Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method

Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based c...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 43; no. 1; pp. 139 - 153
Main Authors Xenos, Michalis, Labropoulos, Nicos, Rambhia, Suraj, Alemu, Yared, Einav, Shmuel, Tassiopoulos, Apostolos, Sakalihasan, Natzi, Bluestein, Danny
Format Journal Article Web Resource
LanguageEnglish
Published Boston Springer US 01.01.2015
Springer Nature B.V
Kluwer Academic Publishers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.
AbstractList Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in Patient based computed tomography (CT) scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 ruptured AAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences was observed between the peak systolic stress (PSS) and the peak stress at the mean arterial pressure (MAP) between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a-priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and ruptured AAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.
Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.
Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.
Issue Title: Computational Hemodynamics: Development of Clinical Tools for Decision Making, Patient Specific Treatment, and Clinical Management Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.[PUBLICATION ABSTRACT]
Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.
Author Xenos, Michalis
Rambhia, Suraj
Bluestein, Danny
Einav, Shmuel
Tassiopoulos, Apostolos
Alemu, Yared
Labropoulos, Nicos
Sakalihasan, Natzi
AuthorAffiliation 1 Dept of Mathematics, University of Ioannina, Ioannina, Greece
2 Dept of Biomedical Engineering, Stony Brook University, Stony Brook, NY
4 Dept of Surgery, Liege University Hospital, Belgium
3 Dept of Surgery, Stony Brook University Hospital, Stony Brook, NY
AuthorAffiliation_xml – name: 1 Dept of Mathematics, University of Ioannina, Ioannina, Greece
– name: 2 Dept of Biomedical Engineering, Stony Brook University, Stony Brook, NY
– name: 3 Dept of Surgery, Stony Brook University Hospital, Stony Brook, NY
– name: 4 Dept of Surgery, Liege University Hospital, Belgium
Author_xml – sequence: 1
  givenname: Michalis
  surname: Xenos
  fullname: Xenos, Michalis
  organization: Department of Mathematics, University of Ioannina
– sequence: 2
  givenname: Nicos
  surname: Labropoulos
  fullname: Labropoulos, Nicos
  organization: Department of Surgery, Stony Brook University Hospital
– sequence: 3
  givenname: Suraj
  surname: Rambhia
  fullname: Rambhia, Suraj
  organization: Department of Biomedical Engineering, Stony Brook University
– sequence: 4
  givenname: Yared
  surname: Alemu
  fullname: Alemu, Yared
  organization: Department of Biomedical Engineering, Stony Brook University
– sequence: 5
  givenname: Shmuel
  surname: Einav
  fullname: Einav, Shmuel
  organization: Department of Biomedical Engineering, Stony Brook University
– sequence: 6
  givenname: Apostolos
  surname: Tassiopoulos
  fullname: Tassiopoulos, Apostolos
  organization: Department of Surgery, Stony Brook University Hospital
– sequence: 7
  givenname: Natzi
  surname: Sakalihasan
  fullname: Sakalihasan, Natzi
  organization: Department of Surgery, Liege University Hospital
– sequence: 8
  givenname: Danny
  surname: Bluestein
  fullname: Bluestein, Danny
  email: danny.bluestein@stonybrook.edu
  organization: Department of Biomedical Engineering, Stony Brook University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25527320$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9qFDEUxgep2G31AbyRgDfejObPJDPxQlgWVwsVZW2vQyaTmaZmkzWZVPbOdxB8QJ_EzG4rtaD0Kgnn-305nPMdFQfOO10UTxF8iSCsX0UEK8JLiKoSYVyV8EExQ7QmJWcNOyhmEHJYMs6qw-IoxksIEWoIfVQcYkpxTTCcFT8_BT8EHaPxDvgezNvOr42TFsx9GI0Cc6dT2MY1OPPfZOgiWKXNmIJ-DVa6N864ASxsPlVGViZ-AfMYs91auxGcx6kswTJZuwULnzZWd2Bpk-l-ff_xeQxJTVbgxI06SDVOPXzQ44XvHhcPe2mjfnJ9Hhfny7dni_fl6cd3J4v5aalYxcayrzRVjBCoeNdzzlQre17BFlKuVX40HaUdb1gHJWqh0pJJ3SjCCUQKKtyR4-LN3neT2rXuVO46SCs2waxl2Aovjfi74syFGPyVqHDDISbZgOwNrNGDFj60RlzhHbi7JzsIqUSrBcasEahuEKKZenH9bfBfk46jWJuotLXSaZ-iQIxBSGnDqntIacUaUuP7uFYU46biMEuf35Fe-hTy2ncqktPVYJ5Vz25P589YbuKTBfVeoIKPMeheKDPKaY95WMYKBMUUVLEPqshBFVNQxUSiO-SN-f8YvGdi1rpBh1tN_xP6DeD4_UU
CitedBy_id crossref_primary_10_1063_5_0219980
crossref_primary_10_1016_j_cmpb_2020_105522
crossref_primary_10_1088_1742_6596_2119_1_012069
crossref_primary_10_1016_j_ejvs_2016_07_003
crossref_primary_10_1016_j_jbiomech_2015_04_006
crossref_primary_10_1115_1_4044143
crossref_primary_10_3390_jcm10091917
crossref_primary_10_1080_10255842_2016_1215437
crossref_primary_10_1111_aor_12914
crossref_primary_10_1155_2015_861627
crossref_primary_10_1016_j_avsg_2020_09_059
crossref_primary_10_1016_j_avsg_2023_12_084
crossref_primary_10_1115_1_4035687
crossref_primary_10_3390_bioengineering10020272
crossref_primary_10_1016_j_jmbbm_2017_08_019
crossref_primary_10_2174_1389201021666201117095215
crossref_primary_10_1177_1526602817748585
crossref_primary_10_1177_1526602816680088
crossref_primary_10_7133_jca_22_00019
crossref_primary_10_1080_10255842_2017_1410796
crossref_primary_10_1016_j_jvs_2022_07_008
crossref_primary_10_1016_j_cmpbup_2021_100019
crossref_primary_10_1115_1_4043722
crossref_primary_10_1098_rsif_2015_0852
crossref_primary_10_3233_THC_230194
crossref_primary_10_1063_5_0177036
crossref_primary_10_1002_cnm_3426
crossref_primary_10_1007_s00348_016_2263_0
crossref_primary_10_3400_avd_oa_24_00131
crossref_primary_10_3389_fbioe_2022_814995
crossref_primary_10_1007_s13239_016_0287_5
crossref_primary_10_1016_j_jmbbm_2023_105922
crossref_primary_10_1016_j_angio_2018_01_004
crossref_primary_10_1007_s10237_018_1024_9
crossref_primary_10_1142_S0219519419500155
crossref_primary_10_1016_j_jvs_2017_10_044
crossref_primary_10_1097_MD_0000000000027306
crossref_primary_10_3389_fcvm_2023_1248300
crossref_primary_10_1115_1_4051120
crossref_primary_10_1098_rspa_2016_0774
Cites_doi 10.1016/j.jvs.2009.08.075
10.1016/j.ejvs.2010.12.010
10.1080/10255842.2013.815929
10.1016/j.jbiomech.2007.11.029
10.1196/annals.1383.037
10.1186/1475-925X-4-64
10.1115/1.4023254
10.1007/s10439-012-0691-4
10.1016/j.jvs.2005.10.072
10.1016/S0997-7538(01)01206-2
10.1007/s10439-010-0067-6
10.1067/mva.2002.125478
10.1016/j.medengphy.2005.06.008
10.1067/mva.2003.213
10.1016/S1078-5884(98)80031-2
10.1080/10255840802176396
10.1115/1.1835362
10.1007/s10439-006-9132-6
10.1016/j.medengphy.2013.01.008
10.1115/1.4005176
10.1016/j.finel.2010.12.015
10.1098/rsif.2012.0097
10.1118/1.3284976
10.1007/s11517-010-0714-y
10.1007/s10439-009-9760-8
10.1007/s10439-010-0175-3
10.1016/j.ijcard.2006.03.033
10.1016/j.jbiomech.2011.11.038
10.1115/1.3005200
10.1023/A:1010835316564
10.1152/ajpheart.00934.2004
10.1016/0045-7949(87)90265-3
10.1016/j.jbiomech.2006.04.019
10.1583/10-3244C.1
10.1115/1.4024578
10.1016/j.ejvs.2006.10.009
10.1016/j.actbio.2012.04.044
10.1016/j.jbiomech.2009.09.057
10.1007/s10439-010-0094-3
10.1115/1.3138600
10.1115/1.2898830
10.1114/1.1326031
10.1016/j.jbiomech.2005.12.013
10.1115/1.4024275
10.1016/j.jbiomech.2011.11.021
10.1002/cnm.2515
10.1016/S0021-9290(99)00201-8
10.1093/cvr/cvq337
10.1115/1.1695572
10.1016/j.ejvs.2010.04.003
10.1583/11-3456.1
10.1007/s10237-010-0191-0
10.1161/ATVBAHA.110.204529
10.1016/j.compbiomed.2011.06.017
10.1080/10255842.2011.652097
10.1166/jmihi.2013.1201
10.1114/1.1581880
10.1007/s10439-013-0786-6
10.1142/S0219519412004442
10.1139/o57-080
10.1098/rsta.1948.0002
10.1016/j.jbiomech.2005.03.003
10.1016/S1350-4533(01)00093-5
10.1016/j.medengphy.2013.03.005
10.1098/rsif.2010.0299
10.1007/s10237-012-0436-1
ContentType Journal Article
Web Resource
Copyright Biomedical Engineering Society 2014
Biomedical Engineering Society 2015
Copyright_xml – notice: Biomedical Engineering Society 2014
– notice: Biomedical Engineering Society 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
Q33
5PM
DOI 10.1007/s10439-014-1224-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Solid State and Superconductivity Abstracts
Engineering Research Database

Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 153
ExternalDocumentID PMC4289023
oai_orbi_ulg_ac_be_2268_178115
3549946861
25527320
10_1007_s10439_014_1224_0
Genre Journal Article
Feature
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: U01 EB012487
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
ABRTQ
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
Q33
5PM
ID FETCH-LOGICAL-c646t-f4e5c6330c9df996cbaf940b059eccba8d55d986d0a1b0cea6ae8c39301c0c2d3
IEDL.DBID 7X7
ISSN 0090-6964
1573-9686
IngestDate Thu Aug 21 14:01:45 EDT 2025
Fri Jul 25 15:34:39 EDT 2025
Fri Jul 11 05:52:11 EDT 2025
Mon Jul 21 11:36:25 EDT 2025
Fri Jul 11 05:30:47 EDT 2025
Fri Jul 25 19:10:16 EDT 2025
Thu Apr 03 07:02:12 EDT 2025
Tue Jul 01 00:38:08 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Fri Feb 21 02:37:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Reconstruction of patient-based geometry
Rupture of abdominal aortic aneurysm
Rupture potential index
Fluid-structure interaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c646t-f4e5c6330c9df996cbaf940b059eccba8d55d986d0a1b0cea6ae8c39301c0c2d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84920510692
OpenAccessLink http://doi.org/10.1007/s10439-014-1224-0
PMID 25527320
PQID 1643100829
PQPubID 54090
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4289023
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_178115
proquest_miscellaneous_1660055864
proquest_miscellaneous_1654683725
proquest_miscellaneous_1645228490
proquest_journals_1643100829
pubmed_primary_25527320
crossref_citationtrail_10_1007_s10439_014_1224_0
crossref_primary_10_1007_s10439_014_1224_0
springer_journals_10_1007_s10439_014_1224_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Kluwer Academic Publishers
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Kluwer Academic Publishers
References Rodriguez, Ruiz, Doblare, Holzapfel (CR47) 2008; 130
Bluestein, Alemu, Avrahami (CR1) 2008; 41
Michel, Martin-Ventura, Egido (CR35) 2011; 90
Papaharilaou, Ekaterinaris, Manousaki, Katsamouris (CR37) 2007; 40
Doyle, Hoskins, McGloughlin (CR12) 2011; 18
Wang, Li (CR61) 2011; 41
Kim, Vignon-Clementel, Figueroa (CR29) 2009; 37
Zhang, Kheyfets, Finol (CR68) 2013; 35
McGloughlin, Doyle (CR34) 2010; 30
Raut, Chandra, Shum, Finol (CR41) 2013; 41
Truijers, Pol, Schultzekool (CR56) 2007; 33
Ferruzzi, Vorp, Humphrey (CR14) 2011; 8
Vande Geest, Sacks, Vorp (CR57) 2006; 39
Toungara, Chagnon, Geindreau (CR54) 2012; 12
Holzapfel, Gasser (CR21) 2007; 116
Wolters, Rutten, Schurink (CR65) 2005; 27
Hsu, Bazilevs (CR27) 2011; 47
Rivlin (CR45) 1948; 240
Gasser, Gallinetti, Xing (CR19) 2012; 8
Wang, Li (CR62) 2013; 16
Fillinger, Raghavan, Marra, Cronenwett, Kennedy (CR17) 2002; 36
Washington, Shum, Muluk, Finol (CR63) 2011; 133
Holzapfel, Gasser, Stadler (CR24) 2002; 21
Reeps, Maier, Pelisek (CR43) 2013; 12
Gasser, Auer, Labruto, Swedenborg, Roy (CR18) 2010; 40
Humphrey, Holzapfel (CR28) 2012; 45
Chuong, Fung (CR4) 1986; 108
Lee, Zhu, Shum (CR30) 2013; 41
Xenos, Rambhia, Alemu (CR67) 2010; 38
Vande Geest, Wang, Wisniewski, Makaroun, Vorp (CR58) 2006; 34
Maier, Gee, Reeps (CR32) 2010; 38
Polzer, Gasser, Swedenborg, Bursa (CR39) 2011; 41
Shum, Martufi, Di Martino (CR50) 2011; 39
Bluestein, Dumont, De Beule (CR2) 2008; 12
Di Martino, Guadagni, Fumero (CR7) 2001; 23
Olufsen, Peskin, Kim (CR36) 2000; 28
Shum, DiMartino, Goldhammer (CR49) 2010; 37
Roach, Burton (CR46) 1957; 35
Sussman, Bathe (CR52) 1987; 26
Holzapfel, Gasser, Ogden (CR22) 2000; 61
Rissland, Alemu, Einav, Ricotta, Bluestein (CR44) 2009; 13
Toungara, Orgeas, Geindreau, Bailly (CR55) 2013; 16
Holzapfel, Gasser, Ogden (CR23) 2004; 126
Holzapfel, Sommer, Gasser, Regitnig (CR25) 2005; 289
de Putter, Wolters, Rutten (CR5) 2006; 40
Di Martino, Vorp (CR9) 2003; 31
Giuma, Osman, Kadir (CR20) 2013; 3
Raut, Jana, De Oliveira, Muluk, Finol (CR42) 2013; 135
Raghavan, Vorp (CR40) 2000; 33
Xenos, Alemu, Zamfir (CR66) 2010; 48
Maier, Gee, Reeps, Eckstein, Wall (CR31) 2010; 9
Martufi, Gasser (CR33) 2013; 135
Wilson, Baek, Humphrey (CR64) 2012; 9
Fillinger (CR15) 2006; 1085
Polzer, Gasser, Bursa (CR38) 2013; 35
Di Martino, Mantero, Inzoli (CR8) 1998; 15
Erdemira, Guess, Halloran, Tadepalli, Morrison (CR13) 2012; 45
Doyle, Callanan, Grace, Kavanagh (CR10) 2013; 29
Doyle, Cloonan, Walsh, Vorp, McGloughlin (CR11) 2010; 43
Tierney, Callanan, McGloughlin (CR53) 2012; 19
Vengrenyuk, Cardoso, Weinbaum (CR59) 2008; 5
Fillinger, Marra, Raghavan, Kennedy (CR16) 2003; 37
Chandra, Raut, Jana (CR3) 2013; 135
Holzapfel, Stadler, Gasser (CR26) 2005; 127
Venkatasubramaniam, Fagan, Mehta (CR60) 2004; 28
Scotti, Shkolnik, Muluk, Finol (CR48) 2005; 4
Speelman, Schurink, Bosboom (CR51) 2010; 51
Di Martino, Bohra, Vande Geest (CR6) 2006; 43
Y Papaharilaou (1224_CR37) 2007; 40
HJ Kim (1224_CR29) 2009; 37
Y Vengrenyuk (1224_CR59) 2008; 5
JS Wilson (1224_CR64) 2012; 9
MS Olufsen (1224_CR36) 2000; 28
G Holzapfel (1224_CR26) 2005; 127
GA Holzapfel (1224_CR25) 2005; 289
GA Holzapfel (1224_CR21) 2007; 116
RS Rivlin (1224_CR45) 1948; 240
M Toungara (1224_CR54) 2012; 12
JP Vande Geest (1224_CR58) 2006; 34
BJ Doyle (1224_CR12) 2011; 18
A Maier (1224_CR32) 2010; 38
SS Raut (1224_CR42) 2013; 135
S Polzer (1224_CR38) 2013; 35
SKB Giuma (1224_CR20) 2013; 3
ML Raghavan (1224_CR40) 2000; 33
C Scotti (1224_CR48) 2005; 4
MR Roach (1224_CR46) 1957; 35
M Xenos (1224_CR67) 2010; 38
A Erdemira (1224_CR13) 2012; 45
JD Humphrey (1224_CR28) 2012; 45
AP Tierney (1224_CR53) 2012; 19
CB Washington (1224_CR63) 2011; 133
SS Raut (1224_CR41) 2013; 41
TC Gasser (1224_CR18) 2010; 40
S Polzer (1224_CR39) 2011; 41
GA Holzapfel (1224_CR24) 2002; 21
ES Martino Di (1224_CR7) 2001; 23
ES Martino Di (1224_CR9) 2003; 31
T Sussman (1224_CR52) 1987; 26
BJ Wolters (1224_CR65) 2005; 27
J Shum (1224_CR49) 2010; 37
S Chandra (1224_CR3) 2013; 135
P Rissland (1224_CR44) 2009; 13
BJ Doyle (1224_CR11) 2010; 43
M Fillinger (1224_CR15) 2006; 1085
XH Wang (1224_CR62) 2013; 16
TM McGloughlin (1224_CR34) 2010; 30
MF Fillinger (1224_CR16) 2003; 37
M Xenos (1224_CR66) 2010; 48
D Bluestein (1224_CR2) 2008; 12
M Truijers (1224_CR56) 2007; 33
D Bluestein (1224_CR1) 2008; 41
G Martufi (1224_CR33) 2013; 135
L Speelman (1224_CR51) 2010; 51
H Zhang (1224_CR68) 2013; 35
CJ Chuong (1224_CR4) 1986; 108
E Di Martino (1224_CR8) 1998; 15
MF Fillinger (1224_CR17) 2002; 36
C Reeps (1224_CR43) 2013; 12
TC Gasser (1224_CR19) 2012; 8
GA Holzapfel (1224_CR23) 2004; 126
XH Wang (1224_CR61) 2011; 41
GA Holzapfel (1224_CR22) 2000; 61
JB Michel (1224_CR35) 2011; 90
ES Martino Di (1224_CR6) 2006; 43
BJ Doyle (1224_CR10) 2013; 29
A Maier (1224_CR31) 2010; 9
M Toungara (1224_CR55) 2013; 16
JF Rodriguez (1224_CR47) 2008; 130
K Lee (1224_CR30) 2013; 41
S Putter de (1224_CR5) 2006; 40
AK Venkatasubramaniam (1224_CR60) 2004; 28
J Shum (1224_CR50) 2011; 39
J Ferruzzi (1224_CR14) 2011; 8
MC Hsu (1224_CR27) 2011; 47
JP Vande Geest (1224_CR57) 2006; 39
17137809 - Eur J Vasc Endovasc Surg. 2007 Apr;33(4):401-7
13460788 - Can J Biochem Physiol. 1957 Aug;35(8):681-90
15179858 - J Biomech Eng. 2004 Apr;126(2):264-75
16822562 - Int J Cardiol. 2007 Mar 2;116(1):78-85
20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50
23719760 - J Biomech Eng. 2013 Aug;135(8):81001
11755809 - Med Eng Phys. 2001 Nov;23(9):647-55
21088917 - Med Biol Eng Comput. 2010 Dec;48(12):1175-90
23608300 - Med Eng Phys. 2013 Sep;35(9):1358-67
21269846 - Eur J Vasc Endovasc Surg. 2011 Apr;41(4):467-73
23923834 - Comput Methods Biomech Biomed Engin. 2013;16 Suppl 1:22-4
22289116 - Comput Methods Biomech Biomed Engin. 2013;16(9):1032-9
16500664 - J Biomech. 2007;40(2):367-77
16006541 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2048-58
20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34
22579983 - Acta Biomater. 2012 Aug;8(8):3091-103
10768396 - J Biomech. 2000 Apr;33(4):475-82
20143120 - Biomech Model Mechanobiol. 2010 Oct;9(5):511-21
23722475 - J Biomech Eng. 2013 Aug;135(8):81010
17182919 - Ann N Y Acad Sci. 2006 Nov;1085:22-8
22189249 - J Biomech. 2012 Mar 15;45(5):805-14
18524245 - Mol Cell Biomech. 2008 Mar;5(1):37-47
20508202 - Arterioscler Thromb Vasc Biol. 2010 Sep;30(9):1687-94
15868799 - J Biomech Eng. 2005 Feb;127(1):166-80
20890661 - Ann Biomed Eng. 2011 Jan;39(1):277-86
22313210 - J Endovasc Ther. 2012 Feb;19(1):100-14
15885699 - J Biomech. 2006;39(7):1324-34
23445055 - J Biomech Eng. 2013 Feb;135(2):021010
21521063 - J Endovasc Ther. 2011 Apr;18(2):226-9
18412510 - J Biomech Eng. 2008 Apr;130(2):021023
18651282 - Comput Methods Biomech Biomed Engin. 2009 Feb;12(1):73-81
19609676 - Ann Biomed Eng. 2009 Nov;37(11):2153-69
12971613 - Ann Biomed Eng. 2003 Jul-Aug;31(7):804-9
16157501 - Med Eng Phys. 2005 Dec;27(10):871-83
16271141 - Biomed Eng Online. 2005;4:64
18258240 - J Biomech. 2008;41(5):1111-8
20447844 - Eur J Vasc Endovasc Surg. 2010 Aug;40(2):176-85
15234698 - Eur J Vasc Endovasc Surg. 2004 Aug;28(2):168-76
23434615 - Med Eng Phys. 2013 Sep;35(9):1282-9
22236526 - J Biomech. 2012 Feb 23;45(4):625-33
9610340 - Eur J Vasc Endovasc Surg. 1998 Apr;15(4):290-9
12663969 - J Vasc Surg. 2003 Apr;37(4):724-32
19944551 - J Vasc Surg. 2010 Jan;51(1):19-26
11212947 - Ann Biomed Eng. 2000 Nov-Dec;28(11):1281-99
22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33
23345202 - Int J Numer Method Biomed Eng. 2013 Feb;29(2):150-64
20552276 - Ann Biomed Eng. 2010 Nov;38(11):3323-37
21757193 - Comput Biol Med. 2011 Sep;41(9):812-21
23508633 - Ann Biomed Eng. 2013 Jul;41(7):1459-77
22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58
23180028 - Ann Biomed Eng. 2013 Mar;41(3):562-76
16822515 - J Biomech. 2007;40(5):1081-90
3079517 - J Biomech Eng. 1986 May;108(2):189-92
22070335 - J Biomech Eng. 2011 Oct;133(10):104501
16520175 - J Vasc Surg. 2006 Mar;43(3):570-6; discussion 576
21037321 - Cardiovasc Res. 2011 Apr 1;90(1):18-27
20152982 - J Biomech. 2010 May 7;43(7):1408-16
16786395 - Ann Biomed Eng. 2006 Jul;34(7):1098-106
19154060 - J Biomech Eng. 2009 Mar;131(3):031001
12218986 - J Vasc Surg. 2002 Sep;36(3):589-97
20229873 - Med Phys. 2010 Feb;37(2):638-48
References_xml – volume: 51
  start-page: 19
  year: 2010
  end-page: 26
  ident: CR51
  article-title: The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2009.08.075
– volume: 41
  start-page: 467
  year: 2011
  end-page: 473
  ident: CR39
  article-title: The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/j.ejvs.2010.12.010
– volume: 16
  start-page: 22
  year: 2013
  end-page: 24
  ident: CR55
  article-title: Micromechanical modelling of the arterial wall: Influence of mechanical heterogeneities on the wall stress distribution and the peak wall stress
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2013.815929
– volume: 41
  start-page: 1111
  year: 2008
  end-page: 1118
  ident: CR1
  article-title: Influence of microcalcifications on vulnerable plaque mechanics using fsi modeling
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.11.029
– volume: 1085
  start-page: 22
  year: 2006
  end-page: 28
  ident: CR15
  article-title: The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods)
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1383.037
– volume: 4
  start-page: 64
  year: 2005
  ident: CR48
  article-title: Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness
  publication-title: Biomed. Eng. Online.
  doi: 10.1186/1475-925X-4-64
– volume: 135
  start-page: 021010
  year: 2013
  ident: CR33
  article-title: Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023254
– volume: 41
  start-page: 562
  year: 2013
  end-page: 576
  ident: CR30
  article-title: Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0691-4
– volume: 43
  start-page: 570
  year: 2006
  end-page: 576
  ident: CR6
  article-title: Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2005.10.072
– volume: 21
  start-page: 441
  year: 2002
  end-page: 463
  ident: CR24
  article-title: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis
  publication-title: Eur. J. Mech. A Solids.
  doi: 10.1016/S0997-7538(01)01206-2
– volume: 38
  start-page: 3124
  year: 2010
  end-page: 3134
  ident: CR32
  article-title: A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0067-6
– volume: 36
  start-page: 589
  year: 2002
  end-page: 597
  ident: CR17
  article-title: In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk
  publication-title: J. Vasc. Surg.
  doi: 10.1067/mva.2002.125478
– volume: 27
  start-page: 871
  year: 2005
  end-page: 883
  ident: CR65
  article-title: A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.06.008
– volume: 37
  start-page: 724
  year: 2003
  end-page: 732
  ident: CR16
  article-title: Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter
  publication-title: J. Vasc. Surg.
  doi: 10.1067/mva.2003.213
– volume: 15
  start-page: 290
  year: 1998
  end-page: 299
  ident: CR8
  article-title: Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/S1078-5884(98)80031-2
– volume: 12
  start-page: 73
  year: 2008
  end-page: 81
  ident: CR2
  article-title: Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—fsi modelling
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840802176396
– volume: 127
  start-page: 166
  year: 2005
  end-page: 180
  ident: CR26
  article-title: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs
  publication-title: J. Biomech. Eng. Trans. ASME.
  doi: 10.1115/1.1835362
– volume: 34
  start-page: 1098
  year: 2006
  end-page: 1106
  ident: CR58
  article-title: Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9132-6
– volume: 35
  start-page: 1282
  year: 2013
  end-page: 1289
  ident: CR38
  article-title: Importance of material model in wall stress prediction in abdominal aortic aneurysms
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.01.008
– volume: 133
  start-page: 6
  year: 2011
  ident: CR63
  article-title: The association of wall mechanics and morphology: a case study of abdominal aortic aneurysm growth
  publication-title: J. Biomech. Eng. Trans. ASME
  doi: 10.1115/1.4005176
– volume: 47
  start-page: 593
  year: 2011
  end-page: 599
  ident: CR27
  article-title: Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2010.12.015
– volume: 9
  start-page: 2047
  year: 2012
  end-page: 2058
  ident: CR64
  article-title: Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0097
– volume: 37
  start-page: 638
  year: 2010
  end-page: 648
  ident: CR49
  article-title: Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms
  publication-title: Med. Phys.
  doi: 10.1118/1.3284976
– volume: 48
  start-page: 1175
  year: 2010
  end-page: 1190
  ident: CR66
  article-title: The effect of angulation in abdominal aortic aneurysms: fluid-structure interaction simulations of idealized geometries
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-010-0714-y
– volume: 37
  start-page: 2153
  year: 2009
  end-page: 2169
  ident: CR29
  article-title: On coupling a lumped parameter heart model and a three-dimensional finite element aorta model
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9760-8
– volume: 39
  start-page: 277
  year: 2011
  end-page: 286
  ident: CR50
  article-title: Quantitative assessment of abdominal aortic aneurysm geometry
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0175-3
– volume: 116
  start-page: 78
  year: 2007
  end-page: 85
  ident: CR21
  article-title: Computational stress-deformation analysis of arterial walls including high-pressure response
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2006.03.033
– volume: 45
  start-page: 625
  year: 2012
  end-page: 633
  ident: CR13
  article-title: Considerations for reporting finite element analysis studies in biomechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.038
– volume: 13
  start-page: 031001
  year: 2009
  end-page: 031010
  ident: CR44
  article-title: Abdominal aortic aneurysm risk of rupture- patient specific FSI simulations using anisotropic model
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3005200
– volume: 61
  start-page: 1
  year: 2000
  end-page: 48
  ident: CR22
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elast.
  doi: 10.1023/A:1010835316564
– volume: 289
  start-page: H2048
  year: 2005
  end-page: H2058
  ident: CR25
  article-title: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00934.2004
– volume: 26
  start-page: 357
  year: 1987
  end-page: 409
  ident: CR52
  article-title: A finite-element formulation for nonlinear incompressible elastic and inelastic analysis
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(87)90265-3
– volume: 40
  start-page: 1081
  year: 2006
  end-page: 1090
  ident: CR5
  article-title: Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.04.019
– volume: 18
  start-page: 226
  year: 2011
  end-page: 229
  ident: CR12
  article-title: Computational rupture prediction of AAAs: what needs to be done next?
  publication-title: J. Endovasc. Ther.
  doi: 10.1583/10-3244C.1
– volume: 135
  start-page: 10
  year: 2013
  ident: CR42
  article-title: The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics
  publication-title: J. Biomech. Eng. Trans. ASME.
  doi: 10.1115/1.4024578
– volume: 33
  start-page: 401
  year: 2007
  end-page: 407
  ident: CR56
  article-title: Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/j.ejvs.2006.10.009
– volume: 28
  start-page: 168
  year: 2004
  end-page: 176
  ident: CR60
  article-title: A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms
  publication-title: Eur. J. Vasc. Endovasc. Surg.
– volume: 8
  start-page: 3091
  year: 2012
  end-page: 3103
  ident: CR19
  article-title: Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.04.044
– volume: 43
  start-page: 1408
  year: 2010
  end-page: 1416
  ident: CR11
  article-title: Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.057
– volume: 38
  start-page: 3323
  year: 2010
  end-page: 3337
  ident: CR67
  article-title: Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0094-3
– volume: 108
  start-page: 189
  year: 1986
  end-page: 192
  ident: CR4
  article-title: On residual stresses in arteries
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138600
– volume: 130
  start-page: 021023
  year: 2008
  ident: CR47
  article-title: Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2898830
– volume: 28
  start-page: 1281
  year: 2000
  end-page: 1299
  ident: CR36
  article-title: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1326031
– volume: 40
  start-page: 367
  year: 2007
  end-page: 377
  ident: CR37
  article-title: A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.12.013
– volume: 135
  start-page: 081001
  year: 2013
  ident: CR3
  article-title: Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4024275
– volume: 45
  start-page: 805
  year: 2012
  end-page: 814
  ident: CR28
  article-title: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.021
– volume: 29
  start-page: 150
  year: 2013
  end-page: 164
  ident: CR10
  article-title: On the influence of patient-specific material properties in computational simulations: a case study of a large ruptured abdominal aortic aneurysm
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2515
– volume: 33
  start-page: 475
  year: 2000
  end-page: 482
  ident: CR40
  article-title: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00201-8
– volume: 90
  start-page: 18
  year: 2011
  end-page: 27
  ident: CR35
  article-title: Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvq337
– volume: 126
  start-page: 264
  year: 2004
  end-page: 275
  ident: CR23
  article-title: Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability
  publication-title: J. Biomech. Eng. Trans. ASME
  doi: 10.1115/1.1695572
– volume: 40
  start-page: 176
  year: 2010
  end-page: 185
  ident: CR18
  article-title: Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/j.ejvs.2010.04.003
– volume: 19
  start-page: 100
  year: 2012
  end-page: 114
  ident: CR53
  article-title: Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk
  publication-title: J. Endovasc. Ther.
  doi: 10.1583/11-3456.1
– volume: 9
  start-page: 511
  year: 2010
  end-page: 521
  ident: CR31
  article-title: Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0191-0
– volume: 30
  start-page: 1687
  year: 2010
  end-page: 1694
  ident: CR34
  article-title: New approaches to abdominal aortic aneurysm rupture risk assessment engineering insights with clinical gain
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.110.204529
– volume: 5
  start-page: 37
  year: 2008
  end-page: 47
  ident: CR59
  article-title: Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps
  publication-title: Mol. Cell Biomech.
– volume: 41
  start-page: 812
  year: 2011
  end-page: 821
  ident: CR61
  article-title: Computational simulation of aortic aneurysm using fsi method: influence of blood viscosity on aneurismal dynamic behaviors
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.06.017
– volume: 16
  start-page: 1032
  year: 2013
  end-page: 1039
  ident: CR62
  article-title: A fluid-structure interaction-based numerical investigation on the evolution of stress, strength and rupture potential of an abdominal aortic aneurysm
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.652097
– volume: 3
  start-page: 514
  year: 2013
  end-page: 522
  ident: CR20
  article-title: Fluid structure interaction analysis in abdominal aortic aneurysms: influence of diameter, length, and distal neck
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2013.1201
– volume: 31
  start-page: 804
  year: 2003
  end-page: 809
  ident: CR9
  article-title: Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1581880
– volume: 41
  start-page: 1459
  year: 2013
  end-page: 1477
  ident: CR41
  article-title: The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0786-6
– volume: 12
  start-page: 1250005
  year: 2012
  ident: CR54
  article-title: Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519412004442
– volume: 35
  start-page: 681
  year: 1957
  end-page: 690
  ident: CR46
  article-title: The reason for the shape of the distensibility curves of arteries
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/o57-080
– volume: 240
  start-page: 459
  year: 1948
  end-page: 508
  ident: CR45
  article-title: Large elastic deformations of isotropic materials. 1. Fundamental concepts
  publication-title: Philos. Trans. R. Soc. Lond Ser. A
  doi: 10.1098/rsta.1948.0002
– volume: 39
  start-page: 1324
  year: 2006
  end-page: 1334
  ident: CR57
  article-title: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.03.003
– volume: 23
  start-page: 647
  year: 2001
  end-page: 655
  ident: CR7
  article-title: Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(01)00093-5
– volume: 35
  start-page: 1358
  year: 2013
  end-page: 1367
  ident: CR68
  article-title: Robust infrarenal aortic aneurysm lumen centerline detection for rupture status classification
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.03.005
– volume: 8
  start-page: 435
  year: 2011
  end-page: 450
  ident: CR14
  article-title: On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2010.0299
– volume: 12
  start-page: 717
  year: 2013
  end-page: 733
  ident: CR43
  article-title: Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-012-0436-1
– volume: 33
  start-page: 475
  year: 2000
  ident: 1224_CR40
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00201-8
– volume: 135
  start-page: 10
  year: 2013
  ident: 1224_CR42
  publication-title: J. Biomech. Eng. Trans. ASME.
– volume: 12
  start-page: 73
  year: 2008
  ident: 1224_CR2
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840802176396
– volume: 133
  start-page: 6
  year: 2011
  ident: 1224_CR63
  publication-title: J. Biomech. Eng. Trans. ASME
  doi: 10.1115/1.4005176
– volume: 35
  start-page: 681
  year: 1957
  ident: 1224_CR46
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/o57-080
– volume: 29
  start-page: 150
  year: 2013
  ident: 1224_CR10
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2515
– volume: 28
  start-page: 168
  year: 2004
  ident: 1224_CR60
  publication-title: Eur. J. Vasc. Endovasc. Surg.
– volume: 1085
  start-page: 22
  year: 2006
  ident: 1224_CR15
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1383.037
– volume: 43
  start-page: 570
  year: 2006
  ident: 1224_CR6
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2005.10.072
– volume: 41
  start-page: 1459
  year: 2013
  ident: 1224_CR41
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0786-6
– volume: 240
  start-page: 459
  year: 1948
  ident: 1224_CR45
  publication-title: Philos. Trans. R. Soc. Lond Ser. A
  doi: 10.1098/rsta.1948.0002
– volume: 289
  start-page: H2048
  year: 2005
  ident: 1224_CR25
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00934.2004
– volume: 48
  start-page: 1175
  year: 2010
  ident: 1224_CR66
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-010-0714-y
– volume: 43
  start-page: 1408
  year: 2010
  ident: 1224_CR11
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.057
– volume: 31
  start-page: 804
  year: 2003
  ident: 1224_CR9
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1581880
– volume: 30
  start-page: 1687
  year: 2010
  ident: 1224_CR34
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.110.204529
– volume: 12
  start-page: 1250005
  year: 2012
  ident: 1224_CR54
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519412004442
– volume: 126
  start-page: 264
  year: 2004
  ident: 1224_CR23
  publication-title: J. Biomech. Eng. Trans. ASME
  doi: 10.1115/1.1695572
– volume: 41
  start-page: 467
  year: 2011
  ident: 1224_CR39
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/j.ejvs.2010.12.010
– volume: 3
  start-page: 514
  year: 2013
  ident: 1224_CR20
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2013.1201
– volume: 41
  start-page: 812
  year: 2011
  ident: 1224_CR61
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.06.017
– volume: 16
  start-page: 1032
  year: 2013
  ident: 1224_CR62
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.652097
– volume: 9
  start-page: 511
  year: 2010
  ident: 1224_CR31
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0191-0
– volume: 13
  start-page: 031001
  year: 2009
  ident: 1224_CR44
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3005200
– volume: 39
  start-page: 1324
  year: 2006
  ident: 1224_CR57
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.03.003
– volume: 27
  start-page: 871
  year: 2005
  ident: 1224_CR65
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.06.008
– volume: 36
  start-page: 589
  year: 2002
  ident: 1224_CR17
  publication-title: J. Vasc. Surg.
  doi: 10.1067/mva.2002.125478
– volume: 45
  start-page: 805
  year: 2012
  ident: 1224_CR28
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.021
– volume: 12
  start-page: 717
  year: 2013
  ident: 1224_CR43
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-012-0436-1
– volume: 37
  start-page: 724
  year: 2003
  ident: 1224_CR16
  publication-title: J. Vasc. Surg.
  doi: 10.1067/mva.2003.213
– volume: 61
  start-page: 1
  year: 2000
  ident: 1224_CR22
  publication-title: J. Elast.
  doi: 10.1023/A:1010835316564
– volume: 15
  start-page: 290
  year: 1998
  ident: 1224_CR8
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/S1078-5884(98)80031-2
– volume: 108
  start-page: 189
  year: 1986
  ident: 1224_CR4
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138600
– volume: 37
  start-page: 638
  year: 2010
  ident: 1224_CR49
  publication-title: Med. Phys.
  doi: 10.1118/1.3284976
– volume: 45
  start-page: 625
  year: 2012
  ident: 1224_CR13
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.038
– volume: 135
  start-page: 021010
  year: 2013
  ident: 1224_CR33
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023254
– volume: 35
  start-page: 1358
  year: 2013
  ident: 1224_CR68
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.03.005
– volume: 41
  start-page: 562
  year: 2013
  ident: 1224_CR30
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0691-4
– volume: 35
  start-page: 1282
  year: 2013
  ident: 1224_CR38
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.01.008
– volume: 8
  start-page: 3091
  year: 2012
  ident: 1224_CR19
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.04.044
– volume: 23
  start-page: 647
  year: 2001
  ident: 1224_CR7
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(01)00093-5
– volume: 38
  start-page: 3323
  year: 2010
  ident: 1224_CR67
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0094-3
– volume: 39
  start-page: 277
  year: 2011
  ident: 1224_CR50
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0175-3
– volume: 135
  start-page: 081001
  year: 2013
  ident: 1224_CR3
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4024275
– volume: 40
  start-page: 176
  year: 2010
  ident: 1224_CR18
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/j.ejvs.2010.04.003
– volume: 116
  start-page: 78
  year: 2007
  ident: 1224_CR21
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2006.03.033
– volume: 21
  start-page: 441
  year: 2002
  ident: 1224_CR24
  publication-title: Eur. J. Mech. A Solids.
  doi: 10.1016/S0997-7538(01)01206-2
– volume: 38
  start-page: 3124
  year: 2010
  ident: 1224_CR32
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0067-6
– volume: 130
  start-page: 021023
  year: 2008
  ident: 1224_CR47
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2898830
– volume: 51
  start-page: 19
  year: 2010
  ident: 1224_CR51
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2009.08.075
– volume: 40
  start-page: 367
  year: 2007
  ident: 1224_CR37
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.12.013
– volume: 41
  start-page: 1111
  year: 2008
  ident: 1224_CR1
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.11.029
– volume: 90
  start-page: 18
  year: 2011
  ident: 1224_CR35
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvq337
– volume: 37
  start-page: 2153
  year: 2009
  ident: 1224_CR29
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9760-8
– volume: 28
  start-page: 1281
  year: 2000
  ident: 1224_CR36
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1326031
– volume: 8
  start-page: 435
  year: 2011
  ident: 1224_CR14
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2010.0299
– volume: 16
  start-page: 22
  year: 2013
  ident: 1224_CR55
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2013.815929
– volume: 127
  start-page: 166
  year: 2005
  ident: 1224_CR26
  publication-title: J. Biomech. Eng. Trans. ASME.
  doi: 10.1115/1.1835362
– volume: 26
  start-page: 357
  year: 1987
  ident: 1224_CR52
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(87)90265-3
– volume: 19
  start-page: 100
  year: 2012
  ident: 1224_CR53
  publication-title: J. Endovasc. Ther.
  doi: 10.1583/11-3456.1
– volume: 4
  start-page: 64
  year: 2005
  ident: 1224_CR48
  publication-title: Biomed. Eng. Online.
  doi: 10.1186/1475-925X-4-64
– volume: 47
  start-page: 593
  year: 2011
  ident: 1224_CR27
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2010.12.015
– volume: 18
  start-page: 226
  year: 2011
  ident: 1224_CR12
  publication-title: J. Endovasc. Ther.
  doi: 10.1583/10-3244C.1
– volume: 9
  start-page: 2047
  year: 2012
  ident: 1224_CR64
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0097
– volume: 33
  start-page: 401
  year: 2007
  ident: 1224_CR56
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/j.ejvs.2006.10.009
– volume: 40
  start-page: 1081
  year: 2006
  ident: 1224_CR5
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.04.019
– volume: 34
  start-page: 1098
  year: 2006
  ident: 1224_CR58
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9132-6
– volume: 5
  start-page: 37
  year: 2008
  ident: 1224_CR59
  publication-title: Mol. Cell Biomech.
– reference: 21757193 - Comput Biol Med. 2011 Sep;41(9):812-21
– reference: 22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33
– reference: 15868799 - J Biomech Eng. 2005 Feb;127(1):166-80
– reference: 17182919 - Ann N Y Acad Sci. 2006 Nov;1085:22-8
– reference: 16520175 - J Vasc Surg. 2006 Mar;43(3):570-6; discussion 576
– reference: 15885699 - J Biomech. 2006;39(7):1324-34
– reference: 22579983 - Acta Biomater. 2012 Aug;8(8):3091-103
– reference: 3079517 - J Biomech Eng. 1986 May;108(2):189-92
– reference: 12218986 - J Vasc Surg. 2002 Sep;36(3):589-97
– reference: 20552276 - Ann Biomed Eng. 2010 Nov;38(11):3323-37
– reference: 21088917 - Med Biol Eng Comput. 2010 Dec;48(12):1175-90
– reference: 20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50
– reference: 21037321 - Cardiovasc Res. 2011 Apr 1;90(1):18-27
– reference: 16500664 - J Biomech. 2007;40(2):367-77
– reference: 15179858 - J Biomech Eng. 2004 Apr;126(2):264-75
– reference: 22070335 - J Biomech Eng. 2011 Oct;133(10):104501
– reference: 22236526 - J Biomech. 2012 Feb 23;45(4):625-33
– reference: 11755809 - Med Eng Phys. 2001 Nov;23(9):647-55
– reference: 23722475 - J Biomech Eng. 2013 Aug;135(8):81010
– reference: 11212947 - Ann Biomed Eng. 2000 Nov-Dec;28(11):1281-99
– reference: 15234698 - Eur J Vasc Endovasc Surg. 2004 Aug;28(2):168-76
– reference: 21269846 - Eur J Vasc Endovasc Surg. 2011 Apr;41(4):467-73
– reference: 16157501 - Med Eng Phys. 2005 Dec;27(10):871-83
– reference: 10768396 - J Biomech. 2000 Apr;33(4):475-82
– reference: 16006541 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2048-58
– reference: 22189249 - J Biomech. 2012 Mar 15;45(5):805-14
– reference: 23345202 - Int J Numer Method Biomed Eng. 2013 Feb;29(2):150-64
– reference: 19609676 - Ann Biomed Eng. 2009 Nov;37(11):2153-69
– reference: 23180028 - Ann Biomed Eng. 2013 Mar;41(3):562-76
– reference: 17137809 - Eur J Vasc Endovasc Surg. 2007 Apr;33(4):401-7
– reference: 23508633 - Ann Biomed Eng. 2013 Jul;41(7):1459-77
– reference: 9610340 - Eur J Vasc Endovasc Surg. 1998 Apr;15(4):290-9
– reference: 18651282 - Comput Methods Biomech Biomed Engin. 2009 Feb;12(1):73-81
– reference: 20229873 - Med Phys. 2010 Feb;37(2):638-48
– reference: 20508202 - Arterioscler Thromb Vasc Biol. 2010 Sep;30(9):1687-94
– reference: 23445055 - J Biomech Eng. 2013 Feb;135(2):021010
– reference: 13460788 - Can J Biochem Physiol. 1957 Aug;35(8):681-90
– reference: 18258240 - J Biomech. 2008;41(5):1111-8
– reference: 12663969 - J Vasc Surg. 2003 Apr;37(4):724-32
– reference: 23719760 - J Biomech Eng. 2013 Aug;135(8):81001
– reference: 23923834 - Comput Methods Biomech Biomed Engin. 2013;16 Suppl 1:22-4
– reference: 21521063 - J Endovasc Ther. 2011 Apr;18(2):226-9
– reference: 19154060 - J Biomech Eng. 2009 Mar;131(3):031001
– reference: 20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34
– reference: 20447844 - Eur J Vasc Endovasc Surg. 2010 Aug;40(2):176-85
– reference: 16271141 - Biomed Eng Online. 2005;4:64
– reference: 22313210 - J Endovasc Ther. 2012 Feb;19(1):100-14
– reference: 19944551 - J Vasc Surg. 2010 Jan;51(1):19-26
– reference: 20152982 - J Biomech. 2010 May 7;43(7):1408-16
– reference: 16822515 - J Biomech. 2007;40(5):1081-90
– reference: 16822562 - Int J Cardiol. 2007 Mar 2;116(1):78-85
– reference: 18412510 - J Biomech Eng. 2008 Apr;130(2):021023
– reference: 23434615 - Med Eng Phys. 2013 Sep;35(9):1282-9
– reference: 12971613 - Ann Biomed Eng. 2003 Jul-Aug;31(7):804-9
– reference: 23608300 - Med Eng Phys. 2013 Sep;35(9):1358-67
– reference: 18524245 - Mol Cell Biomech. 2008 Mar;5(1):37-47
– reference: 20143120 - Biomech Model Mechanobiol. 2010 Oct;9(5):511-21
– reference: 22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58
– reference: 22289116 - Comput Methods Biomech Biomed Engin. 2013;16(9):1032-9
– reference: 20890661 - Ann Biomed Eng. 2011 Jan;39(1):277-86
– reference: 16786395 - Ann Biomed Eng. 2006 Jul;34(7):1098-106
RestrictionsOnAccess restricted access
SSID ssj0011835
Score 2.317747
Snippet Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration,...
Issue Title: Computational Hemodynamics: Development of Clinical Tools for Decision Making, Patient Specific Treatment, and Clinical Management Rupture of...
SourceID pubmedcentral
liege
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms Aorta - physiology
Aortic Aneurysm, Abdominal - diagnostic imaging
Aortic Aneurysm, Abdominal - physiopathology
Aortic Rupture - diagnostic imaging
Aortic Rupture - physiopathology
Aortography
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Blood vessels
Chirurgie
Classical Mechanics
Computed tomography
Computer simulation
Disease Progression
Female
Human health sciences
Humans
Male
Mathematical models
Models, Cardiovascular
Progressions
Regional Blood Flow
Risk
Risk assessment
Rupture
Sciences de la santé humaine
Statistical models
Strength
Stresses
Surgery
Tomography, X-Ray Computed
Trends
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA7SguiDtPU2tUoEn9SBdCZJM74NxaUIK7J2oW8ht9Gl48zidAp98z8I_sD-Ek8yl-5qXfBtIGcyZM5Jck6-k-8g9KoQxGpmipgZlsU01QXMOcVioZwj2lpYOH2gOP3IT-b0wxk76-9xN0O2-wBJhpV65bIbbJ4Q-nqevYTGEKdvMwjdfR7XPMlH6ABstCtbkEFclHE6QJm3dbG2GW2XHqa-zdP8O2HyD9Q0bEaTHfSg9yJx3ql9F91x1R66v8ItuIfuTnvU_CH69cknYXUEHLgucK5tHWp54bz2PeDcs1peNd_waUiibfCsXXpk4R2euSJUkMA9f2iJZ4vmHOcjnycOOQdYYR_LXuHjul2WzuJJ2S7s9Y-fnwM9LXSFw9Fjd4sCT0PZ6kdoPnl_enwS9_UYYsMpv4gL6pjhaUpMZguIk4xWRUaJBg8NDEErYRmzmeCWqENNjFNcOWHSDNYQQ0xi08doq6or9xRhLhJtnS00tQIMRClLDNWps87BgkJ4hMigGGl6snJfM6OUNzTLXpcSdCm9LiWJ0OvxlWXH1LFJ-G3Qtqy_64W8TKRn2Q7PbflFKiO1k-CYCnnob-KyCB0MRiH7Od5ICDQ9OiKSLEIvx2aYnR5yUZWr2yADDq6gGdkkwygX6VHCNslwz5YmOI3Qk84Wx0EmgUQvgS8crVnpKODHtt5SLb4GJnEaYOY0Qm8Ge14Z3r_-3f5_ST9D98DHZN2p1QHaArNzz8GPu9Avwrz9DUVGQ_E
  priority: 102
  providerName: Springer Nature
Title Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method
URI https://link.springer.com/article/10.1007/s10439-014-1224-0
https://www.ncbi.nlm.nih.gov/pubmed/25527320
https://www.proquest.com/docview/1643100829
https://www.proquest.com/docview/1645228490
https://www.proquest.com/docview/1654683725
https://www.proquest.com/docview/1660055864
http://orbi.ulg.ac.be/handle/2268/178115
https://pubmed.ncbi.nlm.nih.gov/PMC4289023
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZglRA8IBi3wJiMxBMQ4SW26_CCwtRuAnWayiqVJ8u3QEVoClmR9j_4wRw7l61c-tJWzWkq53y2z83fQeh5IYjVzBQxMyyLaaoLmHOKxUI5R7S1sHB6R3Fywo9n9P2czduAW92WVXZrYliobWV8jPw1mPU-Fi2S7O3qe-y7RvnsattC4zoaeOoyj-rhvHe4wHZuGmySDFykjNMuq9kcnYOtGBxpz9qX0Jhs7EuD0mes_2V0_l07-UcCNexL4zvodmtQ4rxBwF10zS130a0rNIO76MakTaDfQ79OfT1Ww8WBqwLn2lahrRfOK38HnHuCy4v6Gz4L9bQ1nq5XPsnwBk9dEZpJ4JZKtMTTRf0V5z21Jw7lB1hh79Ze4MNqvSqdxeNyvbDxx8BTCzfCIQbZHKfAk9C_-j6ajUdnh8dx25ghNpzy87igjhmepsRktgCHyWhVZJRoMNUAEVoJy5jNBLdEHWhinOLKCZNmsJgYYhKbPkA7y2rpHiHMRaKts4WmVgBSlLLEUJ066xysLIRHiHRqkaZlLffNM0p5ybfsNSlBk9JrUpIIveh_smooO7YJvwq6ltUPvZA_E-nptsPndflZKiO1k2ChCnngj-SyCO11kJDtZK_lJTQj9Ky_DNPU517U0lXrIAOWrqAZ2SbDKBfpMGHbZLinTROcRuhhg8R-kElg00vgH4YbGO0F_Ng2rywXXwKlOA355jRCLzs0Xxne_57d4-0P4wm6CdYla-JVe2gHcOaeggV3rvfDNIVXMT7aR4P86NOHEby_G52cTuHbWZL_BjRFSqs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKK0E5IChQFgoYCS7ACnfXdr1ICEWFkNKmQiGVejN-LUQs2UAaUP4Hv4PfyNj7aMMjt94i7awj7zw845n5BqGHuSBWM5PHzLAspqnOQecUi4VyjmhrwXD6QLF_yHtH9O0xO15Bv5peGF9W2djEYKhtafwd-TNw6_1dtEiyl5OvsZ8a5bOrzQiNSiz23fwHhGzTF3uvgL-PkqT7erjbi-upArHhlJ_EOXXMcAjjTWZz8PaNVnlGiQY_A7ajlbCM2UxwS9S2JsYprpwwaQaaYIhJbArrXkBrNIWT3Hemd9-0WQtQj2piQgYhWcZpk0WtWvXg6IfA3aMEJjQmC-fgWuEz5P9ycv-u1fwjYRvOwe5VdKV2YHGnkrhraMWNN9DlM7CGG-hiv07YX0c_3_n6rwr7A5c57mhbhjFiuFP6FXDHA2rOp1_wMNTvTvFgNvFJjed44PIwvALX0KUFHoymn3GnhRLFodwBK-zD6DneLWeTwlncLWYjG78PuLiwEA53nlX7Bu6Hedk30NG5sOwmWh2XY3cLYS4SbZ3NNbUCJFMpSwzVqbPOgSUjPEKkYYs0NUq6H9ZRyFN8Z89JCZyUnpOSROhx-8qkgghZRvw08FqW3_RIfk-kh_cOv2fFR6mM1E6CRyzktm8BZhHaakRC1sZlKk9VIUIP2sdgFnyuR41dOQs04FkLmpFlNIxyke4kbBkN9zBtgtMIbVaS2G4yCeh9CfzDzoKMtgR-b4tPxqNPAcKchvx2GqEnjTSf2d7_vt3t5R_jPrrUG_YP5MHe4f4dtA6eLavuyrbQKsicuwve44m-F1QWow_nbSN-Aw_phI4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGK03wgGDcAgOMBC9ANC-x3QQJobKt2hitqrJJe_N8C1SEptAV1P_Br-HXcexctnLp294ixXHknEu-43P8HYSeZgkxiuksZJqlIY1VBjYnWZhIa4kyBhynCxT7A75_TN-dsJM19Ks-C-PKKmuf6B21KbTbI98CWO_2opMo3cqqsojhbu_N9GvoOki5TGvdTqNUkUO7-AHh2-z1wS7I-lkU9faOdvbDqsNAqDnlZ2FGLdMcQnqdmgyQv1YySylRgDlgaUomhjGTJtwQua2ItpJLm-g4BavQREcmhnmvoHbHRUUt1H67NxiOmhwGGEvZPyGFAC3ltM6plgf3AAhAGO84AyMakqW_Yjt3-fJ_Qd6_Kzf_SN_6v2LvBrpewVncLfXvJlqzkw107QLJ4QZa71fp-1vo59BVg5VMILjIcFeZwjcVw93CzYC7jl5zMfuCj3w17wyP5lOX4niFRzbzrSxwRWSa49F49hl3G2JR7IsfsMQuqF7gnWI-za3BvXw-NuEHz5ILE2G_A1oe5sB93z37Njq-FKHdQa1JMbH3EOZJpIw1maImAT2V0hBNVWyNteDXCA8QqcUidMWZ7lp35OKc7dlJUoAkhZOkIAF63jwyLQlDVg1-6WUtim9qLL5HwpF9--t5_lFILZQVgI8Tse0OBLMAbdYqISpXMxPnhhGgJ81tcBIu8yMntpj7MYCzE5qSVWMY5UncidiqMdyRtiWcBuhuqYnNIiPP5RfBGzpLOtoMcGtbvjMZf_KE5tRnu-MAvai1-cLy_vft7q_-GI_ROvgH8f5gcPgAXQWYy8qNs03UApWzDwFKnqlHlc1idHrZbuI3l2uKIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progression+of+Abdominal+Aortic+Aneurysm+Towards+Rupture%3A+Refining+Clinical+Risk+Assessment+Using+a+Fully+Coupled+Fluid-Structure+Interaction+Method&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Xenos%2C+Michalis&rft.au=Labropoulos%2C+Nicos&rft.au=Rambhia%2C+Suraj&rft.au=Alemu%2C+Yared&rft.date=2015-01-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=43&rft.issue=1&rft.spage=139&rft.epage=153&rft_id=info:doi/10.1007%2Fs10439-014-1224-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon