Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method
Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based c...
Saved in:
Published in | Annals of biomedical engineering Vol. 43; no. 1; pp. 139 - 153 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Boston
Springer US
01.01.2015
Springer Nature B.V Kluwer Academic Publishers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the
a priori
known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation. |
---|---|
AbstractList | Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in Patient based computed tomography (CT) scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 ruptured AAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution.
The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences was observed between the peak systolic stress (PSS) and the peak stress at the mean arterial pressure (MAP) between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the
a-priori
known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture.
The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and ruptured AAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation. Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation. Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation. Issue Title: Computational Hemodynamics: Development of Clinical Tools for Decision Making, Patient Specific Treatment, and Clinical Management Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.[PUBLICATION ABSTRACT] Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation. |
Author | Xenos, Michalis Rambhia, Suraj Bluestein, Danny Einav, Shmuel Tassiopoulos, Apostolos Alemu, Yared Labropoulos, Nicos Sakalihasan, Natzi |
AuthorAffiliation | 1 Dept of Mathematics, University of Ioannina, Ioannina, Greece 2 Dept of Biomedical Engineering, Stony Brook University, Stony Brook, NY 4 Dept of Surgery, Liege University Hospital, Belgium 3 Dept of Surgery, Stony Brook University Hospital, Stony Brook, NY |
AuthorAffiliation_xml | – name: 1 Dept of Mathematics, University of Ioannina, Ioannina, Greece – name: 2 Dept of Biomedical Engineering, Stony Brook University, Stony Brook, NY – name: 3 Dept of Surgery, Stony Brook University Hospital, Stony Brook, NY – name: 4 Dept of Surgery, Liege University Hospital, Belgium |
Author_xml | – sequence: 1 givenname: Michalis surname: Xenos fullname: Xenos, Michalis organization: Department of Mathematics, University of Ioannina – sequence: 2 givenname: Nicos surname: Labropoulos fullname: Labropoulos, Nicos organization: Department of Surgery, Stony Brook University Hospital – sequence: 3 givenname: Suraj surname: Rambhia fullname: Rambhia, Suraj organization: Department of Biomedical Engineering, Stony Brook University – sequence: 4 givenname: Yared surname: Alemu fullname: Alemu, Yared organization: Department of Biomedical Engineering, Stony Brook University – sequence: 5 givenname: Shmuel surname: Einav fullname: Einav, Shmuel organization: Department of Biomedical Engineering, Stony Brook University – sequence: 6 givenname: Apostolos surname: Tassiopoulos fullname: Tassiopoulos, Apostolos organization: Department of Surgery, Stony Brook University Hospital – sequence: 7 givenname: Natzi surname: Sakalihasan fullname: Sakalihasan, Natzi organization: Department of Surgery, Liege University Hospital – sequence: 8 givenname: Danny surname: Bluestein fullname: Bluestein, Danny email: danny.bluestein@stonybrook.edu organization: Department of Biomedical Engineering, Stony Brook University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25527320$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9qFDEUxgep2G31AbyRgDfejObPJDPxQlgWVwsVZW2vQyaTmaZmkzWZVPbOdxB8QJ_EzG4rtaD0Kgnn-305nPMdFQfOO10UTxF8iSCsX0UEK8JLiKoSYVyV8EExQ7QmJWcNOyhmEHJYMs6qw-IoxksIEWoIfVQcYkpxTTCcFT8_BT8EHaPxDvgezNvOr42TFsx9GI0Cc6dT2MY1OPPfZOgiWKXNmIJ-DVa6N864ASxsPlVGViZ-AfMYs91auxGcx6kswTJZuwULnzZWd2Bpk-l-ff_xeQxJTVbgxI06SDVOPXzQ44XvHhcPe2mjfnJ9Hhfny7dni_fl6cd3J4v5aalYxcayrzRVjBCoeNdzzlQre17BFlKuVX40HaUdb1gHJWqh0pJJ3SjCCUQKKtyR4-LN3neT2rXuVO46SCs2waxl2Aovjfi74syFGPyVqHDDISbZgOwNrNGDFj60RlzhHbi7JzsIqUSrBcasEahuEKKZenH9bfBfk46jWJuotLXSaZ-iQIxBSGnDqntIacUaUuP7uFYU46biMEuf35Fe-hTy2ncqktPVYJ5Vz25P589YbuKTBfVeoIKPMeheKDPKaY95WMYKBMUUVLEPqshBFVNQxUSiO-SN-f8YvGdi1rpBh1tN_xP6DeD4_UU |
CitedBy_id | crossref_primary_10_1063_5_0219980 crossref_primary_10_1016_j_cmpb_2020_105522 crossref_primary_10_1088_1742_6596_2119_1_012069 crossref_primary_10_1016_j_ejvs_2016_07_003 crossref_primary_10_1016_j_jbiomech_2015_04_006 crossref_primary_10_1115_1_4044143 crossref_primary_10_3390_jcm10091917 crossref_primary_10_1080_10255842_2016_1215437 crossref_primary_10_1111_aor_12914 crossref_primary_10_1155_2015_861627 crossref_primary_10_1016_j_avsg_2020_09_059 crossref_primary_10_1016_j_avsg_2023_12_084 crossref_primary_10_1115_1_4035687 crossref_primary_10_3390_bioengineering10020272 crossref_primary_10_1016_j_jmbbm_2017_08_019 crossref_primary_10_2174_1389201021666201117095215 crossref_primary_10_1177_1526602817748585 crossref_primary_10_1177_1526602816680088 crossref_primary_10_7133_jca_22_00019 crossref_primary_10_1080_10255842_2017_1410796 crossref_primary_10_1016_j_jvs_2022_07_008 crossref_primary_10_1016_j_cmpbup_2021_100019 crossref_primary_10_1115_1_4043722 crossref_primary_10_1098_rsif_2015_0852 crossref_primary_10_3233_THC_230194 crossref_primary_10_1063_5_0177036 crossref_primary_10_1002_cnm_3426 crossref_primary_10_1007_s00348_016_2263_0 crossref_primary_10_3400_avd_oa_24_00131 crossref_primary_10_3389_fbioe_2022_814995 crossref_primary_10_1007_s13239_016_0287_5 crossref_primary_10_1016_j_jmbbm_2023_105922 crossref_primary_10_1016_j_angio_2018_01_004 crossref_primary_10_1007_s10237_018_1024_9 crossref_primary_10_1142_S0219519419500155 crossref_primary_10_1016_j_jvs_2017_10_044 crossref_primary_10_1097_MD_0000000000027306 crossref_primary_10_3389_fcvm_2023_1248300 crossref_primary_10_1115_1_4051120 crossref_primary_10_1098_rspa_2016_0774 |
Cites_doi | 10.1016/j.jvs.2009.08.075 10.1016/j.ejvs.2010.12.010 10.1080/10255842.2013.815929 10.1016/j.jbiomech.2007.11.029 10.1196/annals.1383.037 10.1186/1475-925X-4-64 10.1115/1.4023254 10.1007/s10439-012-0691-4 10.1016/j.jvs.2005.10.072 10.1016/S0997-7538(01)01206-2 10.1007/s10439-010-0067-6 10.1067/mva.2002.125478 10.1016/j.medengphy.2005.06.008 10.1067/mva.2003.213 10.1016/S1078-5884(98)80031-2 10.1080/10255840802176396 10.1115/1.1835362 10.1007/s10439-006-9132-6 10.1016/j.medengphy.2013.01.008 10.1115/1.4005176 10.1016/j.finel.2010.12.015 10.1098/rsif.2012.0097 10.1118/1.3284976 10.1007/s11517-010-0714-y 10.1007/s10439-009-9760-8 10.1007/s10439-010-0175-3 10.1016/j.ijcard.2006.03.033 10.1016/j.jbiomech.2011.11.038 10.1115/1.3005200 10.1023/A:1010835316564 10.1152/ajpheart.00934.2004 10.1016/0045-7949(87)90265-3 10.1016/j.jbiomech.2006.04.019 10.1583/10-3244C.1 10.1115/1.4024578 10.1016/j.ejvs.2006.10.009 10.1016/j.actbio.2012.04.044 10.1016/j.jbiomech.2009.09.057 10.1007/s10439-010-0094-3 10.1115/1.3138600 10.1115/1.2898830 10.1114/1.1326031 10.1016/j.jbiomech.2005.12.013 10.1115/1.4024275 10.1016/j.jbiomech.2011.11.021 10.1002/cnm.2515 10.1016/S0021-9290(99)00201-8 10.1093/cvr/cvq337 10.1115/1.1695572 10.1016/j.ejvs.2010.04.003 10.1583/11-3456.1 10.1007/s10237-010-0191-0 10.1161/ATVBAHA.110.204529 10.1016/j.compbiomed.2011.06.017 10.1080/10255842.2011.652097 10.1166/jmihi.2013.1201 10.1114/1.1581880 10.1007/s10439-013-0786-6 10.1142/S0219519412004442 10.1139/o57-080 10.1098/rsta.1948.0002 10.1016/j.jbiomech.2005.03.003 10.1016/S1350-4533(01)00093-5 10.1016/j.medengphy.2013.03.005 10.1098/rsif.2010.0299 10.1007/s10237-012-0436-1 |
ContentType | Journal Article Web Resource |
Copyright | Biomedical Engineering Society 2014 Biomedical Engineering Society 2015 |
Copyright_xml | – notice: Biomedical Engineering Society 2014 – notice: Biomedical Engineering Society 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 Q33 5PM |
DOI | 10.1007/s10439-014-1224-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts Engineering Research Database Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 153 |
ExternalDocumentID | PMC4289023 oai_orbi_ulg_ac_be_2268_178115 3549946861 25527320 10_1007_s10439_014_1224_0 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: U01 EB012487 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK ABRTQ AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 Q33 5PM |
ID | FETCH-LOGICAL-c646t-f4e5c6330c9df996cbaf940b059eccba8d55d986d0a1b0cea6ae8c39301c0c2d3 |
IEDL.DBID | 7X7 |
ISSN | 0090-6964 1573-9686 |
IngestDate | Thu Aug 21 14:01:45 EDT 2025 Fri Jul 25 15:34:39 EDT 2025 Fri Jul 11 05:52:11 EDT 2025 Mon Jul 21 11:36:25 EDT 2025 Fri Jul 11 05:30:47 EDT 2025 Fri Jul 25 19:10:16 EDT 2025 Thu Apr 03 07:02:12 EDT 2025 Tue Jul 01 00:38:08 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Fri Feb 21 02:37:38 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Reconstruction of patient-based geometry Rupture of abdominal aortic aneurysm Rupture potential index Fluid-structure interaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c646t-f4e5c6330c9df996cbaf940b059eccba8d55d986d0a1b0cea6ae8c39301c0c2d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84920510692 |
OpenAccessLink | http://doi.org/10.1007/s10439-014-1224-0 |
PMID | 25527320 |
PQID | 1643100829 |
PQPubID | 54090 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4289023 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_178115 proquest_miscellaneous_1660055864 proquest_miscellaneous_1654683725 proquest_miscellaneous_1645228490 proquest_journals_1643100829 pubmed_primary_25527320 crossref_citationtrail_10_1007_s10439_014_1224_0 crossref_primary_10_1007_s10439_014_1224_0 springer_journals_10_1007_s10439_014_1224_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: United States – name: New York |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2015 |
Publisher | Springer US Springer Nature B.V Kluwer Academic Publishers |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Kluwer Academic Publishers |
References | Rodriguez, Ruiz, Doblare, Holzapfel (CR47) 2008; 130 Bluestein, Alemu, Avrahami (CR1) 2008; 41 Michel, Martin-Ventura, Egido (CR35) 2011; 90 Papaharilaou, Ekaterinaris, Manousaki, Katsamouris (CR37) 2007; 40 Doyle, Hoskins, McGloughlin (CR12) 2011; 18 Wang, Li (CR61) 2011; 41 Kim, Vignon-Clementel, Figueroa (CR29) 2009; 37 Zhang, Kheyfets, Finol (CR68) 2013; 35 McGloughlin, Doyle (CR34) 2010; 30 Raut, Chandra, Shum, Finol (CR41) 2013; 41 Truijers, Pol, Schultzekool (CR56) 2007; 33 Ferruzzi, Vorp, Humphrey (CR14) 2011; 8 Vande Geest, Sacks, Vorp (CR57) 2006; 39 Toungara, Chagnon, Geindreau (CR54) 2012; 12 Holzapfel, Gasser (CR21) 2007; 116 Wolters, Rutten, Schurink (CR65) 2005; 27 Hsu, Bazilevs (CR27) 2011; 47 Rivlin (CR45) 1948; 240 Gasser, Gallinetti, Xing (CR19) 2012; 8 Wang, Li (CR62) 2013; 16 Fillinger, Raghavan, Marra, Cronenwett, Kennedy (CR17) 2002; 36 Washington, Shum, Muluk, Finol (CR63) 2011; 133 Holzapfel, Gasser, Stadler (CR24) 2002; 21 Reeps, Maier, Pelisek (CR43) 2013; 12 Gasser, Auer, Labruto, Swedenborg, Roy (CR18) 2010; 40 Humphrey, Holzapfel (CR28) 2012; 45 Chuong, Fung (CR4) 1986; 108 Lee, Zhu, Shum (CR30) 2013; 41 Xenos, Rambhia, Alemu (CR67) 2010; 38 Vande Geest, Wang, Wisniewski, Makaroun, Vorp (CR58) 2006; 34 Maier, Gee, Reeps (CR32) 2010; 38 Polzer, Gasser, Swedenborg, Bursa (CR39) 2011; 41 Shum, Martufi, Di Martino (CR50) 2011; 39 Bluestein, Dumont, De Beule (CR2) 2008; 12 Di Martino, Guadagni, Fumero (CR7) 2001; 23 Olufsen, Peskin, Kim (CR36) 2000; 28 Shum, DiMartino, Goldhammer (CR49) 2010; 37 Roach, Burton (CR46) 1957; 35 Sussman, Bathe (CR52) 1987; 26 Holzapfel, Gasser, Ogden (CR22) 2000; 61 Rissland, Alemu, Einav, Ricotta, Bluestein (CR44) 2009; 13 Toungara, Orgeas, Geindreau, Bailly (CR55) 2013; 16 Holzapfel, Gasser, Ogden (CR23) 2004; 126 Holzapfel, Sommer, Gasser, Regitnig (CR25) 2005; 289 de Putter, Wolters, Rutten (CR5) 2006; 40 Di Martino, Vorp (CR9) 2003; 31 Giuma, Osman, Kadir (CR20) 2013; 3 Raut, Jana, De Oliveira, Muluk, Finol (CR42) 2013; 135 Raghavan, Vorp (CR40) 2000; 33 Xenos, Alemu, Zamfir (CR66) 2010; 48 Maier, Gee, Reeps, Eckstein, Wall (CR31) 2010; 9 Martufi, Gasser (CR33) 2013; 135 Wilson, Baek, Humphrey (CR64) 2012; 9 Fillinger (CR15) 2006; 1085 Polzer, Gasser, Bursa (CR38) 2013; 35 Di Martino, Mantero, Inzoli (CR8) 1998; 15 Erdemira, Guess, Halloran, Tadepalli, Morrison (CR13) 2012; 45 Doyle, Callanan, Grace, Kavanagh (CR10) 2013; 29 Doyle, Cloonan, Walsh, Vorp, McGloughlin (CR11) 2010; 43 Tierney, Callanan, McGloughlin (CR53) 2012; 19 Vengrenyuk, Cardoso, Weinbaum (CR59) 2008; 5 Fillinger, Marra, Raghavan, Kennedy (CR16) 2003; 37 Chandra, Raut, Jana (CR3) 2013; 135 Holzapfel, Stadler, Gasser (CR26) 2005; 127 Venkatasubramaniam, Fagan, Mehta (CR60) 2004; 28 Scotti, Shkolnik, Muluk, Finol (CR48) 2005; 4 Speelman, Schurink, Bosboom (CR51) 2010; 51 Di Martino, Bohra, Vande Geest (CR6) 2006; 43 Y Papaharilaou (1224_CR37) 2007; 40 HJ Kim (1224_CR29) 2009; 37 Y Vengrenyuk (1224_CR59) 2008; 5 JS Wilson (1224_CR64) 2012; 9 MS Olufsen (1224_CR36) 2000; 28 G Holzapfel (1224_CR26) 2005; 127 GA Holzapfel (1224_CR25) 2005; 289 GA Holzapfel (1224_CR21) 2007; 116 RS Rivlin (1224_CR45) 1948; 240 M Toungara (1224_CR54) 2012; 12 JP Vande Geest (1224_CR58) 2006; 34 BJ Doyle (1224_CR12) 2011; 18 A Maier (1224_CR32) 2010; 38 SS Raut (1224_CR42) 2013; 135 S Polzer (1224_CR38) 2013; 35 SKB Giuma (1224_CR20) 2013; 3 ML Raghavan (1224_CR40) 2000; 33 C Scotti (1224_CR48) 2005; 4 MR Roach (1224_CR46) 1957; 35 M Xenos (1224_CR67) 2010; 38 A Erdemira (1224_CR13) 2012; 45 JD Humphrey (1224_CR28) 2012; 45 AP Tierney (1224_CR53) 2012; 19 CB Washington (1224_CR63) 2011; 133 SS Raut (1224_CR41) 2013; 41 TC Gasser (1224_CR18) 2010; 40 S Polzer (1224_CR39) 2011; 41 GA Holzapfel (1224_CR24) 2002; 21 ES Martino Di (1224_CR7) 2001; 23 ES Martino Di (1224_CR9) 2003; 31 T Sussman (1224_CR52) 1987; 26 BJ Wolters (1224_CR65) 2005; 27 J Shum (1224_CR49) 2010; 37 S Chandra (1224_CR3) 2013; 135 P Rissland (1224_CR44) 2009; 13 BJ Doyle (1224_CR11) 2010; 43 M Fillinger (1224_CR15) 2006; 1085 XH Wang (1224_CR62) 2013; 16 TM McGloughlin (1224_CR34) 2010; 30 MF Fillinger (1224_CR16) 2003; 37 M Xenos (1224_CR66) 2010; 48 D Bluestein (1224_CR2) 2008; 12 M Truijers (1224_CR56) 2007; 33 D Bluestein (1224_CR1) 2008; 41 G Martufi (1224_CR33) 2013; 135 L Speelman (1224_CR51) 2010; 51 H Zhang (1224_CR68) 2013; 35 CJ Chuong (1224_CR4) 1986; 108 E Di Martino (1224_CR8) 1998; 15 MF Fillinger (1224_CR17) 2002; 36 C Reeps (1224_CR43) 2013; 12 TC Gasser (1224_CR19) 2012; 8 GA Holzapfel (1224_CR23) 2004; 126 XH Wang (1224_CR61) 2011; 41 GA Holzapfel (1224_CR22) 2000; 61 JB Michel (1224_CR35) 2011; 90 ES Martino Di (1224_CR6) 2006; 43 BJ Doyle (1224_CR10) 2013; 29 A Maier (1224_CR31) 2010; 9 M Toungara (1224_CR55) 2013; 16 JF Rodriguez (1224_CR47) 2008; 130 K Lee (1224_CR30) 2013; 41 S Putter de (1224_CR5) 2006; 40 AK Venkatasubramaniam (1224_CR60) 2004; 28 J Shum (1224_CR50) 2011; 39 J Ferruzzi (1224_CR14) 2011; 8 MC Hsu (1224_CR27) 2011; 47 JP Vande Geest (1224_CR57) 2006; 39 17137809 - Eur J Vasc Endovasc Surg. 2007 Apr;33(4):401-7 13460788 - Can J Biochem Physiol. 1957 Aug;35(8):681-90 15179858 - J Biomech Eng. 2004 Apr;126(2):264-75 16822562 - Int J Cardiol. 2007 Mar 2;116(1):78-85 20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50 23719760 - J Biomech Eng. 2013 Aug;135(8):81001 11755809 - Med Eng Phys. 2001 Nov;23(9):647-55 21088917 - Med Biol Eng Comput. 2010 Dec;48(12):1175-90 23608300 - Med Eng Phys. 2013 Sep;35(9):1358-67 21269846 - Eur J Vasc Endovasc Surg. 2011 Apr;41(4):467-73 23923834 - Comput Methods Biomech Biomed Engin. 2013;16 Suppl 1:22-4 22289116 - Comput Methods Biomech Biomed Engin. 2013;16(9):1032-9 16500664 - J Biomech. 2007;40(2):367-77 16006541 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2048-58 20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34 22579983 - Acta Biomater. 2012 Aug;8(8):3091-103 10768396 - J Biomech. 2000 Apr;33(4):475-82 20143120 - Biomech Model Mechanobiol. 2010 Oct;9(5):511-21 23722475 - J Biomech Eng. 2013 Aug;135(8):81010 17182919 - Ann N Y Acad Sci. 2006 Nov;1085:22-8 22189249 - J Biomech. 2012 Mar 15;45(5):805-14 18524245 - Mol Cell Biomech. 2008 Mar;5(1):37-47 20508202 - Arterioscler Thromb Vasc Biol. 2010 Sep;30(9):1687-94 15868799 - J Biomech Eng. 2005 Feb;127(1):166-80 20890661 - Ann Biomed Eng. 2011 Jan;39(1):277-86 22313210 - J Endovasc Ther. 2012 Feb;19(1):100-14 15885699 - J Biomech. 2006;39(7):1324-34 23445055 - J Biomech Eng. 2013 Feb;135(2):021010 21521063 - J Endovasc Ther. 2011 Apr;18(2):226-9 18412510 - J Biomech Eng. 2008 Apr;130(2):021023 18651282 - Comput Methods Biomech Biomed Engin. 2009 Feb;12(1):73-81 19609676 - Ann Biomed Eng. 2009 Nov;37(11):2153-69 12971613 - Ann Biomed Eng. 2003 Jul-Aug;31(7):804-9 16157501 - Med Eng Phys. 2005 Dec;27(10):871-83 16271141 - Biomed Eng Online. 2005;4:64 18258240 - J Biomech. 2008;41(5):1111-8 20447844 - Eur J Vasc Endovasc Surg. 2010 Aug;40(2):176-85 15234698 - Eur J Vasc Endovasc Surg. 2004 Aug;28(2):168-76 23434615 - Med Eng Phys. 2013 Sep;35(9):1282-9 22236526 - J Biomech. 2012 Feb 23;45(4):625-33 9610340 - Eur J Vasc Endovasc Surg. 1998 Apr;15(4):290-9 12663969 - J Vasc Surg. 2003 Apr;37(4):724-32 19944551 - J Vasc Surg. 2010 Jan;51(1):19-26 11212947 - Ann Biomed Eng. 2000 Nov-Dec;28(11):1281-99 22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33 23345202 - Int J Numer Method Biomed Eng. 2013 Feb;29(2):150-64 20552276 - Ann Biomed Eng. 2010 Nov;38(11):3323-37 21757193 - Comput Biol Med. 2011 Sep;41(9):812-21 23508633 - Ann Biomed Eng. 2013 Jul;41(7):1459-77 22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58 23180028 - Ann Biomed Eng. 2013 Mar;41(3):562-76 16822515 - J Biomech. 2007;40(5):1081-90 3079517 - J Biomech Eng. 1986 May;108(2):189-92 22070335 - J Biomech Eng. 2011 Oct;133(10):104501 16520175 - J Vasc Surg. 2006 Mar;43(3):570-6; discussion 576 21037321 - Cardiovasc Res. 2011 Apr 1;90(1):18-27 20152982 - J Biomech. 2010 May 7;43(7):1408-16 16786395 - Ann Biomed Eng. 2006 Jul;34(7):1098-106 19154060 - J Biomech Eng. 2009 Mar;131(3):031001 12218986 - J Vasc Surg. 2002 Sep;36(3):589-97 20229873 - Med Phys. 2010 Feb;37(2):638-48 |
References_xml | – volume: 51 start-page: 19 year: 2010 end-page: 26 ident: CR51 article-title: The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2009.08.075 – volume: 41 start-page: 467 year: 2011 end-page: 473 ident: CR39 article-title: The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2010.12.010 – volume: 16 start-page: 22 year: 2013 end-page: 24 ident: CR55 article-title: Micromechanical modelling of the arterial wall: Influence of mechanical heterogeneities on the wall stress distribution and the peak wall stress publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2013.815929 – volume: 41 start-page: 1111 year: 2008 end-page: 1118 ident: CR1 article-title: Influence of microcalcifications on vulnerable plaque mechanics using fsi modeling publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.11.029 – volume: 1085 start-page: 22 year: 2006 end-page: 28 ident: CR15 article-title: The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods) publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1383.037 – volume: 4 start-page: 64 year: 2005 ident: CR48 article-title: Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness publication-title: Biomed. Eng. Online. doi: 10.1186/1475-925X-4-64 – volume: 135 start-page: 021010 year: 2013 ident: CR33 article-title: Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms publication-title: J. Biomech. Eng. doi: 10.1115/1.4023254 – volume: 41 start-page: 562 year: 2013 end-page: 576 ident: CR30 article-title: Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0691-4 – volume: 43 start-page: 570 year: 2006 end-page: 576 ident: CR6 article-title: Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2005.10.072 – volume: 21 start-page: 441 year: 2002 end-page: 463 ident: CR24 article-title: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis publication-title: Eur. J. Mech. A Solids. doi: 10.1016/S0997-7538(01)01206-2 – volume: 38 start-page: 3124 year: 2010 end-page: 3134 ident: CR32 article-title: A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0067-6 – volume: 36 start-page: 589 year: 2002 end-page: 597 ident: CR17 article-title: In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk publication-title: J. Vasc. Surg. doi: 10.1067/mva.2002.125478 – volume: 27 start-page: 871 year: 2005 end-page: 883 ident: CR65 article-title: A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2005.06.008 – volume: 37 start-page: 724 year: 2003 end-page: 732 ident: CR16 article-title: Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter publication-title: J. Vasc. Surg. doi: 10.1067/mva.2003.213 – volume: 15 start-page: 290 year: 1998 end-page: 299 ident: CR8 article-title: Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/S1078-5884(98)80031-2 – volume: 12 start-page: 73 year: 2008 end-page: 81 ident: CR2 article-title: Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—fsi modelling publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840802176396 – volume: 127 start-page: 166 year: 2005 end-page: 180 ident: CR26 article-title: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs publication-title: J. Biomech. Eng. Trans. ASME. doi: 10.1115/1.1835362 – volume: 34 start-page: 1098 year: 2006 end-page: 1106 ident: CR58 article-title: Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9132-6 – volume: 35 start-page: 1282 year: 2013 end-page: 1289 ident: CR38 article-title: Importance of material model in wall stress prediction in abdominal aortic aneurysms publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.01.008 – volume: 133 start-page: 6 year: 2011 ident: CR63 article-title: The association of wall mechanics and morphology: a case study of abdominal aortic aneurysm growth publication-title: J. Biomech. Eng. Trans. ASME doi: 10.1115/1.4005176 – volume: 47 start-page: 593 year: 2011 end-page: 599 ident: CR27 article-title: Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2010.12.015 – volume: 9 start-page: 2047 year: 2012 end-page: 2058 ident: CR64 article-title: Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0097 – volume: 37 start-page: 638 year: 2010 end-page: 648 ident: CR49 article-title: Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms publication-title: Med. Phys. doi: 10.1118/1.3284976 – volume: 48 start-page: 1175 year: 2010 end-page: 1190 ident: CR66 article-title: The effect of angulation in abdominal aortic aneurysms: fluid-structure interaction simulations of idealized geometries publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-010-0714-y – volume: 37 start-page: 2153 year: 2009 end-page: 2169 ident: CR29 article-title: On coupling a lumped parameter heart model and a three-dimensional finite element aorta model publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9760-8 – volume: 39 start-page: 277 year: 2011 end-page: 286 ident: CR50 article-title: Quantitative assessment of abdominal aortic aneurysm geometry publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0175-3 – volume: 116 start-page: 78 year: 2007 end-page: 85 ident: CR21 article-title: Computational stress-deformation analysis of arterial walls including high-pressure response publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2006.03.033 – volume: 45 start-page: 625 year: 2012 end-page: 633 ident: CR13 article-title: Considerations for reporting finite element analysis studies in biomechanics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.038 – volume: 13 start-page: 031001 year: 2009 end-page: 031010 ident: CR44 article-title: Abdominal aortic aneurysm risk of rupture- patient specific FSI simulations using anisotropic model publication-title: J. Biomech. Eng. doi: 10.1115/1.3005200 – volume: 61 start-page: 1 year: 2000 end-page: 48 ident: CR22 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elast. doi: 10.1023/A:1010835316564 – volume: 289 start-page: H2048 year: 2005 end-page: H2058 ident: CR25 article-title: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00934.2004 – volume: 26 start-page: 357 year: 1987 end-page: 409 ident: CR52 article-title: A finite-element formulation for nonlinear incompressible elastic and inelastic analysis publication-title: Comput. Struct. doi: 10.1016/0045-7949(87)90265-3 – volume: 40 start-page: 1081 year: 2006 end-page: 1090 ident: CR5 article-title: Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.04.019 – volume: 18 start-page: 226 year: 2011 end-page: 229 ident: CR12 article-title: Computational rupture prediction of AAAs: what needs to be done next? publication-title: J. Endovasc. Ther. doi: 10.1583/10-3244C.1 – volume: 135 start-page: 10 year: 2013 ident: CR42 article-title: The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics publication-title: J. Biomech. Eng. Trans. ASME. doi: 10.1115/1.4024578 – volume: 33 start-page: 401 year: 2007 end-page: 407 ident: CR56 article-title: Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2006.10.009 – volume: 28 start-page: 168 year: 2004 end-page: 176 ident: CR60 article-title: A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms publication-title: Eur. J. Vasc. Endovasc. Surg. – volume: 8 start-page: 3091 year: 2012 end-page: 3103 ident: CR19 article-title: Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.04.044 – volume: 43 start-page: 1408 year: 2010 end-page: 1416 ident: CR11 article-title: Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.057 – volume: 38 start-page: 3323 year: 2010 end-page: 3337 ident: CR67 article-title: Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0094-3 – volume: 108 start-page: 189 year: 1986 end-page: 192 ident: CR4 article-title: On residual stresses in arteries publication-title: J. Biomech. Eng. doi: 10.1115/1.3138600 – volume: 130 start-page: 021023 year: 2008 ident: CR47 article-title: Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy publication-title: J. Biomech. Eng. doi: 10.1115/1.2898830 – volume: 28 start-page: 1281 year: 2000 end-page: 1299 ident: CR36 article-title: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1326031 – volume: 40 start-page: 367 year: 2007 end-page: 377 ident: CR37 article-title: A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.12.013 – volume: 135 start-page: 081001 year: 2013 ident: CR3 article-title: Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling publication-title: J. Biomech. Eng. doi: 10.1115/1.4024275 – volume: 45 start-page: 805 year: 2012 end-page: 814 ident: CR28 article-title: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.021 – volume: 29 start-page: 150 year: 2013 end-page: 164 ident: CR10 article-title: On the influence of patient-specific material properties in computational simulations: a case study of a large ruptured abdominal aortic aneurysm publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2515 – volume: 33 start-page: 475 year: 2000 end-page: 482 ident: CR40 article-title: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00201-8 – volume: 90 start-page: 18 year: 2011 end-page: 27 ident: CR35 article-title: Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvq337 – volume: 126 start-page: 264 year: 2004 end-page: 275 ident: CR23 article-title: Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability publication-title: J. Biomech. Eng. Trans. ASME doi: 10.1115/1.1695572 – volume: 40 start-page: 176 year: 2010 end-page: 185 ident: CR18 article-title: Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2010.04.003 – volume: 19 start-page: 100 year: 2012 end-page: 114 ident: CR53 article-title: Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk publication-title: J. Endovasc. Ther. doi: 10.1583/11-3456.1 – volume: 9 start-page: 511 year: 2010 end-page: 521 ident: CR31 article-title: Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0191-0 – volume: 30 start-page: 1687 year: 2010 end-page: 1694 ident: CR34 article-title: New approaches to abdominal aortic aneurysm rupture risk assessment engineering insights with clinical gain publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.110.204529 – volume: 5 start-page: 37 year: 2008 end-page: 47 ident: CR59 article-title: Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps publication-title: Mol. Cell Biomech. – volume: 41 start-page: 812 year: 2011 end-page: 821 ident: CR61 article-title: Computational simulation of aortic aneurysm using fsi method: influence of blood viscosity on aneurismal dynamic behaviors publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.06.017 – volume: 16 start-page: 1032 year: 2013 end-page: 1039 ident: CR62 article-title: A fluid-structure interaction-based numerical investigation on the evolution of stress, strength and rupture potential of an abdominal aortic aneurysm publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.652097 – volume: 3 start-page: 514 year: 2013 end-page: 522 ident: CR20 article-title: Fluid structure interaction analysis in abdominal aortic aneurysms: influence of diameter, length, and distal neck publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2013.1201 – volume: 31 start-page: 804 year: 2003 end-page: 809 ident: CR9 article-title: Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1581880 – volume: 41 start-page: 1459 year: 2013 end-page: 1477 ident: CR41 article-title: The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0786-6 – volume: 12 start-page: 1250005 year: 2012 ident: CR54 article-title: Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519412004442 – volume: 35 start-page: 681 year: 1957 end-page: 690 ident: CR46 article-title: The reason for the shape of the distensibility curves of arteries publication-title: Can. J. Biochem. Physiol. doi: 10.1139/o57-080 – volume: 240 start-page: 459 year: 1948 end-page: 508 ident: CR45 article-title: Large elastic deformations of isotropic materials. 1. Fundamental concepts publication-title: Philos. Trans. R. Soc. Lond Ser. A doi: 10.1098/rsta.1948.0002 – volume: 39 start-page: 1324 year: 2006 end-page: 1334 ident: CR57 article-title: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.03.003 – volume: 23 start-page: 647 year: 2001 end-page: 655 ident: CR7 article-title: Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(01)00093-5 – volume: 35 start-page: 1358 year: 2013 end-page: 1367 ident: CR68 article-title: Robust infrarenal aortic aneurysm lumen centerline detection for rupture status classification publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.03.005 – volume: 8 start-page: 435 year: 2011 end-page: 450 ident: CR14 article-title: On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2010.0299 – volume: 12 start-page: 717 year: 2013 end-page: 733 ident: CR43 article-title: Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-012-0436-1 – volume: 33 start-page: 475 year: 2000 ident: 1224_CR40 publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00201-8 – volume: 135 start-page: 10 year: 2013 ident: 1224_CR42 publication-title: J. Biomech. Eng. Trans. ASME. – volume: 12 start-page: 73 year: 2008 ident: 1224_CR2 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840802176396 – volume: 133 start-page: 6 year: 2011 ident: 1224_CR63 publication-title: J. Biomech. Eng. Trans. ASME doi: 10.1115/1.4005176 – volume: 35 start-page: 681 year: 1957 ident: 1224_CR46 publication-title: Can. J. Biochem. Physiol. doi: 10.1139/o57-080 – volume: 29 start-page: 150 year: 2013 ident: 1224_CR10 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2515 – volume: 28 start-page: 168 year: 2004 ident: 1224_CR60 publication-title: Eur. J. Vasc. Endovasc. Surg. – volume: 1085 start-page: 22 year: 2006 ident: 1224_CR15 publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1383.037 – volume: 43 start-page: 570 year: 2006 ident: 1224_CR6 publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2005.10.072 – volume: 41 start-page: 1459 year: 2013 ident: 1224_CR41 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0786-6 – volume: 240 start-page: 459 year: 1948 ident: 1224_CR45 publication-title: Philos. Trans. R. Soc. Lond Ser. A doi: 10.1098/rsta.1948.0002 – volume: 289 start-page: H2048 year: 2005 ident: 1224_CR25 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00934.2004 – volume: 48 start-page: 1175 year: 2010 ident: 1224_CR66 publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-010-0714-y – volume: 43 start-page: 1408 year: 2010 ident: 1224_CR11 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.057 – volume: 31 start-page: 804 year: 2003 ident: 1224_CR9 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1581880 – volume: 30 start-page: 1687 year: 2010 ident: 1224_CR34 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.110.204529 – volume: 12 start-page: 1250005 year: 2012 ident: 1224_CR54 publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519412004442 – volume: 126 start-page: 264 year: 2004 ident: 1224_CR23 publication-title: J. Biomech. Eng. Trans. ASME doi: 10.1115/1.1695572 – volume: 41 start-page: 467 year: 2011 ident: 1224_CR39 publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2010.12.010 – volume: 3 start-page: 514 year: 2013 ident: 1224_CR20 publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2013.1201 – volume: 41 start-page: 812 year: 2011 ident: 1224_CR61 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.06.017 – volume: 16 start-page: 1032 year: 2013 ident: 1224_CR62 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.652097 – volume: 9 start-page: 511 year: 2010 ident: 1224_CR31 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0191-0 – volume: 13 start-page: 031001 year: 2009 ident: 1224_CR44 publication-title: J. Biomech. Eng. doi: 10.1115/1.3005200 – volume: 39 start-page: 1324 year: 2006 ident: 1224_CR57 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.03.003 – volume: 27 start-page: 871 year: 2005 ident: 1224_CR65 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2005.06.008 – volume: 36 start-page: 589 year: 2002 ident: 1224_CR17 publication-title: J. Vasc. Surg. doi: 10.1067/mva.2002.125478 – volume: 45 start-page: 805 year: 2012 ident: 1224_CR28 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.021 – volume: 12 start-page: 717 year: 2013 ident: 1224_CR43 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-012-0436-1 – volume: 37 start-page: 724 year: 2003 ident: 1224_CR16 publication-title: J. Vasc. Surg. doi: 10.1067/mva.2003.213 – volume: 61 start-page: 1 year: 2000 ident: 1224_CR22 publication-title: J. Elast. doi: 10.1023/A:1010835316564 – volume: 15 start-page: 290 year: 1998 ident: 1224_CR8 publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/S1078-5884(98)80031-2 – volume: 108 start-page: 189 year: 1986 ident: 1224_CR4 publication-title: J. Biomech. Eng. doi: 10.1115/1.3138600 – volume: 37 start-page: 638 year: 2010 ident: 1224_CR49 publication-title: Med. Phys. doi: 10.1118/1.3284976 – volume: 45 start-page: 625 year: 2012 ident: 1224_CR13 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.038 – volume: 135 start-page: 021010 year: 2013 ident: 1224_CR33 publication-title: J. Biomech. Eng. doi: 10.1115/1.4023254 – volume: 35 start-page: 1358 year: 2013 ident: 1224_CR68 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.03.005 – volume: 41 start-page: 562 year: 2013 ident: 1224_CR30 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0691-4 – volume: 35 start-page: 1282 year: 2013 ident: 1224_CR38 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.01.008 – volume: 8 start-page: 3091 year: 2012 ident: 1224_CR19 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.04.044 – volume: 23 start-page: 647 year: 2001 ident: 1224_CR7 publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(01)00093-5 – volume: 38 start-page: 3323 year: 2010 ident: 1224_CR67 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0094-3 – volume: 39 start-page: 277 year: 2011 ident: 1224_CR50 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0175-3 – volume: 135 start-page: 081001 year: 2013 ident: 1224_CR3 publication-title: J. Biomech. Eng. doi: 10.1115/1.4024275 – volume: 40 start-page: 176 year: 2010 ident: 1224_CR18 publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2010.04.003 – volume: 116 start-page: 78 year: 2007 ident: 1224_CR21 publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2006.03.033 – volume: 21 start-page: 441 year: 2002 ident: 1224_CR24 publication-title: Eur. J. Mech. A Solids. doi: 10.1016/S0997-7538(01)01206-2 – volume: 38 start-page: 3124 year: 2010 ident: 1224_CR32 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0067-6 – volume: 130 start-page: 021023 year: 2008 ident: 1224_CR47 publication-title: J. Biomech. Eng. doi: 10.1115/1.2898830 – volume: 51 start-page: 19 year: 2010 ident: 1224_CR51 publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2009.08.075 – volume: 40 start-page: 367 year: 2007 ident: 1224_CR37 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.12.013 – volume: 41 start-page: 1111 year: 2008 ident: 1224_CR1 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.11.029 – volume: 90 start-page: 18 year: 2011 ident: 1224_CR35 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvq337 – volume: 37 start-page: 2153 year: 2009 ident: 1224_CR29 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9760-8 – volume: 28 start-page: 1281 year: 2000 ident: 1224_CR36 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1326031 – volume: 8 start-page: 435 year: 2011 ident: 1224_CR14 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2010.0299 – volume: 16 start-page: 22 year: 2013 ident: 1224_CR55 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2013.815929 – volume: 127 start-page: 166 year: 2005 ident: 1224_CR26 publication-title: J. Biomech. Eng. Trans. ASME. doi: 10.1115/1.1835362 – volume: 26 start-page: 357 year: 1987 ident: 1224_CR52 publication-title: Comput. Struct. doi: 10.1016/0045-7949(87)90265-3 – volume: 19 start-page: 100 year: 2012 ident: 1224_CR53 publication-title: J. Endovasc. Ther. doi: 10.1583/11-3456.1 – volume: 4 start-page: 64 year: 2005 ident: 1224_CR48 publication-title: Biomed. Eng. Online. doi: 10.1186/1475-925X-4-64 – volume: 47 start-page: 593 year: 2011 ident: 1224_CR27 publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2010.12.015 – volume: 18 start-page: 226 year: 2011 ident: 1224_CR12 publication-title: J. Endovasc. Ther. doi: 10.1583/10-3244C.1 – volume: 9 start-page: 2047 year: 2012 ident: 1224_CR64 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0097 – volume: 33 start-page: 401 year: 2007 ident: 1224_CR56 publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2006.10.009 – volume: 40 start-page: 1081 year: 2006 ident: 1224_CR5 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.04.019 – volume: 34 start-page: 1098 year: 2006 ident: 1224_CR58 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9132-6 – volume: 5 start-page: 37 year: 2008 ident: 1224_CR59 publication-title: Mol. Cell Biomech. – reference: 21757193 - Comput Biol Med. 2011 Sep;41(9):812-21 – reference: 22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33 – reference: 15868799 - J Biomech Eng. 2005 Feb;127(1):166-80 – reference: 17182919 - Ann N Y Acad Sci. 2006 Nov;1085:22-8 – reference: 16520175 - J Vasc Surg. 2006 Mar;43(3):570-6; discussion 576 – reference: 15885699 - J Biomech. 2006;39(7):1324-34 – reference: 22579983 - Acta Biomater. 2012 Aug;8(8):3091-103 – reference: 3079517 - J Biomech Eng. 1986 May;108(2):189-92 – reference: 12218986 - J Vasc Surg. 2002 Sep;36(3):589-97 – reference: 20552276 - Ann Biomed Eng. 2010 Nov;38(11):3323-37 – reference: 21088917 - Med Biol Eng Comput. 2010 Dec;48(12):1175-90 – reference: 20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50 – reference: 21037321 - Cardiovasc Res. 2011 Apr 1;90(1):18-27 – reference: 16500664 - J Biomech. 2007;40(2):367-77 – reference: 15179858 - J Biomech Eng. 2004 Apr;126(2):264-75 – reference: 22070335 - J Biomech Eng. 2011 Oct;133(10):104501 – reference: 22236526 - J Biomech. 2012 Feb 23;45(4):625-33 – reference: 11755809 - Med Eng Phys. 2001 Nov;23(9):647-55 – reference: 23722475 - J Biomech Eng. 2013 Aug;135(8):81010 – reference: 11212947 - Ann Biomed Eng. 2000 Nov-Dec;28(11):1281-99 – reference: 15234698 - Eur J Vasc Endovasc Surg. 2004 Aug;28(2):168-76 – reference: 21269846 - Eur J Vasc Endovasc Surg. 2011 Apr;41(4):467-73 – reference: 16157501 - Med Eng Phys. 2005 Dec;27(10):871-83 – reference: 10768396 - J Biomech. 2000 Apr;33(4):475-82 – reference: 16006541 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2048-58 – reference: 22189249 - J Biomech. 2012 Mar 15;45(5):805-14 – reference: 23345202 - Int J Numer Method Biomed Eng. 2013 Feb;29(2):150-64 – reference: 19609676 - Ann Biomed Eng. 2009 Nov;37(11):2153-69 – reference: 23180028 - Ann Biomed Eng. 2013 Mar;41(3):562-76 – reference: 17137809 - Eur J Vasc Endovasc Surg. 2007 Apr;33(4):401-7 – reference: 23508633 - Ann Biomed Eng. 2013 Jul;41(7):1459-77 – reference: 9610340 - Eur J Vasc Endovasc Surg. 1998 Apr;15(4):290-9 – reference: 18651282 - Comput Methods Biomech Biomed Engin. 2009 Feb;12(1):73-81 – reference: 20229873 - Med Phys. 2010 Feb;37(2):638-48 – reference: 20508202 - Arterioscler Thromb Vasc Biol. 2010 Sep;30(9):1687-94 – reference: 23445055 - J Biomech Eng. 2013 Feb;135(2):021010 – reference: 13460788 - Can J Biochem Physiol. 1957 Aug;35(8):681-90 – reference: 18258240 - J Biomech. 2008;41(5):1111-8 – reference: 12663969 - J Vasc Surg. 2003 Apr;37(4):724-32 – reference: 23719760 - J Biomech Eng. 2013 Aug;135(8):81001 – reference: 23923834 - Comput Methods Biomech Biomed Engin. 2013;16 Suppl 1:22-4 – reference: 21521063 - J Endovasc Ther. 2011 Apr;18(2):226-9 – reference: 19154060 - J Biomech Eng. 2009 Mar;131(3):031001 – reference: 20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34 – reference: 20447844 - Eur J Vasc Endovasc Surg. 2010 Aug;40(2):176-85 – reference: 16271141 - Biomed Eng Online. 2005;4:64 – reference: 22313210 - J Endovasc Ther. 2012 Feb;19(1):100-14 – reference: 19944551 - J Vasc Surg. 2010 Jan;51(1):19-26 – reference: 20152982 - J Biomech. 2010 May 7;43(7):1408-16 – reference: 16822515 - J Biomech. 2007;40(5):1081-90 – reference: 16822562 - Int J Cardiol. 2007 Mar 2;116(1):78-85 – reference: 18412510 - J Biomech Eng. 2008 Apr;130(2):021023 – reference: 23434615 - Med Eng Phys. 2013 Sep;35(9):1282-9 – reference: 12971613 - Ann Biomed Eng. 2003 Jul-Aug;31(7):804-9 – reference: 23608300 - Med Eng Phys. 2013 Sep;35(9):1358-67 – reference: 18524245 - Mol Cell Biomech. 2008 Mar;5(1):37-47 – reference: 20143120 - Biomech Model Mechanobiol. 2010 Oct;9(5):511-21 – reference: 22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58 – reference: 22289116 - Comput Methods Biomech Biomed Engin. 2013;16(9):1032-9 – reference: 20890661 - Ann Biomed Eng. 2011 Jan;39(1):277-86 – reference: 16786395 - Ann Biomed Eng. 2006 Jul;34(7):1098-106 |
RestrictionsOnAccess | restricted access |
SSID | ssj0011835 |
Score | 2.317747 |
Snippet | Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration,... Issue Title: Computational Hemodynamics: Development of Clinical Tools for Decision Making, Patient Specific Treatment, and Clinical Management Rupture of... |
SourceID | pubmedcentral liege proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | Aorta - physiology Aortic Aneurysm, Abdominal - diagnostic imaging Aortic Aneurysm, Abdominal - physiopathology Aortic Rupture - diagnostic imaging Aortic Rupture - physiopathology Aortography Biochemistry Biological and Medical Physics Biomechanical Phenomena Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Blood vessels Chirurgie Classical Mechanics Computed tomography Computer simulation Disease Progression Female Human health sciences Humans Male Mathematical models Models, Cardiovascular Progressions Regional Blood Flow Risk Risk assessment Rupture Sciences de la santé humaine Statistical models Strength Stresses Surgery Tomography, X-Ray Computed Trends |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA7SguiDtPU2tUoEn9SBdCZJM74NxaUIK7J2oW8ht9Gl48zidAp98z8I_sD-Ek8yl-5qXfBtIGcyZM5Jck6-k-8g9KoQxGpmipgZlsU01QXMOcVioZwj2lpYOH2gOP3IT-b0wxk76-9xN0O2-wBJhpV65bIbbJ4Q-nqevYTGEKdvMwjdfR7XPMlH6ABstCtbkEFclHE6QJm3dbG2GW2XHqa-zdP8O2HyD9Q0bEaTHfSg9yJx3ql9F91x1R66v8ItuIfuTnvU_CH69cknYXUEHLgucK5tHWp54bz2PeDcs1peNd_waUiibfCsXXpk4R2euSJUkMA9f2iJZ4vmHOcjnycOOQdYYR_LXuHjul2WzuJJ2S7s9Y-fnwM9LXSFw9Fjd4sCT0PZ6kdoPnl_enwS9_UYYsMpv4gL6pjhaUpMZguIk4xWRUaJBg8NDEErYRmzmeCWqENNjFNcOWHSDNYQQ0xi08doq6or9xRhLhJtnS00tQIMRClLDNWps87BgkJ4hMigGGl6snJfM6OUNzTLXpcSdCm9LiWJ0OvxlWXH1LFJ-G3Qtqy_64W8TKRn2Q7PbflFKiO1k-CYCnnob-KyCB0MRiH7Od5ICDQ9OiKSLEIvx2aYnR5yUZWr2yADDq6gGdkkwygX6VHCNslwz5YmOI3Qk84Wx0EmgUQvgS8crVnpKODHtt5SLb4GJnEaYOY0Qm8Ge14Z3r_-3f5_ST9D98DHZN2p1QHaArNzz8GPu9Avwrz9DUVGQ_E priority: 102 providerName: Springer Nature |
Title | Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method |
URI | https://link.springer.com/article/10.1007/s10439-014-1224-0 https://www.ncbi.nlm.nih.gov/pubmed/25527320 https://www.proquest.com/docview/1643100829 https://www.proquest.com/docview/1645228490 https://www.proquest.com/docview/1654683725 https://www.proquest.com/docview/1660055864 http://orbi.ulg.ac.be/handle/2268/178115 https://pubmed.ncbi.nlm.nih.gov/PMC4289023 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZglRA8IBi3wJiMxBMQ4SW26_CCwtRuAnWayiqVJ8u3QEVoClmR9j_4wRw7l61c-tJWzWkq53y2z83fQeh5IYjVzBQxMyyLaaoLmHOKxUI5R7S1sHB6R3Fywo9n9P2czduAW92WVXZrYliobWV8jPw1mPU-Fi2S7O3qe-y7RvnsattC4zoaeOoyj-rhvHe4wHZuGmySDFykjNMuq9kcnYOtGBxpz9qX0Jhs7EuD0mes_2V0_l07-UcCNexL4zvodmtQ4rxBwF10zS130a0rNIO76MakTaDfQ79OfT1Ww8WBqwLn2lahrRfOK38HnHuCy4v6Gz4L9bQ1nq5XPsnwBk9dEZpJ4JZKtMTTRf0V5z21Jw7lB1hh79Ze4MNqvSqdxeNyvbDxx8BTCzfCIQbZHKfAk9C_-j6ajUdnh8dx25ghNpzy87igjhmepsRktgCHyWhVZJRoMNUAEVoJy5jNBLdEHWhinOLKCZNmsJgYYhKbPkA7y2rpHiHMRaKts4WmVgBSlLLEUJ066xysLIRHiHRqkaZlLffNM0p5ybfsNSlBk9JrUpIIveh_smooO7YJvwq6ltUPvZA_E-nptsPndflZKiO1k2ChCnngj-SyCO11kJDtZK_lJTQj9Ky_DNPU517U0lXrIAOWrqAZ2SbDKBfpMGHbZLinTROcRuhhg8R-kElg00vgH4YbGO0F_Ng2rywXXwKlOA355jRCLzs0Xxne_57d4-0P4wm6CdYla-JVe2gHcOaeggV3rvfDNIVXMT7aR4P86NOHEby_G52cTuHbWZL_BjRFSqs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKK0E5IChQFgoYCS7ACnfXdr1ICEWFkNKmQiGVejN-LUQs2UAaUP4Hv4PfyNj7aMMjt94i7awj7zw845n5BqGHuSBWM5PHzLAspqnOQecUi4VyjmhrwXD6QLF_yHtH9O0xO15Bv5peGF9W2djEYKhtafwd-TNw6_1dtEiyl5OvsZ8a5bOrzQiNSiz23fwHhGzTF3uvgL-PkqT7erjbi-upArHhlJ_EOXXMcAjjTWZz8PaNVnlGiQY_A7ajlbCM2UxwS9S2JsYprpwwaQaaYIhJbArrXkBrNIWT3Hemd9-0WQtQj2piQgYhWcZpk0WtWvXg6IfA3aMEJjQmC-fgWuEz5P9ycv-u1fwjYRvOwe5VdKV2YHGnkrhraMWNN9DlM7CGG-hiv07YX0c_3_n6rwr7A5c57mhbhjFiuFP6FXDHA2rOp1_wMNTvTvFgNvFJjed44PIwvALX0KUFHoymn3GnhRLFodwBK-zD6DneLWeTwlncLWYjG78PuLiwEA53nlX7Bu6Hedk30NG5sOwmWh2XY3cLYS4SbZ3NNbUCJFMpSwzVqbPOgSUjPEKkYYs0NUq6H9ZRyFN8Z89JCZyUnpOSROhx-8qkgghZRvw08FqW3_RIfk-kh_cOv2fFR6mM1E6CRyzktm8BZhHaakRC1sZlKk9VIUIP2sdgFnyuR41dOQs04FkLmpFlNIxyke4kbBkN9zBtgtMIbVaS2G4yCeh9CfzDzoKMtgR-b4tPxqNPAcKchvx2GqEnjTSf2d7_vt3t5R_jPrrUG_YP5MHe4f4dtA6eLavuyrbQKsicuwve44m-F1QWow_nbSN-Aw_phI4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGK03wgGDcAgOMBC9ANC-x3QQJobKt2hitqrJJe_N8C1SEptAV1P_Br-HXcexctnLp294ixXHknEu-43P8HYSeZgkxiuksZJqlIY1VBjYnWZhIa4kyBhynCxT7A75_TN-dsJM19Ks-C-PKKmuf6B21KbTbI98CWO_2opMo3cqqsojhbu_N9GvoOki5TGvdTqNUkUO7-AHh2-z1wS7I-lkU9faOdvbDqsNAqDnlZ2FGLdMcQnqdmgyQv1YySylRgDlgaUomhjGTJtwQua2ItpJLm-g4BavQREcmhnmvoHbHRUUt1H67NxiOmhwGGEvZPyGFAC3ltM6plgf3AAhAGO84AyMakqW_Yjt3-fJ_Qd6_Kzf_SN_6v2LvBrpewVncLfXvJlqzkw107QLJ4QZa71fp-1vo59BVg5VMILjIcFeZwjcVw93CzYC7jl5zMfuCj3w17wyP5lOX4niFRzbzrSxwRWSa49F49hl3G2JR7IsfsMQuqF7gnWI-za3BvXw-NuEHz5ILE2G_A1oe5sB93z37Njq-FKHdQa1JMbH3EOZJpIw1maImAT2V0hBNVWyNteDXCA8QqcUidMWZ7lp35OKc7dlJUoAkhZOkIAF63jwyLQlDVg1-6WUtim9qLL5HwpF9--t5_lFILZQVgI8Tse0OBLMAbdYqISpXMxPnhhGgJ81tcBIu8yMntpj7MYCzE5qSVWMY5UncidiqMdyRtiWcBuhuqYnNIiPP5RfBGzpLOtoMcGtbvjMZf_KE5tRnu-MAvai1-cLy_vft7q_-GI_ROvgH8f5gcPgAXQWYy8qNs03UApWzDwFKnqlHlc1idHrZbuI3l2uKIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progression+of+Abdominal+Aortic+Aneurysm+Towards+Rupture%3A+Refining+Clinical+Risk+Assessment+Using+a+Fully+Coupled+Fluid-Structure+Interaction+Method&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Xenos%2C+Michalis&rft.au=Labropoulos%2C+Nicos&rft.au=Rambhia%2C+Suraj&rft.au=Alemu%2C+Yared&rft.date=2015-01-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=43&rft.issue=1&rft.spage=139&rft.epage=153&rft_id=info:doi/10.1007%2Fs10439-014-1224-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |