY09k96AkZHQ3OD4dhqw0RltjwPtSxMipWjGvBbYX9dRlTWa7LAhYfBlFtoVEJwHINYCzj3PDKxByWY6OjkvMq2SEbrnZml9DEVjrmOmNlIVKeWmETFVvBIiOKvKqqgPAOBbJsG6ejfsdE_hJAge0l2l6i7aW3vfwckHg18mPTPOQGY3YBaFJdgo-Xow8MvyyjbiIw24DsePSt7gWxOXbrjwKy34Pj6gKgyxETKQvIXodP2fqomeQofF9wAcPp6iw4F_xipJypF3AJTFWR8ST92yVAGRnj8IxkDXzpUAlrJrF5eQtfuVxMpZvgD3iamUwEvn5Acg_rG9tHHg8O8ejpvw58Qe4Nz09P5Mnbs3d7ZKvJBsGcwWdkYz5dmOdAMud63zuPn5qTbOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagUNQLj9KqoVB84JoqcR6OuUG7q1KgQsBKvVl2bFerrpxqHyzlxJUbv5FfwkweW4IQqhCnjRQ7yY4-z3xOZuYj5FleFBqikAhVkbgwzbQLhc7L0JRFCdFPA0nGVwNvT_KjUXp8mp22-U9YC9P0h1i9cMOVUftrXOAXxvUXeVNPlWZthlaMpVXAJ2-leVQgwg_fX7WSAmIcdZ3Do5TzflbPH6_UC1U3naq6nEVMoFQzsKFrxC967HRjCY7A15VRfcJbR6zhPXLe_dcmUeV8fzHX--WX39pA_h9j3Cd3W2JLXzRIfEBuWL9J1hupy8tNcvtlBTQUDtYHdZ_sy4fk28h_smMsh6faTqrlj6_fscbEG4rln7CDp0pjnQrAko49VVSPK9OlkdAraYLncAoI85xWjtbq0mAy6jHFlXbyL_MGgLSWVqJnU9gxYEZnd6MtMhoOPh4cha0yRFhiu_tQx8qqWDGuBXcGu-syprJclwWEHgZ72kKjDoDjGqBYxrnlxsYcgrHVUcm5SbbJmq-83SE0cUbHXGesLETKUydcomInWGRFkRtjAsI7EMiybZuO6h0T-cv2CWwv0fYSbS9r28vPAYlXMy-a1iHXmLMDOJPqDDy8HH1g-F0ZVROB1wZkuwbf6lqwM8de_VFA9npoXA0AshwxkbKA7HbwlK2HmkmOsvcFFzCdrs6Ca8HvRcrbagFDYKGKjCfp34YAYWSMwz2SK9xLjzpYM4mty1v0yuViKv0Ef8DPzGQi8PEDkteovrZ95PHgAI8e_evEp-TOu8OhfPPq5PUu2WhSQTBh8DFZm08X9gkwzLneq13HTxKwa6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+below-ground+species+abundance+in+a+biodiversity+experiment%3A+a+test+of+vertical+niche+differentiation+among+grassland+species&rft.jtitle=The+Journal+of+ecology&rft.au=Mommer%2C+Liesje&rft.au=van+Ruijven%2C+Jasper&rft.au=de+Caluwe%2C+Hannie&rft.au=Smit-Tiekstra%2C+Annemiek+E&rft.date=2010-09-01&rft.issn=0022-0477&rft.volume=98&rft.issue=5&rft.spage=1117&rft.epage=1127&rft_id=info:doi/10.1111%2Fj.1365-2745.2010.01702.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |