Measurements of water uptake of maize roots: the key function of lateral roots
AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHO...
Saved in:
Published in | Plant and soil Vol. 398; no. 1-2; pp. 59 - 77 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2016
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHODS: We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diffusion–convection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. RESULTS: The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42 × 10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. CONCLUSIONS: We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. |
---|---|
AbstractList | Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D sub(2)O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D sub(2)O into selected soil regions. The transport of D sub(2)O was simulated using a diffusion-convection numerical model. By fitting the observed D sub(2)O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D sub(2)O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D sub(2)O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.6810 super(-7) cm super(2) s super(-1)) was similar to that of the distal unbranched segments of seminal roots (4.7210 super(-7) cm super(2) s super(-1)) and higher than that of the proximal branched segments (1.4210 super(-7) cm super(2) s super(-1)) . Water uptake of lateral roots (1.6410 super(-5) cm s super(-1)) was much higher than the uptake of seminal roots, which was 5.3410 super(-10) cm s super(-1) in the proximal branched segments and only 1.1810 super(-12) cm s super(-1) in the distal unbranched segments. We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. Aims Maize ( Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D 2 O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D 2 O into selected soil regions. The transport of D 2 O was simulated using a diffusion–convection numerical model. By fitting the observed D 2 O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D 2 O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D 2 O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10 −7 cm 2 s −1 ) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10 −7 cm 2 s −1 ) and higher than that of the proximal branched segments (1.42 × 10 −7 cm 2 s −1 ). Water uptake of lateral roots (1.64 × 10 −5 cm s −1 ) was much higher than the uptake of seminal roots, which was 5.34 × 10 −10 cm s −1 in the proximal branched segments and only 1.18 × 10 −12 cm s −1 in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D.sub.2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D.sub.2O into selected soil regions. The transport of D.sub.2O was simulated using a diffusion-convection numerical model. By fitting the observed D.sub.2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D.sub.2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D.sub.2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 x 10.sup.-7 cm.sup.2 s.sup.-1) was similar to that of the distal unbranched segments of seminal roots (4.72 x 10.sup.-7 cm.sup.2 s.sup.-1) and higher than that of the proximal branched segments (1.42 x 10.sup.-7 cm.sup.2 s.sup.-1). Water uptake of lateral roots (1.64 x 10.sup.-5 cm s.sup.-1) was much higher than the uptake of seminal roots, which was 5.34 x 10.sup.-10 cm s.sup.-1 in the proximal branched segments and only 1.18 x 10.sup.-12 cm s.sup.-1 in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHODS: We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diffusion–convection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. RESULTS: The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42 × 10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. CONCLUSIONS: We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. METHODS: We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diffusion–convection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. RESULTS: The root architecture of a 16 day-old maize consisted of a primary root, 4–5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42 × 10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. CONCLUSIONS: We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D^sub 2^O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D^sub 2^O into selected soil regions. The transport of D^sub 2^O was simulated using a diffusion-convection numerical model. By fitting the observed D^sub 2^O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D^sub 2^O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D^sub 2^O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10^sup -7^ cm^sup 2^ s^sup -1^) was similar to that of the distal unbranched segments of seminal roots (4.72×10^sup -7^ cm^sup 2^ s^sup -1^) and higher than that of the proximal branched segments (1.42×10^sup -7^ cm^sup 2^ s^sup -1^). Water uptake of lateral roots (1.64×10^sup -5^ cm s^sup -1^) was much higher than the uptake of seminal roots, which was 5.34×10^sup -10^ cm s^sup -1^ in the proximal branched segments and only 1.18×10^sup -12^ cm s^sup -1^ in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of different root types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. Methods We used neutron radiography to image the spatial distribution of maize roots in soil and trace the transport of deuterated water (D₂O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were 16 days old, we injected D₂O into selected soil regions. The transport of D₂O was simulated using a diñusionconvection numerical model. By fitting the observed D₂O transport we quantified the diffusion coefficient and the water uptake of the different root segments. Results The root architecture of a 16 day-old maize consisted of a primary root, 4-5 seminal roots and many lateral roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. During both day and night measurements, D₂O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D₂O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68 × 10⁻⁷ cm² s⁻¹) was similar to that of the distal unbranched segments of seminal roots (4.72 × 10⁻⁷ cm² s⁻¹) and higher than that of the proximal branched segments (1.42×10⁻⁷ cm² s⁻¹). Water uptake of lateral roots (1.64 × 10⁻⁵ cm s⁻¹) was much higher than the uptake of seminal roots, which was 5.34 × 10⁻¹⁰ 10 cm s⁻¹ in the proximal branched segments and only 1.18 × 10⁻¹² cm s⁻¹ in the distal unbranched segments. Conclusions We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. |
Audience | Academic |
Author | Kaestner, Anders Zarebanadkouki, Mohsen Ahmed, Mutez A. Carminati, Andrea |
Author_xml | – sequence: 1 fullname: Ahmed, Mutez A – sequence: 2 fullname: Zarebanadkouki, Mohsen – sequence: 3 fullname: Kaestner, Anders – sequence: 4 fullname: Carminati, Andrea |
BookMark | eNqFkk1rFTEUhoNU8Lb6A1yIA27cTM33ybgrxS-outCCu5DOPXPN7UxyTTJI--ubYUSki0oW4Zw8T0Ly5pgchRiQkOeMnjJK4U1mjFHZUqZarkXX6kdkwxSIVlGhj8iGUsFbCt2PJ-Q45z1daqY35MtndHlOOGEouYlD89sVTM18KO4al3py_habFGPJb5vyE5trvGmGOfTFx7AA4yK4cUWekseDGzM--zOfkMv3776ff2wvvn74dH520fZa6tI6pbbInGMd4LZHp3vBl84WtBNmkMwAdoZrpaHW-grUFcqOAQqFglIlTsjrdd9Dir9mzMVOPvc4ji5gnLNlhgqmhAL2fxS06oySICv66h66j3MK9SKVUmAABIVKna7Uzo1ofRhiSa6vY4uT72ssg6_9Mym56agCWgVYhT7FnBMOtvfFLe9XRT9aRu2SoV0ztDVDu2RodTXZPfOQ_OTSzYMOX51c2bDD9M8lHpBerNI-l5j-niKFAQ68q-sv1_XBRet2yWd7-Y1TputHqrkYKe4A02TA4A |
CitedBy_id | crossref_primary_10_1186_s13007_018_0380_x crossref_primary_10_1093_aob_mcac147 crossref_primary_10_3389_fpls_2023_1146681 crossref_primary_10_3390_plants12020275 crossref_primary_10_1016_j_jtbi_2018_07_033 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_1093_jxb_erx439 crossref_primary_10_1042_ETLS20200278 crossref_primary_10_1002_pld3_130 crossref_primary_10_1093_jxb_erz060 crossref_primary_10_1016_j_agwat_2024_108688 crossref_primary_10_1002_jpln_201600120 crossref_primary_10_1093_plphys_kiad675 crossref_primary_10_1016_j_compag_2022_106823 crossref_primary_10_1016_j_envexpbot_2018_10_013 crossref_primary_10_1111_pce_14270 crossref_primary_10_1007_s11104_015_2749_1 crossref_primary_10_1186_s12864_022_08394_y crossref_primary_10_3390_agronomy11122452 crossref_primary_10_1021_acs_est_2c01610 crossref_primary_10_1093_aob_mcac058 crossref_primary_10_1093_jxb_erac327 crossref_primary_10_1111_pbi_13355 crossref_primary_10_1007_s11104_024_06481_5 crossref_primary_10_1071_FP20351 crossref_primary_10_1016_j_advwatres_2018_12_009 crossref_primary_10_1016_j_soilbio_2021_108426 crossref_primary_10_1002_agj2_20441 crossref_primary_10_1186_s13007_021_00831_5 crossref_primary_10_1109_ACCESS_2020_2970161 crossref_primary_10_1111_pce_13399 crossref_primary_10_7717_peerj_7494 crossref_primary_10_1016_j_biosystemseng_2024_06_002 crossref_primary_10_1007_s11104_022_05633_9 crossref_primary_10_3389_fpls_2020_01247 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1016_j_fcr_2020_107872 crossref_primary_10_1093_jxb_ery183 crossref_primary_10_1007_s11104_022_05650_8 crossref_primary_10_1007_s11104_022_05656_2 crossref_primary_10_1093_jxb_erac114 crossref_primary_10_1002_agj2_20097 crossref_primary_10_1093_plphys_kiab271 crossref_primary_10_3390_agriculture11020132 crossref_primary_10_1016_j_micres_2020_126516 crossref_primary_10_1016_j_pbi_2023_102405 crossref_primary_10_1093_jxb_erad249 crossref_primary_10_3389_fpls_2019_00363 crossref_primary_10_3389_fpls_2021_722954 crossref_primary_10_1093_insilicoplants_diz012 crossref_primary_10_1007_s11104_017_3408_5 crossref_primary_10_1007_s11104_024_06576_z crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1016_j_rhisph_2022_100561 crossref_primary_10_1111_pce_14259 crossref_primary_10_3117_plantroot_16_11 crossref_primary_10_1111_pce_13840 crossref_primary_10_1038_s41588_024_01761_3 crossref_primary_10_1021_acs_jafc_2c06843 crossref_primary_10_1007_s44307_024_00050_8 crossref_primary_10_1093_plphys_kiad213 crossref_primary_10_1002_pei3_10026 crossref_primary_10_1017_S0014479719000206 crossref_primary_10_1002_vzj2_20084 crossref_primary_10_1016_j_rhisph_2023_100738 crossref_primary_10_1038_s41598_021_90062_4 crossref_primary_10_1093_jxb_erad312 crossref_primary_10_1007_s40415_024_00991_3 crossref_primary_10_1093_aob_mcab029 crossref_primary_10_3390_atmos11010021 crossref_primary_10_3389_fpls_2022_820450 crossref_primary_10_1016_j_agwat_2016_08_012 crossref_primary_10_1093_jxb_erad390 crossref_primary_10_1007_s11104_015_2668_1 crossref_primary_10_1111_pce_14587 crossref_primary_10_1016_j_jplph_2017_12_019 crossref_primary_10_3389_fpls_2021_734614 crossref_primary_10_1016_j_rhisph_2017_10_004 crossref_primary_10_1016_j_agwat_2025_109320 crossref_primary_10_1111_nph_18409 |
Cites_doi | 10.1098/rstb.2007.2175 10.1093/jxb/34.3.240 10.1007/s00344-003-0008-9 10.1007/s11104-012-1579-7 10.1111/j.1438-8677.2010.00385.x 10.1002/jpln.201300249 10.1071/FP13330 10.2136/vzj2007.0156 10.1093/jxb/51.342.61 10.1007/s11104-008-9834-7 10.1016/j.tplants.2003.11.003 10.1104/pp.106.1.179 10.1023/A:1004213728734 10.1007/s11104-013-1657-5 10.2136/sssaj2007.0302 10.2136/vzj2010.0113 10.1016/S0167-8809(00)00220-6 10.1093/oxfordjournals.aob.a085488 10.1146/annurev.arplant.50.1.695 10.1007/s11104-004-7904-z 10.1104/pp.109.1.7 10.1007/s11104-010-0283-8 10.1111/j.1469-8137.2011.03826.x 10.2136/vzj2007.0115 10.1111/j.1399-3054.1991.tb00075.x 10.1038/452273a 10.1111/j.1365-2389.2006.00870.x 10.1104/pp.31.6.468 10.1111/nph.12330 10.1146/annurev.arplant.59.032607.092734 10.1007/BF02139932 10.1093/annbot/58.4.577 10.1093/aob/mch056 10.1007/s11104-004-7903-0 10.1104/pp.91.2.719 10.1111/j.1365-3040.2010.02223.x 10.1023/A:1026439226716 10.1006/anbo.1997.0540 10.1104/pp.108.134098 10.1017/S0029665110003836 10.2136/sssaspecpub61.c7 10.1111/j.1469-8137.1993.tb03789.x 10.1104/pp.114.243212 10.2136/vzj2013.02.0041 10.2136/vzj2011.0106 10.1093/jxb/eru162 10.1093/jexbot/51.342.61 10.1104/pp. 108.134098 10.2136/vzj2014.03.0024 10.2136/vzj2011.0196 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media 2016 Springer International Publishing Switzerland 2015 COPYRIGHT 2016 Springer Springer International Publishing Switzerland 2016 |
Copyright_xml | – notice: Springer Science+Business Media 2016 – notice: Springer International Publishing Switzerland 2015 – notice: COPYRIGHT 2016 Springer – notice: Springer International Publishing Switzerland 2016 |
DBID | FBQ AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-015-2639-6 |
DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 77 |
ExternalDocumentID | 3924849531 A442890570 10_1007_s11104_015_2639_6 43872729 US201600091784 |
GroupedDBID | -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHWEU AIXLP ATHPR PHGZM PQGLB PUEGO -4W -56 -5G -BR -EM 3V. 88A ADINQ GQ6 JSODD M0L Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 AAYXX AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c646t-a55de1aa197edcea6c325de1d76a38f4187e9826567a386b75be4917e35e30053 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Mon Jul 21 12:03:34 EDT 2025 Thu Jul 10 22:02:42 EDT 2025 Fri Jul 25 09:42:44 EDT 2025 Tue Jun 10 20:27:33 EDT 2025 Tue Jul 01 00:58:55 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Fri Feb 21 02:33:28 EST 2025 Sun Aug 24 12:10:44 EDT 2025 Thu Apr 03 09:42:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Neutron radiography Lateral roots Root water uptake Maize Deuterated water (D Seminal roots Radial and axial conductivity O |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c646t-a55de1aa197edcea6c325de1d76a38f4187e9826567a386b75be4917e35e30053 |
Notes | http://dx.doi.org/10.1007/s11104-015-2639-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/42018 |
PQID | 1757877307 |
PQPubID | 54098 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1803153571 proquest_miscellaneous_1765985474 proquest_journals_1757877307 gale_infotracacademiconefile_A442890570 crossref_citationtrail_10_1007_s11104_015_2639_6 crossref_primary_10_1007_s11104_015_2639_6 springer_journals_10_1007_s11104_015_2639_6 jstor_primary_43872729 fao_agris_US201600091784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2016 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Bramley, Turner, Turner, Tyerman (CR3) 2009; 150 Garrigues, Doussan, Pierret (CR14) 2006; 283 Ahmed, Kroener, Holz (CR1) 2014; 41 Zarebanadkouki, Carminati (CR48) 2014; 177 Lynch, Chimungu, Brown (CR22) 2014 Watt, McCully, Canny (CR47) 1994; 106 CR36 Doussan, Pierret, Garrigues, Pagès (CR12) 2006; 283 Wang, Canny, McCully (CR45) 1991; 82 Zarebanadkouki, Kim, Carminati (CR50) 2013; 199 Wallace (CR44) 2000; 82 Oswald, Menon, Carminati (CR34) 2008; 7 CR6 CR5 Brodersen (CR4) 2013; 366 CR49 Zwieniecki, Thompson, Holbrook (CR52) 2003; 21 Javaux, Schröder, Vanderborght, Vereecken (CR18) 2008; 7 Matsushima, Kardjilov, Hilger (CR24) 2012; 82 CR43 CR40 Doussan, Pagès, Vercambre (CR11) 1998; 81 Hochholdinger, Park, Sauer, Woll (CR16) 2004; 9 Sierp, Brewig (CR39) 1935; 82 Morison, Baker, Mullineaux, Davies (CR31) 2008; 363 McCully, Canny (CR27) 1988; 111 Clarkson, Carvajal, Henzler (CR9) 2000; 51 Sanderson (CR38) 1983; 34 CR19 Lynch (CR21) 1995; 109 Frensch, Steudle (CR13) 1989; 91 North, Nobel (CR32) 1997; 191 Marris (CR23) 2008; 452 Landsberg, Fowkes (CR20) 1978; 42 Carminati, Schneider, Moradi (CR8) 2011; 10 Parry, Hawkesford (CR35) 2010; 69 CR51 Moradi, Carminati, Vetterlein (CR30) 2011; 192 Ordin, Kramer (CR33) 1956; 31 Menon, Robinson, Oswald (CR28) 2007; 58 Rewald, Ephrath, Rachmilevitch (CR37) 2011; 34 Tumlinson, Liu, Silk, Hopmans (CR42) 2008; 72 Carminati, Moradi, Vetterlein (CR7) 2010; 332 Maurel, Verdoucq, Luu, Santoni (CR25) 2008; 59 Hochholdinger, Woll, Sauer, Dembinsky (CR17) 2004; 93 Hochholdinger, Bennetzen, Hake (CR15) 2009 McCully (CR26) 1999; 50 Warren, Bilheux, Kang (CR46) 2013; 366 Aubin, Canny, McCully (CR2) 1986; 58 Steudle (CR41) 2000; 226 Da Ines, Graf, Franck (CR10) 2010; 12 Moradi, Conesa, Robinson (CR29) 2008; 318 MA Zwieniecki (2639_CR52) 2003; 21 M Watt (2639_CR47) 1994; 106 JIL Morison (2639_CR31) 2008; 363 J Sanderson (2639_CR38) 1983; 34 C Doussan (2639_CR11) 1998; 81 ME McCully (2639_CR26) 1999; 50 SE Oswald (2639_CR34) 2008; 7 LG Tumlinson (2639_CR42) 2008; 72 F Hochholdinger (2639_CR16) 2004; 9 2639_CR19 AB Moradi (2639_CR30) 2011; 192 2639_CR51 F Hochholdinger (2639_CR15) 2009 JM Warren (2639_CR46) 2013; 366 MAJ Parry (2639_CR35) 2010; 69 M Zarebanadkouki (2639_CR50) 2013; 199 DT Clarkson (2639_CR9) 2000; 51 M Menon (2639_CR28) 2007; 58 L Ordin (2639_CR33) 1956; 31 E Marris (2639_CR23) 2008; 452 J Frensch (2639_CR13) 1989; 91 E Steudle (2639_CR41) 2000; 226 M Zarebanadkouki (2639_CR48) 2014; 177 CR Brodersen (2639_CR4) 2013; 366 GB North (2639_CR32) 1997; 191 O Ines Da (2639_CR10) 2010; 12 J Lynch (2639_CR21) 1995; 109 A Carminati (2639_CR7) 2010; 332 H Sierp (2639_CR39) 1935; 82 H Bramley (2639_CR3) 2009; 150 A Carminati (2639_CR8) 2011; 10 JP Lynch (2639_CR22) 2014 C Maurel (2639_CR25) 2008; 59 B Rewald (2639_CR37) 2011; 34 E Garrigues (2639_CR14) 2006; 283 JJ Landsberg (2639_CR20) 1978; 42 ME McCully (2639_CR27) 1988; 111 X-L Wang (2639_CR45) 1991; 82 JS Wallace (2639_CR44) 2000; 82 M Javaux (2639_CR18) 2008; 7 C Doussan (2639_CR12) 2006; 283 U Matsushima (2639_CR24) 2012; 82 2639_CR36 MA Ahmed (2639_CR1) 2014; 41 AB Moradi (2639_CR29) 2008; 318 2639_CR5 2639_CR49 GS Aubin (2639_CR2) 1986; 58 2639_CR6 2639_CR40 2639_CR43 F Hochholdinger (2639_CR17) 2004; 93 |
References_xml | – year: 2014 ident: CR22 article-title: Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement publication-title: J Exp Bot – volume: 363 start-page: 639 year: 2008 end-page: 658 ident: CR31 article-title: Improving water use in crop production publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2007.2175 – ident: CR49 – volume: 34 start-page: 240 year: 1983 end-page: 253 ident: CR38 article-title: Water uptake by different regions of the barley root. Pathways of radial flow in relation to development of the endodermis publication-title: J Exp Bot doi: 10.1093/jxb/34.3.240 – ident: CR51 – volume: 21 start-page: 315 year: 2003 end-page: 323 ident: CR52 article-title: Understanding the hydraulics of porous pipes: tradeoffs between water uptake and root length utilization publication-title: J Plant Growth Regul doi: 10.1007/s00344-003-0008-9 – volume: 82 start-page: 99 year: 1935 end-page: 122 ident: CR39 article-title: Quantitative untersuchungen über die wasserabsorptionszone der wurzeln publication-title: Jahrb Wiss Bot – volume: 366 start-page: 683 year: 2013 end-page: 693 ident: CR46 article-title: Neutron imaging reveals internal plant water dynamics publication-title: Plant Soil doi: 10.1007/s11104-012-1579-7 – volume: 12 start-page: 129 year: 2010 end-page: 139 ident: CR10 article-title: Kinetic analyses of plant water relocation using deuterium as tracer – reduced water flux of Arabidopsis pip2 aquaporin knockout mutants publication-title: Plant Biol doi: 10.1111/j.1438-8677.2010.00385.x – volume: 177 start-page: 227 year: 2014 end-page: 236 ident: CR48 article-title: Reduced root water uptake after drying and rewetting publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201300249 – volume: 41 start-page: 1129 year: 2014 end-page: 1137 ident: CR1 article-title: Mucilage exudation facilitates root water uptake in dry soils publication-title: Funct Plant Biol doi: 10.1071/FP13330 – volume: 7 start-page: 1035 year: 2008 ident: CR34 article-title: Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography publication-title: Vadose Zone J doi: 10.2136/vzj2007.0156 – volume: 51 start-page: 61 year: 2000 end-page: 70 ident: CR9 article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress publication-title: J Exp Bot doi: 10.1093/jxb/51.342.61 – volume: 318 start-page: 243 year: 2008 end-page: 255 ident: CR29 article-title: Neutron radiography as a tool for revealing root development in soil: capabilities and limitations publication-title: Plant Soil doi: 10.1007/s11104-008-9834-7 – volume: 9 start-page: 42 year: 2004 end-page: 48 ident: CR16 article-title: From weeds to crops: genetic analysis of root development in cereals publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2003.11.003 – volume: 106 start-page: 179 year: 1994 end-page: 186 ident: CR47 article-title: Formation and stabilization of rhizosheaths of Zea mays L. (Effect of soil water content) publication-title: Plant Physiol doi: 10.1104/pp.106.1.179 – ident: CR19 – volume: 191 start-page: 249 year: 1997 end-page: 258 ident: CR32 article-title: Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths publication-title: Plant Soil doi: 10.1023/A:1004213728734 – volume: 366 start-page: 29 year: 2013 end-page: 32 ident: CR4 article-title: Visualizing water transport in roots: advanced imaging tools for an expanding field publication-title: Plant Soil doi: 10.1007/s11104-013-1657-5 – volume: 72 start-page: 1234 year: 2008 ident: CR42 article-title: Thermal neutron computed tomography of soil water and plant roots publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2007.0302 – volume: 10 start-page: 988 year: 2011 ident: CR8 article-title: How the rhizosphere May favor water availability to roots publication-title: Vadose Zone J doi: 10.2136/vzj2010.0113 – ident: CR36 – volume: 82 start-page: 105 year: 2000 end-page: 119 ident: CR44 article-title: Increasing agricultural water use efficiency to meet future food production publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(00)00220-6 – ident: CR5 – volume: 42 start-page: 493 year: 1978 end-page: 508 ident: CR20 article-title: Water movement through plant roots publication-title: Ann Bot doi: 10.1093/oxfordjournals.aob.a085488 – volume: 50 start-page: 695 year: 1999 end-page: 718 ident: CR26 article-title: Roots in soil: unearthing the complexities of roots and their rhizospheres publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.50.1.695 – volume: 283 start-page: 99 year: 2006 end-page: 117 ident: CR12 article-title: Water uptake by plant roots: II – modelling of water transfer in the soil root-system with explicit account of flow within the root system – comparison with experiments publication-title: Plant Soil doi: 10.1007/s11104-004-7904-z – volume: 109 start-page: 7 year: 1995 end-page: 13 ident: CR21 article-title: Root architecture and plant productivity publication-title: Plant Physiol doi: 10.1104/pp.109.1.7 – volume: 332 start-page: 163 year: 2010 end-page: 176 ident: CR7 article-title: Dynamics of soil water content in the rhizosphere publication-title: Plant Soil doi: 10.1007/s11104-010-0283-8 – volume: 192 start-page: 653 year: 2011 end-page: 663 ident: CR30 article-title: Three-dimensional visualization and quantification of water content in the rhizosphere publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03826.x – ident: CR43 – volume: 7 start-page: 1079 year: 2008 ident: CR18 article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake publication-title: Vadose Zone J doi: 10.2136/vzj2007.0115 – volume: 82 start-page: 157 year: 1991 end-page: 162 ident: CR45 article-title: The water status of the roots of soil-grown maize in relation to the maturity of their xylem publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1991.tb00075.x – volume: 452 start-page: 273 year: 2008 end-page: 277 ident: CR23 article-title: Water: more crop per drop publication-title: Nat New doi: 10.1038/452273a – volume: 58 start-page: 802 year: 2007 end-page: 810 ident: CR28 article-title: Visualization of root growth in heterogeneously contaminated soil using neutron radiography publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2006.00870.x – volume: 31 start-page: 468 year: 1956 end-page: 471 ident: CR33 article-title: Permeability of vicia faba root segments to water as measured by diffusion of deuterium hydroxide. 12 publication-title: Plant Physiol doi: 10.1104/pp.31.6.468 – volume: 199 start-page: 1034 year: 2013 end-page: 1044 ident: CR50 article-title: Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil publication-title: New Phytol doi: 10.1111/nph.12330 – volume: 59 start-page: 595 year: 2008 end-page: 624 ident: CR25 article-title: Plant aquaporins: membrane channels with multiple integrated functions publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092734 – volume: 111 start-page: 159 year: 1988 end-page: 170 ident: CR27 article-title: Pathways and processes of water and nutrient movement in roots publication-title: Plant Soil doi: 10.1007/BF02139932 – ident: CR6 – volume: 58 start-page: 577 year: 1986 end-page: 588 ident: CR2 article-title: Living vessel elements in the late metaxylem of sheathed maize roots publication-title: Ann Bot doi: 10.1093/annbot/58.4.577 – ident: CR40 – volume: 93 start-page: 359 year: 2004 end-page: 368 ident: CR17 article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes publication-title: Ann Bot doi: 10.1093/aob/mch056 – volume: 82 start-page: 90 year: 2012 end-page: 98 ident: CR24 article-title: Application potential of cold neutron radiography in plant science research publication-title: J Appl Bot Food Qual – volume: 283 start-page: 83 year: 2006 end-page: 98 ident: CR14 article-title: Water uptake by plant roots: I – formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging publication-title: Plant Soil doi: 10.1007/s11104-004-7903-0 – volume: 91 start-page: 719 year: 1989 end-page: 726 ident: CR13 article-title: Axial and radial hydraulic resistance to roots of maize (Zea mays L.) publication-title: Plant Physiol doi: 10.1104/pp.91.2.719 – volume: 34 start-page: 33 year: 2011 end-page: 42 ident: CR37 article-title: A root is a root is a root? Water uptake rates of citrus root orders publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2010.02223.x – volume: 226 start-page: 45 year: 2000 end-page: 56 ident: CR41 article-title: Water uptake by plant roots: an integration of views publication-title: Plant Soil doi: 10.1023/A:1026439226716 – start-page: 145 year: 2009 end-page: 160 ident: CR15 article-title: Handbook of Maize: Its Biology publication-title: The Maize Root System: Morphology, Anatomy, and Genetics – volume: 81 start-page: 213 year: 1998 end-page: 223 ident: CR11 article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description publication-title: Ann Bot doi: 10.1006/anbo.1997.0540 – volume: 150 start-page: 348 year: 2009 end-page: 364 ident: CR3 article-title: Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots publication-title: Plant Physiol doi: 10.1104/pp.108.134098 – volume: 69 start-page: 592 year: 2010 end-page: 600 ident: CR35 article-title: Food security: increasing yield and improving resource use efficiency publication-title: Proc Nutr Soc doi: 10.1017/S0029665110003836 – volume: 366 start-page: 29 year: 2013 ident: 2639_CR4 publication-title: Plant Soil doi: 10.1007/s11104-013-1657-5 – ident: 2639_CR36 doi: 10.2136/sssaspecpub61.c7 – volume: 109 start-page: 7 year: 1995 ident: 2639_CR21 publication-title: Plant Physiol doi: 10.1104/pp.109.1.7 – volume: 58 start-page: 802 year: 2007 ident: 2639_CR28 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2006.00870.x – volume: 9 start-page: 42 year: 2004 ident: 2639_CR16 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2003.11.003 – volume: 283 start-page: 83 year: 2006 ident: 2639_CR14 publication-title: Plant Soil doi: 10.1007/s11104-004-7903-0 – ident: 2639_CR43 doi: 10.1111/j.1469-8137.1993.tb03789.x – volume: 50 start-page: 695 year: 1999 ident: 2639_CR26 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.50.1.695 – volume: 191 start-page: 249 year: 1997 ident: 2639_CR32 publication-title: Plant Soil doi: 10.1023/A:1004213728734 – volume: 318 start-page: 243 year: 2008 ident: 2639_CR29 publication-title: Plant Soil doi: 10.1007/s11104-008-9834-7 – volume: 177 start-page: 227 year: 2014 ident: 2639_CR48 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201300249 – volume: 34 start-page: 240 year: 1983 ident: 2639_CR38 publication-title: J Exp Bot doi: 10.1093/jxb/34.3.240 – ident: 2639_CR51 doi: 10.1104/pp.114.243212 – volume: 93 start-page: 359 year: 2004 ident: 2639_CR17 publication-title: Ann Bot doi: 10.1093/aob/mch056 – volume: 111 start-page: 159 year: 1988 ident: 2639_CR27 publication-title: Plant Soil doi: 10.1007/BF02139932 – volume: 69 start-page: 592 year: 2010 ident: 2639_CR35 publication-title: Proc Nutr Soc doi: 10.1017/S0029665110003836 – ident: 2639_CR40 doi: 10.2136/vzj2013.02.0041 – volume: 199 start-page: 1034 year: 2013 ident: 2639_CR50 publication-title: New Phytol doi: 10.1111/nph.12330 – ident: 2639_CR6 doi: 10.2136/vzj2011.0106 – volume: 58 start-page: 577 year: 1986 ident: 2639_CR2 publication-title: Ann Bot doi: 10.1093/annbot/58.4.577 – volume: 81 start-page: 213 year: 1998 ident: 2639_CR11 publication-title: Ann Bot doi: 10.1006/anbo.1997.0540 – year: 2014 ident: 2639_CR22 publication-title: J Exp Bot doi: 10.1093/jxb/eru162 – volume: 82 start-page: 157 year: 1991 ident: 2639_CR45 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1991.tb00075.x – volume: 192 start-page: 653 year: 2011 ident: 2639_CR30 publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03826.x – volume: 51 start-page: 61 year: 2000 ident: 2639_CR9 publication-title: J Exp Bot doi: 10.1093/jexbot/51.342.61 – volume: 363 start-page: 639 year: 2008 ident: 2639_CR31 publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2007.2175 – volume: 91 start-page: 719 year: 1989 ident: 2639_CR13 publication-title: Plant Physiol doi: 10.1104/pp.91.2.719 – volume: 150 start-page: 348 year: 2009 ident: 2639_CR3 publication-title: Plant Physiol doi: 10.1104/pp. 108.134098 – volume: 82 start-page: 99 year: 1935 ident: 2639_CR39 publication-title: Jahrb Wiss Bot – volume: 332 start-page: 163 year: 2010 ident: 2639_CR7 publication-title: Plant Soil doi: 10.1007/s11104-010-0283-8 – volume: 72 start-page: 1234 year: 2008 ident: 2639_CR42 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2007.0302 – volume: 10 start-page: 988 year: 2011 ident: 2639_CR8 publication-title: Vadose Zone J doi: 10.2136/vzj2010.0113 – volume: 7 start-page: 1035 year: 2008 ident: 2639_CR34 publication-title: Vadose Zone J doi: 10.2136/vzj2007.0156 – volume: 31 start-page: 468 year: 1956 ident: 2639_CR33 publication-title: Plant Physiol doi: 10.1104/pp.31.6.468 – volume: 41 start-page: 1129 year: 2014 ident: 2639_CR1 publication-title: Funct Plant Biol doi: 10.1071/FP13330 – volume: 7 start-page: 1079 year: 2008 ident: 2639_CR18 publication-title: Vadose Zone J doi: 10.2136/vzj2007.0115 – volume: 366 start-page: 683 year: 2013 ident: 2639_CR46 publication-title: Plant Soil doi: 10.1007/s11104-012-1579-7 – ident: 2639_CR5 – start-page: 145 volume-title: The Maize Root System: Morphology, Anatomy, and Genetics year: 2009 ident: 2639_CR15 – volume: 226 start-page: 45 year: 2000 ident: 2639_CR41 publication-title: Plant Soil doi: 10.1023/A:1026439226716 – ident: 2639_CR19 doi: 10.2136/vzj2014.03.0024 – volume: 452 start-page: 273 year: 2008 ident: 2639_CR23 publication-title: Nat New doi: 10.1038/452273a – volume: 82 start-page: 105 year: 2000 ident: 2639_CR44 publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(00)00220-6 – volume: 42 start-page: 493 year: 1978 ident: 2639_CR20 publication-title: Ann Bot doi: 10.1093/oxfordjournals.aob.a085488 – volume: 34 start-page: 33 year: 2011 ident: 2639_CR37 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2010.02223.x – volume: 283 start-page: 99 year: 2006 ident: 2639_CR12 publication-title: Plant Soil doi: 10.1007/s11104-004-7904-z – volume: 21 start-page: 315 year: 2003 ident: 2639_CR52 publication-title: J Plant Growth Regul doi: 10.1007/s00344-003-0008-9 – volume: 82 start-page: 90 year: 2012 ident: 2639_CR24 publication-title: J Appl Bot Food Qual – volume: 59 start-page: 595 year: 2008 ident: 2639_CR25 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092734 – volume: 12 start-page: 129 year: 2010 ident: 2639_CR10 publication-title: Plant Biol doi: 10.1111/j.1438-8677.2010.00385.x – volume: 106 start-page: 179 year: 1994 ident: 2639_CR47 publication-title: Plant Physiol doi: 10.1104/pp.106.1.179 – ident: 2639_CR49 doi: 10.2136/vzj2011.0196 |
SSID | ssj0003216 |
Score | 2.4699094 |
Snippet | AIMS: Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of... Aims Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of... Aims Maize ( Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of... Maize (Zea mays L.) is one of the most important crops worldwide. Despite several studies on maize roots, there is limited information on the function of... |
SourceID | proquest gale crossref springer jstor fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 59 |
SubjectTerms | Agricultural soils Aluminum Biomedical and Life Sciences containers Corn crops deuterium oxide Diffusion coefficient diffusivity Ecology image analysis Life Sciences Mathematical models Measurement Neutrons Observations Physiological aspects Plant biology Plant Physiology Plant roots Plant Sciences Plant-soil relationships Plant-water relationships Radiography Regular Article Roots Roots (Botany) Sand soils Sandy soils Seminal roots Soil Science & Conservation Soil water Soils Spatial distribution Water Water immersion Water uptake Xylem Zea mays |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9sVdAH0dPSaCsrCIISyN5--3aWliLYFz24t2WTbERaL-WSQ-pf70wuyVmxhb5lk0k2mcnMzu7M_gbgraUtaDwQwmWepZKXMbXByZS7wHWeCatjl21xpk_n8vNCLfp93M2Q7T6EJDtLvd3shiMVZUxQVpZwqd6B-wqn7pTHNZ_ORvMrpl29UzpIM-MWQyjzf4-4NhjtVKEeDfMmOfGa2_lPpLQbgE6ewpPec2Szjaifwb24nMDj2fdVj54RJ_DgU42-3tUEHh53YNRXz-Hsy3YRsGF1xX6hc7li68s2nEdq_ww_fkeG_nPbfGToDTLUakajHUmMCC7oBuy4I3kB85Pjb0enaV9DIS201G0alCojD4E7Q_meQRdiSmdKo4OwleTWRIdTDKUNtnVuVB4lTuGiUJGQ7MUe7C7rZdwHVmVlUWZ5hZx0UsQyVCVOdoJ0NhY85DyBbGCmL3qAcapzceG30MjEf4_898R_rxN4P95yuUHXuI14HyXkA_K18fOvU8LGQw-RGysTeEdi86SU2GUR-r0F-OIEb-VnUlJAVZksgb1OsmN3UliKRbsEDgZR-16NG88J7d-gETQJvBkvowJSVCUsY70mGq2cVdLIW2gsFdMQyiCTPgy_0V_d3PTJL-9E_QoeEVM2C0QHsNuu1vEQXaY2f92pyB85lgbz priority: 102 providerName: Springer Nature |
Title | Measurements of water uptake of maize roots: the key function of lateral roots |
URI | https://www.jstor.org/stable/43872729 https://link.springer.com/article/10.1007/s11104-015-2639-6 https://www.proquest.com/docview/1757877307 https://www.proquest.com/docview/1765985474 https://www.proquest.com/docview/1803153571 |
Volume | 398 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9MwDLfYxgP3gODgdIVjKhISEqiiWdIk5QV1sHECMSFg0niK0jY9Ie7WsXZC8Ndjd-3GIbGnfrlKa8eOEzs_AzzRtAWNWUK4TMNAsNwF2sYiYLFlMg25lq7JtpjJ87l4t4gW7YJb1aZVdjaxMdR5mdEa-QtGwOsK-6N6tfoRUNUoiq62JTR6MEATrHUfBuPJ7OOnnS3mo6b4KZ0EoYoXXVyz2TyHIx9lYFCWF48DeW1k6hW23FnpbabiNR_0n7BpMxpN78Dt1o30k63c78INtzyGo-Ri3UJpuGO4OS7R8ft1D2Yf9uuAlV8W_k_0L9f-ZlXb746ur-y3385HF7quXvroEPqo2D4NeCQ0IrikF7C5huQ-zKeTL6_Pg7aMQpBJIevARlHumLUsVpTyaWXGR3QnV9JyXQimlYtxlhFJhdcyVVHqBM7iHI8cgdnzE-gvy6U7Bb8I8ywP0wL5FwvuclvkON-xItYuYzZlHoQdC03WYoxTqYtLs0dHJq4b5LohrhvpwbPdK6stwMYh4lOUi7HIzcrMP48IHg-dRKa08OApCcuQXmKTmW23F-CHE8KVSYSgmGqkQg9OGnnumhNcUzg69uCsE7BpNbky-37nwePdY9RBCqzYpSs3RCOjWEdCiQM0mupp8Eghk553neevZv73yw8Of9RDuEVc2C4KnUG_Xm_cI3ST6nQIg2T8Zjyl49uv7yfDVjeG0JuPkj9Wrgzz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9tHRLwgGAwLTAgSCAkUEQcO3aChFAHmzq2VQhWqW_GSRw0bTSlTTWND8Vn5C7_ypDo296a5lKnd-e7s-_8O4DnER1BY4YQLhPfEyyzXmRi4bHYMJn4PJK2qrYYysFIfBqH4zX43Z6FobLK1iZWhjorUtojf8MIeF2hPqr3058edY2i7GrbQqNWi0N7eYFLtvm7g48o3xdBsL938mHgNV0FvFQKWXomDDPLjGGxogpII1Me0DeZkoZHuWCRsjEG3aFUeC0TFSZW4KLG8tAStjvH312HDcGlH_RgY3dv-PlLZ_t5UDVbpQ-er-Jxm0etDuuhp6WKD6oq47Enr3jC9dwUnVeoKyOvxLz_pGkr77d_F-40Yavbr_XsHqzZySbc7n-fNdAddhNu7BYYaF7eh-Hxct9x7ha5e4Hx7MxdTEtzZun6hzn9ZV0M2cv5WxcDUBcNiUsOlpSECM7pARyuInkAo2th8Bb0JsXEboOb-1ma-UmO_IsFt5nJM1xfGRFHNmUmYQ74LQt12mCaU2uNc71EYyaua-S6Jq5r6cCr7pFpDeixingb5aINcnOuR18DguPDoJSpSDjwkoSlyQ7gkKlpjjPgixOilu4LQTncUPkObFXy7IYTPKL0d-zATitg3ViOuV7quQPPuts45ymRYya2WBCNDOMoFEqsoImofwcPFTLpdas8fw3zv7_8cPVLPYWbg5PjI310MDx8BLeII_WG1A70ytnCPsYQrUyeNPPChW_XPRX_APYERW0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLe2DiF4QDCYFhgQJBASKFouuT8JEkIdW7UxqCagUt-OS3JBaFtTmlTT-Gh8Ouw0SRkSfdtb0zi91PbZvzv7bIDnER1BY4YqXCa-x1lmvcjE3GOxYTLxw0jaOttiKA9H_MNYjNfgd3sWhtIqW5tYG-qsSGmPfJdR4XWF-qh28yYt4mR_8G7606MOUhRpbdtpLFTk2F5e4PKtfHu0j7J-EQSDg6_vD72mw4CXSi4rzwiRWWYMixVlQxqZhgF9kylpwijnLFI2RgAupMJrmSiRWI4LHBsKS3XeQ_zdddhQtCrqwcbewfDkc-cHwqBuvEofPF_F4zamWh_cQ69L2R-UYRbGnrziFddzU3QeYpEleQX__hOyrT3h4C7caSCs21_o3D1Ys5NNuN3_PmvKeNhNuLFXIOi8vA_DT8s9yNItcvcCse3MnU8rc2rp-tz8-GVdhO9V-cZFMOqiUXHJ2ZLCEMEZPYDD1SQPYHQtDN6C3qSY2G1wcz9LMz_JkX8xD21m8gzXWobHkU2ZSZgDfstCnTb1zanNxpleVmYmrmvkuiaua-nAq-6R6aK4xyribZSLNsjNUo--BFSaDwEqUxF34CUJS5NNwCFT0xxtwBen6lq6zznFc4XyHdiq5dkNx8OIQuGxAzutgHVjRUq91HkHnnW3cf5TUMdMbDEnGiniSHDFV9BE1MsjFAqZ9LpVnr-G-d9ffrj6pZ7CTZyC-uPR8PgR3CKGLPamdqBXzeb2MaK1KnnSTAsXvl33TPwDhMFJog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurements+of+water+uptake+of+maize+roots%3A+the+key+function+of+lateral+roots&rft.jtitle=Plant+and+soil&rft.au=Ahmed%2C+Mutez+A&rft.au=Zarebanadkouki%2C+Mohsen&rft.au=Kaestner%2C+Anders&rft.au=Carminati%2C+Andrea&rft.date=2016-01-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=398&rft.issue=1-2&rft.spage=59&rft.epage=77&rft_id=info:doi/10.1007%2Fs11104-015-2639-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |