Patterns of variation in cis-regulatory regions: examining evidence of purifying selection

Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical sig...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 19; no. 1; pp. 95 - 14
Main Authors Naidoo, Thijessen, Sjödin, Per, Schlebusch, Carina, Jakobsson, Mattias
Format Journal Article
LanguageEnglish
Published London BioMed Central 26.01.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-017-4422-y

Cover

Abstract Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. Results We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. Conclusions In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
AbstractList Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. Results We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. Conclusions In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements. Keywords: Regulatory regions, Purifying selection, Selection efficacy, Non-coding DNA, Functional elements, Population genetics
With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements.BACKGROUNDWith only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements.We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations.RESULTSWe disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations.In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.CONCLUSIONSIn order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
Abstract Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. Results We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. Conclusions In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
Background: With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. Results: We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. Conclusions: In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. Results We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. Conclusions In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
ArticleNumber 95
Audience Academic
Author Naidoo, Thijessen
Sjödin, Per
Schlebusch, Carina
Jakobsson, Mattias
Author_xml – sequence: 1
  givenname: Thijessen
  surname: Naidoo
  fullname: Naidoo, Thijessen
  organization: Department of Organismal Biology, Uppsala University
– sequence: 2
  givenname: Per
  surname: Sjödin
  fullname: Sjödin, Per
  organization: Department of Organismal Biology, Uppsala University
– sequence: 3
  givenname: Carina
  surname: Schlebusch
  fullname: Schlebusch, Carina
  organization: Department of Organismal Biology, Uppsala University
– sequence: 4
  givenname: Mattias
  orcidid: 0000-0001-7840-7853
  surname: Jakobsson
  fullname: Jakobsson, Mattias
  email: mattias.jakobsson@ebc.uu.se
  organization: Department of Organismal Biology, Uppsala University, Science for Life Lab
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29373957$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-343792$$DView record from Swedish Publication Index
BookMark eNp9kluL1DAYhousuAf9Ad5IwRsFuzZpc_JCGNbTwILi6cKbkCZfa5ZOMibtuPPvTafjsiOyyUXCl-d9k4-8p9mR8w6y7DEqzxHi9GVEmNO6KBEr6hrjYnsvO0E1QwVGtD66tT_OTmO8KhPIMXmQHWNRsUoQdpL9-KSGAYKLuW_zjQpWDda73Lpc21gE6MZeDT5s87RNB_FVDtdqZZ11XQ4ba8BpmKTrMdh2O1Uj9KAnk4fZ_Vb1ER7t17Ps27u3Xy8-FJcf3y8vFpeFpjUdCgWU6abCRBmuADHMFDEtIqURmmlaEg4ct62uGBIlp8SAIEKlYRA1ZYOrs2w5-xqvruQ62JUKW-mVlbuCD51UYbC6B0kErw0FqmnDa95Uipa6YaVQtREcWJ28Xsxe8Tesx-bA7Y39vti5jaOs6oqJ6erXM57YFRgNbgiqP1Adnjj7U3Z-IwnjDFdVMni2Nwj-1whxkCsbNfS9cuDHKJEQuEScVTShT2e0U6kT61qfHPWEywXBBCNSM5Go8_9QaRpYWZ3i09pUPxA8PxAkZoDroVNjjHL55fMh--R2uzd9_o1TAtAM6OBjDNDeIKiUU2TlHFmZkiinyMpt0rB_NNoOuxSml9v-TiXef1a6xXUQ5JUfg0tZu0P0B3ylAHk
CitedBy_id crossref_primary_10_3389_fgene_2021_660899
crossref_primary_10_1038_s41467_020_19921_4
crossref_primary_10_1093_gbe_evab273
crossref_primary_10_1093_molbev_msz282
crossref_primary_10_1186_s12915_022_01367_3
crossref_primary_10_1371_journal_pgen_1010470
crossref_primary_10_3389_fmolb_2021_673363
Cites_doi 10.1126/science.1058040
10.1038/nrg2538
10.1126/science.1235587
10.1093/genetics/134.4.1289
10.1126/science.1227721
10.1098/rspb.2009.1473
10.1126/science.1181498
10.1128/MCB.16.6.2802
10.1126/science.1098119
10.1093/genetics/123.3.585
10.1186/gb-2012-13-9-r48
10.1017/S0016672300014634
10.1126/science.1198878
10.1093/genetics/141.4.1605
10.1093/nar/gks1284
10.1093/gbe/evt028
10.1126/science.1225057
10.1093/genetics/155.3.1405
10.1073/pnas.83.5.1359
10.1093/nar/20.12.3191
10.1111/mec.12524
10.1016/0092-8674(83)90015-6
10.1093/bioinformatics/btq033
10.1073/pnas.0502300102
10.1093/bioinformatics/bts277
10.1016/j.cell.2009.06.001
10.1111/j.1365-294X.2011.05308.x
10.1038/nature05295
10.1093/nar/gkr342
10.1038/nmeth.1937
10.1073/pnas.1318948111
10.1101/gr.146506.112
10.1098/rstb.2016.0471
10.1007/s00018-012-0990-9
10.1016/0092-8674(85)90057-1
10.1101/gr.772403
10.1016/j.cell.2011.11.058
10.1128/MCB.22.11.3820-3831.2002
10.1101/gr.098921.109
10.1038/nature15393
10.1093/oxfordjournals.molbev.a025634
10.1016/j.tig.2014.02.002
10.1214/aos/1176347265
10.1093/nar/5.9.3157
10.1038/ng.3186
10.1038/35057062
10.1023/A:1008800423698
10.1146/annurev.ge.15.120181.001405
10.1093/genetics/105.2.437
10.1105/tpc.107.057190
10.1093/database/bau062
10.1101/gr.5573107
10.1038/nature11247
10.1016/j.ajhg.2014.09.006
10.1146/annurev.genet.39.073003.112420
10.1093/nar/gkv1194
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
ISR
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1186/s12864-017-4422-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 14
ExternalDocumentID oai_doaj_org_article_5984d6e6c6b848b3a60cb709a4d98e74
oai_DiVA_org_uu_343792
PMC5787233
A525215479
29373957
10_1186_s12864_017_4422_y
Genre Journal Article
GrantInformation_xml – fundername: Knut och Alice Wallenbergs Stiftelse
  funderid: http://dx.doi.org/10.13039/501100004063
– fundername: Vetenskapsrådet
  funderid: http://dx.doi.org/10.13039/501100004359
– fundername: Göran Gustafssons Stiftelse
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
C24
NPM
PMFND
7X8
5PM
2VQ
4.4
ACNBI
ADTPV
AHSBF
AOWAS
C1A
D8T
DF2
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c646t-ae67cb325ad8ae1727a5df150d9c7c6058e82ffc37190865de959aaaad16d0b23
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:30:18 EDT 2025
Tue Sep 09 23:38:31 EDT 2025
Thu Aug 21 14:30:49 EDT 2025
Thu Sep 04 20:38:21 EDT 2025
Tue Jun 17 21:55:50 EDT 2025
Tue Jun 10 20:44:24 EDT 2025
Fri Jun 27 04:25:43 EDT 2025
Wed Feb 19 02:43:43 EST 2025
Tue Jul 01 02:22:38 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Sat Sep 06 07:21:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Functional elements
Regulatory regions
Non-coding DNA
Selection efficacy
Population genetics
Purifying selection
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c646t-ae67cb325ad8ae1727a5df150d9c7c6058e82ffc37190865de959aaaad16d0b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7840-7853
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-017-4422-y
PMID 29373957
PQID 1992018736
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_5984d6e6c6b848b3a60cb709a4d98e74
swepub_primary_oai_DiVA_org_uu_343792
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5787233
proquest_miscellaneous_1992018736
gale_infotracmisc_A525215479
gale_infotracacademiconefile_A525215479
gale_incontextgauss_ISR_A525215479
pubmed_primary_29373957
crossref_primary_10_1186_s12864_017_4422_y
crossref_citationtrail_10_1186_s12864_017_4422_y
springer_journals_10_1186_s12864_017_4422_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-26
PublicationDateYYYYMMDD 2018-01-26
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References JA Stamatoyannopoulos (4422_CR12) 2012; 22
FMTA Busing (4422_CR62) 1999; 9
PD Thomas (4422_CR57) 2003; 13
J Wakeley (4422_CR63) 2010
DS Lawrie (4422_CR17) 2014; 30
DJ Galas (4422_CR29) 1978; 5
RE Thurman (4422_CR30) 2012; 489
DM Rand (4422_CR66) 1996; 13
YB Simons (4422_CR36) 2014; 46
4422_CR52
F Tajima (4422_CR59) 1983; 105
LD Ward (4422_CR16) 2012; 337
MB Gerstein (4422_CR54) 2012; 489
ENCODE Project Consortium (4422_CR7) 2012; 489
D Thorburn (4422_CR65) 1977; 4
R Sabarinathan (4422_CR48) 2016; 532
D Shortle (4422_CR1) 1981; 15
M XJ (4422_CR19) 2011; 39
4422_CR15
4422_CR14
JC Venter (4422_CR3) 2001; 291
AR Quinlan (4422_CR55) 2010; 26
W Fu (4422_CR35) 2014; 95
S Peischl (4422_CR33) 2013; 22
GN Filippova (4422_CR46) 1996; 16
WC Forrester (4422_CR6) 1986; 83
JE Phillips (4422_CR45) 2009; 137
M Kellis (4422_CR9) 2014; 111
Y Cheng (4422_CR8) 2009; 19
G Bejerano (4422_CR13) 2004; 304
RD Hernandez (4422_CR25) 2011; 331
B Charlesworth (4422_CR23) 1993; 134
J Li (4422_CR21) 2012; 21
R Do (4422_CR34) 2015; 47
ES Lander (4422_CR2) 2001; 409
K Lindblad-Toh (4422_CR10) 2011; 478
D Graur (4422_CR11) 2013; 5
F Tajima (4422_CR60) 1989; 123
4422_CR64
W Amos (4422_CR27) 2010; 277
R Drmanac (4422_CR50) 2010; 327
H Mi (4422_CR58) 2016; 44
MM Hoffman (4422_CR44) 2012; 9
JJ Jonsson (4422_CR40) 1992; 20
SH Williamson (4422_CR22) 2005; 102
BS Weir (4422_CR53) 1984; 38
R Nielsen (4422_CR32) 2005; 39
AB Rose (4422_CR41) 2008; 20
S Neph (4422_CR67) 2012; 28
CM Farrell (4422_CR47) 2002; 22
J Wakeley (4422_CR28) 2009
E Khurana (4422_CR20) 2013; 342
JM Smith (4422_CR37) 1974; 23
RR Hudson (4422_CR24) 1995; 141
A Auton (4422_CR51) 2015; 526
LW Barrett (4422_CR39) 2012; 69
BM Emerson (4422_CR5) 1985; 41
J Banerji (4422_CR4) 1983; 33
MM Hoffman (4422_CR42) 2013; 41
HR Kunsch (4422_CR61) 1989; 17
CM Schlebusch (4422_CR26) 2012; 338
ZD Zhang (4422_CR31) 2007; 17
4422_CR38
J Ernst (4422_CR43) 2012; 9
JM Vaquerizas (4422_CR56) 2009; 10
JC Fay (4422_CR49) 2000; 155
D Schmidt (4422_CR18) 2012; 148
References_xml – volume: 291
  start-page: 1304
  year: 2001
  ident: 4422_CR3
  publication-title: Science
  doi: 10.1126/science.1058040
– start-page: 119
  volume-title: Evol since Darwin first 150 years. Sunderland, MA: Sinauer and associates
  year: 2010
  ident: 4422_CR63
– volume: 10
  start-page: 252
  year: 2009
  ident: 4422_CR56
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2538
– volume: 4
  start-page: 113
  year: 1977
  ident: 4422_CR65
  publication-title: Scand J Stat
– volume: 342
  start-page: 1235587
  year: 2013
  ident: 4422_CR20
  publication-title: Science
  doi: 10.1126/science.1235587
– volume: 38
  start-page: 1358
  year: 1984
  ident: 4422_CR53
  publication-title: Evolution (N Y)
– volume: 134
  start-page: 1289
  year: 1993
  ident: 4422_CR23
  publication-title: Genetics
  doi: 10.1093/genetics/134.4.1289
– volume: 338
  start-page: 374
  year: 2012
  ident: 4422_CR26
  publication-title: Science
  doi: 10.1126/science.1227721
– volume: 277
  start-page: 131
  year: 2010
  ident: 4422_CR27
  publication-title: Proceedings Biol Sci
  doi: 10.1098/rspb.2009.1473
– volume: 327
  start-page: 78
  year: 2010
  ident: 4422_CR50
  publication-title: Science
  doi: 10.1126/science.1181498
– volume: 16
  start-page: 2802
  year: 1996
  ident: 4422_CR46
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.6.2802
– volume: 9
  start-page: 215
  year: 2012
  ident: 4422_CR43
  publication-title: Nat Publ Group
– volume: 304
  start-page: 1321
  year: 2004
  ident: 4422_CR13
  publication-title: Science
  doi: 10.1126/science.1098119
– volume: 123
  start-page: 585
  year: 1989
  ident: 4422_CR60
  publication-title: Genetics
  doi: 10.1093/genetics/123.3.585
– volume: 532
  start-page: 264
  year: 2016
  ident: 4422_CR48
  publication-title: Nat Publ Group
– ident: 4422_CR64
  doi: 10.1186/gb-2012-13-9-r48
– volume: 478
  start-page: 476
  year: 2011
  ident: 4422_CR10
  publication-title: Nat Publ Group
– volume: 23
  start-page: 23
  year: 1974
  ident: 4422_CR37
  publication-title: Genet Res
  doi: 10.1017/S0016672300014634
– volume: 331
  start-page: 920
  year: 2011
  ident: 4422_CR25
  publication-title: Science
  doi: 10.1126/science.1198878
– volume: 141
  start-page: 1605
  year: 1995
  ident: 4422_CR24
  publication-title: Genetics
  doi: 10.1093/genetics/141.4.1605
– volume: 41
  start-page: 827
  year: 2013
  ident: 4422_CR42
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1284
– volume: 489
  start-page: 91
  year: 2012
  ident: 4422_CR54
  publication-title: Nat Publ Group
– volume: 5
  start-page: 578
  year: 2013
  ident: 4422_CR11
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evt028
– volume: 337
  start-page: 1675
  year: 2012
  ident: 4422_CR16
  publication-title: Science
  doi: 10.1126/science.1225057
– volume: 155
  start-page: 1405
  year: 2000
  ident: 4422_CR49
  publication-title: Genetics
  doi: 10.1093/genetics/155.3.1405
– ident: 4422_CR52
– volume: 83
  start-page: 1359
  year: 1986
  ident: 4422_CR6
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.83.5.1359
– volume: 20
  start-page: 3191
  year: 1992
  ident: 4422_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/20.12.3191
– volume: 22
  start-page: 5972
  year: 2013
  ident: 4422_CR33
  publication-title: Mol Ecol
  doi: 10.1111/mec.12524
– volume: 33
  start-page: 729
  year: 1983
  ident: 4422_CR4
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90015-6
– volume: 26
  start-page: 841
  year: 2010
  ident: 4422_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 102
  start-page: 7882
  year: 2005
  ident: 4422_CR22
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0502300102
– volume: 28
  start-page: 1919
  year: 2012
  ident: 4422_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts277
– volume: 137
  start-page: 1194
  year: 2009
  ident: 4422_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.001
– volume: 21
  start-page: 28
  year: 2012
  ident: 4422_CR21
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2011.05308.x
– ident: 4422_CR14
  doi: 10.1038/nature05295
– volume: 39
  start-page: 7058
  year: 2011
  ident: 4422_CR19
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr342
– volume: 9
  start-page: 473
  year: 2012
  ident: 4422_CR44
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1937
– volume: 111
  start-page: 6131
  year: 2014
  ident: 4422_CR9
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1318948111
– volume: 22
  start-page: 1602
  year: 2012
  ident: 4422_CR12
  publication-title: Genome Res
  doi: 10.1101/gr.146506.112
– ident: 4422_CR38
  doi: 10.1098/rstb.2016.0471
– volume: 69
  start-page: 3613
  year: 2012
  ident: 4422_CR39
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-012-0990-9
– volume: 41
  start-page: 21
  year: 1985
  ident: 4422_CR5
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90057-1
– volume: 13
  start-page: 2129
  year: 2003
  ident: 4422_CR57
  publication-title: Genome Res
  doi: 10.1101/gr.772403
– volume: 148
  start-page: 335
  year: 2012
  ident: 4422_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.058
– volume-title: Coalescent theory: an introduction
  year: 2009
  ident: 4422_CR28
– volume: 22
  start-page: 3820
  year: 2002
  ident: 4422_CR47
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.11.3820-3831.2002
– volume: 19
  start-page: 2172
  year: 2009
  ident: 4422_CR8
  publication-title: Genome Res
  doi: 10.1101/gr.098921.109
– volume: 526
  start-page: 68
  year: 2015
  ident: 4422_CR51
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 13
  start-page: 735
  year: 1996
  ident: 4422_CR66
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025634
– volume: 30
  start-page: 133
  year: 2014
  ident: 4422_CR17
  publication-title: Trends Genet Elsevier Ltd
  doi: 10.1016/j.tig.2014.02.002
– volume: 489
  start-page: 75
  year: 2012
  ident: 4422_CR30
  publication-title: Nat Publ Group
– volume: 46
  start-page: 220
  year: 2014
  ident: 4422_CR36
  publication-title: Nat Publ Group
– volume: 17
  start-page: 1217
  year: 1989
  ident: 4422_CR61
  publication-title: Ann Stat
  doi: 10.1214/aos/1176347265
– volume: 5
  start-page: 3157
  year: 1978
  ident: 4422_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/5.9.3157
– volume: 47
  start-page: 126
  year: 2015
  ident: 4422_CR34
  publication-title: Nat Genet
  doi: 10.1038/ng.3186
– volume: 409
  start-page: 860
  year: 2001
  ident: 4422_CR2
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 9
  start-page: 3
  year: 1999
  ident: 4422_CR62
  publication-title: Stat Comput
  doi: 10.1023/A:1008800423698
– volume: 15
  start-page: 265
  year: 1981
  ident: 4422_CR1
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.ge.15.120181.001405
– volume: 105
  start-page: 437
  year: 1983
  ident: 4422_CR59
  publication-title: Genetics
  doi: 10.1093/genetics/105.2.437
– volume: 20
  start-page: 543
  year: 2008
  ident: 4422_CR41
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.057190
– ident: 4422_CR15
  doi: 10.1093/database/bau062
– volume: 17
  start-page: 787
  year: 2007
  ident: 4422_CR31
  publication-title: Genome Res
  doi: 10.1101/gr.5573107
– volume: 489
  start-page: 57
  year: 2012
  ident: 4422_CR7
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 95
  start-page: 421
  year: 2014
  ident: 4422_CR35
  publication-title: Hum Genet
  doi: 10.1016/j.ajhg.2014.09.006
– volume: 39
  start-page: 197
  year: 2005
  ident: 4422_CR32
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.39.073003.112420
– volume: 44
  start-page: D336
  year: 2016
  ident: 4422_CR58
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1194
SSID ssj0017825
Score 2.271286
Snippet Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much...
With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has...
Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much...
Background: With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much...
Abstract Background With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of...
SourceID doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 95
SubjectTerms Animal Genetics and Genomics
Biomedical and Life Sciences
Comparative and evolutionary genomics
Functional elements
Genetic research
Genetic variation
Life Sciences
Microarrays
Microbial Genetics and Genomics
Non-coding DNA
Plant Genetics and Genomics
Population genetics
Proteomics
Purifying selection
Regulatory regions
Research Article
Selection efficacy
Testing
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_1TomiCEq5bvPRxLf14zgFRdSTw5eQpKkWtHtst-L-986k2eV6wvniPm6mLPPRzGRn8vsR8sg6C2WAF7liTuVcz0LuCl3lDRPaisoFxvGC87v38uiYvz0RJ2eovnAmbIQHHg13ILTitQzSS6e4cszKwruq0JbXWoUqIoEWutgcplL_APKeSD3MmZIHPezCEqctqpxzOH2tJ1kogvX_vSWfyUnn5yW3TdNzAKMxKR1eI1dTNUnnoxa75FLorpPLI7_k-gb5-iGiZ3Y9XTT0F5yKoxto21Hf9vlypKFfLNcU6Rkg_J7T8Nv-jJQRNCS6UXz0dFi28T4U7SNtDsjeJMeHrz-_PMoTmULuJZer3AZZecdKYWtlA5YtVtQNlIO19pXH5mhQZdN4VkGJoKSogwZvwaeeybpwJbtFdrpFF-4QymyAtO_gaOUDd1DxlFY3oWFMNl5oqTNSbIxrfEIaR8KLHyaeOJQ0oz8M-MOgP8w6I0-3j5yOMBsXCb9Aj20FESE7fgFxY1LcmH_FTUYeor8NYmB0OGTzzQ59b958-mjmooSiRvAKNHmShJoFaOBturMAdkDYrInk_kQSXlI_WX6wCSuDSzjZ1oXF0Bsc_0ViRCYzcnsMs61iUIrFPmpGqkkATjSfrnTt94gRjhtxyVhGnm1C1aTNqb_IsI_HaJ78wKv2yzyadhgMQ_jK8u7_cMAeuYKK499ZpdwnO6vlEO5Bgbdy9-O7_AfVVE00
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96Ivgifls9pYoiKMVu89HEt_X0OAVF1JPDl5CkqRa0PbZbcf97Z9JsuZ5y4D42ky7zkcykM_kNIY-MNRAGOJ5JamXG1MJnNldlVlOuDC-tpwwvOL97Lw4O2dsjfhTBovEuzMn8_UKK5z3snwLrJMqMMTg3bc6TC3xBRcjLir0pYQCOjsek5T-nzdxOQOf_ew8-4YROF0hOWdJTiKLBC-1fIZdj-JguR31fJed8e41cHBtKbq6Trx8CXGbbp12d_oJjcJB72rSpa_psNfad71abFPsxgL29SP1v8zP0iEh97C-KU4-HVRMuQKV96JMDtDfI4f7rz3sHWeyekDnBxDozXpTO0oKbShqPcYrhVQ3xX6Vc6TAb6mVR146WEBNIwSuvQD3wqxaiym1Bb5Kdtmv9bZJS48HPWzhLOc8shDiFUbWvKRW140qohORb4WoXocWxw8UPHY4YUuhRHxr0oVEfepOQp9OU4xFX4yzil6ixiRAhscMDsBQdV5jmSrJKeOGElUxaakTubJkrwyolfckS8hD1rRH0osWqmm9m6Hv95tNHveQFRDGclcDJk0hUd8CBM_GSAsgBcbJmlLszSliVbjb8YGtWGoewlK313dBrrPfFTohUJOTWaGYTYxB7hcRpQsqZAc44n4-0zfcACo47b0FpQp5tTVXH3ag_S7CPR2ue_cGr5ssyiHYYNEW8yuLOf731LrmEHOKHqkLskp31avD3IHRb2_th0f4BqvU90A
  priority: 102
  providerName: Springer Nature
Title Patterns of variation in cis-regulatory regions: examining evidence of purifying selection
URI https://link.springer.com/article/10.1186/s12864-017-4422-y
https://www.ncbi.nlm.nih.gov/pubmed/29373957
https://www.proquest.com/docview/1992018736
https://pubmed.ncbi.nlm.nih.gov/PMC5787233
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-343792
https://doaj.org/article/5984d6e6c6b848b3a60cb709a4d98e74
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kjCogEBIorI0_84BQVzYNpE3ToKhvlu04o9KUjKZF9L_nzkkLGdNEHyK1vqTy-c53lzv_jpCXxhpwAxxPFLUqYdnAJ7afyaSgPDNcWk8ZHnA-PhFHY_Z5wicbZNXeqmVgfW1oh_2kxrOLd79-LD-Awr8PCq_EXg17rMBaCpkwBrHVcpNsg2ESGIsdsz9JBTCGPBw2koMkhTChTXJe-4iOmQpo_v_u2X8ZrasFleus6hUE0mC1Du-SO627GQ8b-bhHNnx5n9xqGlAuH5C90wCvWdZxVcQ_IWwO6xRPy9hN62TW9KmvZssY-zeAfD4k48ODr6OjpG2hkDjBxDwxXkhnacpNroxHZ8XwvAAnMM-cdJgS9SotCkclOAZK8NxnsEbwyQci79uUPiJbZVX6JySmxoOxtxBQOc8s-DmpyQpfUCoKxzORRaS_4ph2Lb44trm40CHOUEI3TNbAZI1M1suIvFnfctmAa9xEvI_LsCZEXOzwQzU7162aaZ4plgsvnLCKKUuN6Dsr-5lheaa8ZBF5gYuoEfmixNKac7Ooa_3py5ke8hRcGc4kzOR1S1RUMANn2pMKwAcEy-pQ7nYoQTVdZ_j5SlY0DmE9W-mrRa2x6BfbIVIRkceN7KwnBg5YyJ5GRHakqjPz7kg5_R6QwXH7TSmNyNuV_OmVRt3E2FeNiHb-4OP02zCwdrHQFEEr053_pHtKbuPc8D1VKnbJ1ny28M_Ac5vbHtmUE9kj2_sHJ6dn8G0kRr3wFqQXNBWu43T4G-Q6QrM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCLEXxPcCAwICIYEi2vibt1KYOtgmBNs08WLZjgOVIJ2aBtH_njsnrZaBJtHH-JzqPuw7586_I-SZdRbCAM8zRZ3KmB6GzA20zErKteXSBcrwgvP-gZgcsQ8n_KQDi8a7MGfz90MlXtewfwqsk5AZY3BuWl4mV9hQSzTgsRivEwbg6HiXtPzntJ7biej8f-_BZ5zQ-QLJdZb0HKJo9EI7N8j1LnxMR62-b5JLobpFrrYNJZe3yddPES6zqtNZmf6CY3CUezqtUj-ts3nbd342X6bYjwHs7U0aftufsUdEGrr-ojj1tJlP4wWotI59coD2DjnaeX84nmRd94TMCyYWmQ1CekdzbgtlA8YplhclxH-F9tJjNjSovCw9lRATKMGLoEE98CuGohi4nN4lG9WsClskpTaAn3dwlvKBOQhxcqvLUFIqSs-10AkZrIRrfActjh0ufph4xFDCtPowoA-D-jDLhLxcTzltcTUuIn6LGlsTIiR2fACWYroVZrhWrBBBeOEUU45aMfBODrRlhVZBsoQ8RX0bBL2osKrmm23q2ux--WxGPIcohjMJnLzoiMoZcOBtd0kB5IA4WT3K7R4lrErfG36yMiuDQ1jKVoVZUxus98VOiFQk5F5rZmvGIPaKidOEyJ4B9jjvj1TT7xEUHHfenNKEvFqZqul2o_oiwT5vrbn3B--mx6Mo2qYxFPEq8_v_9dbH5NrkcH_P7O0efHxANpFb_GiVi22ysZg34SGEcQv3KC7gP-BtQMY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQF8SZQICAQEijqNn7E5ra0rFoeVQW0qrhYtuOUlSBZJRvE_ntmnGRFCqrEHuNxVvaMPePM-PsIeWasgTDA8URSKxOmtn1iJypLCsqV4Zn1lOEF548HYu-IvTvhJz3PaTNUuw8pye5OA6I0lcutRV50S1yKrQZ2VYHVE1nCGJymVhfJJYaeD7O1YmedRgD3x_tU5j-7jZxRwOz_e2f-wzWdLZtc507P4IwG3zS7Tq71QWU87azgBrngy5vkckczubpFvh4GEM2yiasi_gmH46CNeF7Gbt4kdcdGX9WrGFkawApfx_6X-RGYI2Lfs45i10Vbz8O1qLgJ7Dkge5sczd5-2dlLek6FxAkmlonxInOWptzk0niMXgzPC4gKc-UyhzlSL9OicDSDSEEKnnsFSoNfvi3yiU3pHbJRVqW_R2JqPHh_Cycs55mFwCc1qvAFpaJwXAkVkckwudr1gOPIe_Fdh4OHFLrThwZ9aNSHXkXk5brLokPbOE_4DWpsLYhA2eFBVZ_qft1priTLhRdOWMmkpUZMnM0myrBcSZ-xiDxFfWuEwiix1ubUtE2j9z9_0lOeQmzDWQYjedELFRWMwJn-6gLMA6JnjSQ3R5KwVt2o-clgVhqbsMCt9FXbaKwCRn5EKiJytzOz9cAgIgvp1IhkIwMcjXzcUs6_Bahw3I9TSiPyajBV3e9RzXkT-7yz5tEf7M6Pp2Fq21ZTRLFM7__XWx-TK4e7M_1h_-D9A3IVB4tfslKxSTaWdesfQmy3tI_C-v0NLl5JBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+of+variation+in+cis-regulatory+regions&rft.jtitle=BMC+genomics&rft.au=Naidoo%2C+Thijessen&rft.au=Sj%C3%B6din%2C+Per&rft.au=Schlebusch%2C+Carina&rft.au=Jakobsson%2C+Mattias&rft.date=2018-01-26&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=19&rft_id=info:doi/10.1186%2Fs12864-017-4422-y&rft.externalDocID=oai_DiVA_org_uu_343792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon