Measurements of water uptake of maize roots: the key function of lateral roots

AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHO...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 398; no. 1-2; pp. 59 - 77
Main Authors Ahmed, Mutez A, Zarebanadkouki, Mohsen, Kaestner, Anders, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2016
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHODS: We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diffusion–convection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. RESULTS: The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42 × 10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. CONCLUSIONS: We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
AbstractList Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D sub(2)O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D sub(2)O into selected soil regions. The transport of D sub(2)O was simulated using a diffusion-convection numerical model. By fitting the observed D sub(2)O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D sub(2)O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D sub(2)O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.6810 super(-7) cm super(2) s super(-1)) was similar to that of the distal unbranched segments of seminal roots (4.7210 super(-7) cm super(2) s super(-1)) and higher than that of the proximal branched segments (1.4210 super(-7) cm super(2) s super(-1)) . Water uptake of lateral roots (1.6410 super(-5) cm s super(-1)) was much higher than the uptake of seminal roots, which was 5.3410 super(-10) cm s super(-1) in the proximal branched segments and only 1.1810 super(-12) cm s super(-1) in the distal unbranched segments. We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
Aims Maize ( Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D 2 O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D 2 O into selected soil regions. The transport of D 2 O was simulated using a diffusion–convection numerical model. By fitting the observed D 2 O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D 2 O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D 2 O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10 −7  cm 2  s −1 ) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10 −7  cm 2  s −1 ) and higher than that of the proximal branched segments (1.42 × 10 −7  cm 2  s −1 ). Water uptake of lateral roots (1.64 × 10 −5  cm s −1 ) was much higher than the uptake of seminal roots, which was 5.34 × 10 −10  cm s −1 in the proximal branched segments and only 1.18 × 10 −12  cm s −1 in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D.sub.2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D.sub.2O into selected soil regions. The transport of D.sub.2O was simulated using a diffusion-convection numerical model. By fitting the observed D.sub.2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D.sub.2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D.sub.2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 x 10.sup.-7 cm.sup.2 s.sup.-1) was similar to that of the distal unbranched segments of seminal roots (4.72 x 10.sup.-7 cm.sup.2 s.sup.-1) and higher than that of the proximal branched segments (1.42 x 10.sup.-7 cm.sup.2 s.sup.-1). Water uptake of lateral roots (1.64 x 10.sup.-5 cm s.sup.-1) was much higher than the uptake of seminal roots, which was 5.34 x 10.sup.-10 cm s.sup.-1 in the proximal branched segments and only 1.18 x 10.sup.-12 cm s.sup.-1 in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHODS: We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diffusion–convection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. RESULTS: The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42 × 10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. CONCLUSIONS: We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHODS: We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diffusion–convection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. RESULTS: The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42 × 10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. CONCLUSIONS: We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D^sub 2^O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D^sub 2^O into selected soil regions. The transport of D^sub 2^O was simulated using a diffusion-convection numerical model. By fitting the observed D^sub 2^O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D^sub 2^O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D^sub 2^O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10^sup -7^ cm^sup 2^ s^sup -1^) was similar to that of the distal unbranched segments of seminal roots (4.72×10^sup -7^ cm^sup 2^ s^sup -1^) and higher than that of the proximal branched segments (1.42×10^sup -7^ cm^sup 2^ s^sup -1^). Water uptake of lateral roots (1.64×10^sup -5^ cm s^sup -1^) was much higher than the uptake of seminal roots, which was 5.34×10^sup -10^ cm s^sup -1^ in the proximal branched segments and only 1.18×10^sup -12^ cm s^sup -1^ in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diñusionconvection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42×10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ 10 cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot.
Audience Academic
Author Kaestner, Anders
Zarebanadkouki, Mohsen
Ahmed, Mutez A.
Carminati, Andrea
Author_xml – sequence: 1
  fullname: Ahmed, Mutez A
– sequence: 2
  fullname: Zarebanadkouki, Mohsen
– sequence: 3
  fullname: Kaestner, Anders
– sequence: 4
  fullname: Carminati, Andrea
BookMark eNqFkk1rFTEUhoNU8Lb6A1yIA27cTM33ybgrxS-outCCu5DOPXPN7UxyTTJI--ubYUSki0oW4Zw8T0Ly5pgchRiQkOeMnjJK4U1mjFHZUqZarkXX6kdkwxSIVlGhj8iGUsFbCt2PJ-Q45z1daqY35MtndHlOOGEouYlD89sVTM18KO4al3py_habFGPJb5vyE5trvGmGOfTFx7AA4yK4cUWekseDGzM--zOfkMv3776ff2wvvn74dH520fZa6tI6pbbInGMd4LZHp3vBl84WtBNmkMwAdoZrpaHW-grUFcqOAQqFglIlTsjrdd9Dir9mzMVOPvc4ji5gnLNlhgqmhAL2fxS06oySICv66h66j3MK9SKVUmAABIVKna7Uzo1ofRhiSa6vY4uT72ssg6_9Mym56agCWgVYhT7FnBMOtvfFLe9XRT9aRu2SoV0ztDVDu2RodTXZPfOQ_OTSzYMOX51c2bDD9M8lHpBerNI-l5j-niKFAQ68q-sv1_XBRet2yWd7-Y1TputHqrkYKe4A02TA4A
CitedBy_id crossref_primary_10_1186_s13007_018_0380_x
crossref_primary_10_1093_aob_mcac147
crossref_primary_10_3389_fpls_2023_1146681
crossref_primary_10_3390_plants12020275
crossref_primary_10_1016_j_jtbi_2018_07_033
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_1093_jxb_erx439
crossref_primary_10_1042_ETLS20200278
crossref_primary_10_1002_pld3_130
crossref_primary_10_1093_jxb_erz060
crossref_primary_10_1016_j_agwat_2024_108688
crossref_primary_10_1002_jpln_201600120
crossref_primary_10_1093_plphys_kiad675
crossref_primary_10_1016_j_compag_2022_106823
crossref_primary_10_1016_j_envexpbot_2018_10_013
crossref_primary_10_1111_pce_14270
crossref_primary_10_1007_s11104_015_2749_1
crossref_primary_10_1186_s12864_022_08394_y
crossref_primary_10_3390_agronomy11122452
crossref_primary_10_1021_acs_est_2c01610
crossref_primary_10_1093_aob_mcac058
crossref_primary_10_1093_jxb_erac327
crossref_primary_10_1111_pbi_13355
crossref_primary_10_1007_s11104_024_06481_5
crossref_primary_10_1071_FP20351
crossref_primary_10_1016_j_advwatres_2018_12_009
crossref_primary_10_1016_j_soilbio_2021_108426
crossref_primary_10_1002_agj2_20441
crossref_primary_10_1186_s13007_021_00831_5
crossref_primary_10_1109_ACCESS_2020_2970161
crossref_primary_10_1111_pce_13399
crossref_primary_10_7717_peerj_7494
crossref_primary_10_1016_j_biosystemseng_2024_06_002
crossref_primary_10_1007_s11104_022_05633_9
crossref_primary_10_3389_fpls_2020_01247
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1016_j_fcr_2020_107872
crossref_primary_10_1093_jxb_ery183
crossref_primary_10_1007_s11104_022_05650_8
crossref_primary_10_1007_s11104_022_05656_2
crossref_primary_10_1093_jxb_erac114
crossref_primary_10_1002_agj2_20097
crossref_primary_10_1093_plphys_kiab271
crossref_primary_10_3390_agriculture11020132
crossref_primary_10_1016_j_micres_2020_126516
crossref_primary_10_1016_j_pbi_2023_102405
crossref_primary_10_1093_jxb_erad249
crossref_primary_10_3389_fpls_2019_00363
crossref_primary_10_3389_fpls_2021_722954
crossref_primary_10_1093_insilicoplants_diz012
crossref_primary_10_1007_s11104_017_3408_5
crossref_primary_10_1007_s11104_024_06576_z
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1016_j_rhisph_2022_100561
crossref_primary_10_1111_pce_14259
crossref_primary_10_3117_plantroot_16_11
crossref_primary_10_1111_pce_13840
crossref_primary_10_1038_s41588_024_01761_3
crossref_primary_10_1021_acs_jafc_2c06843
crossref_primary_10_1007_s44307_024_00050_8
crossref_primary_10_1093_plphys_kiad213
crossref_primary_10_1002_pei3_10026
crossref_primary_10_1017_S0014479719000206
crossref_primary_10_1002_vzj2_20084
crossref_primary_10_1016_j_rhisph_2023_100738
crossref_primary_10_1038_s41598_021_90062_4
crossref_primary_10_1093_jxb_erad312
crossref_primary_10_1007_s40415_024_00991_3
crossref_primary_10_1093_aob_mcab029
crossref_primary_10_3390_atmos11010021
crossref_primary_10_3389_fpls_2022_820450
crossref_primary_10_1016_j_agwat_2016_08_012
crossref_primary_10_1093_jxb_erad390
crossref_primary_10_1007_s11104_015_2668_1
crossref_primary_10_1111_pce_14587
crossref_primary_10_1016_j_jplph_2017_12_019
crossref_primary_10_3389_fpls_2021_734614
crossref_primary_10_1016_j_rhisph_2017_10_004
crossref_primary_10_1016_j_agwat_2025_109320
crossref_primary_10_1111_nph_18409
Cites_doi 10.1098/rstb.2007.2175
10.1093/jxb/34.3.240
10.1007/s00344-003-0008-9
10.1007/s11104-012-1579-7
10.1111/j.1438-8677.2010.00385.x
10.1002/jpln.201300249
10.1071/FP13330
10.2136/vzj2007.0156
10.1093/jxb/51.342.61
10.1007/s11104-008-9834-7
10.1016/j.tplants.2003.11.003
10.1104/pp.106.1.179
10.1023/A:1004213728734
10.1007/s11104-013-1657-5
10.2136/sssaj2007.0302
10.2136/vzj2010.0113
10.1016/S0167-8809(00)00220-6
10.1093/oxfordjournals.aob.a085488
10.1146/annurev.arplant.50.1.695
10.1007/s11104-004-7904-z
10.1104/pp.109.1.7
10.1007/s11104-010-0283-8
10.1111/j.1469-8137.2011.03826.x
10.2136/vzj2007.0115
10.1111/j.1399-3054.1991.tb00075.x
10.1038/452273a
10.1111/j.1365-2389.2006.00870.x
10.1104/pp.31.6.468
10.1111/nph.12330
10.1146/annurev.arplant.59.032607.092734
10.1007/BF02139932
10.1093/annbot/58.4.577
10.1093/aob/mch056
10.1007/s11104-004-7903-0
10.1104/pp.91.2.719
10.1111/j.1365-3040.2010.02223.x
10.1023/A:1026439226716
10.1006/anbo.1997.0540
10.1104/pp.108.134098
10.1017/S0029665110003836
10.2136/sssaspecpub61.c7
10.1111/j.1469-8137.1993.tb03789.x
10.1104/pp.114.243212
10.2136/vzj2013.02.0041
10.2136/vzj2011.0106
10.1093/jxb/eru162
10.1093/jexbot/51.342.61
10.1104/pp. 108.134098
10.2136/vzj2014.03.0024
10.2136/vzj2011.0196
ContentType Journal Article
Copyright Springer Science+Business Media 2016
Springer International Publishing Switzerland 2015
COPYRIGHT 2016 Springer
Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer Science+Business Media 2016
– notice: Springer International Publishing Switzerland 2015
– notice: COPYRIGHT 2016 Springer
– notice: Springer International Publishing Switzerland 2016
DBID FBQ
AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-015-2639-6
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts



AGRICOLA
Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 77
ExternalDocumentID 3924849531
A442890570
10_1007_s11104_015_2639_6
43872729
US201600091784
GroupedDBID -Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
PHGZM
PQGLB
PUEGO
-4W
-56
-5G
-BR
-EM
3V.
88A
ADINQ
GQ6
JSODD
M0L
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
AAYXX
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c646t-a55de1aa197edcea6c325de1d76a38f4187e9826567a386b75be4917e35e30053
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Mon Jul 21 12:03:34 EDT 2025
Thu Jul 10 22:02:42 EDT 2025
Fri Jul 25 09:42:44 EDT 2025
Tue Jun 10 20:27:33 EDT 2025
Tue Jul 01 00:58:55 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Fri Feb 21 02:33:28 EST 2025
Sun Aug 24 12:10:44 EDT 2025
Thu Apr 03 09:42:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Neutron radiography
Lateral roots
Root water uptake
Maize
Deuterated water (D
Seminal roots
Radial and axial conductivity
O
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c646t-a55de1aa197edcea6c325de1d76a38f4187e9826567a386b75be4917e35e30053
Notes http://dx.doi.org/10.1007/s11104-015-2639-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/42018
PQID 1757877307
PQPubID 54098
PageCount 19
ParticipantIDs proquest_miscellaneous_1803153571
proquest_miscellaneous_1765985474
proquest_journals_1757877307
gale_infotracacademiconefile_A442890570
crossref_citationtrail_10_1007_s11104_015_2639_6
crossref_primary_10_1007_s11104_015_2639_6
springer_journals_10_1007_s11104_015_2639_6
jstor_primary_43872729
fao_agris_US201600091784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2016
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Bramley, Turner, Turner, Tyerman (CR3) 2009; 150
Garrigues, Doussan, Pierret (CR14) 2006; 283
Ahmed, Kroener, Holz (CR1) 2014; 41
Zarebanadkouki, Carminati (CR48) 2014; 177
Lynch, Chimungu, Brown (CR22) 2014
Watt, McCully, Canny (CR47) 1994; 106
CR36
Doussan, Pierret, Garrigues, Pagès (CR12) 2006; 283
Wang, Canny, McCully (CR45) 1991; 82
Zarebanadkouki, Kim, Carminati (CR50) 2013; 199
Wallace (CR44) 2000; 82
Oswald, Menon, Carminati (CR34) 2008; 7
CR6
CR5
Brodersen (CR4) 2013; 366
CR49
Zwieniecki, Thompson, Holbrook (CR52) 2003; 21
Javaux, Schröder, Vanderborght, Vereecken (CR18) 2008; 7
Matsushima, Kardjilov, Hilger (CR24) 2012; 82
CR43
CR40
Doussan, Pagès, Vercambre (CR11) 1998; 81
Hochholdinger, Park, Sauer, Woll (CR16) 2004; 9
Sierp, Brewig (CR39) 1935; 82
Morison, Baker, Mullineaux, Davies (CR31) 2008; 363
McCully, Canny (CR27) 1988; 111
Clarkson, Carvajal, Henzler (CR9) 2000; 51
Sanderson (CR38) 1983; 34
CR19
Lynch (CR21) 1995; 109
Frensch, Steudle (CR13) 1989; 91
North, Nobel (CR32) 1997; 191
Marris (CR23) 2008; 452
Landsberg, Fowkes (CR20) 1978; 42
Carminati, Schneider, Moradi (CR8) 2011; 10
Parry, Hawkesford (CR35) 2010; 69
CR51
Moradi, Carminati, Vetterlein (CR30) 2011; 192
Ordin, Kramer (CR33) 1956; 31
Menon, Robinson, Oswald (CR28) 2007; 58
Rewald, Ephrath, Rachmilevitch (CR37) 2011; 34
Tumlinson, Liu, Silk, Hopmans (CR42) 2008; 72
Carminati, Moradi, Vetterlein (CR7) 2010; 332
Maurel, Verdoucq, Luu, Santoni (CR25) 2008; 59
Hochholdinger, Woll, Sauer, Dembinsky (CR17) 2004; 93
Hochholdinger, Bennetzen, Hake (CR15) 2009
McCully (CR26) 1999; 50
Warren, Bilheux, Kang (CR46) 2013; 366
Aubin, Canny, McCully (CR2) 1986; 58
Steudle (CR41) 2000; 226
Da Ines, Graf, Franck (CR10) 2010; 12
Moradi, Conesa, Robinson (CR29) 2008; 318
MA Zwieniecki (2639_CR52) 2003; 21
M Watt (2639_CR47) 1994; 106
JIL Morison (2639_CR31) 2008; 363
J Sanderson (2639_CR38) 1983; 34
C Doussan (2639_CR11) 1998; 81
ME McCully (2639_CR26) 1999; 50
SE Oswald (2639_CR34) 2008; 7
LG Tumlinson (2639_CR42) 2008; 72
F Hochholdinger (2639_CR16) 2004; 9
2639_CR19
AB Moradi (2639_CR30) 2011; 192
2639_CR51
F Hochholdinger (2639_CR15) 2009
JM Warren (2639_CR46) 2013; 366
MAJ Parry (2639_CR35) 2010; 69
M Zarebanadkouki (2639_CR50) 2013; 199
DT Clarkson (2639_CR9) 2000; 51
M Menon (2639_CR28) 2007; 58
L Ordin (2639_CR33) 1956; 31
E Marris (2639_CR23) 2008; 452
J Frensch (2639_CR13) 1989; 91
E Steudle (2639_CR41) 2000; 226
M Zarebanadkouki (2639_CR48) 2014; 177
CR Brodersen (2639_CR4) 2013; 366
GB North (2639_CR32) 1997; 191
O Ines Da (2639_CR10) 2010; 12
J Lynch (2639_CR21) 1995; 109
A Carminati (2639_CR7) 2010; 332
H Sierp (2639_CR39) 1935; 82
H Bramley (2639_CR3) 2009; 150
A Carminati (2639_CR8) 2011; 10
JP Lynch (2639_CR22) 2014
C Maurel (2639_CR25) 2008; 59
B Rewald (2639_CR37) 2011; 34
E Garrigues (2639_CR14) 2006; 283
JJ Landsberg (2639_CR20) 1978; 42
ME McCully (2639_CR27) 1988; 111
X-L Wang (2639_CR45) 1991; 82
JS Wallace (2639_CR44) 2000; 82
M Javaux (2639_CR18) 2008; 7
C Doussan (2639_CR12) 2006; 283
U Matsushima (2639_CR24) 2012; 82
2639_CR36
MA Ahmed (2639_CR1) 2014; 41
AB Moradi (2639_CR29) 2008; 318
2639_CR5
2639_CR49
GS Aubin (2639_CR2) 1986; 58
2639_CR6
2639_CR40
2639_CR43
F Hochholdinger (2639_CR17) 2004; 93
References_xml – year: 2014
  ident: CR22
  article-title: Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement
  publication-title: J Exp Bot
– volume: 363
  start-page: 639
  year: 2008
  end-page: 658
  ident: CR31
  article-title: Improving water use in crop production
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2007.2175
– ident: CR49
– volume: 34
  start-page: 240
  year: 1983
  end-page: 253
  ident: CR38
  article-title: Water uptake by different regions of the barley root. Pathways of radial flow in relation to development of the endodermis
  publication-title: J Exp Bot
  doi: 10.1093/jxb/34.3.240
– ident: CR51
– volume: 21
  start-page: 315
  year: 2003
  end-page: 323
  ident: CR52
  article-title: Understanding the hydraulics of porous pipes: tradeoffs between water uptake and root length utilization
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-003-0008-9
– volume: 82
  start-page: 99
  year: 1935
  end-page: 122
  ident: CR39
  article-title: Quantitative untersuchungen über die wasserabsorptionszone der wurzeln
  publication-title: Jahrb Wiss Bot
– volume: 366
  start-page: 683
  year: 2013
  end-page: 693
  ident: CR46
  article-title: Neutron imaging reveals internal plant water dynamics
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1579-7
– volume: 12
  start-page: 129
  year: 2010
  end-page: 139
  ident: CR10
  article-title: Kinetic analyses of plant water relocation using deuterium as tracer – reduced water flux of Arabidopsis pip2 aquaporin knockout mutants
  publication-title: Plant Biol
  doi: 10.1111/j.1438-8677.2010.00385.x
– volume: 177
  start-page: 227
  year: 2014
  end-page: 236
  ident: CR48
  article-title: Reduced root water uptake after drying and rewetting
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201300249
– volume: 41
  start-page: 1129
  year: 2014
  end-page: 1137
  ident: CR1
  article-title: Mucilage exudation facilitates root water uptake in dry soils
  publication-title: Funct Plant Biol
  doi: 10.1071/FP13330
– volume: 7
  start-page: 1035
  year: 2008
  ident: CR34
  article-title: Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0156
– volume: 51
  start-page: 61
  year: 2000
  end-page: 70
  ident: CR9
  article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress
  publication-title: J Exp Bot
  doi: 10.1093/jxb/51.342.61
– volume: 318
  start-page: 243
  year: 2008
  end-page: 255
  ident: CR29
  article-title: Neutron radiography as a tool for revealing root development in soil: capabilities and limitations
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9834-7
– volume: 9
  start-page: 42
  year: 2004
  end-page: 48
  ident: CR16
  article-title: From weeds to crops: genetic analysis of root development in cereals
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2003.11.003
– volume: 106
  start-page: 179
  year: 1994
  end-page: 186
  ident: CR47
  article-title: Formation and stabilization of rhizosheaths of Zea mays L. (Effect of soil water content)
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.1.179
– ident: CR19
– volume: 191
  start-page: 249
  year: 1997
  end-page: 258
  ident: CR32
  article-title: Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths
  publication-title: Plant Soil
  doi: 10.1023/A:1004213728734
– volume: 366
  start-page: 29
  year: 2013
  end-page: 32
  ident: CR4
  article-title: Visualizing water transport in roots: advanced imaging tools for an expanding field
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1657-5
– volume: 72
  start-page: 1234
  year: 2008
  ident: CR42
  article-title: Thermal neutron computed tomography of soil water and plant roots
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2007.0302
– volume: 10
  start-page: 988
  year: 2011
  ident: CR8
  article-title: How the rhizosphere May favor water availability to roots
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2010.0113
– ident: CR36
– volume: 82
  start-page: 105
  year: 2000
  end-page: 119
  ident: CR44
  article-title: Increasing agricultural water use efficiency to meet future food production
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(00)00220-6
– ident: CR5
– volume: 42
  start-page: 493
  year: 1978
  end-page: 508
  ident: CR20
  article-title: Water movement through plant roots
  publication-title: Ann Bot
  doi: 10.1093/oxfordjournals.aob.a085488
– volume: 50
  start-page: 695
  year: 1999
  end-page: 718
  ident: CR26
  article-title: Roots in soil: unearthing the complexities of roots and their rhizospheres
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.50.1.695
– volume: 283
  start-page: 99
  year: 2006
  end-page: 117
  ident: CR12
  article-title: Water uptake by plant roots: II – modelling of water transfer in the soil root-system with explicit account of flow within the root system – comparison with experiments
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-7904-z
– volume: 109
  start-page: 7
  year: 1995
  end-page: 13
  ident: CR21
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.1.7
– volume: 332
  start-page: 163
  year: 2010
  end-page: 176
  ident: CR7
  article-title: Dynamics of soil water content in the rhizosphere
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0283-8
– volume: 192
  start-page: 653
  year: 2011
  end-page: 663
  ident: CR30
  article-title: Three-dimensional visualization and quantification of water content in the rhizosphere
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.03826.x
– ident: CR43
– volume: 7
  start-page: 1079
  year: 2008
  ident: CR18
  article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0115
– volume: 82
  start-page: 157
  year: 1991
  end-page: 162
  ident: CR45
  article-title: The water status of the roots of soil-grown maize in relation to the maturity of their xylem
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1991.tb00075.x
– volume: 452
  start-page: 273
  year: 2008
  end-page: 277
  ident: CR23
  article-title: Water: more crop per drop
  publication-title: Nat New
  doi: 10.1038/452273a
– volume: 58
  start-page: 802
  year: 2007
  end-page: 810
  ident: CR28
  article-title: Visualization of root growth in heterogeneously contaminated soil using neutron radiography
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2006.00870.x
– volume: 31
  start-page: 468
  year: 1956
  end-page: 471
  ident: CR33
  article-title: Permeability of vicia faba root segments to water as measured by diffusion of deuterium hydroxide. 12
  publication-title: Plant Physiol
  doi: 10.1104/pp.31.6.468
– volume: 199
  start-page: 1034
  year: 2013
  end-page: 1044
  ident: CR50
  article-title: Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil
  publication-title: New Phytol
  doi: 10.1111/nph.12330
– volume: 59
  start-page: 595
  year: 2008
  end-page: 624
  ident: CR25
  article-title: Plant aquaporins: membrane channels with multiple integrated functions
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092734
– volume: 111
  start-page: 159
  year: 1988
  end-page: 170
  ident: CR27
  article-title: Pathways and processes of water and nutrient movement in roots
  publication-title: Plant Soil
  doi: 10.1007/BF02139932
– ident: CR6
– volume: 58
  start-page: 577
  year: 1986
  end-page: 588
  ident: CR2
  article-title: Living vessel elements in the late metaxylem of sheathed maize roots
  publication-title: Ann Bot
  doi: 10.1093/annbot/58.4.577
– ident: CR40
– volume: 93
  start-page: 359
  year: 2004
  end-page: 368
  ident: CR17
  article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes
  publication-title: Ann Bot
  doi: 10.1093/aob/mch056
– volume: 82
  start-page: 90
  year: 2012
  end-page: 98
  ident: CR24
  article-title: Application potential of cold neutron radiography in plant science research
  publication-title: J Appl Bot Food Qual
– volume: 283
  start-page: 83
  year: 2006
  end-page: 98
  ident: CR14
  article-title: Water uptake by plant roots: I – formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-7903-0
– volume: 91
  start-page: 719
  year: 1989
  end-page: 726
  ident: CR13
  article-title: Axial and radial hydraulic resistance to roots of maize (Zea mays L.)
  publication-title: Plant Physiol
  doi: 10.1104/pp.91.2.719
– volume: 34
  start-page: 33
  year: 2011
  end-page: 42
  ident: CR37
  article-title: A root is a root is a root? Water uptake rates of citrus root orders
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2010.02223.x
– volume: 226
  start-page: 45
  year: 2000
  end-page: 56
  ident: CR41
  article-title: Water uptake by plant roots: an integration of views
  publication-title: Plant Soil
  doi: 10.1023/A:1026439226716
– start-page: 145
  year: 2009
  end-page: 160
  ident: CR15
  article-title: Handbook of Maize: Its Biology
  publication-title: The Maize Root System: Morphology, Anatomy, and Genetics
– volume: 81
  start-page: 213
  year: 1998
  end-page: 223
  ident: CR11
  article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description
  publication-title: Ann Bot
  doi: 10.1006/anbo.1997.0540
– volume: 150
  start-page: 348
  year: 2009
  end-page: 364
  ident: CR3
  article-title: Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.134098
– volume: 69
  start-page: 592
  year: 2010
  end-page: 600
  ident: CR35
  article-title: Food security: increasing yield and improving resource use efficiency
  publication-title: Proc Nutr Soc
  doi: 10.1017/S0029665110003836
– volume: 366
  start-page: 29
  year: 2013
  ident: 2639_CR4
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1657-5
– ident: 2639_CR36
  doi: 10.2136/sssaspecpub61.c7
– volume: 109
  start-page: 7
  year: 1995
  ident: 2639_CR21
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.1.7
– volume: 58
  start-page: 802
  year: 2007
  ident: 2639_CR28
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2006.00870.x
– volume: 9
  start-page: 42
  year: 2004
  ident: 2639_CR16
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2003.11.003
– volume: 283
  start-page: 83
  year: 2006
  ident: 2639_CR14
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-7903-0
– ident: 2639_CR43
  doi: 10.1111/j.1469-8137.1993.tb03789.x
– volume: 50
  start-page: 695
  year: 1999
  ident: 2639_CR26
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.50.1.695
– volume: 191
  start-page: 249
  year: 1997
  ident: 2639_CR32
  publication-title: Plant Soil
  doi: 10.1023/A:1004213728734
– volume: 318
  start-page: 243
  year: 2008
  ident: 2639_CR29
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9834-7
– volume: 177
  start-page: 227
  year: 2014
  ident: 2639_CR48
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201300249
– volume: 34
  start-page: 240
  year: 1983
  ident: 2639_CR38
  publication-title: J Exp Bot
  doi: 10.1093/jxb/34.3.240
– ident: 2639_CR51
  doi: 10.1104/pp.114.243212
– volume: 93
  start-page: 359
  year: 2004
  ident: 2639_CR17
  publication-title: Ann Bot
  doi: 10.1093/aob/mch056
– volume: 111
  start-page: 159
  year: 1988
  ident: 2639_CR27
  publication-title: Plant Soil
  doi: 10.1007/BF02139932
– volume: 69
  start-page: 592
  year: 2010
  ident: 2639_CR35
  publication-title: Proc Nutr Soc
  doi: 10.1017/S0029665110003836
– ident: 2639_CR40
  doi: 10.2136/vzj2013.02.0041
– volume: 199
  start-page: 1034
  year: 2013
  ident: 2639_CR50
  publication-title: New Phytol
  doi: 10.1111/nph.12330
– ident: 2639_CR6
  doi: 10.2136/vzj2011.0106
– volume: 58
  start-page: 577
  year: 1986
  ident: 2639_CR2
  publication-title: Ann Bot
  doi: 10.1093/annbot/58.4.577
– volume: 81
  start-page: 213
  year: 1998
  ident: 2639_CR11
  publication-title: Ann Bot
  doi: 10.1006/anbo.1997.0540
– year: 2014
  ident: 2639_CR22
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru162
– volume: 82
  start-page: 157
  year: 1991
  ident: 2639_CR45
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1991.tb00075.x
– volume: 192
  start-page: 653
  year: 2011
  ident: 2639_CR30
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.03826.x
– volume: 51
  start-page: 61
  year: 2000
  ident: 2639_CR9
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/51.342.61
– volume: 363
  start-page: 639
  year: 2008
  ident: 2639_CR31
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2007.2175
– volume: 91
  start-page: 719
  year: 1989
  ident: 2639_CR13
  publication-title: Plant Physiol
  doi: 10.1104/pp.91.2.719
– volume: 150
  start-page: 348
  year: 2009
  ident: 2639_CR3
  publication-title: Plant Physiol
  doi: 10.1104/pp. 108.134098
– volume: 82
  start-page: 99
  year: 1935
  ident: 2639_CR39
  publication-title: Jahrb Wiss Bot
– volume: 332
  start-page: 163
  year: 2010
  ident: 2639_CR7
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0283-8
– volume: 72
  start-page: 1234
  year: 2008
  ident: 2639_CR42
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2007.0302
– volume: 10
  start-page: 988
  year: 2011
  ident: 2639_CR8
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2010.0113
– volume: 7
  start-page: 1035
  year: 2008
  ident: 2639_CR34
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0156
– volume: 31
  start-page: 468
  year: 1956
  ident: 2639_CR33
  publication-title: Plant Physiol
  doi: 10.1104/pp.31.6.468
– volume: 41
  start-page: 1129
  year: 2014
  ident: 2639_CR1
  publication-title: Funct Plant Biol
  doi: 10.1071/FP13330
– volume: 7
  start-page: 1079
  year: 2008
  ident: 2639_CR18
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0115
– volume: 366
  start-page: 683
  year: 2013
  ident: 2639_CR46
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1579-7
– ident: 2639_CR5
– start-page: 145
  volume-title: The Maize Root System: Morphology, Anatomy, and Genetics
  year: 2009
  ident: 2639_CR15
– volume: 226
  start-page: 45
  year: 2000
  ident: 2639_CR41
  publication-title: Plant Soil
  doi: 10.1023/A:1026439226716
– ident: 2639_CR19
  doi: 10.2136/vzj2014.03.0024
– volume: 452
  start-page: 273
  year: 2008
  ident: 2639_CR23
  publication-title: Nat New
  doi: 10.1038/452273a
– volume: 82
  start-page: 105
  year: 2000
  ident: 2639_CR44
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(00)00220-6
– volume: 42
  start-page: 493
  year: 1978
  ident: 2639_CR20
  publication-title: Ann Bot
  doi: 10.1093/oxfordjournals.aob.a085488
– volume: 34
  start-page: 33
  year: 2011
  ident: 2639_CR37
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2010.02223.x
– volume: 283
  start-page: 99
  year: 2006
  ident: 2639_CR12
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-7904-z
– volume: 21
  start-page: 315
  year: 2003
  ident: 2639_CR52
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-003-0008-9
– volume: 82
  start-page: 90
  year: 2012
  ident: 2639_CR24
  publication-title: J Appl Bot Food Qual
– volume: 59
  start-page: 595
  year: 2008
  ident: 2639_CR25
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092734
– volume: 12
  start-page: 129
  year: 2010
  ident: 2639_CR10
  publication-title: Plant Biol
  doi: 10.1111/j.1438-8677.2010.00385.x
– volume: 106
  start-page: 179
  year: 1994
  ident: 2639_CR47
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.1.179
– ident: 2639_CR49
  doi: 10.2136/vzj2011.0196
SSID ssj0003216
Score 2.4699094
Snippet AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of...
Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of...
Aims Maize ( Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of...
Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of...
SourceID proquest
gale
crossref
springer
jstor
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Agricultural soils
Aluminum
Biomedical and Life Sciences
containers
Corn
crops
deuterium oxide
Diffusion coefficient
diffusivity
Ecology
image analysis
Life Sciences
Mathematical models
Measurement
Neutrons
Observations
Physiological aspects
Plant biology
Plant Physiology
Plant roots
Plant Sciences
Plant-soil relationships
Plant-water relationships
Radiography
Regular Article
Roots
Roots (Botany)
Sand soils
Sandy soils
Seminal roots
Soil Science & Conservation
Soil water
Soils
Spatial distribution
Water
Water immersion
Water uptake
Xylem
Zea mays
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9sVdAH0dPSaCsrCIISyN5--3aWliLYFz24t2WTbERaL-WSQ-pf70wuyVmxhb5lk0k2mcnMzu7M_gbgraUtaDwQwmWepZKXMbXByZS7wHWeCatjl21xpk_n8vNCLfp93M2Q7T6EJDtLvd3shiMVZUxQVpZwqd6B-wqn7pTHNZ_ORvMrpl29UzpIM-MWQyjzf4-4NhjtVKEeDfMmOfGa2_lPpLQbgE6ewpPec2Szjaifwb24nMDj2fdVj54RJ_DgU42-3tUEHh53YNRXz-Hsy3YRsGF1xX6hc7li68s2nEdq_ww_fkeG_nPbfGToDTLUakajHUmMCC7oBuy4I3kB85Pjb0enaV9DIS201G0alCojD4E7Q_meQRdiSmdKo4OwleTWRIdTDKUNtnVuVB4lTuGiUJGQ7MUe7C7rZdwHVmVlUWZ5hZx0UsQyVCVOdoJ0NhY85DyBbGCmL3qAcapzceG30MjEf4_898R_rxN4P95yuUHXuI14HyXkA_K18fOvU8LGQw-RGysTeEdi86SU2GUR-r0F-OIEb-VnUlJAVZksgb1OsmN3UliKRbsEDgZR-16NG88J7d-gETQJvBkvowJSVCUsY70mGq2cVdLIW2gsFdMQyiCTPgy_0V_d3PTJL-9E_QoeEVM2C0QHsNuu1vEQXaY2f92pyB85lgbz
  priority: 102
  providerName: Springer Nature
Title Measurements of water uptake of maize roots: the key function of lateral roots
URI https://www.jstor.org/stable/43872729
https://link.springer.com/article/10.1007/s11104-015-2639-6
https://www.proquest.com/docview/1757877307
https://www.proquest.com/docview/1765985474
https://www.proquest.com/docview/1803153571
Volume 398
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9MwDLfYxgP3gODgdIVjKhISEqiiWdIk5QV1sHECMSFg0niK0jY9Ie7WsXZC8Ndjd-3GIbGnfrlKa8eOEzs_AzzRtAWNWUK4TMNAsNwF2sYiYLFlMg25lq7JtpjJ87l4t4gW7YJb1aZVdjaxMdR5mdEa-QtGwOsK-6N6tfoRUNUoiq62JTR6MEATrHUfBuPJ7OOnnS3mo6b4KZ0EoYoXXVyz2TyHIx9lYFCWF48DeW1k6hW23FnpbabiNR_0n7BpMxpN78Dt1o30k63c78INtzyGo-Ri3UJpuGO4OS7R8ft1D2Yf9uuAlV8W_k_0L9f-ZlXb746ur-y3385HF7quXvroEPqo2D4NeCQ0IrikF7C5huQ-zKeTL6_Pg7aMQpBJIevARlHumLUsVpTyaWXGR3QnV9JyXQimlYtxlhFJhdcyVVHqBM7iHI8cgdnzE-gvy6U7Bb8I8ywP0wL5FwvuclvkON-xItYuYzZlHoQdC03WYoxTqYtLs0dHJq4b5LohrhvpwbPdK6stwMYh4lOUi7HIzcrMP48IHg-dRKa08OApCcuQXmKTmW23F-CHE8KVSYSgmGqkQg9OGnnumhNcUzg69uCsE7BpNbky-37nwePdY9RBCqzYpSs3RCOjWEdCiQM0mupp8Eghk553neevZv73yw8Of9RDuEVc2C4KnUG_Xm_cI3ST6nQIg2T8Zjyl49uv7yfDVjeG0JuPkj9Wrgzz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9tHRLwgGAwLTAgSCAkUEQcO3aChFAHmzq2VQhWqW_GSRw0bTSlTTWND8Vn5C7_ypDo296a5lKnd-e7s-_8O4DnER1BY4YQLhPfEyyzXmRi4bHYMJn4PJK2qrYYysFIfBqH4zX43Z6FobLK1iZWhjorUtojf8MIeF2hPqr3058edY2i7GrbQqNWi0N7eYFLtvm7g48o3xdBsL938mHgNV0FvFQKWXomDDPLjGGxogpII1Me0DeZkoZHuWCRsjEG3aFUeC0TFSZW4KLG8tAStjvH312HDcGlH_RgY3dv-PlLZ_t5UDVbpQ-er-Jxm0etDuuhp6WKD6oq47Enr3jC9dwUnVeoKyOvxLz_pGkr77d_F-40Yavbr_XsHqzZySbc7n-fNdAddhNu7BYYaF7eh-Hxct9x7ha5e4Hx7MxdTEtzZun6hzn9ZV0M2cv5WxcDUBcNiUsOlpSECM7pARyuInkAo2th8Bb0JsXEboOb-1ma-UmO_IsFt5nJM1xfGRFHNmUmYQ74LQt12mCaU2uNc71EYyaua-S6Jq5r6cCr7pFpDeixingb5aINcnOuR18DguPDoJSpSDjwkoSlyQ7gkKlpjjPgixOilu4LQTncUPkObFXy7IYTPKL0d-zATitg3ViOuV7quQPPuts45ymRYya2WBCNDOMoFEqsoImofwcPFTLpdas8fw3zv7_8cPVLPYWbg5PjI310MDx8BLeII_WG1A70ytnCPsYQrUyeNPPChW_XPRX_APYERW0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLe2DiF4QDCYFhgQJBASKFouuT8JEkIdW7UxqCagUt-OS3JBaFtTmlTT-Gh8Ouw0SRkSfdtb0zi91PbZvzv7bIDnER1BY4YqXCa-x1lmvcjE3GOxYTLxw0jaOttiKA9H_MNYjNfgd3sWhtIqW5tYG-qsSGmPfJdR4XWF-qh28yYt4mR_8G7606MOUhRpbdtpLFTk2F5e4PKtfHu0j7J-EQSDg6_vD72mw4CXSi4rzwiRWWYMixVlQxqZhgF9kylpwijnLFI2RgAupMJrmSiRWI4LHBsKS3XeQ_zdddhQtCrqwcbewfDkc-cHwqBuvEofPF_F4zamWh_cQ69L2R-UYRbGnrziFddzU3QeYpEleQX__hOyrT3h4C7caSCs21_o3D1Ys5NNuN3_PmvKeNhNuLFXIOi8vA_DT8s9yNItcvcCse3MnU8rc2rp-tz8-GVdhO9V-cZFMOqiUXHJ2ZLCEMEZPYDD1SQPYHQtDN6C3qSY2G1wcz9LMz_JkX8xD21m8gzXWobHkU2ZSZgDfstCnTb1zanNxpleVmYmrmvkuiaua-nAq-6R6aK4xyribZSLNsjNUo--BFSaDwEqUxF34CUJS5NNwCFT0xxtwBen6lq6zznFc4XyHdiq5dkNx8OIQuGxAzutgHVjRUq91HkHnnW3cf5TUMdMbDEnGiniSHDFV9BE1MsjFAqZ9LpVnr-G-d9ffrj6pZ7CTZyC-uPR8PgR3CKGLPamdqBXzeb2MaK1KnnSTAsXvl33TPwDhMFJog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurements+of+water+uptake+of+maize+roots%3A+the+key+function+of+lateral+roots&rft.jtitle=Plant+and+soil&rft.au=Ahmed%2C+Mutez+A&rft.au=Zarebanadkouki%2C+Mohsen&rft.au=Kaestner%2C+Anders&rft.au=Carminati%2C+Andrea&rft.date=2016-01-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=398&rft.issue=1-2&rft.spage=59&rft.epage=77&rft_id=info:doi/10.1007%2Fs11104-015-2639-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon