Assessment of Effective Ankle Joint Positioning in Strength Training for Intrinsic Foot Flexor Muscles: A Comparison of Intrinsic Foot Flexor Muscle Activity in a Position Intermediate to Plantar and Dorsiflexion with that in Maximum Plantar Flexion Using Needle Electromyography

[Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. [Subjects] The subjects of this study were 18 healthy men. [Methods] We used needle electromyography to measure the muscle activities of the fl...

Full description

Saved in:
Bibliographic Details
Published inJournal of Physical Therapy Science Vol. 26; no. 3; pp. 451 - 454
Main Authors Hashimoto, Takayuki, Sakuraba, Keishoku
Format Journal Article
LanguageEnglish
Published Japan The Society of Physical Therapy Science 01.03.2014
Subjects
Online AccessGet full text
ISSN0915-5287
2187-5626
DOI10.1589/jpts.26.451

Cover

Abstract [Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. [Subjects] The subjects of this study were 18 healthy men. [Methods] We used needle electromyography to measure the muscle activities of the flexor hallucis brevis (FHB), and the flexor digitorum brevis (FDB) in maximum plantar and an intermediate position. [Results] Significant increases in muscle activities were observed for both FHB and FDB, and the rates of increase from the intermediate position to the plantar flexion position were 43% for FHB and 46% for FDB. [Conclusion] This study demonstrated that it is possible to evaluate intrinsic foot flexors, in addition to the numerous reports on treatment methods focusing on extrinsic foot flexors. Furthermore, the results suggest that toe flexion exercises performed during plantar flexion of the ankle joint are an effective method for intrinsic foot flexor strength training.
AbstractList [Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. [Subjects] The subjects of this study were 18 healthy men. [Methods] We used needle electromyography to measure the muscle activities of the flexor hallucis brevis (FHB), and the flexor digitorum brevis (FDB) in maximum plantar and an intermediate position. [Results] Significant increases in muscle activities were observed for both FHB and FDB, and the rates of increase from the intermediate position to the plantar flexion position were 43% for FHB and 46% for FDB. [Conclusion] This study demonstrated that it is possible to evaluate intrinsic foot flexors, in addition to the numerous reports on treatment methods focusing on extrinsic foot flexors. Furthermore, the results suggest that toe flexion exercises performed during plantar flexion of the ankle joint are an effective method for intrinsic foot flexor strength training.
[Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. [Subjects] The subjects of this study were 18 healthy men. [Methods] We used needle electromyography to measure the muscle activities of the flexor hallucis brevis (FHB), and the flexor digitorum brevis (FDB) in maximum plantar and an intermediate position. [Results] Significant increases in muscle activities were observed for both FHB and FDB, and the rates of increase from the intermediate position to the plantar flexion position were 43% for FHB and 46% for FDB. [Conclusion] This study demonstrated that it is possible to evaluate intrinsic foot flexors, in addition to the numerous reports on treatment methods focusing on extrinsic foot flexors. Furthermore, the results suggest that toe flexion exercises performed during plantar flexion of the ankle joint are an effective method for intrinsic foot flexor strength training.[Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. [Subjects] The subjects of this study were 18 healthy men. [Methods] We used needle electromyography to measure the muscle activities of the flexor hallucis brevis (FHB), and the flexor digitorum brevis (FDB) in maximum plantar and an intermediate position. [Results] Significant increases in muscle activities were observed for both FHB and FDB, and the rates of increase from the intermediate position to the plantar flexion position were 43% for FHB and 46% for FDB. [Conclusion] This study demonstrated that it is possible to evaluate intrinsic foot flexors, in addition to the numerous reports on treatment methods focusing on extrinsic foot flexors. Furthermore, the results suggest that toe flexion exercises performed during plantar flexion of the ankle joint are an effective method for intrinsic foot flexor strength training.
[Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. [Subjects] The subjects of this study were 18 healthy men. [Methods] We used needle electromyography to measure the muscle activities of the flexor hallucis brevis (FHB), and the flexor digitorum brevis (FDB) in maximum plantar and an intermediate position. [Results] Significant increases in muscle activities were observed for both FHB and FDB, and the rates of increase from the intermediate position to the plantar flexion position were 43% for FHB and 46% for FDB. [Conclusion] This study demonstrated that it is possible to evaluate intrinsic foot flexors, in addition to the numerous reports on treatment methods focusing on extrinsic foot flexors. Furthermore, the results suggest that toe flexion exercises performed during plantar flexion of the ankle joint are an effective method for intrinsic foot flexor strength training.
Purpose: The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography.
Purpose: The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. Subjects: The subjects of this study were 18 healthy men. Methods: We used needle electromyography to measure the muscle activities of the flexor hallucis brevis (FHB), and the flexor digitorum brevis (FDB) in maximum plantar and an intermediate position. Results: Significant increases in muscle activities were observed for both FHB and FDB, and the rates of increase from the intermediate position to the plantar flexion position were 43% for FHB and 46% for FDB. Conclusion: This study demonstrated that it is possible to evaluate intrinsic foot flexors, in addition to the numerous reports on treatment methods focusing on extrinsic foot flexors. Furthermore, the results suggest that toe flexion exercises performed during plantar flexion of the ankle joint are an effective method for intrinsic foot flexor strength training.
Author Hashimoto, Takayuki
Sakuraba, Keishoku
Author_xml – sequence: 1
  fullname: Hashimoto, Takayuki
  organization: Department of Rehabilitation, Tsuchiura Kyodo General Hospital, Japan
– sequence: 1
  fullname: Sakuraba, Keishoku
  organization: Department of Sports Medicine, Graduate School of Medicine, Juntendo University: 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24707106$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1v0zAUxQMaYt3giQfekB-RUIu_k-wBqSotG9pgEtuz5ThO65LYxXbH-t_j0BIBEh8vsWL_7rn36J6T7Mg6q7PsGYITxIry9XoTwwTzCWXoYTbCqMjHjGN-lI1gidiY4SI_zk5CWEOIc0iLx9kxpjnMEeSjB8-nIegQOm0jcA2YN41W0dxpMLWfWw3eO5Merl0w0Thr7BIYCz5Fr-0yrsCNl-b7ZeM8uLDRGxuMAgvnIli0-j7dXm2DanU4A1Mwc91GehOc7Tv9DQfTfgYTd303ObTva7TvdG1k1CA6cN1KG6UH0tbgrfPBNEmlB7-aNF1cydgLXMl70227gV4coNvQj_5B6zp1nLfJt3fdzi293Kx2T7JHjWyDfno4T7Pbxfxmdj6-_PjuYja9HCtOeRxXeUMY56iqcK0YJFXFCa25RqisalXKusaUoKLMIZGkZhiXCJa4gUyptIFak9PszV53s62SM5X24GUrNt500u-Ek0b8-mLNSizdnSBlziFmSeDlQcC7L1sdouhMULpNZrXbBoE4JZAhko5_oozQAqZI5f-BIkoxg7xM6IufHQyj_8hYAl7tAeVdCF43A4Kg6BMs-gQLzEVKcKLRb7QyUfbrT_ZN-4ea833NOkS51IO-9NGkOA0s6T_7H4iIoBgPiFpJL7Ql3wDHfBWC
CitedBy_id crossref_primary_10_1016_j_foot_2022_101945
crossref_primary_10_1177_24730114241266847
crossref_primary_10_1007_s00167_018_5028_x
crossref_primary_10_1589_jpts_29_1001
crossref_primary_10_1589_rika_38_444
crossref_primary_10_1589_jpts_27_1795
crossref_primary_10_1016_j_msksp_2020_102130
crossref_primary_10_1186_s12891_020_03503_y
Cites_doi 10.2106/00004623-199274090-00010
10.1177/107110078700700502
10.1016/j.clinbiomech.2006.09.009
10.1097/00003086-197701000-00003
10.1007/s00421-008-0679-9
10.2106/00004623-199502000-00006
10.1302/0301-620X.72B2.2312564
10.2106/00004623-196345060-00006
10.1016/j.math.2010.05.006
10.1093/geronj/48.2.M58
10.2739/kurumemedj.45.75
10.1097/00003086-197907000-00011
10.1053/j.jfas.2003.10.003
10.1097/01.brs.0000234735.98075.50
10.1016/j.jbiomech.2012.01.001
10.1007/BF00266887
10.1038/nature08723
10.1097/00003086-197907000-00005
10.1002/bjs.1800680904
10.1242/jeb.01435
10.1016/j.jbiomech.2011.07.021
10.1136/pgmj.8.86.459
10.1177/036354658601400412
10.1007/978-3-642-91224-5_4
10.1097/00003086-199507000-00022
ContentType Journal Article
Copyright 2014 by the Society of Physical Therapy Science
2014©by the Society of Physical Therapy Science 2014
Copyright_xml – notice: 2014 by the Society of Physical Therapy Science
– notice: 2014©by the Society of Physical Therapy Science 2014
DBID AAYXX
CITATION
NPM
7X8
7TS
5PM
DOI 10.1589/jpts.26.451
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Physical Education Index
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Physical Education Index
DatabaseTitleList PubMed

MEDLINE - Academic

Physical Education Index

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physical Therapy
EISSN 2187-5626
EndPage 454
ExternalDocumentID PMC3976025
24707106
10_1589_jpts_26_451
article_jpts_26_3_26_jpts_2013_422_article_char_en
Genre Journal Article
GroupedDBID .55
07C
29L
2WC
53G
5GY
AAEJM
AAWTL
ACGFO
ADBBV
ADRAZ
AENEX
AIAGR
AJJEV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BMSDO
CS3
DIK
DU5
E3Z
EBS
EJD
FRP
GX1
HYE
JMI
JSF
JSH
KQ8
M48
MOJWN
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
W2D
X7M
XSB
AAYXX
CITATION
NPM
7X8
7TS
5PM
ID FETCH-LOGICAL-c646t-b7f35661bb2dc503bb634d6e119bdc9add243189703a3d52291092f05cc707de3
IEDL.DBID M48
ISSN 0915-5287
IngestDate Thu Aug 21 14:11:11 EDT 2025
Fri Jul 11 02:46:40 EDT 2025
Thu Jul 10 23:53:38 EDT 2025
Fri Jul 11 14:30:36 EDT 2025
Mon Jul 21 05:46:29 EDT 2025
Tue Jul 01 04:11:58 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Sep 03 06:29:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Needle electromyography
Intrinsic foot flexor muscles
Muscle activity
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c646t-b7f35661bb2dc503bb634d6e119bdc9add243189703a3d52291092f05cc707de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1589/jpts.26.451
PMID 24707106
PQID 1514425069
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3976025
proquest_miscellaneous_1643051364
proquest_miscellaneous_1534805897
proquest_miscellaneous_1514425069
pubmed_primary_24707106
crossref_primary_10_1589_jpts_26_451
crossref_citationtrail_10_1589_jpts_26_451
jstage_primary_article_jpts_26_3_26_jpts_2013_422_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Physical Therapy Science
PublicationTitleAlternate Journal of Physical Therapy Science
PublicationYear 2014
Publisher The Society of Physical Therapy Science
Publisher_xml – name: The Society of Physical Therapy Science
References 23) Perotto AO: Anatomical Guide for the Electromyographer: The Limbs and Trunk. Charles C, ed. Thomas Publisher, 2005, pp 120–124.
24) O’Sullivan PB, Dankaerts W, Burnett AF, et al.: Effect of different upright sitting postures on spinalpelvic curvature and trunk muscle actiation in a pain-free population. Spine, 2006, 31: E707–E712.
6) Stokes IA, Hutton WC, Stott JR, et al.: Foeces under the hallux valgus foot before and after surgery. Clin Orthop Relat Res, 1979, 142: 64–72.
14) Ihara H, Miwa M, Takayanagi K: Dynamic joint control training for knee ligament injuries. Am J Sports Med, 1986, 14: 309–315.
17) Ukai T, Hayashi N, Hashimoto T, et al.: Effects of the flexor digitorum longus on peroneus ongus activity. J 8th Cong Soc Rehab Orthopaedics. 2000, 6: 40–43.
16) Hayashi N, Ukai T, Hashimoto T, et al.: Effects of insole on the intrinsic flexor’s strength. Bull Jpn Soc Prosthet Orthot Educ Res Dev,2000, 16: 94–95.
29) Basmajian JV, Stecko G: The role of muscles in arch support of the foot. J Bone Joint Surg Am, 1963, 45: 1184–1190.
12) Groiso JA: Juvenile hallux valus. A conservative approach to treatment. J Bone Joint Surg, 1992, 74-A: 1367–1374.
11) Hohmann G: Der Hallux Valgus und die vebrigen Zchenverkruemmungen. Ergeb Chir Orthop, 1925, 18: 308–376.
31) Suzuki R: Functional of the leg and foot muscles from the viewpoint of the electromyogram. J Jpn Orthop Surg Soc,1956, 30: 67–78.
9) Lieberman DE, Venkadesan M, Werbel WA, et al.: Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 2010, 463: 531–535.
7) Hutton WC, Dhanendran M: A Study of the distribution of load under the normal foot during walking. Int Orthop, 1979, 3: 153–157.
33) Mann RA, Hagy DL, Dyski M: The function of the toes in walking, jogging and running. Clin Orthop Relat Res, 1979, 142: 24–29.
4) Lambrinudi C: Use and abuse of toes Postgrade. Med J,1932, 8: 459–464.
5) Hughes J, Clark P, Klenerman L: The importance of the toes in walking. J Bone Joint Surg Br, 1990, 72: 245–251.
19) Fiolkowski P, Brunt D, Bishop M, et al.: Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg, 2003, 42: 327–333.
13) Tanaka Y, Takakura Y, Kumai T, et al.: Radiographic analysis of hallux valgus. A two dimensional coordinate system. J Bone Joint Surg, 1995, 77: 205–213.
27) Cavanagh PR, Rodgers MM, Liboshi A: Pressure distribution under symptom-free during barefoot standing. Foot Ankle, 1987, 7: 262–276.
3) Rouhani H: Ambulatory measurement of ankle kinetics for clinical applications. J Biomech,2011, 44: 2712–2718.
21) Wu L: Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures. Clin Biomech (Bristol, Avon), 2007, 22: 221–229.
8) Ctercteko GC, Dhanendran M, Hutton WC, et al.: Vertical Forces Acting on the Feet of Diabetic Patients with Neuropathic Ulceration. Br J Surg, 1981, 68: 608–614.
28) Umeki Y: Static results of medial foot arch. J Jpn Orthop Assoc, 1991, 65: 41–51.
30) Thordarson DB, Schmotzer H, Chon J, et al.: Dynamic support of the human longitudinal arch: a biomechanical evaluation. Clin Orthop Relat Res, 1995, 316: 165–172.
15) Hayashi N, Ukai T, Ohtake N, et al.: The relationship between the metatarsal arch and toe flexor strength. Hakkai Seikei Geka Rihabiriteishon Kenkyuukaishi.2000, 6: 9–12.
18) Blanpied P, Smidt GL: The difference in stiffness of the active plantarflexors between young and elderly human females. J Gerontol, 1993, 48: M58–M63.
32) Rabita G, Couturier A, Lambertz D: Influence of training background on the relationships between plantarflexor intrinsic stiffness and overall musculoskeletal stiffness during hopping. Eur J Appl Physiol, 2008, 103: 163–171.
20) Neptune RR, Sasaki K: Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition. J Exp Biol, 2005, 208: 799–808.
22) Hashimoto T, Sakuraba K: Intrinsic foot flexor strength training: verifying the effects on strength, foot arch, and dynamic test items. Jpn J Orthop Sports Med.2011, 31: 149–154.
25) Bjerkefors A, Ekblom MM, Josefsson K, et al.: Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther, 2010, 15: 502–507.
34) Nistor L, Markhede G, Grimby G: A technique for measurements of plantar flexion torque with the Cybex dynamometer. Scand J Rehabil Med, 1982, 14: 163–166.
26) Ukai T, Hayashi N, Hashimoto T, et al.: The effects of taping on stride length. Rigaku Ryohougaku, 2000, 27: 217.
1) Miyazaki K: Impact loading on the foot and ankle and its attenuation during level walking. Kurume Med J, 1998, 45: 75–80.
2) Dixon PC, Böhm H, Döderlein L: Ankle and midfoot kinetics during normal gait: a multi-segment approach. J Biomech,2012, 45: 1011–1016.
10) Morris JM: Biomechanics of the foot and ankle. Clin Orthop, 1977, 122: 10–17.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 9) Lieberman DE, Venkadesan M, Werbel WA, et al.: Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 2010, 463: 531–535.
– reference: 20) Neptune RR, Sasaki K: Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition. J Exp Biol, 2005, 208: 799–808.
– reference: 3) Rouhani H: Ambulatory measurement of ankle kinetics for clinical applications. J Biomech,2011, 44: 2712–2718.
– reference: 11) Hohmann G: Der Hallux Valgus und die vebrigen Zchenverkruemmungen. Ergeb Chir Orthop, 1925, 18: 308–376.
– reference: 5) Hughes J, Clark P, Klenerman L: The importance of the toes in walking. J Bone Joint Surg Br, 1990, 72: 245–251.
– reference: 14) Ihara H, Miwa M, Takayanagi K: Dynamic joint control training for knee ligament injuries. Am J Sports Med, 1986, 14: 309–315.
– reference: 23) Perotto AO: Anatomical Guide for the Electromyographer: The Limbs and Trunk. Charles C, ed. Thomas Publisher, 2005, pp 120–124.
– reference: 21) Wu L: Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures. Clin Biomech (Bristol, Avon), 2007, 22: 221–229.
– reference: 8) Ctercteko GC, Dhanendran M, Hutton WC, et al.: Vertical Forces Acting on the Feet of Diabetic Patients with Neuropathic Ulceration. Br J Surg, 1981, 68: 608–614.
– reference: 19) Fiolkowski P, Brunt D, Bishop M, et al.: Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg, 2003, 42: 327–333.
– reference: 33) Mann RA, Hagy DL, Dyski M: The function of the toes in walking, jogging and running. Clin Orthop Relat Res, 1979, 142: 24–29.
– reference: 13) Tanaka Y, Takakura Y, Kumai T, et al.: Radiographic analysis of hallux valgus. A two dimensional coordinate system. J Bone Joint Surg, 1995, 77: 205–213.
– reference: 28) Umeki Y: Static results of medial foot arch. J Jpn Orthop Assoc, 1991, 65: 41–51.
– reference: 6) Stokes IA, Hutton WC, Stott JR, et al.: Foeces under the hallux valgus foot before and after surgery. Clin Orthop Relat Res, 1979, 142: 64–72.
– reference: 32) Rabita G, Couturier A, Lambertz D: Influence of training background on the relationships between plantarflexor intrinsic stiffness and overall musculoskeletal stiffness during hopping. Eur J Appl Physiol, 2008, 103: 163–171.
– reference: 4) Lambrinudi C: Use and abuse of toes Postgrade. Med J,1932, 8: 459–464.
– reference: 10) Morris JM: Biomechanics of the foot and ankle. Clin Orthop, 1977, 122: 10–17.
– reference: 18) Blanpied P, Smidt GL: The difference in stiffness of the active plantarflexors between young and elderly human females. J Gerontol, 1993, 48: M58–M63.
– reference: 7) Hutton WC, Dhanendran M: A Study of the distribution of load under the normal foot during walking. Int Orthop, 1979, 3: 153–157.
– reference: 29) Basmajian JV, Stecko G: The role of muscles in arch support of the foot. J Bone Joint Surg Am, 1963, 45: 1184–1190.
– reference: 2) Dixon PC, Böhm H, Döderlein L: Ankle and midfoot kinetics during normal gait: a multi-segment approach. J Biomech,2012, 45: 1011–1016.
– reference: 1) Miyazaki K: Impact loading on the foot and ankle and its attenuation during level walking. Kurume Med J, 1998, 45: 75–80.
– reference: 31) Suzuki R: Functional of the leg and foot muscles from the viewpoint of the electromyogram. J Jpn Orthop Surg Soc,1956, 30: 67–78.
– reference: 15) Hayashi N, Ukai T, Ohtake N, et al.: The relationship between the metatarsal arch and toe flexor strength. Hakkai Seikei Geka Rihabiriteishon Kenkyuukaishi.2000, 6: 9–12.
– reference: 16) Hayashi N, Ukai T, Hashimoto T, et al.: Effects of insole on the intrinsic flexor’s strength. Bull Jpn Soc Prosthet Orthot Educ Res Dev,2000, 16: 94–95.
– reference: 17) Ukai T, Hayashi N, Hashimoto T, et al.: Effects of the flexor digitorum longus on peroneus ongus activity. J 8th Cong Soc Rehab Orthopaedics. 2000, 6: 40–43.
– reference: 27) Cavanagh PR, Rodgers MM, Liboshi A: Pressure distribution under symptom-free during barefoot standing. Foot Ankle, 1987, 7: 262–276.
– reference: 12) Groiso JA: Juvenile hallux valus. A conservative approach to treatment. J Bone Joint Surg, 1992, 74-A: 1367–1374.
– reference: 24) O’Sullivan PB, Dankaerts W, Burnett AF, et al.: Effect of different upright sitting postures on spinalpelvic curvature and trunk muscle actiation in a pain-free population. Spine, 2006, 31: E707–E712.
– reference: 25) Bjerkefors A, Ekblom MM, Josefsson K, et al.: Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther, 2010, 15: 502–507.
– reference: 22) Hashimoto T, Sakuraba K: Intrinsic foot flexor strength training: verifying the effects on strength, foot arch, and dynamic test items. Jpn J Orthop Sports Med.2011, 31: 149–154.
– reference: 26) Ukai T, Hayashi N, Hashimoto T, et al.: The effects of taping on stride length. Rigaku Ryohougaku, 2000, 27: 217.
– reference: 30) Thordarson DB, Schmotzer H, Chon J, et al.: Dynamic support of the human longitudinal arch: a biomechanical evaluation. Clin Orthop Relat Res, 1995, 316: 165–172.
– reference: 34) Nistor L, Markhede G, Grimby G: A technique for measurements of plantar flexion torque with the Cybex dynamometer. Scand J Rehabil Med, 1982, 14: 163–166.
– ident: 12
  doi: 10.2106/00004623-199274090-00010
– ident: 27
  doi: 10.1177/107110078700700502
– ident: 21
  doi: 10.1016/j.clinbiomech.2006.09.009
– ident: 10
  doi: 10.1097/00003086-197701000-00003
– ident: 32
  doi: 10.1007/s00421-008-0679-9
– ident: 16
– ident: 31
– ident: 13
  doi: 10.2106/00004623-199502000-00006
– ident: 28
– ident: 5
  doi: 10.1302/0301-620X.72B2.2312564
– ident: 29
  doi: 10.2106/00004623-196345060-00006
– ident: 25
  doi: 10.1016/j.math.2010.05.006
– ident: 18
  doi: 10.1093/geronj/48.2.M58
– ident: 1
  doi: 10.2739/kurumemedj.45.75
– ident: 6
  doi: 10.1097/00003086-197907000-00011
– ident: 19
  doi: 10.1053/j.jfas.2003.10.003
– ident: 26
– ident: 24
  doi: 10.1097/01.brs.0000234735.98075.50
– ident: 2
  doi: 10.1016/j.jbiomech.2012.01.001
– ident: 22
– ident: 17
– ident: 7
  doi: 10.1007/BF00266887
– ident: 9
  doi: 10.1038/nature08723
– ident: 33
  doi: 10.1097/00003086-197907000-00005
– ident: 8
  doi: 10.1002/bjs.1800680904
– ident: 34
– ident: 15
– ident: 20
  doi: 10.1242/jeb.01435
– ident: 3
  doi: 10.1016/j.jbiomech.2011.07.021
– ident: 4
  doi: 10.1136/pgmj.8.86.459
– ident: 14
  doi: 10.1177/036354658601400412
– ident: 11
  doi: 10.1007/978-3-642-91224-5_4
– ident: 30
  doi: 10.1097/00003086-199507000-00022
– ident: 23
SSID ssj0027048
Score 1.9946653
Snippet [Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography....
Purpose: The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography.
Purpose: The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography....
[Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography....
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 451
SubjectTerms Intrinsic foot flexor muscles
Muscle activity
Needle electromyography
Original
Title Assessment of Effective Ankle Joint Positioning in Strength Training for Intrinsic Foot Flexor Muscles: A Comparison of Intrinsic Foot Flexor Muscle Activity in a Position Intermediate to Plantar and Dorsiflexion with that in Maximum Plantar Flexion Using Needle Electromyography
URI https://www.jstage.jst.go.jp/article/jpts/26/3/26_jpts-2013-422/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/24707106
https://www.proquest.com/docview/1514425069
https://www.proquest.com/docview/1534805897
https://www.proquest.com/docview/1643051364
https://pubmed.ncbi.nlm.nih.gov/PMC3976025
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Physical Therapy Science, 2014, Vol.26(3), pp.451-454
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9pAEN4maQ-9pM-k9BFNpZwqQc3usrYrVZWVhqaRiHIAiZvlx25wCnYKi0T-fWds45YIceoFCfbDa--OZ76xd-dj7NT1MQrwCGcgEQ4mKMagH_R5WxkujVau6Gna4Dy4UhcjeTnujffYWoyzHsDF1tSO9KRG82ln9fv-G97wX0v1Hs__fHtnFx2uOpK2Uj_GkKQoCxtI72_m5ZQyWhgbe5h5eW69Ue_BnzdC05NbZGc3ehvxfLh-8p-A1H_ODmsmCUE19S_Yns5fsmfX9bjDsCoX8OrRcdAU34TCQFWuGH0cBPmvqYbLIsOG63rtFgYyyHKgd9X5jZ3AsFaQAOS28BPPI8vx8NAvCgs45Sv8dbBc0Mq6LxDAWSNqSD3tgkOQVLIV1FvUdA_lA8pyN4vVYAsgTSUbzSHKU_hezBeZoQKeCKTnx2AnkaUDDKJVNlvOGnS_BpXrIeAKAzT2eF4J_szu6yLdr9mofz48u2jXchDtREll27FrBJLPbhzzNOk5Io6VkKnS3a4fp4mPjpojG_J89GGRSJFXIhPyuXF6SeI6bqrFETvIi1y_YeAhj4ukSbQ0vvR46pO4ojCeUU7s85i32Ke1JYRJXSudJDumIeVMiA3JbEKuQjSbFjttwHdViZDtsKAyqQZU-4YGJOij-oLEPJScNxDagod-rMU-rq0xRDdA73aiXBfLBfaGmTHSWeXvwgjp0ZW6OzCKasB1hZItdlxZeXO-XLpESFWLuRv23wCoVPlmS55NypLlxHqRXb_9D2Pwjj3FJlmtA3zPDux8qT8gMbTxCdv_Me6elLf-HwbMbo0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Effective+Ankle+Joint+Positioning+in+Strength+Training+for+Intrinsic+Foot+Flexor+Muscles%3A+A+Comparison+of+Intrinsic+Foot+Flexor+Muscle+Activity+in+a+Position+Intermediate+to+Plantar+and+Dorsiflexion+with+that+in+Maximum+Plantar+Flexion+Using+Needle+Electromyography&rft.jtitle=Journal+of+Physical+Therapy+Science&rft.au=Hashimoto%2C+Takayuki&rft.au=Sakuraba%2C+Keishoku&rft.date=2014-03-01&rft.pub=The+Society+of+Physical+Therapy+Science&rft.issn=0915-5287&rft.eissn=2187-5626&rft.volume=26&rft.issue=3&rft.spage=451&rft.epage=454&rft_id=info:doi/10.1589%2Fjpts.26.451&rft.externalDocID=article_jpts_26_3_26_jpts_2013_422_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-5287&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-5287&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-5287&client=summon